
Abstract. This article describes the rationales for developing jMigBSP - a Java programming library
that offers object rescheduling. It was designed to work on grid computing environments and offers an
interface that follows the BSP (Bulk Synchronous Parallel) style. jMigBSP’s main contribution focuses
on the rescheduling facility in two different ways: (i) by using migration directives on the application
code directly and (ii) through automatic load balancing at middleware level. Especially, this second idea
is feasible thanks to the Java’s inheritance feature, in which transforms a simple jMigBSP application in
a migratable one only by changing a single line of code. In addition, the presented library makes the
object interaction easier by providing one-sided message passing directives and hides network latency
through asynchronous communications. Finally, we developed three BSP applications: (i) Prefix Sum; (ii)
Fractal Image Compression (FIC) and; (iii) Fast Fourier Transform (FFT).They show our library as viable
solution to offer load balancing on BSP applications. Specially, the FIC results present gains up to 37%
when applying migration directives inside the code. Finally, the FFT tests emphasize strength of jMigBSP.
In this situation, it outperforms a native library denoted BSPlib when migration facilities take place.

Keywords: Bulk Synchronous Parallel, Rescheduling, Java, Adaptation, Object migration, Grid computing.

Journal of Applied Computing Research, 1(2):84-94
July-December 2011
© 2011 by Unisinos - doi: 10.4013/jacr.2011.12.03

Flexible Management on BSP Process Rescheduling:
Offering Migration at Middleware and Application Levels

Lucas Graebin, Rodrigo da Rosa Righi
Universidade do Vale do Rio dos Sinos. Av. Unisinos, 950, 93.022- 000, São Leopoldo, RS, Brasil.
lgraebin@acm.org, rrrighi@unisinos.br

Introduction

Load balancing is a key issue for getting
performance on heterogeneous and dynamic
distributed environments (El Kabbany et al.,
2011). It can be enabled by rescheduling execu-
tion entities like processes, tasks or objects. This
technique is useful to migrate entities for ex-
ecuting faster on lightly-loaded resources and/
or approximating those ones that communicate
frequently. Basically, migration facility can be
offered at application or middleware levels
(Pontelli et al., 2010). The former idea can use
explicit calls in the source code while the sec-
ond represents an extension of the program-
ming library for providing both transparent
and effortless mechanism of migration at user’s
point of view. Considering the last statement,
the programming library acts on middleware
that control which objects will migrate, the mo-
ment of that as well as the selection of the des-
tination nodes. Research on rescheduling topic
includes the definition of unified metrics for
acting in response to application and resource

dynamics and user-friendly programming in-
terface for providing application modelling
and migrating facilities (El Kabbany et al., 2011;
Elmroth and Larsson, 2009).

Considering the second research topic,
both the programming model and language
must be carefully analyzed for trading-off be-
tween performance and usability. In this way,
BSP (Bulk Synchronous Parallel) model and
Java language appear as candidates to bal-
ance both aspects for grid computing (Bonor-
den, 2007). BSP represents a common style
for writing successful round-based parallel
programs (De Grande and Boukerche, 2011;
Hendrickson, 2009; Bonorden, 2007). Lattice
Boltzmann, DNA sequencing and weather
forecast are examples of problems imple-
mented with this model. Meanwhile, Java
has a multi-platform characteristic and offers
classes and methods for distributed comput-
ing that hide technical details (communica-
tion establishment between pairs and Sockets
management, for instance) from the develop-
ers. Since this language is interpreted, it has

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 2011 85

Graebin and Righi | Flexible Management on BSP Process Rescheduling

received much attention from the scientific
community in order to turn its performance
comparable with the execution time of bina-
ry codes. JIT (Just In Time), JNI (Java Native
Interface), as well as improvements on Java
Threads, garbage collector and memory man-
agement are examples of some initiatives to
make Java faster and feasible for parallel com-
puting (Taboada et al., 2009).

Considering this context, we are develop-
ing a programming library called jMigBSP. It
was designed to act over BSP-based Java appli-
cations and its differential approach concerns
the offering of the rescheduling facility in dif-
ferent ways: at middleware and application
levels. jMigBSP takes profit from the ProAc-
tive library for implementing object migration
and to work over multiple-clusters based grids
(Baduel et al., 2006). Besides, our library aims
to provide flexibility by providing one-sided
asynchronous-typed communication among
the objects.

