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Abstract - In this article, the area of a two-dimensional surface of the exteriors of the Universidad Nacional Mayor de San 

Marcos was calculated. It was done using the curve equation integration method, which will be obtained from the perimeter of 

the sector to be worked on by dividing it into sections, for which Google Maps was used to calculate the reference parameters. 

In general, not all curve equations are integrable; for this, the approximation methods such as Simpson 3/8, 1/3, and trapezoid 

were used. In addition, we will apply the Lagrange interpolation to find the equation of the curve; with the results obtained, we 

make a comparison between the methods, and So we see that the methods differ. Of them, the one with the least margin of error 

will be taken; these methods can be used in future works where the surface is irregular. 

Keywords - Numerical integration, Lagrange interpolation, Simpson's method, Trapezoid. 

 

1. Introduction 
Numerical integration is the application of the study as 

the numerical value of a defined integral, which can be found 

through previously established procedures. This problem has 

a lot of significance since this mathematical discipline 

continues to have full force and a lot of interest. One of the 

most used methods is the calculations of the integrals of 

approximation of the area under a curve since architects and 

civil engineers use this to calculate the terrain where they are 

located. And hence his interest; therefore, all these scenarios 

poured into this discipline will be presented in the next 

report. Which consists of five chapters; the first is a small 

introduction to the subject. In the second chapter, the literary 

references were touched which helped us to have clearer 

concepts; in the third chapter, the methodology helped us to 

handle the concepts and definitions of the methods that we 

will use; in the fourth, results and discussions and finally, in 

the fifth chapter the conclusions were addressed. 

 

2. Literary Review 
Numerical integration methods have numerous 

applications in engineering. Accuracy in earthworks is 

important for many such as erosion studies, mining activity, 

and earth removal in construction projects. Generally, civil 

infrastructure works require modifications of the geometry of 

the terrain in the execution of their projects; it is the case of 

urban processes that involve the estimation of their locations 

in the volumes of surface to refine the control of costs and 

budgets of the construction process, differences in your 

estimate between owner and contractor often cause problems 

that can even end up in legal issues. 

 

The most used method on roads is that of cross-sections 

where concepts of integral calculation and discrete functions 

are applied for the identification of simple figures that make 

it practical to obtain the total areas in cut and fill, sometimes 

the rule of Trapezium, Simpson 1/3 and Simpson 3/8 is 

adopted to calculate the volume and obtain its average value, 

being the accuracy of the calculations proportional to the 

quality of representation of the terrain and depends on the 

density of the three-dimensional points, their distribution and 

interpolation method 

 

In this way, engineering as a knowledge-transforming 

entity becomes a useful instrument to find intelligent and 

viable solutions, intending to contribute to the development 

of sustainable urban planning projects, which obey 

environmental preservation criteria, as a significant 

contribution to the process of location of artificial earth 

movements, defining the algorithm of less altimetric 

distortion and the calculation model of the area, that best 

suits surface conditions. Experimental development is 

proposed that allows, based on the construction and iconic 

scale model, the areas to be calculated using three 

mathematical models: Trapezoid rule, Simpson's 1/3 rule, 

and Simpson's rule 3/8.[1] 

 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:5canolengua@gmail.com
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The transit or lamination of avenues by reservoirs is one of 

the fundamental problems of surface hydrology that is 

applied in the design and review of the excess works of a 

dam. In this type of work, engineers from different areas 

(civil, mechanical, electricians, geophysicists, geologists, 

among others) work. With the development of computer 

equipment, numerical methods for its calculation, all based 

on the continuity equation, have gained momentum as a tool 

to obtain results for this problem. With the comparison of the 

results obtained by using Newton's numerical integration 

methods: Trapezium, Simpson 1/3, and Simpson 3/8, to 

calculate the storage volume from the concept of the area 

enclosed between two curves (in this problem, the curves are 

the input and output hygrograms). [2] 

 

In the analysis of complex systems, it is widely used to 

determine synergy for the development of cities. However, 

sustainable cities need an effective energy diligence strategy 

based on management policies. Its objective is to encompass 

the synergy of localities by establishing a relationship 

between complexity and urban energy consumption. 

Demonstrating a technique for assessing physical complexity 

centered on a built environment in an urban region. 

Consequently, the study estimated urban complexity and 

energy consumption in cities using the Simpson manifold 

index and the passive volume ratio, which allowed physical 

complexity to be assessed using a sophisticated set. of tools 

to build more lasting cities. [3] 

 

In the field of the topological project whose categorical 

structures have a high performance in thermal insulation, a 

design strategy is externalized in three layers, including 

macro and micro layers. Macroscopic structures are 

mesoscopic structures arranged periodically, whose 

topological configurations are subject to the material 

microstructures arranged at the micro-level. Microstructures 

and mesoscopic structures are independent of optimization, 

ensuring a hierarchical design synergy. The next step is four 

classical microstructures that provide the equivalent 

normalized thermal conductivities with arbitrary densities 

between 0 and 1. Then, it uses the floating projection 

technique to find the optimal topologies of thermoplastic 

structures. The objective function is defined by maximizing 

thermal conformity, subject to volume restriction that is 

added to the target function through the Lagrange multiplier. 

