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Abstract 

The current study reports on the wear properties of aluminum 6061-T6 

reinforced with titanium carbide and graphite hybrid metal matrix composite 

using principal component analysis based grey relational analysis. Experiments 

were carried out using Taguchi's L9 orthogonal array. The dry sliding wear 

properties of composite samples are evaluated using a Pin-on-Disc apparatus. 

The effects of wear parameter input variables such as load, sliding speed, and 

sliding distance on different output responses, namely wear rate, friction force, 

and coefficient of friction, were investigated in this work. Using grey relational 

analysis in conjunction with principal component analysis, three output 

responses from each experiment were normalized into a weighted grey relational 

grade. According to the analysis of variance, the most influential parameter is 

sliding velocity (45.51%), followed by load (26.75%) and sliding distance 

(2.94%), all of which contribute to the quality characteristics. Additional 

experiments have confirmed optimal results. Finally, a scanning electron 

microscopic analysis was performed to investigate the wear mechanism. 

 

Keywords: aluminum matrix composites; titanium carbide; graphite; taguchi 

method; grey relational analysis; principal component analysis; analysis of 

variance.  

  

 
*Corresponding author: P.Muthu, vpmuthu2001@yahoo.com 

https://doi.org/10.30544/874


454 Metall. Mater. Eng. Vol 28 (3) 2022 p. 453-468 

 

Introduction  
Due to their superior mechanical properties, composite materials are important 

engineering materials. Because of their superior properties such as high strength, 

hardness, stiffness, wear and corrosion resistances, metal matrix composite materials 

have become necessary materials in various engineering applications such as aerospace, 

marine, and automobile engineering applications. Aluminium and its alloys are gaining 

popularity due to their reputation as stronger, stiffer, corrosion-resistant, and low-cost 

materials. These materials have poor high temperature performance and have a lower 

load carrying capacity [1]. To address these concerns, researchers are attempting to 

incorporate various types of reinforcements such as silicon carbide, aluminum oxide, 

boron carbide, and titanium carbide into aluminum metal matrix composites [2-6]. 

Shorowordi et al. [7] studied the tribo-surface properties of Al-B4C and Al-SiC 

composites worn at various contact pressures. The results showed that as contact 

pressures increased, the wear rate and surface roughness of Al-B4C and Al-SiC MMCs 

increased. However, at high contact pressure, the coefficient of friction decreases. 

Raghunath et al. [8] investigated the tribological behavior of an aluminum alloy LM25 

reinforced with SIC and TiO2 particles. They discovered that the wear rate of the 

composites increases with increasing sliding distance and load conditions and decreases 

with increasing reinforcement volume content. With increasing load and Silicon carbide 

and Titanium oxide particle reinforcement, the friction coefficient decreases. The wear 

parameters of AA336 aluminum alloy-boron carbide and fly ash reinforced hybrid 

composites were investigated by Arunachalam et al. [9]. The results of the wear tests 

revealed that weight loss increases with increasing load and sliding distance. However, 

as the sliding velocity increased, the weight loss of the samples decreased. Chelladurai 

et al. [10] investigated the mechanical properties and wear behavior of LM13 

Aluminium Alloy reinforced with copper coated steel wires in a squeeze cast. They 

concluded that reinforcing LM13 aluminum alloy with copper coated steel wires 

improves hardness, tensile strength, and wear resistance. The results of dry sliding wear 

tests show that increasing the number of copper coated steel wires reinforcement in the 

LM13 matrix reduces weight loss, wear rate, and coefficient of friction. However, as the 

sliding distance and load increased, so did the weight loss of the samples. 

İjlal ŞİMŞEK [11] investigated the effects of B4C content on the wear properties 

of Al-Graphite/B4C hybrid composites. They discovered that increasing the amount of 

B4C increases the hardness and decreases the density of the prepared composite. The 

results of wear tests revealed that the non-reinforced Al-Gr matrix alloy had the greatest 

weight loss, while the 9% B4C reinforced composite materials had the least weight loss. 

