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The Influence of Beached Harmful Algal Blooms On Terrestrial Arthropods on the Shore of 

Lake Erie 

Mirochnitchenko, N. A. & McCluney K. E.  

Abstract:  

Marine primary inputs, such as sea wrack and algae, offer a great niche for insects and 

other animals to exploit. The existence of a similar niche on the coast of lakes has received less 

attention. To complicate matters, many freshwater systems are seeing increases in proliferation of 

toxic and non-toxic cyanobacteria blooms. This study examined patterns in lake shore terrestrial 

arthropod abundance, diversity, and community composition across gradients of beached algae, 

with varying toxicity. We detected water microcystin effects on arthropod richness in survey three, 

beached material effects on Shannon’s Diversity in survey two, and water microcystin effects on 

the community structure on survey three. Our results suggest the beached aquatic inputs have 

diversifying effect and microcystin has a positive indirect relationship with certain orders of 

arthropods such as flies and spiders. We recommend further study into the mechanisms 

surrounding shore arthropod resource utilization and predator release from toxic blooms. 

 

Keywords: arthropod, toxic cyanobacteria, harmful algal bloom, spiders, flies, beetles, lake 

shore, microcystin, beached material 

 

Introduction:  
Island biogeography teaches that species richness is a balance between colonization and 

extinction on islands and that smaller islands support less biomass and species richness (McArthur 

& Wilson 2015, Simberloff 1974, Kohn & Walsh 1994, Toft & Schoener 1983, Brown 1978, 

Brown, 1971, Brown 1978) However, Polis and Hurd found the opposite trend on the Baja 

California islands; these islands had a significant negative correlation between spider density and 

island size, which suggests that smaller islands were more productive than larger islands. They 

explained this unusual biodiversity trend as being due to the higher perimeter to area ratio of small 

islands, allowing for relatively more marine material, such as sea wrack, to be washed ashore, 

compared to the larger islands. More than 99% of collected primary consumers were detritivores, 

thus the spiders and higher predators were supported by arthropods eating primarily allochthonous 

marine primary material on these dry and otherwise unproductive islands (Polis & Hurd 1995, 

Polis & Hurd 1996). Marine inputs have been shown to enhance other taxa: soil invertebrates, 

arthropods, reptiles, birds, and carnivores (Polis & Hurd 1996). Similar primary subsidy effects 

have been observed in rodent populations in the Gulf of California (Stapp & Polis 2003). Such a 

discovery shows that marine and terrestrial systems are linked and can promote biodiversity. 

Islands do not have as many resources typically as the mainland. Marine inputs offer a 

great niche for insects and other animals to exploit. The existence of a similar niche on the coast 

of lakes has received less attention. To complicate matters, many freshwater systems are seeing 

increases in proliferation of toxic and non-toxic cyanobacteria blooms (Hallegraeff 1993, Sukenik 

et al. 2015), commonly referred to as harmful algal blooms (HAB). These HABs might increase 

fluxes of primary material that could be utilized by terrestrial arthropods, but the potential toxicity 

increases the risk associated with utilizing such allochthonous material. The goal of this study is 

to examine how beached aquatic material and its toxicity might influence lake shore arthropod 

food webs.  

The system in this study is Lake Erie, which suffers annually from blooms of toxic 

cyanobacteria that negatively impact human health, local economies and wildlife. Most noticeably, 



the previous summer’s winds pushed the blooms to the water intake of the largest Western Basin 

City on the Lake Erie shore: Toledo Ohio. The high density of microcystis in this HAB, which 

secretes the hepatotoxin microcystin, overloaded the Toledo filtration system: contaminating the 

drinking water for half-million residents (Henry 2014, Wines 2014). 

The National Oceanic Atmospheric Administration predicted that the 2015 HAB would be 

second worst since 2002, but due to unusually high nutrient loads early in the summer, the bloom 

exceeded expectations and became the worst bloom in recorded history. The bloom expanded to 

cover much of the central basin, but away from shore, unlike the primarily western basin blooms 

in previous years. Two cold fronts and strong winds hastened the blooms termination in late 

September (NOAA Nov. 2015). 