[4] 

 

Also, when using Lagrange interpolation, it is so diverse 

that it can even be used not only to calculate the equation of 

the curve but can even be applied in the performance to 

measure the aliasing of the images. [5] This methodology 

will be used as a complement in the approximation to be able 

to estimate with a margin of accuracy, and this will be 

applied can be applied in the equations obtained, for 

example, when using a first and second-order calculation 

when applying it in the precision of the non-linear frequency 

estimate. [6] 

 

Consolidating the soil with stone columns is a 

distinguished method for improving the soil. This 

reinforcement by installing columns modifies the properties 

of the surrounding soft soil; this is known as a "smear." 

Despite the research, field studies on the characterization of 

the proper smear area are limited. Field research was 

developed to learn about the effects of the facility by 

collecting a series of intact soil samples from a soft soil site 

reinforced with newly installed stone columns, as well as 

conducting laboratory tests followed by non-linear regression 

analysis. He showed that the installation of stone columns 

induced a considerable alteration in the soft properties of the 

soil when they were closely spaced. An explicit model of the 

Lagrange fast finite-difference was carried out using the unit 

cell analogy, simulating the non-linear variation of the 

permeability and compressibility of soft clays. The 

parameters of the interrupted soft soil that they obtained were 

successfully used to make numerical models. In contrast, 

another study performed 2D finite element modeling. The 

results from the finite difference model coincided with the 

calculated field data compared to the finite element results. 

[7] 

 

To calculate the fractal dimension, the standard method 

uses a compass that, through a specific radius, draws an arc 

that allows finding the points that intercept the curve. It is 

essential that when measuring with this method, the impact 

of the observer is considered. Since the rules, when read by 

the user, are very susceptible to reading or visual errors. The 

main contribution lies in promoting an algorithm to calculate 

the fractal dimension of fluctuating continuous functions on 

a fractally divided space, which also allows obtaining the 

integral of the function quite accurately by using the 

trapezoidal rule. [8] 

 

It can be said that higher-order uncertain differential 

equations are used to capture differentiable uncertain systems 

with higher-order differentials. Generally, higher-order 

differential equations have no analytic solutions, such as the 

design of numerical methods for solving the uncertain 

higher-order differential equation. Using Simpson's method, 

a numerical method is designed to solve uncertain 

differential equations of higher order. It consists of a 

procedure through numerical experiments to demonstrate the 

usefulness and validity of the Simpson method. As well as 

calculating the integral of the uncertain differential equation 

of higher-order with the help of the same method. [9] 

 

3. Methodology 
Numerical integration is a tool of great importance 

because it allows us to find closer results of defined integrals 

that, when solved analytically, will take the time or because 
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the integrand is only known in tabulated form; an example 

would be the data obtained from an experiment. [10] 

 

Approximating that integral by the integral of a simpler 

function approximating the original function.[11] 

 

The numerical integration is framed within the theory of 

the approximation, within the area of Applied Mathematics, 

and is passing from time to have had growth during the last 

years; this is due to the appearance of computers and 

advanced programs that allow their calculations to be simpler 

and before this, referring them to different scientific areas. 

Consequently, this approximates the area under a curve, 

which at first glance, is impossible to perform its 

calculations. Still, many researchers have discovered how to 

solve it. 

   

Keep in mind that this scenario presents a shape or curve 

defined as f(x) and is defined between an interval within the 

space [a, b] and is presented as follows:[12] 

 

𝐼(𝑓) = ∫ 𝑓(𝑥)𝑑𝑥     
𝑏

𝑎

 

 

With this equation posed, many people have been using 

it for geometrically impossible spaces to conventional 

calculation. In the field of construction, many architects and 

civil engineers are seen with scenarios as areas that are not 

defined by the naked eye, and their calculation would be 

impossible to do conventionally. Then here, an 

approximation method is used. When fractionating part of 

the area is calculated with an established limit and a high 

interval, the area would be calculated with an approximation 

such high that the margin of error would be almost zero. 

Then with the above, it will be possible to use the formulas 

already demonstrated, such as the trapezoid or the Simpson 

method. 