Finally, we developed three BSP applica-
tions in order to validate our proposal: (i) Pre-
fix Sum; (ii) Fractal Image Compression (FIC)
and; (iii) Fast Fourier Transform (FFT). They
show jMigBSP as viable solution to offer load
balancing on BSP applications. Especially, FFT
was also developed with the most used C-
based BSP library, denoted BSPlib (Hill et al.,
1998). Besides a jMigBSP’s description, the re-
sults of the article showed that the higher the
computation grain, the lower the overhead
imposed by an interpreted language. Further-
more, the migration tests revealed situations
where jMigBSP outperforms BSPlib and em-
phasized the benefits of using this facility.

This article is organized in six sections. Af-
ter the introduction section, we present the li-
brary proposed in this work. Thus, Section 2 is
the most important part of the document. Sec-
tion 3 shows the evaluation of the developed
library. Section 4 presents the state-of-the-art
libraries to write BSP applications. Finally, we
show Section 5 at the end of this document. It
makes a conclusion about the text, emphasiz-
ing the jMigBSP’s main contributions and re-
sults.

jMigBSP: Java-Based BSP
Communication Library for Object
Rescheduling

jMigBSP library offers a Java interface
(API) to write round-based applications like

BSP. Basically, it inherits pertinent features
from ProActive and proposes some modifi-
cations and new mechanisms to follow the
BSP model strictly. jMigBSP takes profit from
ProActive in four aspects: (i) resource deploy-
ment; (ii) Object-Oriented SPMD (OOSPMD)
programming model; (iii) object migration;
(iv) asynchronous communication. The former
aspect allows informing the grid topology and
the first object-node deployment. Both de-
scriptions are presented in XML files, avoiding
the specification of machine names and com-
munication protocols in the application code
directly. In addition, this approach makes the
execution on different configurations possible
without changing the application.

The OOSPMD paradigm launches multiple
objects from the same class in different nodes
and creates a specific communication group
among them. Each object starts its execution
in a determined method and the interaction
among them happens through method invoca-
tion. The code of a method on the sender object
performs an invocation of a remote method on
the receiver object, characterizing an interac-
tion known as one-sided. In addition, ProAc-
tive offers migration by leaving a proxy on the
source node in which is used for performing
calls to the migrated object. Finally, the asyn-
chrony capability in jMigBSP is expressed by
ProActive’s mechanisms known as wait-by-
necessity and Future Objects. A RMI always
returns a Future Object to the caller, enabling
it to continue its computation immediately.
This object is changed by the real response
on the fly (transparently to the caller) or the
caller stops its execution when an enquiry is
done over the Future until the answer comes
through the network.

The first difference between jMigBSP and
ProActive comprises the programming inter-
face. Instead of offering Proactive-like API
to the user, jMigBSP hides all complexity to
understand ProActive interface by provid-
ing six methods. For example, some details
about XML descriptors loading and group
creation and management are abstracted
from developers through a single method in
jMigBSP. An application with jMigBSP must
implement the semantic of a superstep in the
run() method (see Section 2.1). A superstep
presents both computation and communica-
tion actions followed by a synchronization
barrier. A collection of them assembles a BSP
application. As BSP does, jMigBSP also en-
sures that a message passed in a specific su-

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 201186

Graebin and Righi | Flexible Management on BSP Process Rescheduling

perstep should be delivery only in the begin-
ning of the next one.

De veloping Applications
with jMigBSP

A program with jMigBSP may be written
in a single class. For that, any parallel algo-
rithm extends jMigBSP class and implements
the run() method. This method should contain
the code that will execute concurrently. Table
1 shows the functions that can be used in the
run() method. Firstly, the number of concur-
rent objects can be queried by calling bsp_
nprocs(), and a unique object identifier can be
retrieved through using bsp_pid(). bsp_sync()
is a barrier that synchronizes all objects. When
finishing this function, all messages sent in
the previous superstep are available for use in
the buffer on the destination object.

jMigBSP defines one-sided communication
operation which allows users to read from or
write to the memory of a remote process di-
rectly. Thus, the local buffer of each process
can be manipulated by other processes by
taking either bsp_put() or bsp_get(). bsp_put()
stores data into the memory of a target proc-

ess, without the active participation of this last
entity. In the implementation aspect, all proc-
esses have two vectors of buffering in order to
implement the BSP communication semantic.
One vector has the data that should be used
for sending data during a superstep, while
the other is complete with receiving data. The
former vector is called Active while the second
is Temporary. Moreover, both vectors have
size n, where n is the number of processes.
After finalizing a superstep, the Active vector
is filled by the content presented in the Tem-
porary one. The operation bsp_get() reaches
the local buffer of another process in order to
copy data values held there into a data struc-
ture in its own local memory.