These blooms, although named for their toxicity, can be non-toxic. Lake Erie’s blooms are 

composed of  Microcystis spp. and Planktothrix spp. which can produce microcystin, a 

hepatotoxin, but have varying toxicity depending on the strain and environmental factors 

(Ouellette et. al. 2006, Rinta-Kanto & Wilhelm 2006). Increased temperatures, nitrogen and 

phosphorus levels yielded more toxic Microcystis compared to nontoxic strains (Davis et al.  2009, 

Vezie et al. 2002). Thus, global warming and high nutrient loads could cause more toxic HABs. 

Understanding the impacts of mixed toxic and nontoxic primary inputs on both freshwater and 

adjacent terrestrial systems, could aid management to curb biodiversity loss due to HABs. 

 Here we examine patterns in lake shore terrestrial arthropod abundance, diversity, and 

community composition across gradients of beached algae, with varying toxicity.  

 

Methods: 
 We took field observations and samples on the southern shore of Lake Erie during 

three sampling periods: once in late July, once in early September (peak HAB extent), and once in 

late September.  

 Study Site. The study sites comprised 13 unarmored beaches spanning 140 km from 

Toledo (41.71° N, 83.46° W) to Lorain (41.46° N, 82.20° W) in Ohio. Nine of the 13 sites are on 

the shore of the western basin of Lake Erie, which historically has had blooms that exceed the 

World Health Organization’s provisional microcystin concentrations (Kanto et al. 2005). The other 

four sites are along the western portion of the Central Basin, which has had lower harmful algal 

blooms (Kanto et al. 2005). The sites were visited over a period of three days in a randomized 

order. 

 Environmental characteristics, such as tree cover, impervious surface, and lawn cover, 

were calculated by estimating each cover value over a 100m *100m grid using Google Earth 

images of each of the sites. The side of the grid was line up with the coast with the site at the 

midpoint of that side.  

 At each site, we flagged three ten meter transects, starting at the shoreline, perpendicular 

to the shore, and five meters apart from each other. We hand collected, with the assistance of 

aspirators, all living arthropods encountered on one walk of this transect and stored the specimens 

in glass vials. Collection proceeded for the entire transect unless a physical barrier severely limited 

safety or access. Insects were identified using dichotomous keys to order. The primary keys were 

compiled in Borror and Delong’s Introduction to the Study of Insects. Average arthropod 

abundance, richness, and Shannon’s diversity were calculated for each site after the arthropods 

were identified to order. 

 Covariate data, such as temperature and humidity, were collected at each site. On each 

transect, quarter meter quadrats were randomly tossed every two meters on the transect. Total 



beached material was calculated as the average of the percent cover of aquatic inputs, such as 

detritus, algae, and cyanobacteria, in the quadrats within two meters of shore. Vegetation cover 

was calculated as the average percent cover of living terrestrial plants, such as grass and reeds, in 

the quadrat at the last two meters of the transect. Canopy cover was measured using a concave 

spherical densiometer facing the shore at every two meters of the transect, however due to almost 

universally low canopy cover within a few meters of the shore, only the average of the values 

associated with the last two meters of the transects were used. As mentioned above, we 

complemented this approach with identification of tree cover in a 100m2 grid using satellite 

imagery.  

 Filtered water was also collected at each site and stored in glass vials in a freezer. Water 

was scooped at arm’s length from shore and was filtered using 45 µm cellulose filters to reduce 

particulate matter in the water. Samples were frozen until the all samples were collected and ready 

for analysis. Water microcystin levels were measured by enzyme-linked immunosorbent assay 

(ELISA) with an Abraxis Microcystins-ADDA ELISA kit (product number 520011) (Loftin et 

al.  2008). Results were reported as parts per billion (ppb). 

Because much of the HAB was not beached during the sampling times, we used chlorophyll 

A as an approximation for the potential amount of photosynthetic material to be beached at that 

time. Chlorophyll A water samples were also collected at arm’s length from the shore during the 

third survey, kept out of the light, filtered using 60 mL of sample through FF 24mm filters within 

two weeks of collection, and sent on ice to Louisiana University for analysis using the 

Environmental Protection Agency’s method 445 with Turner Designs TD-700 Spectrofluorometry 

(Lu et al. 2014, Parson 1984). Results were reported in micrograms per liter (ug/L). 