 

The limitation to deal with in this research is to find a 

subjectivity in the results since, throughout this research, we 

can verify that using both the calculations and the Simpson 

Method or the Trapezium present calculations so precise that 

their margin of error is almost insignificant. However, you 

also must know when to use it and see which of the two 

applications with the information provided. Additionally, 

being hypothetical calculations of an area that has not yet 

been determined, it is not possible to acquire it from a 

database since the areas are subjective in any purchase, so 

calculations would be made assuming the margin of reality at 

the time of presenting the research. Thus, when performing 

the calculations, it was impossible to find the surface's 

topographic information or the measurements of the 

UNMSM, so another application had to be used to extract the 

calculations manually with an accuracy level of 87% approx. 

 

 

3.1. Trapezium Method 

The evaluation of the integrals is called quadrature, from 

an old problem in geometry known as the Greek squaring of 

the circle utilizing regular inscribed and circumscribed 

polygons, a process that earned Archimedes to limit the value 

of pi. [13] 

 

It is one of the methods that is most used in the 

approximation of the area under the curve where it is 

emphasized that this method is used as long as the integral 

does not have a solution in a conventional way where the 

approximation of the method is expected to be continuous 

and positive within the interval to make the approximation 

with this rule a first-order polynomial will be used, and this 

is represented as follows:[14] 

 

𝑃1(𝑥) = 𝑓(𝑎) +
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
(𝑥 − 𝑎) 

Then the integral is replaced: 

 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 ≈ ∫ 𝑃1(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

 

 

 

≈ ∫ [𝑓(𝑎) +
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
(𝑥 − 𝑎)]

𝑏

𝑎

𝑑𝑥 

 

And in the end, the integral has: 

 

∫ 𝑓(𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎)
𝑓(𝑎) + 𝑓(𝑏)

2

𝑏

𝑎

 

 

The error term corresponds to: 

𝐸 = − 
1

12
 𝑓"(𝜀) (𝑏 − 𝑎)3 

Being  𝜀  a number belonging to the interval  [𝑎, 𝑏]. 

3.2. Simpson rules 

Unlike the trapezoid method, which uses trapezoid 

forms to approximate the calculation of the area under the 

curve, Simpson's method uses the approximation of equally 

spaced subdivisions. It adjusts them by a parabola, and by 

adding all the subdivisions, you can have the almost exact 

approximation of that area. 

 

For example, if there is another point in the middle 

between f(a) and f(b) The three points can be joined with a 

parabola. If there are two points equally spaced between f(a)  

and f(b) A third-degree polynomial can join the four points. 

The formulas that result from taking the integrals under those 

polynomials are known as Simpson's rules.[15] 

 

To calculate the area under the curve by applying Simpson's 

rule, the following formula is used: 
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𝐼 = ∫ 𝑃2(𝑥)𝑑𝑥 + 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 =  
𝑏 − 𝑎

6

𝑏

𝑎

[𝑓(𝑎) + 4𝑓(𝑚) + 𝑓(𝑏)] + 𝐸(𝑓), 

 

Where  𝐸(𝑓)  is the error term: 

 

∫ 𝑓(𝑥)𝑑𝑥 ≈  
𝑏 − 𝑎

6

𝑏

𝑎

[𝑓(𝑎) + 4𝑓(𝑚) + 𝑓(𝑏)]. 

 

3.2.1. Simpson 1/3 

This method generates a more precise approximation; it 

consists of connecting successive groups of three points on 

the curve utilizing second-degree parabolas and adding the 

areas under the parables to obtain the approximate area. [16] 

 

And this representation has the following form: 

 

∫  𝑓(𝑥)𝑑𝑥 ≈
ℎ

3
[𝑓(𝑎) + 4𝑓(𝑥𝑚) + 𝑓(𝑏)]  

𝑏

𝑎
, with ℎ =

(𝑏−𝑎)

2
 

 

The estimated error is given by: 
 

𝐸(𝑓) = −
ℎ5

90
𝑓(4)(𝜀) , 

 

𝐸(𝑓) Involves the fourth derivative and 𝜀 𝜖 [𝑎, 𝑏]. 

 

3.2.2. Simpson 3/8 

The Simpson 3/8 integration scheme considers third-

degree passing polynomials between every four points of the 

function 𝑦(𝑥)To apply this method, n must be a multiple of 

3. [16] 

 

The following equation gives it: 

 

∫ 𝑓(𝑥)𝑑𝑥 ≈
3ℎ

8

𝑏

𝑎
[𝑓(𝑎) + 3𝑓 (

2𝑎+𝑏

3
) + 3𝑓 (

𝑎+2𝑏

3
) + 𝑓(𝑏)] with  ℎ =

(𝑏−𝑎)

2
, 

 

The estimated error is given by: 
 

𝐸(𝑓) = −
3ℎ5

80
𝑓(4)(𝜀), 

 

𝐸(𝑓) Involves the fourth derivative and 𝜀 𝜖 [𝑎, 𝑏]. 
 

