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Data visualization is one of the most important aspects of data analysis as it allows for 

further interpretation and exploration of data.  Data visualization allows for much easier human 

interpretation of data through graphs and maps. The difficulty of visualization can vary based 

on data complexity. High dimensional data sets are data sets where the number of variables (or 

features) is high. While it is often more difficult, visualization of high dimensional data is often 

the most rewarding as high dimensional data is the most difficult to interpret and visualization 

often shows hidden connections. 

Visualization of high dimensional data sets can be challenging, as more variables 

complicates visualization methods. That is to say, each variable is a new dimension on the 

graph that needs to be visualized in the 3D or 2D space.  In order for all the variables of a high 

dimensional data set to be expressed on a 2D plane a lot of dimension reduction needs to 

happen. Different visualization methods have different ways of going about this. One such 

visualization method is called Principal Component Analysis, or PCA. An advantage of PCA 

analysis is that it is very easy to implement. One key disadvantage is that PCA is heavily linearly 

based and has difficulty capturing non-linearities in the data. Because of this, PCA loses a lot of 

information to oversimplification. There are other methods of visualization, such as factor 

analysis, all of which have advantages and disadvantages. 

The visualization method discussed in this paper is called Mapper. Mapper uses a 

topological approach to data interpretation, which makes it more flexible and capable of 

expressing complexities in data. Because of this flexibility, Mapper is able to capture data shape 

relationships often lost in other analysis methods. One thing of note in Mapper is that it is not 

only a visualization method, but also a clustering technique. However, unlike more common 
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clustering methods, Mapper is a soft clustering method. In soft clustering methods, clusters are 

allowed to overlap and share data points. Whereas in hard clustering methods data clusters are 

binary and do not overlap at all. For instance, when using a K-means clustering algorithm all 

data points are sorted by how close they are to each K center.  It only matters which K center 

the point is closest to, the second closest is irrelevant. In the 

Mapper algorithm, on the other hand, the data set is divided 

into overlapping subsets, and as long as a point is in a subset, it 

is counted as part of that cluster. This results in the same point 

being in multiple clusters, which helps Mapper to depict the 

shape of the data. 

Mapper is a type of clustering algorithm that depicts the 

shape of the data in a graph with two key features: nodes and 

edges. Graphs 1 and 2 are depictions of the same data. That 

data is a 3-dimensional coordinate data set of a toy figure. If 

you look at Graph 1 you can see the shape of the toy in a 3D 

space. Graph 2 is a Mapper graph of the same data set. 

Notably, in the Mapper graph the shape of the toy is still easily 

seen as a head, arms, chest, and legs. Each dot on Graph 2 is called a node, and each line 

between the nodes is called an edge. What Mapper does is that it partitions a data set into 

subsets and forms clusters out of all the points in each subset. Those clusters are then added as 

nodes on a graph. But since it is possible for the same point to be in multiple nodes, Mapper 

also adds a line between the two nodes if they share a common, which is called an edge.  

Graph 2: 3D Toy Mapper Graph 

Graph 1: 3D Toy Scatter Plot 
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A Mapper graph has the ability to depict a lot of different information.  The standard 

Mapper graph simply has the nodes and edges depicted. This shows the general shape of the 

data but doesn’t really aid much in visual interpretation of the data. With some labeling effort it 

is possible to color the nodes of the graph by some node factor. The standard factor we used to 

color each node was to count the number of points in each cluster that belonged to each 

categorical variable. So, if there was the most of class x in cluster 1 then cluster 1 would be 

colored based on class x. This wasn’t a perfect method, however, as the proportions of classes x 

and y in the total data set might differ.  Say there were 90 x and only 10 y.  In that case, there 

would be very few nodes colored for y clusters. To fix this issue, we took a proportion table of 

the data, say .9 for x and .1 for y, and compared the proportions of each cluster to the 

proportion of the data instead.  So, if a cluster was made up of above, or equal to, .1 percent of 

y instead of x, then the cluster would be colored for class y. But it is possible to make graphs 

with more than the nodes colored. Amongst other effects, it is also possible to adjust the size of 

a node or edge depicted. We adjusted the size of nodes and edges based off of the number of 

points represented by each.   