Data Analysis. Environmental co-variates, such as canopy cover, that were correlated with 

the response variable, were included as nuisance variables in our generalized linear models (glm) 

in R v.0.99.467. Principal component analysis in R, using the vegan package, allowed us to distill 

several of the correlated covariates (impervious surface over 100m2, tree cover over 100m2, and 

lawn cover over 100m2) into fewer variables (PC1 and PC2). A second principal component 

analysis distilled impervious surface over 100m2 and tree cover over 100m2 into fewer variables 

(PC2A1 and PC2A2) for when lawn cover was not strongly associated with the response variable. 

We used 0.1 as our level of significance, since we were primarily interested in detecting any 

potential patterns of correlation within the data for future manipulative hypothesis testing. Survey 

one was not analyzed for this analysis due to the lack of HAB. 

To test whether arthropod community composition was related to algae and its toxicity, we 

used nonparametric permutational multivariate ANOVA (adonis) in vegan package of R (4999 

permutations). To identify specific taxa that were affected, similarity percentage (simper) analysis 

was conducted. To display community differences and associations of arthropods with 

environmental and hypothesis variables, non-metric multidimensional scaling plots (metaMDS) 

with envfit vector plotting function in the vegan package of R were utilized. These community 

structure analyses all used Bray- Curtis distances and followed procedures similar to those in 

McCluney & Sabo (2012).  

 

Results: 
 Abundance. Site abundance ranged from 1 to 88 arthropods. The average abundance was 

19.67 arthropods with a standard deviation of 18.43. Over the three surveys Coleoptera (beetles), 

Araneae (spiders), Hymenoptera (mostly ants), and Diptera (flies) were the most abundant 

arthropods on the coast line, respectively. 50% of the beetles collected were of two species: the 



spotted cucumber beetles (Diabrotica undecimpunctata), which were 39.3% of the beetles, and 

pink spotted beetle (Coleomegilla maculata), which were 10.8% of the beetles. These beetles were 

primarily found on or nearby beached sea wrack.  

 Richness: The number of orders at each site varied between 1 to 9 orders. The average 

richness was 4.38 orders with a standard deviation of 1.88.  

 Microcystin Effects.  We did not detect any significant environmental effects in arthropod 

abundance, richness, Shannon’s diversity, or community structure for either survey two or three 

(Table 1). We detected water microcystin effects on arthropod richness in survey 3 (χ 2 =3.07, 

df=1,10, p=0.06) at the 0.1 alpha level (Table 1). Beached material had significant effects at the 

0.1 alpha level on Shannon’s Diversity is survey two (F=4.53, df=1,9, p=0.07) (Table 1.) We also 

detected water microcystin effects at the 0.1 alpha level on the community structure of survey three 

(df=1, R2=0.15, p=0.06) using a nonparametric permutational multivariate ANOVA (adonis) 

(Table 1.).  

 
Table 1. This table shows the results of the statistical tests performed for arthropod 

abundance, richness, Shannon’s diversity, and community structure for survey two and three. The 

table shows the statistical test used, the data distribution, the environmental factors involved in 



each test, the χ 2 values, F values, degrees of freedom (df), p values, and R2 values associated with 

each test. The last column show the direction of relationship between the response variable and 

that environmental variable. PC1 and PC2 refer to the first and second axis respectively of the 

principal component analysis that involved impervious surface, lawn cover, and tree cover. PC2A1 

refers to the first axis of the principal component analysis that involved impervious surface and 

tree cover.  

 
 Figure 1: This non-metric multidimensional scaling plots shows the association between 

each environmental factor and order of arthropod community composition. The rays show the 

direction and importance of the factor’s variation along the first two axes. Black text refers to the 

orders of arthropods in the analysis. See Table 1 for R2 and p values for each factor. This plot 

shows impervious surface, lawn cover, and tree cover separately but these factors were included 

in a principal component analysis of which only the second axis, PC2, was used in the statistical 

calculations. The numbers refer to the site composition. 