You must consider the advantages presented by these 

rules to have a more accurate calculation. The rule of the 

Trapezium and that of Simpson 1/3 are simpler, but that of 

the Trapezium is more optimal for improper integrals. Still, 

in terms of precision, the rule of Simpson 3/8 is more 

approximate to the real values. As for the disadvantages, it 

should be taken into account that the trapezoid should take 

large intervals in case it gets closer. In Simpson 1/3, this will 

work with even intervals, and Simpson 3/8 would have to be 

a multiple of three. [17] 

 

3.3. Lagrange Interpolation 

This method consists of constructing the degree 

interpolator polynomial 𝑛  that goes through 𝑛 + 1  points 
(𝑥𝑖 , 𝑦𝑖) of the form: 

𝑃𝑛(𝑥) = ∑ 𝐿𝑖(𝑥)𝑦𝑖

𝑛

𝑖=0

 

 

Where the functions 𝐿𝑖(𝑥)  meet 𝐿𝑖(𝑥𝑘) = 0  if 𝑖 ≠ 𝑘  and 

𝐿𝑖(𝑥𝑖) = 1. This property guarantees 𝑃𝑛(𝑥𝑘) = 𝑦𝑘 . Functions 

𝐿𝑖(𝑥)  are constructed as: 

 

𝐿𝑖(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3) ⋯ ⋯ ⋯ (𝑥 − 𝑥𝑛)

(𝑥𝑖 − 𝑥1)(𝑥𝑖 −  𝑥2)(𝑥𝑖 −  𝑥3) ⋯ ⋯ (𝑥𝑖 − 𝑥𝑛)
 

 

This method allows us to construct the interpolator 

polynomial explicitly easily. Two more interpolations are 

linear and parabolic. [18] 

 

To find the area of the Universidad Nacional Mayor de 

San Marcos and in general of any area, first, we must delimit 

it and locate it in space, where we will use the GPS. We can 

approximate the measurements obtained from Google Maps 

and thus take significant calculations; with the points found, 

we can find the equation using Lagrange interpolation. 

Finally, by applying the integral, we will find the total area, 

and of the result obtained, we can compare it with the 

approximation methods of Simpson and Trapezium. 

 

3.4. Location of the Space 

To calculate the area of any two-dimensional surface, it 

must first be located, and then the GPS will be used; in this 

way, it will be possible to find it without difficulties. 

 

Using this tool, we know that the Universidad Nacional 

Mayor de San Marcos (UNMSM) is located exactly at the 

points -12.057182 and -77.081794 of latitude and longitude, 

respectively. 
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Fig. 1 Latitude and longitude of UNMSM 

 

3.5. Delimit Sections 

Having the surface located will be known by its shape if the calculation can be direct, but if its figure is complex, it is 

recommended to divide it into sections. 

 

The form of the UNMSM will be delimited into four sections because its calculation will be simpler and more precise. 

For this calculation, Av. República de Venezuela will be taken as Axis 𝑋. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 2 Delimitation of the UNMSM 
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3.6. Calculate Distance Points 

Considering the sections our surface will have, the distance from one point to another will be found; taking a reference 

axis for this, Google Maps will be used using the option to measure distance. 

 

It should be noted that the localized distances must be exact, considering all decimals. Still, in this research, an 

approximation will be made, taking integer values so that the equation and calculations are understandable.  

 

When finding the distances and the extreme points of them, considering the 𝑋 axis and the sections to be calculated, they 

will have to be put in tables to find their equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Calculations of Point Distances in the UNMSM 

 

 

3.7. Measurement Tables 
To find the equation of a curve, you must have the 

points that represent it, and these on the 𝑥-axis will have 

values that start from the zero point to the extreme point of 

the distance that is the 𝑌 axis, and these will be recorded in 

segments to know the interpolation points.  

 
Table 1. Area A Values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Area A Curve 

 

 

 

 

AREA A 

Points x y 

1 0 910 

2 34 870 

3 260 535 

4 490 320 
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Table 2. Area B Values Table 4. Area D Values 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Area B Curve 

 

Table 3. Area C Values 

 

 

 

 

 

 

 

 

 

 

 

 
    

 

 

 

 

Fig. 6 Area C Curve 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Area D Curve 

 

 

3.8. Calculate The Equation  

Having the points of both the 𝑋 Axis and the 𝑌 Axis you 

can apply any program that allows you to obtain the equation 

of the curve, however, it is recommended to use the 

Lagrange interpolation for the precision it provides. Then in 

this way, the calculation will be made to each of the sections: 

 

3.8.1. Area A: Lagrange Interpolation 
 

L(x) = Y1L1(x) + Y2L2(x) + Y3L3(x) + Y4L4(x)  
 