To build a model in Mapper the first necessary input, is to specify a filter function 

defined on the data points. A filter function can be univariate or multivariate. The values 

assigned to the data points by the filter function can be regarded as quantitative attributes 

attached to them. In this project we started with the first filter function that occurred to us, 

norm analysis, and then we used some of the more common filter functions for TDA analysis: 

centrality, PCA, and eccentricity. We found those filter functions reading “An Introduction to 

Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists,” by Frédéric 
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Chazal and Bertrand Michel.  PCA stands for Principal Components Analysis, which is a method 

for dimension reduction. Centrality analysis gives the sum of distance from a given point to all 

other points. Eccentricity analysis works in a similar way to centrality, though eccentricity uses 

the maximum distance instead of the sum. And norm analysis is simply the norm of a point in 

the Euclidean space.  

Along with selecting the filter function, there are three variables it is necessary to 

specify: the number of intervals, the percentage of overlap, and the number of bins when 

clustering. The number of intervals could be anything above one, however, the higher the 

number the longer the processing time. Because of this we usually kept number of intervals 

under ten. These intervals cover the range of the filter function. The percentage of overlap 

effects how much overlap there is between the intervals. Higher overlap percentage usually 

causes there to be more connectivity between preimages of the filter function, so more edges. 

And the opposite when overlap was decreased. The number of bins when clustering, like 

number of intervals, doesn’t have a limit, but going over ten resulted in longer process time. 

One downside to using Mapper is that there is no optimization method for selecting any of the 

four variables. There are a lot of different filter functions, each have advantages and 

disadvantages, but there is not a standard for selection. The other three variables also do not 

have optimization methods, and small changes strongly effect the graph. The solution to this 

problem is to experiment with the different possible combinations, and to remember that there 

isn’t an optimal graph.  

One other issue with Mapper is that the variables have to be numeric. While Mapper is 

good at interpreting noisy data sets, not being able to process categorical variables did limit 
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some of the available data sets. For instance, the original plan for this project was to use a data 

set from the BGSU learning commons. However, that data set was largely comprised of 

categorical variables, which Mapper would not have been able to use. Therefor we were unable 

to use that data set and had to find others. 

The first data set we used was called Iris. The Iris data set is a data set built into R, and it 

is commonly used as a learning tool to learn about new model methods. Which is what we used 

it as, to learn more about Mapper and adjusting the parameters for the models. Iris has one 

hundred and fifty values, and each value is a flower with data recorded about each flower. 

There are five variables in the data set: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, 

and Species. Starting with Species, Species is a categorical variable that lists the species of 

flower.  There are three options of flower species: Setosa, Virginica, and Versicolor. As 

previously stated, there are one hundred and fifty values in the data set, and each species of 

flower makes up fifty values. Species was used as the class variable for the model generation. 

The next variable was Sepal.Length, which was the measured length of each flower’s sepal. The 

range of Sepal.Length was 4.3 to 7.9. The next variable was Sepal.Width, which was the 

measured length of each flower’s sepal width. The range of Sepal.Width was 2.0 to 4.4. The 

next variable was Petal.Length, which was the measured length of each of the flower petals’ 

length. The range of Petal.Length was 1.0 to 6.9. The next variable was Petal.Width, which was 

the measured length of each of the flower petals’ width. The range of Petal.Width was 0.1 to 

2.5. 

What we expected when mapping Iris was for each species of flower to be clustered 

together. To show this the model we used had each node colored by the majority of which type 
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of flower was in that node. We also expected there to be some overlap between the Virginica 

and Versicolor species, as those species are similar to each other in terms of size. Setosa, on the 

other hand, is more unique than the other two, running at a much smaller average in all four 

variables, so it was expected to be more isolated and not connect to the other flower nodes. 

We also wanted to limit outliers, meaning no solitary nodes, in the model. Lastly, we wanted 

the cluster sizes to be generally equal, as the data was well proportioned. 