However, they discovered that as the amount of reinforcement increased, the friction 

coefficient decreased. Alaneme et al. [12] investigated the corrosion and wear 

characteristics of aluminum composites reinforced with rice husk ash and alumina. They 

concluded that when aluminum alloy was reinforced with alumina alone, the corrosion 

resistance was much higher than when rice husk ash was added. The wear behavior of 

aluminum alloy reinforced with coconutshell ash particles was investigated by Apasi et 

al. [13]. They discovered that as the load increased, so did the wear rate of the 

composites, because the contact friction between the pin and the disc increased. The 

addition of ash reinforcement to the matrix was found to be beneficial because it 

reduced the wear rate. 
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Ravi et al. [14] investigated the dry sliding wear behavior of aluminum alloy 

6061-redmud metal matrix composites and discovered that red mud particles in Al-6061 

increase hardness while decreasing coefficient of friction as the weight percentage of 

red mud reinforcement increases. Lokesh et al. [15] used the Taguchi technique to 

investigate the dry sliding wear behavior of Al/Gr/SiC hybrid metal matrix composites. 

They discovered that the applied load had a greater impact on the wear rate of the 

composites than sliding distance and reinforcement. Prathap Singh et al. [16] used the 

Taguchi method to improve the dry sliding wear performance of a functionally graded 

Al6061 / 20% SiC metal matrix composite. The results revealed that the applied load 

had the greatest influence on dry sliding wear, followed by the region from the outer 

surface and sliding velocity. The dry sliding wear behavior of an Al alloy reinforced 

with SiC particles was investigated by Rao et al. [17]. The experiment was carried out 

with the aluminum alloys AA7010, AA7009, and AA2024, and the reinforcement 

volume fraction was varied from 10% to 25%. The test revealed that increasing the 

volume fraction of reinforcement reduced the wear rate. The growing demand for better 

metal matrix composites with desirable properties such as low wear rate, etc., prompted 

researchers to identify the parameters that may influence MMC performance. 

Fortunately, there are some optimization techniques in the literature that can be used to 

predict the performance characteristics of MMCs.  

The Taguchi method is the most widely used optimization approach. Previously, 

the Taguchi method was used to determine and analyze the best process parameters for 

a single quality response [18]. However, some processes require more than one quality 

response to be considered. The traditional Taguchi approach is incapable of resolving 

complex interrelationships between multiobjective optimization problems into a single-

objective function. As a result, an attempt was made to combine Grey relational analysis 

(GRA) based on Grey system theory with the Taguchi method to solve multi-

performance characteristics [19]. Al-Refaie [20] used the Grey grade to determine the 

best factor levels. An attempt was made in this work to optimize multiple quality 

responses using Taguchi-based Grey relational analysis. Tarng et al. [21] used Grey-

based Taguchi methods to optimize submerged arc welding process parameters while 

taking multiple weld qualities into account.  

It is recommended to use Principal Component Analysis (PCA) to eliminate 

response correlation by converting correlated responses into uncorrelated quality indices 

known as principal components, which are then used as response variables for 

optimization. As a result, principal component analysis has recently been considered as 

an analytical tool for optimizing a system with multiple performance characteristics [22-

24]. According to the literature review, no research has been done on Al6061-T6 

reinforced with titanium carbide and graphite. As a result, in this study, an attempt was 

made to investigate the wear behavior of the Al6061-T6 reinforced with titanium 

carbide and graphite hybrid metal matrix composite under varying load, sliding speed, 

and sliding distance using taguchi based grey relational analysis coupled with principal 

component analysis and find the optimum parameters. 
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Experimental method 

Selection of materials and fabrication of composite 

In this study, Al6061-T6 was selected as matrix material for preparation of 

test samples of the composite. The table 1 shows the chemical composition of the 

Al6061-T6 in percentage. The hybrid metal matrix composite was prepared by 

adding 5% of titanium carbide and 5% of graphite with Al6061-T6. 

Table 1. Chemical composition of Al6061-T6 

Si Fe Cu Mn Mg Cr Zn Al 

0.4-0.8 0.1-0.7 0.04-0.15 0.1-0.25 0.8-1.2 0.04-0.35 0-0.25 Remainder 

The Stir-casting technique (Figure 1) was used to create composite samples in 

this study. In the electrical furnace, a weighed amount of Al6061-T6 was melted at a 

temperature of 800 ± 10 °C. The titanium carbide and graphite were preheated for 30 

minutes at 400°C to improve wettability before being slowly added to the molten metal 

with continuous stirring. After adding the reinforcements, the stirring was extended for 

fifteen minutes. After that, the molten mixture was poured into a metallic mold and 

allowed to solidify. Following solidification, the cast samples were removed from the 

mold and machined to 10 mm diameter and 30 mm length in accordance with American 

Society for Testing Materials G99-95 (2010). 