A shorthand way of using jMigBSP func-
tions is illustrated in Figure 1. It explains the
Prefix Sum computation operation where p
sequential integers are stored on p proces-
sors. The algorithm uses the logarithmic tech-
nique in which performs log(p) supersteps.
Considering this, the processes in the range
2k-1 ≤ i ≤ p combine their partial sums during
the kth superstep. Since a jMigBSP program is
in essence a class, it is necessary to create its
instance in order to run a program. However,
creating an instance of a class does not implic-

1. public class PrefixSum extends jMigBSP {
2. public void run() {
3. int n = bsp_pid() + 1;
4. for (int i = 1; i <bsp_nprocs(); i *= 2){
5. if (bsp_pid() + i <bsp_nprocs())
6. bsp_put((Object) n, bsp_pid() + i);
7. bsp_sync();
8. n = n + getBuffer(bsp_pid() - i);
9. }
10. }
11. public static void main(String[] args) {
12. PrefixSum s = new PrefixSum();
13. s.start(4);
14. }
15. }

Fi gure 1. Prefix Sum code written with jMigBSP.

Table 1. Collection of jMigBSP’s methods and their classifications

Operation Meaning
bsp_nprocs() Number of objects

bsp_pid() Find my identifier
bsp_sync() Barrier synchronyzation
bsp_put() Copy to remote memory
bsp_get() Copy from remote memory

bsp_migrate() Migrate the caller object

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 2011 87

Graebin and Righi | Flexible Management on BSP Process Rescheduling

itly start it. A call to run(int p) method must be
performed to start the parallel phase using the
given number of processes p, as shown in line
13 of Figure 1. It is important to observe that
the mentioned program does not use bsp_get().
One-sided communication enables this fea-
ture, where data transferred in a superstep can
be automatically captured in the beginning of
the next one.

Figure 2 shows the supersteps involved
in the Prefix Sum computation when work-
ing with 4 processors. Each process begins the
algorithm with an integer that means its own
identifier. In the first superstep, each process i
sends a value to its neighbour on the right i +
1 (line 6 of Figure 1). The last process does not
do that, since it does not have a neighbour on
this position. The sending process will place its
value into a Temporary buffer in the destina-
tion process. The barrier phase will complete
the Active vector as explained earlier. Each
process (except the first one) will now contain
a value that is a sum of two integers. The re-
sulting state of the first superstep is shown in
Figure 2 on the second row. Following the al-
gorithm, the last process will have the correct
result in the third superstep.

Explicit Object Rescheduling
Through Migration Calls

Object rescheduling allows the object-
nodes remapping in response to application
and infrastructure behaviour. jMigBSP library
provides a way to migrate any BSP process
from any JVM to any other one through call-
ing bsp_migrate() explicitly. The migration can
be initiated by the process itself or by an ex-
ternal agent. jMigBSP offers two implementa-
tion of bsp_migrate(). The first one consists in
migrating the caller object to a remote host,

which is received as input parameter. In or-
der to do that, the remote host must have
running a Java object called Node, a kind of
daemon of ProActive library in charge of re-
ceiving and restarting active objects as well
as keeping trace of locally accessible active
objects. The other way to migrate considers
the transferring of the caller process to a re-
mote host in which another object executes
currently. This bsp_migrate() signature has an
object as input parameter.

In terms of BSP programs, a trivial way
for rescheduling launching is to put migra-
tion directives after the barrier. This point
represents a consistent global state, causing
migration implementation and the capture of
scheduling data easier. This last sentence is
argued by the fact that the start of a superstep
enables the decision making by using a glo-
bal knowledge. In other words, updated data
from all processes and nodes can be used in
the synchronization operation for decision
making on replacement (Kwok and Cheung,
2004).

The explicit rescheduling requires a devel-
oper with expertise in load balancing algo-
rithms. In this way, he/she must collect data
about processors’ capacity and load for deci-
sion making on process relocation manually.
Furthermore, the explicit rescheduling takes
time away from the developers’ primary in-
terest: the application. Finally, a new applica-
tion or/and new infrastructure of resources
requires a new effort on studying the better
places to add migration calls, as well as to
choose pertinent supersteps for that.

Automatic Load Balancing

Besides explicit migrations, other jMigB-
SP’s objective consists in providing automatic

Fig ure 2. Prefix Sum operation using the logarithmic technique.