To start with, we selected the filter function, because it was the variable that effected 

the graph the most.  Looking at Graphs 3 through 6 it is possible to see each filter function 

being used, and how strongly 

the filter function effects the 

graph. We based our selection 

process off of which graph looks 

the most similar to our 

expectations. For instance, we 

selected the eccentricity filter 

function, Graph 5, to build the 

next models of Iris. Eccentricity 

was selected because Graph 5 is 

the most similar to what our 

expectations were, meaning 

nodes grouped by flower types 

and isolated setosa flowers. 
Graph 5: Iris with Eccentricity 

Filter 

Graph 4: Iris with Norm Filter 

Graph 6: Iris with PCA Filter 

Graph 3: Iris with Centrality 
Filter 
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Graph 4, the norm function, had an outlier that was not expected.  PCA, depicted in Graph 6, 

was also okay as it linked the nodes in decreasing order, however it still linked setosa when we 

didn’t want that.  Lastly Graph 3, centrality, seemed to be the worst of the lot, as it linked all 

nodes together in a disjointed way.  

The next variable selected was number of intervals, as 

seen in Graphs 7 through 9. As a general rule, as the number of 

intervals is increased the number of clusters, and thereby 

nodes on the graph, increase.  With the opposite being true 

with decreasing the number of intervals. As you can see in 

Graph 7, the four intervals used limited the number of nodes. 

And in Graph 9, the number of nodes increase.  However, 

Graph 9 also has an outlier when we expected there to be 

none, as well as adding another edge between versicolor and 

virginica.  Graph 8, on the other hand, does not have an outlier, 

and it has fewer edges connecting versicolor and virginica 

nodes then Graph 7.  Therefore, we selected Graph 8 as the 

optimal graph out of these three.  Keeping eccentricity as our 

selected filter function, the next models will be built using six 

intervals.  

Graph 8: Iris with Six Intervals 

Graph 7: Iris with Four Intervals 

Graph 9: Iris with Eight 
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The next variable selected was percentage of overlap, as seen in Graphs 10 through 12. 

Looking at these graphs you can see percentage of overlap mostly effects the number of edges.  

There is also some effect on the number of nodes. In Graph 10 you can see a reduction in the 

number of nodes and edges, this is a good model with no outliers and the expected grouping of 

flower types.  However, in comparison to the other two models, the number of edges between 

versicolor and virginica increase, which lowers the quality of the graph.  The interesting thing 

about Graphs 11 and 12 is that they seem to be identical.  This means that even with increased 

overlap setosa flowers are still too dissimilar from the other two flowers to connect. This 

helped support our decision to discount graphs with setosa overlap. Though while Graphs 11 

and 12 appear to be identical they are not, as the number of edges vary. Graph 11 had fewer 

edges connecting Nodes 2 and 3 then Graph 12. So, we selected 50% interval overlap for the 

next models because Graph 11 had fewer edges connecting versicolor and virginica. 

The final variable to select was number of bins when clustering, which can be seen in 

Graphs 13 through 15. In Graph 15 the number of nodes has increased and there is now an 

Graph 11: Iris with 50% Overlap Graph 12: Iris with 75% Overlap Graph 10: Iris with 25% Overlap 
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increased number of edges between versicolor and virginica. This is not in favor of our 

expectations for the model, so not an optimal graph. Graphs 13 and 14 are interesting because 

they are, once again, seemingly identical.  That means anything under 10 bins will not affect the 

model nodes. Yet, once again, there is differences in the number of edges between Nodes 2 

and 3 in Graphs 13 and 14. Graph 14 has fewer edges between versicolor and virginica, so we 

selected Graph 14 as our final model. Once again, there is no optimization method for Mapper, 

so Graph 14 isn’t necessarily the best graph. It was just the one selected for this modeling run 

through. 