 

L(x) = 910
(x−34).(x−260).(x−490)

(0−34).(0−260).(0−490)
+ 870

(x−0).(x−260).(x−490)

(34−0).(34−260).(34−490)
  

+535
(x−0).(x−34).(x−490)

(260−0).(260−34).(260−490)
+ 320

(x−0).(x−34).(x−260)

(490−0).(490−34).(490−260)
  

 

L(x) = 910
(x−34).(x−260).(x−490)

(−34).(−260).(−490)
+ 870

x.(x−260).(x−490)

34.(−226).(−456)
  

+535
x.(x−34).(x−490)

260.226.(−230)
+ 320

x.(x−34).(x−260)

490.456.230
  

 

L(x) = 910
(x2−294x+8840).(x−490)

8840.(−490)
+ 870

(x2−260x).(x−490)

(−7684).(−456)
+  

535
(x2−34x).(x−490)

58760.(−230)
+ 320

(x2−34x).(x−260)

223440.230
  

 

L(x) = 910
(x3−784x2+152900x−4331600)

(−4331600)
+ 870

(x3−750x2+127400x)

3503904
+  

535
(x3−524x2+16660x)

(−13514800)
+ 320

(x3−294x2+8840x)

51391200
  

 

L(x) = −
(x3−784x2+152900x−4331600)

4760
+

145 (x3−750x2+127400x)

583984
−

107 (x3−524x2+16660x)

2702960
+

2 (x3−294x2+8840x)

321195
  

 

L(x) =
77821 

16042405470
x3 −

1136043

436528040
x2 −

7017557419

6416962188
x + 910 

 
L(x) = 0.000005x3 − 0.0026x2 − 1.0936x + 910 

AREA D 

Points x y 

1 0 310 

2 30 380 

3 60 420 

AREA B 

Points x y 

1 0 1060 

2 140 1055 

3 260 1050 

AREA C 

Points x y 

1 0 420 

2 100 740 

3 210 1060 
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3.8.2. Area B: Lagrange Interpolation 

 
L(x) = Y1L1(x) + Y2L2(x) + Y3L3(x)  

 

 

L(x) = 1060
(x−140).(x−260)

(0−140).(0−260)
+ 1055

(x−0).(x−260)

(140−0).(140−260)
+ 1050

(x−0).(x−140)

(260−0).(260−140)
  

 

L(x) = 1060
(x − 140). (x − 260)

(−140). (−260)
+ 1055

x. (x − 260)

140. (−120)
+ 1050

x(x − 140)

260.120
 

 

L(x) = 1060
(x2 − 400x + 36400)

36400
+ 1055

(x2 − 260x)

(−16800)
+ 1050

(x2 − 140x)

31200
 

 

L(x) =
53

1820
(x2 − 400x + 36400) −

211

3360
(x2 − 260x) +

7

208
(x2 − 140x)  

 

L(x) = −
1

43680
x2 −

71

2184
x + 1060 

 

L(x) = −0.00002x2  −  0.0325x +  1060 
 

 
 

3.8.3. Area C: Lagrange Interpolation 

 
L(x) = Y1L1(x) + Y2L2(x) + Y3L3(x)  

 

 

L(x) = 420
(x−100).(x−210)

(0−100).(0−210)
+ 740

(x−0).(x−210)

(100−0).(100−210)
+ 1060

(x−0).(x−100)

(210−0).(210−100)
  

 

L(x) = 420
(x − 100). (x − 210)

(−100). (−210)
+ 740

x. (x − 210)

100. (−110)
+ 1060

x. (x − 100)

210.110
 

 

L(x) = 420
(x2 − 310x + 21000)

21000
+ 740

(x2 − 210x)

(−11000)
+ 1060

(x2 − 100x)

23100
 

 

L(x) =
1

50
(x2 − 310x + 21000) −

37

550
(x2 − 210x) +

53

1155
(x2 − 100x) 

 

L(x) = −
8

5775
x2 +

3856

1155
x + 420 

 

L(x) = −0.0014x2  +  3.3385x +  420 

 

 

3.8.4. Area D: Lagrange Interpolation 

 
L(x) = Y1L1(x) + Y2L2(x) + Y3L3(x)  

 

 

L(x) = 310
(x − 30). (x − 60)

(0 − 30). (0 − 60)
+ 380

(x − 0). (x − 60)

(30 − 0). (30 − 60)
+ 420

(x − 0). (x − 30)

(60 − 0). (60 − 30)
 

 

L(x) = 310
(x − 30). (x − 60)

(−30). (−60)
+ 380

x. (x − 60)

30. (−30)
+ 420

x. (x − 30)

60.30
 

 

L(x) = 310
(x2 − 90x + 1800)

1800
+ 380

(x2 − 60x)

(−900)
+ 420

(x2 − 30x)

1800
 

 

L(x) =
31

180
(x2 − 90x + 1800) −

19

45
(x2 − 60x) +

7

30
(x2 − 30x) 

 

L(x) = −
1

60
x2 +

17

6
x + 310 

 
L(x) = −0.0167x2  +  2.8333x +  310 

3.9.   Calculate the Area 

With the equation obtained from each section, the 

area under the curve will have to be found using integrals. 