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 201188

Graebin and Righi | Flexible Management on BSP Process Rescheduling

load balancing without developers/adminis-
trators intervention. In this way, MigBSP re-
scheduling model will be implemented and
offered through a jMigBSP interface (Righi
et al., 2010). MigBSP answers the following
issues: (i) “When” to launch the migration;
(ii) “Which” objects are candidates for migra-
tion; (iii) “Where” to put an elected object.
The article presented in (Righi et al., 2010) de-
scribes the ideas to deal with these questions
in detail. MigBSP runs over an architecture
that is assembled with Sets (different sites or
clusters) and Set Managers. Set Managers are
responsible for scheduling, capturing data
from a specific Set and exchanging it among
other managers. The decision for automatic
object remapping is taken at the end of a
superstep. The term automatic means that
the user/programmer will not put explicitly
calls for processes rescheduling inside her/
his application. Figure 3(a) illustrates a situ-
ation where the application code is changed
and calls for rescheduling are inserted in the
processes p1 and p5. On the other hand, Fig-
ure 3(b) shows the main idea of MigBSP,
where changes in the application code are
not required and the load balancing is of-
fered in a transparent way. Aiming to gener-
ate the least intrusiveness in application as
possible, it is applied adaptations that con-
trol the interval between supersteps. The ba-
sic idea is to enlarge this index if the objects
are balanced, or to reduce it otherwise.

We will offer an implementation that re-
acts against application and resource dynam-
ics by migrating objects between different
nodes. Our final aim is to reduce the applica-
tion time by making the supersteps shorter.
MigBSP answers the “Which” question by
using a decision function called Potential
of Migration (PM). Each object i computes
n functions PM(i, j), where n is the number
of Sets and j means a Set. PM(i, j) is found
using Computation, Communication and
Memory metrics as follows: PM(i, j) = Comp(i,
j) + Comm(i, j) - Mem(i, j). Computation and
Communication act in favour of migration,
while Memory works in an opposite direc-
tion.

We are developing a prototype for auto-
matic load balancing by using MigBSP ideas.
For that, we created a new class denoted LB-
jMigBSP which extends jMigBSP in order to
add and capture scheduling data. Figure 4
illustrates the methods in which LBjMigBSP
overwrites from jMigBSP. Both lines 2 and

6 from this figure show the communication
methods. They capture scheduling informa-
tion and trigger the jMigBSP method for treat-
ing message passing. bsp_sync() creates a vec-
tor to store the superstep time of each object.
When rescheduling is activated, the code of
computeBalance() method exchanges the vec-
tor among the Set Managers, allowing them
to recognize the next interval of supersteps for
object rescheduling. After achieving PM, the
migration viability of each object is tested. The
migrate method returns a new destination ma-
chine if migration is feasible, or null otherwis.

The developer must change only the line
that defines the application class; by changing
jMigBSP to LBjMigBSP (see line 1 of Figure 1).

Figu re 3. Two jMigBSP´s approaches for
load balancing: (a) Changing the application
code to offer explicit processes migration; (b)
Processes rescheduling at middleware level
without changing the application code.

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 2011 89

Graebin and Righi | Flexible Management on BSP Process Rescheduling

Thus, LBjMigBSP represents our middleware
approach, acting as a wrapper for automatic
load balancing. LBjMigBSP is an ongoing work.
Computation metric from PM considers the in-
structions performed between barriers as well
as the time spent on computation actions inside
a superstep. Communication metrics works
with the number of bytes sent or received to/
from a specific Set and the bandwidth to reach
it. Finally, Memory metric takes into consid-
eration the object memory, the bandwidth to
achieve a Set and the costs related to the mi-
gration tool. Concerning this last item, we will
measure the overhead on migration operations
when transferring an object of 1 byte.

Experimental Results

We implemented three BSP applications:
(i) Prefix Sum; (ii) Fractal Image Compression
(FIC) and; (iii) Fast Fourier Transform (FFT).
These applications were executed in a cluster
with 16 nodes Intel Core 2 Duo 2.93GHz. They
are connected by 10 Mbps links. In addition,
we employed ProActive 5.0.3 and BSPlib 1.4
with TCP/IP-based message passing.

Analyzing the Migration Costs

These tests perform a comparison be-
tween the times of migrating objects with
ProActive and the times of transferring objects

with Java Sockets simply. Three nodes were re-
served for the tests. The first one runs a synthetic
application that creates an Active Object in the
second node with a specific amount of data. The
application calls the migration directive over
the Active Object, moving it to the third node.
Besides this application, another was written to
create a Java object and to transfer it using Sock-
ets. It uses only two nodes. Figure 5 shows the
migration time of objects using ProActive com-
pared to the transfer time with Java Sockets.