 
Fig. 1. Stir casting stup. 

Taguchi Approach 

Dr. Genichi Taguchi`s Design of experiments approach [25] was used to analyze 

wear parameters and to find out the combination of optimum parameters which would 

result in a lower wear rate. The experimental plan consisting of L9 was set by a 

technique based on the Taguchi’s techniques, considering different variables at different 

levels like load, sliding velocity, and sliding distance and is shown in Table 2.  
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Table 2. Chemical composition of Al6061-T6 

Level Load (N) Sliding Velocity (m/s) Sliding Distance(m) 

1 10 4 2000 

2 20 6 2500 

3 30 8 3000 

 

The applied load (A) was assigned to the second column, the sliding velocity (B) 

to the third, and the sliding distance to the fourth (C). As response variables, the wear 

rate, friction force, and coefficient of friction of composites were used. The experiments 

were carried out in a sequence generated according to Taguchi design, and the 

experimental data was investigated using the software package MINITAB 16. The 

obtained results were converted into Signal to Noise (S/N) ratios. A performance 

characteristic is represented by the signal-to-noise (S/N) ratio, and the highest value of 

S/N ratio is required. Equation can be used to calculate the S/N ratio with lower-the-

better characteristics (wear rate, coefficient of friction) (1). 


=





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


−=

n

1j

2
ijij y

n

1
10logη  (1) 

where ηij is the jth S/N ratio of the ith experiment, yij is the ith experiment at the jth test, n 

is the total number of the tests. 

 

Experimental procedure 

The wear tests on the prepared composites are carried out using a pin-on-disc 

wear testing machine (Model: TR-20, DUCOM) (Figure 2). The test samples are 10 mm 

in diameter and 30 mm in length, and are prepared in accordance with ASTM G99-95 

standards. The samples were pushed against a steel disc (EN-31), which had a hardness 

of RC 65 and a surface roughness of 0.1. (Ra). Before testing, each specimen is polished 

with 240 grit silica carbide emery paper and then 600 grit. The specimens' ends were 

then metallographically polished. The specimen's initial weight was determined using 

an electronic weighing machine with a minimum count of 0.0001 g. During the test, the 

pin was pressed against the counterpart while rotating against an EN31 steel disc with a 

hardness of 65HRC. The specimens were removed after running through a fixed sliding 

distance, cleaned with acetone, dried, and weighed to determine the weight loss due to 

wear. 

The results for various parameter combinations were obtained by running the 

experiment as an average of at least three orthogonal array runs. The initial and final 

volume of the specimen are calculated using the initial and final weight of the specimen. 

The wear rate and friction coefficient are then calculated using Equations (2) and (3), as 

shown in Table 3. 
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force Normal

force Frictional
 (COF)friction  oft Coefficien =  (3) 

 

 
Fig. 2. Pin on disc apparatus. 

Table 3.Experimental plan and results. 

Expt 

no 

Load 

(N) 

Sliding 

Speed 

(m/s) 

Sliding 

Distance 

(m) 

Wear rate 

(mm3/m) 

Friction 

force 

(N) 

Coefficient 

of friction 

1 10 4 2000 0.000982275 5.54 0.554 

2 10 6 2500 0.002279245 5.89 0.589 

3 10 8 3000 0.002113208 4.97 0.497 

4 20 4 2500 0.000875472 8.28 0.414 

5 20 6 3000 0.006163522 8.54 0.427 

6 20 8 2000 0.011283918 8.36 0.418 

7 30 4 3000 0.014188679 12.39 0.413 

8 30 6 2000 0.002622642 13.26 0.442 

9 30 8 2500 0.010249057 12.57 0.419 

Optimization steps 

Grey Relational Analysis 

The grey relational analysis is a technique which is used for handling the 

uncertainty of multiple variables and discrete data. The steps of grey relational analysis 

are as follows: 

 

Data pre-processing 

To reduce inconsistency, the Grey Relational Analysis first normalizes the signal 

to noise ratio of quality characteristics. Data preprocessing is the process of converting 

the original sequence to a comparable sequence. For this purpose, the experimental 

results are normalized from 0 to 1. The quality characteristics of the process/product to 
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be optimized are normalized in GRA using three different criteria: higher-the-better, 

lower-the-better, and nominal-the-better. This investigation's primary goal is to reduce 

the quality characteristics. As a result, the lower-the-better criterion was chosen for 

experimental data normalization, which is performed by Equation (4). 