 

3.9.1. Area A: Integral calculation 

 

𝑆𝐴(𝑥) = ∫ 0.000005𝑥3 − 0.0026𝑥2 − 1.0936𝑥 + 910 𝑑𝑥
490

0

 

𝑆𝐴(𝑥) = 284710.8658 

 

3.9.2 Area B: Integral calculation 

 

𝑆𝐵(𝑥) = ∫ −0.00002𝑥2  −  0.0325𝑥 +  1060
260

0

𝑑𝑥 

𝑆𝐵(𝑥) = 274384.32666 

 

 

3.9.3. Area C: Integral calculation 

 

𝑆𝐶(𝑥) = ∫ −0.0014𝑥2  +  3.3385𝑥 +  420
210

0

𝑑𝑥 

𝑆𝐶(𝑥) = 157492.125 

 

 

3.9-.4Area D: Integral calculation 

 

𝑆𝐷(𝑥) = ∫ −0.0167𝑥2  +  2.8333𝑥 +  310
60

0

𝑑𝑥 

𝑆𝐷(𝑥) = 22497.54 

 

4. Results and Discussions 
 By having the area of each of the sections, the 

approximation methods of Simpson 3/8, Simpson 1/3, and 

Trapezium will be applied to compare with the area obtained, 

obtain the margin of error, and thus choose the most optimal 

for the calculation. 

 

4.1. Calculation of Simpson's rule 3/8  

To perform the approximation calculation of the 

Simpson method 3/8, presented in tables 5, 6, 7, and 8, it is 

being considered that "n" has a unique value of 6 because 

this, in turn, is a multiple of 3 and pair, thus maintaining a 

homogeneous result so that it can be compared, remembering 

that "n" can take any value. To calculate the iterations of the 

tables, we had to subtract the integration interval (b-a), and 

this was divided by "n," resulting in the value "h" that would 

help us complete the table from iteration 0 to iteration 6 that 

will be completed with the successive sum of that value.  

Finally, the results of each of the iterations (I) it was 

multiplied by the characteristic coefficient of Simpson 3/8, 

and the sum of the products obtained will be multiplied by 

the value "h" and 3/8, giving us the result of the approximate 

area. 
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Table 5. Calculation of area A with Simpson’s rule 3/8 

 

Table 8. Calculation of area D with Simpson’s rule 3/8 

 

 

 
Table 6. Calculation of area B with Simpson’s rule 3/8 

 
Table 7. Calculation of area C with Simpson’s rule 3/8 

 

 

 

 

 

4.2. Calculation of Simpson's rule 1/3 

Similarly, to perform the approximation calculation of 

the Simpson method 1/3 presented in Tables 9, 10, 11, and 

12, the "n" will also be considered to have a value of 6. To 

calculate the iterations of the tables, the integration interval 

(b-a) had to be subtracted, and this was divided by "n," 

resulting in the value "h" that would help us complete the 

table from iteration 0 to iteration 6, which will be completed 

with the successive sum of that value.  

 

Finally, the results of each of the iterations (I) it was 

multiplied by the characteristic coefficient of Simpson 1/3, 

and the sum of the products obtained will be multiplied by 

the value "h" and 1/3, giving us the result of the approximate 

area. 

 
Table 9. Calculation of area A with Simpson’s rule 1/3 

 

 

 

 

 

 

 

 

 

 

 

