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a b s t r a c t

This paper is concerned with the design of observers for a class of one-dimensional multi-state
transport-reaction systems considering distributed in-domain measurements over the spatial domain.
A design based on the Lyapunov method is proposed for the stabilization of the estimation error
dynamics. The approach uses positive definite matrices to parameterize a class of Lyapunov functionals
that are positive in the Lebesgue space of integrable square functions. Thus, the stability conditions can
be expressed as a set of LMI constraints which can be solved numerically using sum of squares (SOS)
and standard semi-definite programming (SDP) tools. In order to evaluate the proposed methodology,
a state observer is designed to estimate the variables of a nonisothermal tubular reactor model.
Numerical simulations are presented to demonstrate the potentials of the proposed observer.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Many transport-reaction processes are inherently distributed
n space and can be represented by semi-linear partial differ-
ntial equations (PDEs) with mixed or homogeneous boundary
onditions arising from conservation laws as well as mass and en-
rgy balances. Examples include thermal processes, biochemical
eactors, population and epidemics models [1–3].

On-line state estimation of multivariable transport-reaction
ystems is a delicate problem in view of the system dimension-
lity and the fact that providing a comprehensive set of sensors
s either physically impossible or too costly. In such a case, the
nternal states have to be estimated on the basis of the mathe-
atical model and (available) online measurements provided by

usually pointwise) sensors located at strategic positions in the
patial domain [4].
For the purpose of observer design for systems described by

artial differential equations (PDEs), the late-lumping approach
eeps the distributed nature of the system model and finite-
imensional approximation (if needed) is applied only at the
mplementation stage. This approach theoretically leads to state
stimators with a better performance, since no approximation of
he model is made. Nevertheless, it requires the manipulation
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of more sophisticated mathematical tools and methodologies.
The most popular methods for the synthesis of observers using
the late-lumping approach are based on semigroup-theory [5,6],
backstepping techniques [7–9], and sliding modes [10,11]. Al-
ternatively, it is possible to use a Lyapunov-based synthesis in
which the convergence of the observer is ensured by means of
exponential stability conditions that can be expressed in terms
of linear matrix inequality (LMI) constraints. Thus, the observer
design problem is parsed into an SDP formulation which can be
solved by LMI solvers such as SeDuMi [12]. This approach has
been applied to the design of boundary observers for quasi-linear
first order hyperbolic systems [13], H∞ static observer-based
boundary control [14] as well as the observer design for a class
of scalar semilinear PDEs [15,16]. Recently, Sum-of-Squares (SOS)
optimization methods have been applied to the parametrization
of Lyapunov functions as positive functionals using SOS polyno-
mials [17–19], which make the observer design problem convex.
It should be emphasized that algorithms for solving SOS pro-
grams are fully automated in MATLAB through SOSTOOLS [20].
In this framework, Gahlawat and Peet [18] designed observer-
based controllers for a class of scalar linear parabolic PDEs based
on boundary measurements. While these previous works have
proven remarkably effective, they mostly address linear single-
state distributed parameter systems (DPSs) with boundary state
measurements. A more general framework is therefore miss-
ing for multi-state processes with various in-domain pointwise
measurements.

In this context, the contribution of this work is a computation-

ally tractable method for the design of nonlinear Luenberger-like

https://doi.org/10.1016/j.sysconle.2022.105323
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o∫
bserver for a class of multi-state transport-reaction systems
aving spatially distributed measurements. This method provides
guaranteed estimation error decay rate and is formulated in

erms of LMI constraints and a polynomial parametrization in
uch a way that the corresponding solution provides a convergent
stimator. Stability analysis of multi-state processes sets a chal-
enging problem with regard to the derivation of possibly not too
onservative conditions to be solved by semidefinite program-
ing (SDP) tools. The proposed methodology uses integration by
arts as a fundamental tool as well as the Wirtinger’s inequality
nd the S-procedure for local stability analysis based on sector
onditions. With regard to previous works on this subject [21,22],
ur contribution concerns semilinear multi-state systems with
n-domain distributed measurements and sets a less conserva-
ive solution by making use of weighted Lyapunov functionals
ased on SOS and polynomial parametrization. This procedure
s inspired by studies that address stability analysis of coupled
inear PDE systems [23] and output feedback boundary control of
ingle-state linear PDE systems [18]. It should be noticed that the
ethodology to be presented concerns a large class of semilinear
DE systems within which the state estimation of distributed
iochemical processes is only a particular case.
The reminder of this paper is organized as follows. In Section 2,

he system description along with some preliminary assump-
ions is introduced in order to ensure the well-posedness of
he observer design problem. Section 3 introduces the proposed
bserver synthesis based on the abstract formulation of the error
ynamics and the set-up of the sector condition related to the
onlinearity embedded into its dynamics. The main results of
his paper, i.e., the LMI formulation of the distributed observa-
ion problem, with local exponential stability of the estimation
rror for pointwise measurement and piecewise measurement,
re given in Section 4. Section 5 proposes a numerical application
f the proposed observer design to the estimation of the weight
ractions of the reactants in a tubular cracking reactor model. Sec-
ion 6 collects concluding remarks and points out some possible
esearch lines.
otation. We denote the set of natural numbers by N, the vector
pace of nx-by-ny real matrices by Rnx×ny and the subspace of
ymmetric matrices by Snx ∈ Rnx×nx where the multiplicative and
dditive identities are denoted by Inx ∈ Snx and 0nx,ny ∈ Rnx×ny , re-

spectively. The superscript ‘‘T ’’ denotes matrix transposition, ‘‘⊗’’
the Kronecker product, diag (...) a block-diagonal matrix, He{P} =