A post-hoc similarity percentage (simper) analysis showed that these effects were most 

strongly associated with Coleoptera (contribution=0.333), Diptera (contribution=0.222), Araneae 

(contribution=0.111), Hemiptera (contribution=0.111), and Hymenoptera (contribution =0.111). 

These taxa graphed against water microcystin levels and all five displayed positive relationships 

with microcystin levels. Araneae had the closest fit to the positive line (R2=0.55), followed by 

Diptera (R2=0.30) and Coleoptera (R2=0.14) (Fig.2, Table 2). 

 



 
Figure 2. This figure shows the abundance of the arthropod orders that contributed most to the 

variation associated with the nonparametric permutational multivariate ANOVA results, which 

were determined by similarity percentage analysis, in relationship to the water microcystin (ppb) 

levels during survey three. All of these orders display positive relationships with microcystin. See 

table 2 for the equations of these linear fits and their associated R2 value.  

Order 
Direction of 

Relationship 
Equation R2 

Coleoptera + 107.18x-7.79 0.14 

Araneae + 26.15x-1.76 0.55 

Hymenoptera + 3.36x-0.04 0.04 

Diptera + 11.57x-0.82 0.30 

Hemiptera + 2.31x+0.34 0.03 

 

Table 2. This table shows the direction of relationship, equation, and closeness of fit (R2) for the 

arthropod orders that contributed most to the variation associated with the nonparametric 

permutational multivariate ANOVA results, which were determined by similarity percentage 

analysis, during survey three. All of these orders’ abundances display positive relationships with 

microcystin (ppb) levels in the water. See Figure 2 for distribution trends.  

 

Discussion: 
 Our initial hypothesis was that beached primary material could provide a niche for 

arthropod that live on or adjacent to relatively unproductive beaches. We observed one significant 

relationship between beached material and Shannon’s diversity, which was a positive relationship 

(Table 1). This result may indicate a diversifying influence that beached material has on the 

lakeshore arthropods, supporting our hypothesis. In the field, we observed beetles crawling over 

beached sea wrack and a harvestman dragging a piece of sea wrack away from shore. We thought 

that these arthropods could be using the beached material as food or shelter. We did not observe 

such behavior associated with beached cyanobacteria. The cyanobacteria is variably toxic, which 

could have led to avoidance, and may not have provided the structure that some arthropods may 

be searching for. Alternatively, not as much cyanobacteria was beached at our sites as sea wrack 

or filamentous algae, thus the frequency of each observation may be due to chance relative to 

occurrence of the beached material on shore. Although, our results suggest that beached material 

has diversifying effects, however the mechanism of such diversification cannot be tease out from 

this study. 



We expected arthropod abundance and richness to be negatively correlated with 

microcystin water levels. Microcystin effects are not well understood in terrestrial invertebrates 

but the toxins are constantly seen to increase mortality of insects and macroinvertebrate that are 

fed toxic cyanobacteria (Delaney & Wilkins 1995, Laurén-Määttä et al. 1995, White et al. 2005). 

However, we detected significant microcystin effects on the arthropod richness of survey two and 

community structure in survey three (Table 1). When microcystin level was plotted against 

arthropod richness from survey two, a positive relationship emerged (Table 1). Further, the taxa 

that were most affected by the microcystin water concentration all independently showed a positive 

relationship when plotted against water microcystin level (Fig. 2, Table 2). Beetles had the most 

positive correlation but the R2 value was low (R2=0.14). Since most of these beetles were found 

on sea wrack, maybe microcystin and other cyanobacteria chemicals were attracting was attracting 

these beetles to the sea wrack that was laced with these chemicals. Our results suggest that 

microcystin may be associated with indirect positive impacts on the abundance of some of the 

most abundant arthropods on utilizing the coast, contradictory to our hypothesis. 