( )
( ) ( )

( ) ( )kminXkmaxX

kXkmaxX
kX

0
i

0
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0
i

0
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−

−
=
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where ( )kX i

0
is the value after the grey relational generation (data preprocessing), max 

( )kX i

0
 is the largest value of ( )kX i

0
, min ( )kX i

0
 is the smallest value of ( )kX i

0
, 

and 
0X  is the desired value. 

Grey relational coefficient and grey relational grade 

After data pre-processing is carried out, the grey relational coefficient might be 

calculated to express the relationship between the ideal and actual normalized 

experimental results. The grey relational coefficient can be calculated using Equation 

(5).  
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where ζ(є 0,1) = distinguished coefficient, ς=0.5 is generally used ξ
i
(k) is the grey 

relational coefficient, Δmin is the smallest value of Δoi(k), Δmax is the largest value of 

Δoi(k) Δoi(k) is the deviation sequence of the  reference sequence Xo
∗ (k), and the 

comparability sequence Xi
∗(k), namely 
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Finally, the grey relational grade is evaluated in each experiment using the 

corresponding average-GRCs, as shown in Equation (6). GRG is used to show the 

connection between experimental data. The higher the GRG, the more effective the 

experimental strategy. 

( )
=

=

n

1k
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i

ξ
n

1
i
γ

 

(6) 

where i
γ   is the weighted grey relational grade for the ith experiment, n is the number of 

performance. 

However, since in real applications the effect of each factor on the system is 

not exactly same, the above equation can be modified as 
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where,wk represents the normalized weighting value of factor k. Equations 6 and 7 are 

equal when the weights are the same. The grey relational grade is used in the grey 

relational analysis to show the relationship between the sequences. If the two sequences 

are identical, the grey relational grade value is 1. The grey relational grade also 

indicates how much influence the comparability sequence has over the reference 

sequence. As a result, if one comparability sequence is more important to the reference 

sequence than another, the grey relational grade for that comparability sequence and 

reference sequence will be higher than other grey relational grades. The corresponding 

weighting values, i.e., wk, are obtained from the principal component analysis in this 

study. 

Principal component analysis (PCA) 

Principal Component Analysis (PCA) was proposed by Pearson [26], and evolved as a 

statistical tool by Hotelling [27]. Initially, this technique was used to quantify and 

identify phenomena in social sciences where direct measurement of the phenomenal 

changes was difficult. PCA is useful for data reduction and interpretation of multi-

objective data sets. PCA is currently finding widespread use in a variety of scientific 

fields. The procedure is detailed below [28]. 

The original multiple performance characteristic array 
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where m is the number of experiment and n is the number of the performance 

characteristic. In this study, X is the grey relational coefficient of each performance 

characteristic and m=9 and n=3. 

 

Correlation coefficient array 

The correlation coefficient array is evaluated as follows: 
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j=1, 2, 3……n,    l=1, 2, 3…….n

 

 

where Cov(xi(j), xi(l)) is the covariance of sequences xi(j) and xi(l), σxi(j) is the standard 

deviation of sequence xi(j) and σxi(l) is the standard deviation of sequence xi(l). 
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Determining the eigenvalues and eigenvectors 

The eigenvalues and eigenvectors are determined from the correlation coefficient array, 

( ) 0
ik

V
m

I
k

λ-R =

 

(10) 

where λ𝑘 = eigen values, ∑ 𝜆𝑘 = 𝑛𝑛
𝑘=1 , k=1,2……n; Vik= [ak1ak ak2 .... akn]T eigen 

vectors corresponding to the eigen value λk. 

Principal components 

The principal component is formulated as: 
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Y

 

(11) 

where Ym1 is called the first principal component, Ym2 is called the second principal 

component, and so on. The principal components are aligned in descending order with 

respect to variance, and therefore, the first principal component Ym1 accounts for most 

variance in the data. 