ANALYSIS OF VALUES 

a 0 

b 490 

n 6 

h 81.66667 

Sum 9296.681 

ZZZAREA B 

I x f(x) Coeff.  Product 

0 0 1060 1 1060 

1 43.3333333 1058.554111 3 3175.662333 

2 86.6666667 1057.033111 3 3171.099333 

3 130 1055.437 2 2110.874 

4 173.333333 1053.765778 3 3161.297333 

5 216.666667 1052.019444 3 3156.058333 

6 260 1050.198 1 1050.198 

Area by Simpson's Rule 3/8 274384.3267 

ANALYSIS OF VALUES 

a 0 

b 210 

n 6 

h 35 

Sum 11999.4 

AREA C 

I x f(x) Coeff.  Product 

0 0 420 1 420 

1 35 535.1325 3 1605.3975 

2 70 646.835 3 1940.505 

3 105 755.1075 2 1510.215 

4 140 859.95 3 2579.85 

5 175 961.3625 3 2884.0875 

6 210 1059.345 1 1059.345 

Area by Simpson's Rule 3/8 157492.125 

AREA A 

I 𝐱 𝐟(𝐱) Coeff. Product 

0 0 910 1 910 

1 81.6666667 806.0721343 3 2418.216403 

2 163.333333 683.8032963 3 2051.409889 

3 245 559.533625 2 1119.06725 

4 326.666667 449.6032593 3 1348.809778 

5 408.333333 370.352338 3 1111.057014 

6 490 338.121 1 338.121 

Area by Simpson's Rule 3/8 284710.8658 

ANALYSIS OF VALUES 

a 0 

b 60 

n 6 

h 10 

Sum 5999.344 

AREA D 

I x f(x) Coeff.  Product 

0 0 310 1 310 

1 10 336.663 3 1009.989 

2 20 359.986 3 1079.958 

3 30 379.969 2 759.938 

4 40 396.612 3 1189.836 

5 50 409.915 3 1229.745 

6 60 419.878 1 419.878 

Area by Simpson's Rule 3/8 22497.54 

ANALYSIS OF VALUES 

a 0 

b 490 

n 6 

h 81.6666667 

Sum 10458.7665 
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Table 10. Calculation of area B with Simpson’s rule 1/3 

 

Table 11. Calculation of area C with Simpson’s rule 1/3 

 

Table 12. Calculation of area D with Simpson’s rule 1/3 

 

Table 13. Calculation of area A with the trapezoid 

method 

 

Table 14. Calculation of area B with the trapezoid method 

 

AREA A 

I x f(x) Coeff. Product 

0 0 910 1 910 

1 81.6666667 806.072134 4 3224.288537 

2 163.333333 683.803296 2 1367.606593 

3 245 559.533625 4 2238.1345 

4 326.666667 449.603259 2 899.2065185 

5 408.333333 370.352338 4 1481.409352 

6 490 338.121 1 338.121 

Area by Simpson's Rule 1/3 284710.8658 

 
 

 

ANALYSIS OF VALUES 

a 0 

b 260 

n 6 

h 43.3333333 

Sum 18995.838 
 

 

 

 

ANALYSIS OF VALUES 

a 0 

b 210 

n 6 

h 35 

Sum 13499.325 

 
AREA C 

I x f(x) Coeff.  Product 

0 0 420 1 420 

1 35 535.1325 4 2140.53 

2 70 646.835 2 1293.67 

3 105 755.1075 4 3020.43 

4 140 859.95 2 1719.9 

5 175 961.3625 4 3845.45 

6 210 1059.345 1 1059.345 

Area by Simpson's Rule 1/3 157492.125 

 

 

 

ANALYSIS OF VALUES 

a 0 

b 60 

n 6 

h 10 

Sum 6749.262 
 

 

 

4.3. Calculation of the trapezium method 

To perform the approximation calculation with the 

trapezoid method, presented in tables 13, 14, 15, and 16, it 

will also be considered that "n" is 6. The same procedure as 

in the Simpson method tables will be used because to 

calculate the iterations, the integration interval (b-a) will 

have to be subtracted and divided by "n." As a result, the 

value "h" and this table will be completed with the 

successive sum of said value from iteration 0 to iteration 6. 

The values obtained will be multiplied by the trapezoid's 

characteristic coefficient, where the products' sum will be 

multiplied by the value "h" and 1/2, giving us the result of 

the approximate area. 

 

 
 

    

 

 

 

ANALYSIS OF VALUES 

a 0 

b 260 

n 6 

h 43.3333333 

Sum 12663.8169 

AREA D 

I x f(x) Coeff  Product 

0 0 310 1 310 

1 10 336.663 4 1346.652 

2 20 359.986 2 719.972 

3 30 379.969 4 1519.876 

4 40 396.612 2 793.224 

5 50 409.915 4 1639.66 

6 60 419.878 1 419.878 

Area by Simpson's Rule 1/3 22497.54 

ANALYSIS OF VALUES 

a 0 

b 490 

n 6 

h 81.6666667 

Sum 6986.85031 

AREA A 

I x f(x) Coeff.  Product 

0 0 910 1 910 

1 81.6666667 806.072134 2 1612.144269 

2 163.333333 683.803296 2 1367.606593 

3 245 559.533625 2 1119.06725 

4 326.666667 449.603259 2 899.2065185 

5 408.333333 370.352338 2 740.7046759 

6 490 338.121 1 338.121 

Area by the trapezoid method 285296.3875 
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Table 15. Calculation of area C with the trapezoid 

method 

 

Table 16. Calculation of area D with the trapezoid 

method 

 

 

 

 

AREA C 

I x f(x) Coeff.  Product 

0 0 420 1 420 

1 35 535.1325 2 1070.265 

2 70 646.835 2 1293.67 

3 105 755.1075 2 1510.215 

4 140 859.95 2 1719.9 

5 175 961.3625 2 1922.725 

6 210 1059.345 1 1059.345 

Area by the trapezoid method  157432.1.1 

 

 

 

ANALYSIS OF VALUES 

a 0 

b 60 

n 6 

h 10 

Sum 4496.168 

 

 

 

 

 

4.4. Analysis with C++ software 

To give solidity to the result obtained, the result 

obtained will be validated using the software "C++, 6.3". 