The second data set was called Fetal Health. We found Fetal_health on Kaggle, a 

website for sharing data sets. Fetal_health is a high dimensional data set with twenty-two 

different variables and 2126 different values.  The data itself is from a study meant to classify 

the health of a fetus in order to study, and prevent, child and mother mortality.  The first 

variable is fetal_health, which is a categorical variable. fetal_health is what we used as the class 

variable for the model. fetal_health has three categories, labeled one to three: healthy or 

normal fetus, on watch for possible sickness, and pathological. The next variable was 

Graph 14: Iris with 10 Bins Graph 15: Iris with 15 Bins Graph 13: Iris with 5 Bins 
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baseline.value, which represents the baseline fetal heart rate. The range of baseline.value was 

106 to 160. The next variable was accelerations, which represents the number of accelerations 

of the fetal heart per second, if there were no accelerations zero was recorded, which can be 

filtered out if categorizing. The range of accelerations was 0.000 to 0.019. The next variable was 

fetal_movement, which recorded the number of movements of the fetus per second. Once 

again, if there were no movements zero was recorded, which, again, can be filtered out. The 

range of fetal_movement was 0.000 to 0.481. The next variable was uterine_contractions, 

which records the number of contractions per second. The range of uterine_contractions was 

0.000 to 0.015, if there were no uterine contractions zero was recorded. The next variable was 

light_decelerations, which counts the number of light decelerations, or LDs, per second. The 

range of light_decelerations was 0.000 to 0.015, if there was no LDs then zero was recorded. 

The next variable was severe_decelerations, which counts the number of severe decelerations, 

or SDs, per second. The range of severe_decelerations was 0.000 to 0.001, the majority of this 

variable was zero which meant there were no severe deceleration. The next variable was 

prolongued_decelerations, which counts the number of prolonged decelerations, or PDs, per 

second. The range of prolongued_decelerations was 0.000 to 0.005, where zero represented no 

prolonged decelerations. The next variable was abnormal_short_term_variability, which 

records the percentage of time where the fetus experience abnormal short-term variability. The 

range of abnormal_short_term_variability was 12 to 87. The next variable was 

mean_value_of_short_term_variability, which represents the mean time the fetus experience 

short term variability. The range of mean_value_of_short_term_variability was 0.2 to 7.0. The 

next variable was percentage_of_time_with_abnormal_long_term_variability, which records 
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the percentage of time where the fetus experience abnormal long-term variability. The range of 

percentage_of_time_with_abnormal_long_term_variability was 0 to 91, with zero representing 

the fetus experiencing no long-term variability. The next variable was 

mean_value_of_long_term_variability, which records the mean of the amount of time where 

the fetus experience abnormal long-term variability. The range of 

mean_value_of_long_term_variability was 0.0 to 50.7 with zero representing the fetus 

experiencing no long-term variability. The next variable was histogram_width, which represents 

the width of the histogram made using all values from the record, made from previous 

examinations, of that fetus. The range of histogram_width was 3 to 180. The next variable was 

histogram_min, which represents the minimum value of the histogram of that fetus. The range 

of histogram_min was 50 to 159. The next variable was histogram_max, which represents the 

maximum value of the histogram of that fetus. The range of histogram_max was 122 to 238. 

The next variable was histogram_number_of_peaks, which represents the number of peaks of 

the histogram of that fetus. The range of histogram_number_of_peaks was 0 to 18. The next 

variable was histogram_number_of_zeroes, which represents number of zeros of the histogram 

of that fetus, which means the number of times there is no data from the fetus’s exam. The 

range of histogram_number_of_zeroes was 0 to 10, zero in this case meaning the histogram 

had no missing values. The next variable was histogram_mode, which represents the mode 

value of the histogram of that fetus. The range of histogram_mode was 60 to 187. The next 

variable was histogram_mean, which represents the mean value of the histogram of that fetus. 

The range of histogram_mean was 73 to 182. The next variable was histogram_median, which 

represents the median value of the histogram of that fetus. The range of histogram_median 
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was 77 to 186. The next variable was histogram_variance, which represents the variance value 

of the histogram of that fetus. The range of histogram_variance was 0 to 269. The next variable 

was histogram_tendency, which represents the trend value of the histogram of that fetus. This 

variable had three values from -1 to 1. Negative one meaning a negative trend in the histogram 

and positive one being a positive trend in the histogram. Zero meaning either no trend or 

consistent values in the histogram. 