 

Analysis and discussion of experimental results 

In this study, the wear rate, the friction force and coefficient of friction of 

titanium carbide and Graphite based aluminium metal matrix composite for different 

combination of wear parameters of nine experimental runs is considered. The following 

sequential steps are adopted to determine the optimal combinations of the wear 

parameters based on grey relational analysis coupled with principal component analysis: 

1. The signal to noise ratios for the experimental data was calculated. 

2. The signal to noise ratios was normalized. 

3. The corresponding grey relational coefficients were calculated. 

4. Principal component analysis was used and the grey relational grades were 

calculated. 

5. The optimal levels of wear parameters were obtained. 

6. Finally, the confirmation experiments were conducted. 

 

As per the optimization procedure, the signal to noise ratio and normalized signal 

to noise ratio for the wear rate, the friction force and the coefficient of friction were 

calculated and the results are tabulated in Table 4.  

The principal component analysis is adopted to determine the corresponding 

weighting values for each performance characteristic to reflect its relative importance in 

the grey relational analysis. The elements of the array for multiple performance 

characteristics listed, Table 5 represent the grey relational coefficient of each 

performance characteristic. These data were used to evaluate the correlation coefficient 

matrix and to determine the corresponding eigenvalues from Eq.10. The eigenvalues are 

shown in Table 6. 
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Table 4. Signal to noise ratio and normalized signal to noise ratio values. 

Ex 

no 

Signal to noise ratio Normalized signal to noise ratio 

Wear rate 

(mm3/m) 

Friction 

Force 

(N) 

Coefficient 

of friction 

Wear rate 

(mm3/m) 

Friction 

Force 

(N) 

Coefficient 

of friction 

1 60.155338 -14.870195 5.129805 0.041325 0.110640 0.827422 

2 52.844179 -15.402306 4.597694 0.343514 0.173067 1.000000 

3 53.501157 -13.927128 6.072872 0.316359 0.000000 0.521559 

4 61.155158 -18.360607 7.659993 0.000000 0.520133 0.006813 

5 44.203421 -18.629157 7.391442 0.700659 0.551639 0.093911 

6 38.950802 -18.444126 7.576474 0.917763 0.529931 0.033900 

7 36.961161 -21.861426 7.680999 1.000000 0.930847 0.000000 

8 51.625221 -22.450870 7.091555 0.393897 1.000000 0.191173 

9 39.786322 -21.986706 7.555720 0.883229 0.945544 0.040632 

 

Table 5. Grey relational co-efficient. 

Ex. no 
Grey relational coefficient 

Wear rate Friction Force Coefficient of friction 

1 0.923659351 0.81881295 0.376669968 

2 0.592758322 0.742868154 0.333333333 

3 0.612475264 1 0.489447782 

4 1 0.49013222 0.986557656 

5 0.416438046 0.475448285 0.841876878 

6 0.352668244 0.485469289 0.936504641 

7 0.333333333 0.349443428 1 

8 0.559348729 0.333333333 0.723407985 

9 0.361473093 0.345890431 0.924844303 

 

Table 6. The eigenvalues and explained variation for principal components. 

Principal components Eigenvalues Explained variation (%) 

First 1.1077 36.92 

Second 0.9692 32.31 

Third 0.9231 30.77 

 

Table 7 shows the eigenvector associated with each eigenvalue. The square of the 

eigenvalue matrix represents the performance characteristic's contribution to the 

principal component. Table 8 shows the contribution of wear rate, friction force, and 

coefficient of friction. 
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Table 7. The eigenvectors for principal components. 

Performance 

characteristics 

First principal 

component 

Second principal 

Component 

Third principal 

component 

Wear rate -0.5554 -0.658 -0.5085 

Friction force -0.5249 -0.7517 -0.3994 

Coefficient of friction -0.645 0.0451 0.7629 

Table 8. The most variance contribution of each individual performance characteristic 

for the principal component. 