An alternative hypothesis could be that microcystin level was a better indicator of 

allochthonous inputs that arthropods utilize than our more direct methods of measuring 

allochthonous inputs, i.e., quadrat beached primary material values and chlorophyll A water 

content. At sub-lethal microcystin levels, various arthropods can still utilize the aquatic primary 

inputs. The spotted cucumber beetle, the red spotted beetle, a couple harvestmen were observed 

interacting with aquatic sea wrack material, which could support this hypothesis but more research 

is needed to understand arthropod food selection in these ecotones.  

Spiders and flies had the highest R2 values, associated with a positive relationship with 

water microcystin level, out of the five most impacted taxa. This result might suggest that the 

higher water microcystin levels could be killing freshwater organisms such even big fish such as 

catfish (Zimba et al. 2001, Phillips et al. 1985), which were observed at some of the sites. We 

propose that the dead carcasses attracted flies leading to spiders having more prey on the shore 

(Fig 3). Thus, microcystin might have a stronger indirect positive impact on beach arthropod food 

webs by increasing food arriving to relatively unproductive shores than the toxic direct effects that 

we hypothesize. Further studies could explore this new link between toxic marine and shore 

environments.  



 
Figure 3. This proposed food web shows the strength of interaction among beached material, the 

toxic bloom, freshwater organisms, flies, beetles, ants, spiders, and shore birds. The darkest arrow 

from the toxic bloom to the freshwater organisms, represented here as a dead fish, indicated that 

the proposed strongest interaction in this web. The medium arrows indicate the next strongest 

interaction of flies being attracted by the beached dead organisms and spiders being attracted to 

the shore by the prospect of catching flies feasting on the carcasses of the dead fish. The light 

arrows represent weak interactions we suspect are happening, especially the interaction between 

beetles and beached material because we observed so many beetles utilizing beached sea wrack. 

Shore birds, such as plovers, were also observed searching for food, typically insects, along the 

beached sea wrack. 

 The increased numbers of some taxa could pose a threat to higher trophic levels if 

microcystin bioaccumulates in the tissues of organisms ingesting the toxin. If arthropods were 

consuming toxic material, whether the material was laced with microcystin from burst 

cyanobacteria, from the cyanobacteria itself or from organisms that died from their toxin exposure, 

the arthropods could be a vector for further toxin impacts on the predators of these lakeshore 

detritivores. Migratory shore birds might be the most at risk from such bioaccumulation because 

large concentrations of birds stopover especially at the shore of the Great Lakes basin to refuel for 

their flight over the vast lakes (Bonter et al. 2009). Although bioaccumulation is a risk especially 

for higher trophic, research is inconclusive whether microcystin accumulates in insect tissues 

(Laurén-Määttä 1995, Kotak et al. 1996, Chen et al. 2009), although more research points to the 

affirmative. If various taxa increase in association with microcystin and are consuming the toxic 

material, insectivore conservation groups, such as birds, may need to watch for this potential 

threat.   

 We examined bottom-up explanations of our results, however top-bottom effect could also 

influence the lakeshore arthropod communities. We observed that there were more arthropods of 

specific taxa, such as spiders, flies, beetles, true bugs, and ants, on the shore when water toxicity 

increased. In marine HAB, seabirds have been observed to reduce feeding activity and many birds 



die (Shumway et al. 2003, Kvitek & Bretz 2005). Freshwater predators such as fish, turtles, ducks, 

and water birds have also seen increased mortality associated with toxic cyanobacteria (Chen et 

al. 2009). The mortality of predators may release the lower trophic levels from some predation, 

which could explain the increases various arthropod taxa on the shore of more toxic areas. Our 

study does not indicate that total abundance increased in more toxic areas (Table 1), which does 

not support this hypothesis. To further support this hypothesis, studies would need to observe 

increased predator mortality in more toxic areas and concurrently increases in arthropod 

abundances.  

The patterns we observed during this study indicate that various arthropods are utilizing 

the beaches by Lake Erie during a HAB, the worst HAB in history (NOAA Nov. 2015). These 

patterns are most likely not as intense as other years because this year had unusual wind patterns 

that blew most of the bloom away from the southern shore of Lake Erie. If observations were to 

occur during a different HAB year, and with more sites, we predict that stronger relationships will 

be observed.  
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