 

Where the structure of the pseudocode will first be applied, 

and the respective modifications will be made for each 

integration method. 

 

4.4.1. Implementation of the Simpson's rule 3/8 in C++ 

When carrying out this program, the objective is to 

validate the results through software that allows us to 

appreciate the same result more simplified way. 

 

It will be considered that the variable "w" will be 

replaced in areas A, B, C, and D, then request to enter the 

integration limits of each of them, respectively. In each 

calculation, the modification must be made in the 

pseudocode when entering the variable "w." 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 8 Pseudocode of Simpson rule 3/8 implementation in C++ 

 

By executing the pseudocode replacing in the variable 

"w" the equations of the areas, the following results will be 

obtained 

 

AREA B 

I x f(x) Coeff.  Product 

0 0 1060 1 1060 

1 43.3333333 1058.55411 2 2117.108222 

2 86.6666667 1057.03311 2 2114.066222 

3 130 1055.437 2 2110.874 

4 173.333333 1053.76578 2 2107.531556 

5 216.666667 1052.01944 2 2104.038889 

6 260 1050.198 1 1050.198 

Area by the trapezoid method 274382.6993 

ANALYSIS OF VALUES 

a 0 

b 210 

n 6 

h 35 

Sum 8996.12 

AREA D 

I x f(x) Coeff.  Product 

0 0 310 1 310 

1 10 336.663 2 673.326 

2 20 359.986 2 719.972 

3 30 379.969 2 759.938 

4 40 396.612 2 793.224 

5 50 409.915 2 819.83 

6 60 419.878 1 419.878 

Area by the trapezoid method 22480.84 
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Fig. 9 Results of the areas applying Simpson's rule 3/8 in C++ 

 

4.4.2. Implementation of the Simpson's rule 1/3 in C++ 

In the same way, the variable "q" will be replaced in each of the areas A, B, C, and D and then request to enter the 

integration limits of each of them; respectively, it should be noted that in each calculation the modification must be made in the 

pseudocode when entering the variable "q." 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 Pseudocode of Simpson rule 1/3 implementation in C++ 
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By executing the pseudocode replacing in the variable "q" the equations of the areas, the following results will be obtained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 11 Results of the areas applying Simpson's rule 1/3 in C++ 

 

4.4.3. Implementation of the trapezium method in C++ 

Finally, the variable "z" will be replaced in each of the areas A, B, C, and D and then request to enter the integration 

limits of each of them, respectively; it should be noted that in each calculation, the modification must be made in the 

pseudocode when entering the variable "z." 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12 Pseudocode of trapezium method implementation in C++ 
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By executing the pseudocode replacing in the variable "z" the equations of the areas, the following results will be obtained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 Results of the areas applying the trapezoidal method in C++ 

 

4.5. Comparison of Results 
 

Table 17. Comparison with actual Topographic Area method 
 

 

Table 17 shows that the actual topographic area 

provided by SUNARP allows us to appreciate the difference 

with the approximate calculation of this research and that the 

margin of error is only 0.033%. 
 

Table 18. Comparison of Final Calculations 

 

The results of the areas presented of the trapezoid 

method, Simpson 1/3 and Simpson 3/8, allow us to visualize, 

in table 18, that the difference is negligible, and using the 

Lagrange method gives us a perfect accuracy with the 

Simpson method 3/8 and 1/3. 

 

5. Conclusion 

The calculation using the integral of areas A, B, C, and 

D of the UNMSM are 284710.8658, 274384.3267, 

157492.125, and 22497.54 square meters. That adds up to a 

total of 739084.8575. Additionally, from the topographic 

charts obtained from SUNARP, a document registered on 

March 24, 1961, it has an area of approximately 738844 

square meters, giving a difference of 240.85746 square 

meters and whose margin of error is 0.033%. 
To find the area of any two-dimensional surface, and in this 
case of the UNMSM, it is advisable to use the Simpson 
Method of 1/3 or 3/8 because the accuracy is 100% in both 
when using the Lagrange method find the equation of the 
curve. A program such as C++ is also recommended so that 
the calculations entered are obtained more quickly. 
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