Data from 1KB up to 32MB are allocated
by the objects. The application was tested 10
times for each number of bytes and an arith-
metic average was computed. Basically, both
migration and transfer times have a linear
behaviour. For instance, 8.49s was achieved
when migrating an object with 10MB with
ProActive, while 7.29s is found using Java
Sockets. When allocating 32MB, 30.32s and
28.89s were observed with ProActive and Java
Sockets, respectively. Thus, 1.20s and 1.43s
are measured in both cases when subtracting
the Java time from the ProActive one. In other
words, the overhead imposed by ProActive’s
object migration does not depend on the size
of manipulated data directly.

Verifying the jMigBSP’s Functionality

Prefix Sum was implemented and ex-
ecuted in our cluster to validate the correct

1. public class LBjMigBSP extends jMigBSP {
2. public void bsp_put(Object o, int destination) {
3. captureDataPut(o, destination);
4. super.bsp_put(o,destination);
5. }
6. public Object bsp_get(int destination) {
7. Object temp = super.bsp_get(destination);
8. captureDataReceive(temp, destination);
9. return temp;
10. }
11. public void bsp_sync(){
12. double[] vec_steps = new double[MAX_SUPERSTEPS];
13. computeSuperstepTime(vec_steps);
14. if (isSuperstepRescheduling()) {
15. next_call = computeBalance(vec_steps);
16. exchageDataAmongSetManagers(computePM());
17. machine = willMigrate();
18. if (machine != null)
19. bsp_migrate(machine);
20. }
21. super.bsp_sync();
22. }
23. }

Figure 4. Deriving jMigBSP in order to offer automatic load balancing.

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 201190

Graebin and Righi | Flexible Management on BSP Process Rescheduling

implementation of jMigBSP. Our goal was
to analyze the correct exchange of messages
between objects and the synchronization
between them during and after the barrier.
The algorithm was executed with 4, 8 and 16
processes. These tests comprise the computa-
tion of 2, 3 and 4 supersteps, respectively. All
tests resulted in the successfully application
execution.

jMigBSP’s Efficiency on Fractal-based
Compression Application

FIC applications apply transformations
which approximate smaller parts of the im-
age by larger ones (LU, 1997). The smaller
parts are called ranges and the larger ones
domains. All ranges together form the image.
The domains can be selected freely within the
image. The application time increases as the
number of domains increase as well. Our BSP
modelling considers the variation of domain
sizes as well as the number of objects.

The algorithm is based on circular pipe-
line configuration. First of all, each process
receives its own range of domains. In this ap-
proach, each range block is compared with a
different domain block at any given step. This
comparison creates an index for each range,
showing the transformation result when tak-
ing the domains of a specific process. Once the
comparison step is completed the range blocks
are shifted to the next processor in the pipe-
line, for another comparison step. When all
range blocks have passed through the pipe-
line (which is actually a ring) the comparison
step is completed for all domain blocks.

Table 2 presents the execution time of se-
quential FIC for an image with 256 x 256 pixels
when varying the number of domains. Figure
6(a) show the image used in our evaluation.
Figure 6(b), (c) and (d) show the resultant im-
age using the number of domains of Scenarios
1, 2 and 3, respectively. In special, Figure 6(b)
has few losses over the original image, achiev-
ing a compression rate of 68.52%. In addition,
we can see that image compression increase
while the number of domains is reduced. On
the other hand, the greater the number of do-
mains, the higher the quality of the resulting
image and the lower is it compression rate.

Figure 7 shows the execution gains of FIC
written with jMigBSP. We can observe that
8.15s was achieved in Scenario 1 with 16 proc-
esses. This result represents a gain of 92.92%
over the sequential application. The execu-
tion time of Scenario 2 with 16 processes was
7.35s, while Scenario 3 with the same number
of processes resulted in 5.97s. These results
represent a gain of 92.91% and 92.90% when
compared with the sequential application of
Scenarios 2 and 3, respectively.

Comparing jMigBSP and BSPlib
Native Library

We developed two versions of the FFT
application: (i) one written in jMigBSP; and
(ii) other in BSPlib. FFT is a fast algorithm
for the computation of the Discrete Fourier
Transform (DFT) and its inverse. Our imple-
mentation maps a complex-valued input vec-
tor of length to its DFT during the first two su-
persteps (Bisseling, 2004). Basically, the input

Figure 5. Observing the migration costs with ProActive.