Performance characteristics Contribution/weighted value 

Wear rate 0.30846916 

Friction force 0.27552001 

Coefficient of friction 0.41602500 

 

The contributions of each individual performance characteristic for the principal 

component are 0.30846916, 0.27552001 and 0.416025. Furthermore, the variance 

contribution for the first principal component characterizing the three performance 

characteristics can reach 36.92%. As a result, the squares of its corresponding 

eigenvectors were chosen as the weighting values of the related performance 

characteristic for this study, and coefficients w1, w2, and w3 in Eq.7 were set to 

0.30846916, 0.27552001, and 0.416025, respectively. The grey relational grades were 

calculated and shown in Table 9 using Eq.7 and data from Table 5. 

Table 9. Grey relational grade and its rank. 

Ex no Grey relation grade Rank 

1 0.222407967 3 

2 0.175399234 9 

3 0.222690751 2 

4 0.284647681 1 

5 0.20323188 6 

6 0.210717708 4 

7 0.205042237 5 

8 0.188445881 8 

9 0.197187129 7 

As a result, rather than complicated performance characteristics, the optimization 

design was performed with respect to a single grey relational grade. Table 9 clearly 

shows that the wear parameters setting of experiment number 4 has the highest grey 

relational grade based on the performed experimental design. Thus, among the nine 

experiments, the fourth provides the best multi-performance characteristics. 
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Table 10. Main effects on grey relational grades. 

Level Load Sliding velocity Sliding distance 

1 0.2068 0.2374 0.2072 

2 0.2329 0.1890 0.2191 

3 0.1969 0.2102 0.2103 

Delta 0.0360 0.0483 0.0119 

Rank 2 1 3 
*Optimum level 

The main effects are tabulated in Table 10 and the factor effects are plotted and 

shown in Figure 3 based on the value of grey relational grade in Table 9. According to 

Table 10 and Figure 3, the optimum factors for both the wear rate and the coefficient of 

friction obtained for the hybrid composite are a combination of 20 N load (level 2), 4 

m/s sliding speed (level 1), and 2500 m sliding distance (level 2). 

 

 

Fig. 3. Main effects plot for grey relational grade. 

 

Analysis of variance 

The goal of the analysis of variance is to determine which wear parameters have a 

significant impact on the performance characteristic. This is accomplished by dividing 

the total variability of the grey relational grades, measured as the sum of the squared 

deviations from the total mean of the grey relational grade, into contributions from each 

wear parameter and the error. This analysis was performed with a level of significance 

of 5% and a level of confidence of 95%.  
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Table 11. Results of analysis of variance on grey relational grade. 

Source DF Adj SS Adj MS F P %C 

Load 2 0.002071 0.001035      1.08     0.481 26.754 

Sliding velocity 2 0.003523   0.001762      1.84     0.353 45.511 

Sliding distance 2 0.000228   0.000114      0.12     0.894 2.945 

Residual Error 2 0.001919   0.000960   24.790 

Total 8 0.007741    100 

 

From the results of analysis of variance on grey relational grade, it is clear that the 

sliding velocity is the most predominant factor (P=45.511%) on the multi-performance 

characteristics of Al6061-T6/Titanium carbide/Graphite hybrid composite than load 

(P=26.754%) and sliding distance (P=2.945%) (Table 11). 

 

Confirmation Experiment 

The aim of the confirmation experiment is to establish and confirm the progress of 

the quality characteristics using the optimum level of the design parameter. The 

confirmation experiment is conducted by setting the wear parameter at the optimum 

level. The predicted grey relational grade ( γ̂ ) at its optimum level of the wear 

parameter can be found out by using Equation (12). 

( ) −+=
=

q

1i
mim γγγγ̂

 

(12) 

Where mγ  is the total mean grey relational grade,
iγ  is the mean grey relational grade 

at the optimum level, and ‘q’ is the number of main parameters that significantly affect 

the coefficient of friction and wear rate. Table 12 shows the comparison of the predicted 

grey relational grade with the actual grey relational grade obtained in the experiment 

using the optimal wear parameters. 

Table 12. Results of confirmation experiment. 

 
Initial testing 

parameters 

Optimum testing parameters 

Prediction Experiment 

Combination of testing 

parameters 
A1B1C1 A2B1C2 A2B1C2 

Wear rate 0.000982275  0.000875472 

Friction force 5.54  8.28 

Coefficient of friction 0.554  0.414 

Grey relational grade 0.23496379 0.264916295 0.284647681 

 The optimal data obtained from the confirmation test with the level settings 

parameters of load 20 N (level 2), sliding speed 4 m/s (level 1), and sliding distance 

2500 m (level 2) had good agreement with the predicted model. As a result, the grey 

relational analysis based on the Taguchi method for multi-response problem 
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optimization is a very useful tool for predicting the wear rate and coefficient of friction 

of Al6061-T6/Titanium carbide/Graphite hybrid metal matrix composites. 