Our main expectation for the graphs of Fetal Health is that neighboring classes would be 

grouped together. So, healthy nodes would be connected with suspected nodes which would 

connect with pathological nodes. The only aspect we do not what to see on a graph is a 

connection between a healthy node and a pathological node, meaning a direct edge between 

the two nodes. The data is very imbalanced as well, so clusters of varying sizes are okay, we just 

want to limit single outliers. 

We started to model fetal health the same way we began with the Iris data set, by 

selecting the filter function, as depicted in Graphs 16 through 19. At first glance, it might be 

assumed that Graph 17, with PCA filtering, is the best as it has no outliers.  That is an incorrect 

assumption because the nodes connecting the three classes aren’t the suspected nodes, it is 

the healthy nodes. And the healthy nodes being connected to the pathological nodes is the 

main thing we want to avoid in these models.  Eccentricity, which is depicted in Graph 16, is 

also not a good graph as it is very scattered with overlap between the healthy nodes and the 

pathological nodes.  The centrality graph, Graph 19, has more outliers then Graph 18 and has a 

connection between the healthy and pathological nodes.  Graph 18 seems to be the best option 

of the four.  Graph 18 is a model built off of the norm function.  It has clustering between all of 
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the class categories and no 

connection between the 

healthy and the pathological 

nodes.  Because Graph 18 was 

the best, we built the next 

models using the norm 

function. 

To continue to refine 

the model, we moved onto 

selecting the number of 

intervals. Graphs 20 through 

22, have three different 

models with three different 

numbers of intervals. Graph 

20 removes the suspected node, seen in Graphs 21 and 22, which results in a connection 

between a healthy node and a pathological node. Graph 22 has a similar flaw; in that it has a 

connection between the healthy and the pathological nodes. Graph 21 does not have this 

connection, making it the best fit of the three. As a result, we used eight intervals for future 

models. 

Graph 16: Fetal Health with 
Eccentricity 

Graph 19: Fetal Health with 
Centrality 

Graph 18: Fetal Health with 
Norm 

Graph 17: Fetal Health with 
PCA 
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The next variable was percentage of overlap, depicted in Graphs 23 through 25. None of 

the three graphs, 23 through 25, violate any of our major assumptions; all like groups are 

together, and no connection between the healthy nodes and the pathological nodes. The major 

difference between the graphs is the number of outliers and lone nodes. While all three graphs 

are valid, Graph 25, with 75% overlap, seems to be the best of the three as it only has one 

isolated node. And one isolated node can be seen as better than the two isolated nodes in 

Graph 24. Therefore, the next models will use 75% interval overlap. 

Graph 23: Fetal Health with 
25% Interval Overlap 

Graph 24: Fetal Health with 
50% Interval Overlap 

Graph 25: Fetal Health with 
75% Interval Overlap 

Graph 20: Fetal Health with Six 
Intervals 

Graph 22: Fetal Health with 
Ten Intervals 

Graph 21: Fetal Health with 
Eight Intervals 
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The last variable to select is the number of bins when 

clustering, which are depicted in Graphs 26 through 28. None 

of these graphs violate our main assumptions. That said, Graph 

27 and 28 both have three independent outliers, while Graph 

26 only has one. As a result of this, we selected Graph 26 as the 

best fit of these three graphs. That makes Graph 26 our final 

model of fetal health.  

Mapper is a visualization method that uses a topological 

approach to data analysis. Mapper is good because its 

topological approach allows for flexibility in modeling that 

other visualization methods don’t allow. While Mapper is good 

at expressing complexities in data, it is hard to tune. Because of 

this it is necessary to test and retest Mapper graphs until the 

user is satisfied. For instance, with the two data sets used in 

this paper, the final graphs produced are not the optimized 

versions for these data sets. There is no optimal graph. They 

are simply an option of graph. For further study the data sets 

can be retested with the final variable values as the starting 

values, or could try new variables as class variables, or could try 

new filter functions. There is a lot more possibility for 

exploration with Mapper. And given that Mapper is a useful 

tool in the data science field, it is important to understand it. 

Graph 28: Fetal Health with 20 
Bins 

Graph 27: Fetal Health with 
Fifteen Bins 

Graph 26: Fetal Health with 
Ten Bins 
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