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 2011 91

Graebin and Righi | Flexible Management on BSP Process Rescheduling

Figure 6 . (a) Original image; (b) Resulting image with Scenario 1; (c) Resulting image with Scenario 2;
(d) Resulting image with Scenario 3.

Figure 7. Observing the gains of parallel Fractal Image Compression algorithm with Scenarios 1, 2 and 3.

Table 2. Sequential execution time in seconds of Fractal Image Compression algorithm.

Scenario Number of
domains

Sequential
execution time

Standard
deviation

Compression
rate

Scenario 1 4096 115.33 0.58 68.52%
Scenario 2 1024 103.78 1.75 91.93%
Scenario 3 256 84.21 1.17 97.76%

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 201192

Graebin and Righi | Flexible Management on BSP Process Rescheduling

vector is assumed to be distributed cyclically
over the processors. The algorithm starts with
a parallel bit reversion, followed by a number
of concurrent unordered sequential FFTs. Fi-
nally, it redistributes data and synchronizes
the objects. The second superstep then pro-
ceeds with concurrent unordered sequential
generalized FFTs. Both the size of the input
vector and the number of processors are re-
quired to be powers of two.

Table 3 shows the execution times of FFT
application. The vector size varied from 223 to
225. As expected, BSPlib had a better perform-
ance against jMigBSP. This result is justified
by the overhead imposed by Java and ProAc-
tive in jMigBSP. However, we can observe that
the higher the computation grains the lower
the difference time between both libraries.
For instance, 7.13s was achieved with jMig-
BSP when using 16 processors and 224 for vec-
tor size, while 5.33s was observed for BSPlib.
These times represent an overhead of 25.24%.
Nevertheless, vectors of 225, 16.25s and 14.41s
were measured with jMigBSP and BSPlib,
respectively. This execution informs a reduc-
tion of the jMigBSP’s overhead, estimated in
23.63%.

Our evaluation also comprise observe the
gains with processes migration. This test aims
to validate the feasibility of developing jMig-
BSP’s extension to offer automatic objects re-
scheduling. For this purpose, we executed FFT
with vector size 225 in 8 nodes and an overhead
was simulated over 4 of them. To simulate
overhead, we limit the maximum percentage
of share of processor a work process receives
when running using cpulimit1 program (Ce-
sario et al., 2011; Vera and Suppi, 2011). We
define 10% as the maximum of the processor
that the FFT application can use in the 4 nodes.
The application time written in BSPlib in this
scenario was 61.76s, while the time of jMigBSP
was 90.53s. These values represent an increase
of 319.87% and 381.07% in the parallel applica-
tion time written in BSPlib and jMigBSP in a
dedicated environment, respectively.

Explicit calls to bsp_migrate() after the bar-
rier were used in the tests. A migration of an
object from an overloaded processor to a more
lightly one leads in minimizing its execution
time. We observed that 56.87s were obtained
when migrated 4 processes located in over-
loaded nodes to others lightly loaded. This

time represents gains in order of 37.17%, out-
performing BSPlib execution time. The migra-
tion of 2 objects does not present satisfactory
results due to the own BSP rule. The execution
time achieved with this scenario was 88.68s.
Despite transferring 2 objects, other 2 remain
on overloaded processors and limit the super-
step time.

Related Work

The state of the art on BSP programming
comprises different libraries and languages.
BSP libraries provide a full control over com-
munication and synchronization, enabling us-
ers to write supersteps with different require-
ments easily. The Oxford BSPlib was one of the
first BSP libraries (Hill et al., 1998). It consists
in implementations of the BSPlib standard in
C, C++ and Fortran for multiple parallel ar-
chitectures. Basically, it contains functions for
delimiting supersteps and provides remote
memory access (DRMA) and message passing
(BSMP) operations. Other BSP libraries written
in C language are the Paderborn University
BSP (PUB) (Bonorden, 2007) and the BSPonM-
PI (Suijlen and Bisseling, 2011). PUB offers as
the same functionality as Oxford BSPlib, but
includes primitives for non-blocking commu-
nication and different semantics for barrier
synchronization. BSPonMPI offers the basic
functionalities from Oxford BSPlib and runs
over MPI implementations.