 

Surface morphology 
Composite scanning electron micrograph (SEM) images demonstrate the 

successful incorporation of hybrid reinforcements in the Al-matrix. Figure 4 shows a 

scanning electron microscopy image of the prepared Aluminum 6061-T6/Titanium 

carbide/Graphite hybrid metal matrix composite, and it is clear that the reinforcements 

are evenly distributed in the aluminum 6061-T6. 

 
Fig. 4. Scanning electron microscope micrographs of Al6061-T6 + 5 wt percent 

titanium carbide + 5 wt percent graphite hybrid metal matrix composite. 

 

The wear tests were carried out under ideal conditions (load of 20 N, sliding 

velocity of 4 m/s, and sliding distance of 2500 m), and scanning electron microscopy 

images of the worn surfaces of pure Aluminum 6061-T6, Aluminum 6061-T6 + 5 wt 

percent titanium carbide, Aluminum 6061-T6 + 5 wt percent graphite, and Aluminum 

6061-T6 +5 wt. percent titanium carbide+5 wt. percent graphite are shown (a–d). 

 
Fig. 5. Microstructures of worn surfaces of (a) pure Al6061-T6, b) Al6061-T6 + 5 wt 

percent titanium carbide, c) Al6061-T6 + 5 wt percent graphite d) Al6061-T6 + 5 wt 

percent titanium carbide + 5 wt percent graphite. 

 

Figure 5(a-d) shows the presence of grooves of varying sizes on the worn 

surfaces of aluminum and its composites. It is formed as a result of extreme plastic 
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deformation of materials. The scanning electron microscopy image of Al6061-T6 + 5% 

titanium carbide shows delamination type wear cracks propagating along longitudinal 

directions as a result of titanium carbide particle pull out (Figure 5b). The scanning 

electron microscopy images of Al6061-T6 + 5% graphite show mild grooves and mild 

delamination (Figure 5c). The degree of crack formation on the wear surface is minimal 

in the scanning electron microscopy image of Al6061-T6 + 5wt% titanium carbide + 

5wt% graphite. The wear surface of the composite shows a mechanically mixed layer 

formed by material transfer from the steel disc's counterface. (See Figure 5d.) This leads 

to the conclusion that the Al6061-T6 -titanium carbide-graphite hybrid composite has a 

less worn surface than the unreinforced Al6061-T6. This analysis demonstrates that the 

addition of titanium carbide and graphite reinforcements improves the wear resistance 

of aluminum alloys. 

 

Conclusions 
The use of Taguchi's orthogonal array with grey relational analysis combined 

with principal component analysis was reported in this work to optimize the multiple 

performance characteristics of Al6061-T6/Titanium carbide/Graphite hybrid metal 

matrix composites such as wear rate, friction force, and coefficient of friction. Based on 

the present experimental work, the following conclusions have been drawn: 

– The Al6061-T6/Titanium carbide/Graphite hybrid composites have been 

successfully produced by the stir casting route.  

– Principal component analysis based grey relational analysis for the optimization of 

the multi response problems is a very useful tool for predicting the wear rate, 

friction force and coefficient of friction of Al6061-T6/Titanium carbide/Graphite 

hybrid metal matrix composites. 

– From the grey relational analysis it is found that the optimum factors for both the 

wear rate and the coefficient of friction obtained for the hybrid composite are 20 N 

load (level 2), 4 m/s sliding speed (level 1), and 2500 m sliding distance (level 2) 

combination. 

– From, ANOVA, it is revealed that the sliding velocity (45.511%) influences more 

on the multi-performance characteristics of hybrid composite followed by load 

(26.754%) and sliding distance (2.945%). 

– From the study, it is concluded that the Grey relational analysis coupled with 

Taguchi method was proved to be a suitable method for optimization of multi-

response characteristics, such as wear loss and co-efficient of friction of the 

prepared composites. 
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