Besides libraries in native code, we can de-
scribe some interpreted initiatives developed
in Java. In this context, JBSP (Gu et al., 2001),
MulticoreBSP (Yzelman and Bisseling, 2011)
and PUBWCL (Bonorden et al., 2006) appear
as the most significant ones. JBSP is a NOW-
based system and provides both DRMA and
BSMP communication methods. On the other
hand, MulticoreBSP was designed for multi-
core systems where threads interact among
themselves through a common shared mem-
ory. Especially, both PUBWCL and PUB have
extensions to offer migration. PUBWCL li-
brary aims to take profit of idle cycles from
nodes around the Internet. PUBWCL can mi-
grate a BSP process during its computation
phase, as well as after the barrier synchroniza-
tion. The PUB’s author proposed a centralized
and distributed strategies for load balancing.
In the first one, all nodes send data about their

1 http://cpulimit.sourceforge.net/

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 2011 93

Graebin and Righi | Flexible Management on BSP Process Rescheduling

CPU power and load to a master node. The
master verifies the least and the most loaded
node and migrates one process between them.
In distributed approach, every node chooses c
other nodes randomly and asks them for their
load. One process is migrated if the minimum
load of c analyzed nodes is smaller than own
load of the node that is performing the test.
Both PUBWCL and PUB just offer the migra-
tion approach with implicit migration calls.

Conclusion

This article presented the rationales for
developing jMigBSP programming library.
Its differential approach consists in provid-
ing BSP programming interface for Java with
object migration facility. The migration can be
triggered by the developer or not, depending
on the degree of control desired. Implicit mi-
gration creates another class named LBjMig-
BSP in which extends jMigBSP in order to save
scheduling data. LBjMigBSP implements a mi-
gration model that computes PM (Potential of
Migration) of each object by considering both
data of a computation and communication
parts of a supersteps, as well as the migration
costs.

Experimental evaluation showed encour-
aging results: (i) jMigBSP has a competitive
performance if compared with the C-based
library called BSPlib; (ii) migrations are per-
tinent for getting performance. Following
this last statement, we concluded that highly-
loaded applications tend to take more ben-
efits from the migration facility. Future works
comprises the development of LBjMigBSP and
its evaluation with a CPU-Bound application.
In addition, we intend to test jMigBSP on the
Grid5000 (Cankar and Trobec, 2010) platform
in order to observe its scalability, as well as the
behaviour of the library when considering a
real heterogeneous grid environment.

References

BADUEL, L.; FRANÇOISE, B.; CAROMEL, D.;
CONTES, A.; HUET, F.; MOREL, M.; QUILICI,
R. 2006. Programming, Composing, Deploy-
ing for the Grid. In: J.C. CUNHA; O.F. RANA,
Grid Computing: Software Environments and Tools,
Springer London, p. 205-229.

 http://dx.doi.org/10.1007/1-84628-339-6_9
BISSELING, R.H. 2004. Parallel Scientific Computa-

tion: A Structured Approach using BSP and MPI,
Oxford, Oxford University Press, 334 p.

BONORDEN, O. 2007. Load Balancing in the Bulk-
Synchronous-Parallel Setting using Process
Migrations. In: IEEE INTERNATIONAL PAR-
ALLEL AND DISTRIBUTED PROCESSING
SYMPOSIUM (IPDPS), 21, Long Beach, 2007.
Proceedings... Long Beach, p. 1-9.

 http://dx.doi.org/10.1109/IPDPS.2007.370330
BONORDEN, O.; GEHWEILER, J.; HEIDE, F.M.

2006. Load Balancing Strategies in a Web Com-
puting Environment. In: R. WYRZYKOWSKI;
J. DONGARRA; N. MEYER; J. WASNIEWSKI,
Parallel Processing and Applied Mathematics, Ber-
lin, Springer, p. 839-846.

 http://dx.doi.org/10.1007/11752578_101
CANKAR, M.; TROBEC, R. 2010. Experimental

evaluation of Grid5000 performance in the so-
lution of PDE. In: MIPRO, 33, Ljubljana, 2010.
Proceedings... Ljubljana, p. 203-207.

CESARIO, E.; GRILLO, A.; MASTROIANNI, C.;
TALIA, D. 2011. A Sketch-Based Architecture
for Mining Frequent Items and Itemsets from
Distributed Data Streams. In: IEEE/ACM IN-
TERNATIONAL SYMPOSIUM ON CLUSTER,
CLOUD AND GRID COMPUTING (CCGrid),
11, Newport Beach, 2011. Proceedings... Newport
Beach, p. 245-253.

 http://dx.doi.org/10.1109/CCGrid.2011.45
DE GRANDE, R.E.; BOUKERCHE, A. 2011. Dy-

namic balancing of communication and compu-
tation load for HLA-based simulations on large-
scale distributed systems. Journal of Parallel and
Distributed Computing, 71(1):40-52.

 http://dx.doi.org/10.1016/j.jpdc.2010.04.001
EL KABBANY, G.F.; WANAS, N.; HEGAZI, N.;

SHAHEEN, S. 2011. A Dynamic Load Balancing
Framework for Real-time Applications in Mes-
sage Passing Systems. International Journal of
Parallel Programming, 39(1):143-182.

 http://dx.doi.org/10.1007/s10766-010-0134-5
ELMROTH, E.; LARSSON, L. 2009. Interfaces for

Placement, Migration, and Monitoring of Virtu-
al Machines in Federated Clouds. In: INTERNA-
TIONAL CONFERENCE ON GRID AND CO-
OPERATIVE COMPUTING (GCC), 8, Lanzhou,
2009. Proceedings... Lanzhou, p. 253-260.

 http://dx.doi.org/10.1109/GCC.2009.36
GU, Y.; LEE, B.; CAI, W. 2001. JBSP: A BSP Program-

ming Library in Java. Journal of Parallel and Dis-
tributed Computing, 61(8):1126-1142.

 http://dx.doi.org/10.1006/jpdc.2001.1735
HENDRICKSON, B. 2009. Computational science:

Emerging opportunities and challenges. Journal
of Physics: Conference Series, 180(1):012013.

 http://dx.doi.org/10.1088/1742-6596/180/1/012013
HILL, J.M.D.; MCCOLL, B.; STEFANESCU, D.C.;

GOUDREAU, M.W.; LANG, K.; RAO, S.B.;
SUEL, T.; TSANTILAS, T.; BISSELIN, R.H.
1998. BSPlib: The BSP programming library.
International Journal of Parallel Programming,
24(14):1947-1980.

 http://dx.doi.org/10.1016/S0167-8191(98)00093-3

Journal of Applied Computing Research, vol. 1, n. 2, p. 84-94, Jul/Dec 201194

Graebin and Righi | Flexible Management on BSP Process Rescheduling

KWOK, Y.; CHEUNG, L. 2004. A new fuzzy-deci-
sion based load balancing system for distrib-
uted object computing. Journal of Parallel and
Distributed Computing, 64(2):238-253.

 http://dx.doi.org/10.1016/j.jpdc.2003.11.002
LU, N. 1997. Fractal Imaging, San Francisco, Aca-

demic Press, 432 p.
PONTELLI, E.; LE, H.V.; SON, T.C. 2010. An in-

vestigation in parallel execution of answer
set programs on distributed memory plat-
forms: Task sharing and dynamic scheduling.
Computer Languages, Systems and Structures,
36(2):158-202.

 http://dx.doi.org/10.1016/j.cl.2009.09.001
RIGHI, R.R.; PILLA, L.L.; MAILLARD, N.; CARIS-

SIMI, A.; NAVAUX, P.O.A. 2010. Observing the
Impact of Multiple Metrics and Runtime Adap-
tations on BSP Process Rescheduling. Parallel
Processing Letters, 20(2):123-144.

 http://dx.doi.org/10.1142/S0129626410000107
SUIJLEN, W.J.; BISSELING, R.H. 2011. BSPonMPI.

Available at: http://bsponmpi.sf.net/. Accessed
on: 01/12/2011.

TABOADA, G.L.; TOURIÑO, J.; DOALLO, R. 2009.
Java for high performance computing: assess-
ment of current research and practice. In: IN-
TERNATIONAL CONFERENCE ON PRINCI-
PLES AND PRACTICE OF PROGRAMMING
IN JAVA (PPPJ), 7, Calgary, 2009. Proceedings...
Calgary, p. 30-39.

 http://doi.acm.org/10.1145/1596655.1596661
VERA, G.; SUPPI, R. 2011. ATLS - A parallel loop

scheduling scheme for dynamic environments.
Procedia Computer Science, 1(1):583-591.

 http://dx.doi.org/10.1016/j.procs.2010.04.062
YZELMAN, A.N.; BISSELING, R.H. 2011. An

Object-Oriented BSP Library for Multicore
Programming. Available at: http://www.staff.
science.uu.nl/~yzelm101/publications/yzel-
man11pp.pdf. Accessed on: 01/12/2011.

Submitted on O ctober 10, 2011.
Accepted on December 12, 2011.