P + PT the Hermitian operator applied to matrix P , ∂tx(z, t),
∂zx(z, t) and ∂2

z x(z, t) the time, first and second order spatial
derivatives of the function x(z, t), with respect to z, respectively.
Lnx2 (0, 1) denotes the space of square Lebesgue integrable nx-
dimensional vector valued functions, that is, functions with finite
norm

∥x(·, t)∥2 = ⟨x(·, t), x(·, t)⟩
1
2

=

(∫ 1

0
xT (z, t)x(z, t)dz

) 1
2

.

m(z) denotes the vector of monomial bases of degree m or less,
.e.,

m(z) =
[
1 z · · · zm−1 zm

]T
, (1)

the sets {1, . . . , nx} and {1, . . . , ny} are denoted by Nnx and Nny re-
pectively and 1[a,b](z) is the characteristic function of the interval
a, b], that is,

[a,b](z) =

{
1, a ≤ z ≤ b,
0, elsewhere.

(2)

nstrumental Tools and Definitions. The following definition and
seful results will be instrumental to derive the main results of
his paper.
2

efinition 1. Let x, x̂ ∈ Rnx . We define by Co(x, x̂) the convex
ull of the set {x, x̂}, i.e.

o(x, x̂) = {θx + (1 − θ )x̂ : θ ∈ [0, 1]}. (3)

emma 1 (Differential Mean Value Theorem [24]). Let the function
(x) : Rnx → Rnr differentiable with respect to x and let x, x̂ be two
lements in Rn. Then, there is an element x̆ ∈ Co(x, x̂), such that:

(x) − r(x̂) = ∇r(x̆)(x − x̂) (4)

here ∇r =
[
∂x1 r · · · ∂xn r

]
.

emma 2 (Wirtinger’s Inequality [25]). For the vector function
(z, t) whose elements are absolutely continuous scalar functions
ith respect to z such that ∂zx(z, t) ∈ Lnx2 (0, 1) with x(a, t) = 0
r x(b, t) = 0, the following inequality holds
b

a
xT (z, t)x(z, t)dz ≤

4(b − a)2

π2

∫ b

a
∂zxT (z, t)∂zx(z, t)dz. (5)

2. System description

Consider a transport-reaction system described by the follow-
ing semilinear parabolic PDE:

∂tx(z, t) = D∂2
z x(z, t) − V∂zx(z, t) − Kx(z, t)

+ B ud(t) + G r (x(z, t)) (6)

for (z, t) ∈ (0, 1)× (0, ∞), subject to Robin boundary conditions

Mα0∂zx(0, t) + Mβ0x(0, t) = u0(t)
Mα1∂zx(1, t) + Mβ1x(1, t) = u1(t)

(7)

for t ∈ [0, ∞), where

x(·, t) =
[
x1(·, t) · · · xnx (·, t)

]T
∈ Lnx2 (0, 1)

denotes the state variable,

ud(t) =
[
ud,1(t) · · · ud,nx (t)

]T
∈ Rnd

is a known distributed exogenous input and

u0(t) =
[
u0,1(t), · · · u0,nx (t)

]T
∈ Rnx

u1(t) =
[
u1,1(t) · · · u1,nx (t)

]T
∈ Rnx

are the known boundary exogenous inputs at z=0 and z=1, re-
spectively. The matrices D = diag(di), V = diag(υi), i = 1, . . . , nx,
have constant entries denoting the diffusion coefficients and su-
perficial velocities, respectively, K ∈ Rnx×nx is the linear source
matrix, B ∈ Rnx×nd is the shaping distributed input matrix, G ∈

Rnx×nr is the kinetic gain matrix and r(·) : Lnx2 (0, 1) → Lnr2 (0, 1) is
the vector of reaction rates. The matrices Mα0 = diag(α0,i), Mβ0 =

diag(β0,i), Mα1 = diag(α1,i) and Mβ1 = diag(β1,i), i = 1, . . . , nx,
have constant entries denoting the coefficients related to Robin
boundary conditions.

In this work, we are concerned in designing a state observer
for the transport-reaction system described by (6) from a fi-
nite number of spatially distributed measurements. The following
will be assumed to ensure the well-posedness of the governing
equations and the observer design problem.

• di ≥ Dmin > 0, for i = 1, . . . , nx.
• r(·) : Lnx2 (0, 1) → Lnr2 (0, 1) is locally Lipschitz continuous in

x, i.e., there exists a positive constant lr = lr (ρ) such that

∥r(x) − r(x̂)∥ ≤ lr∥x − x̂∥ (8)

holds for all x, x̂ ∈ Lnx2 (0, 1) with ρ being a positive scalar
such that ∥x∥ < ρ and ∥x̂∥ ≤ ρ hold.
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Fig. 1. Distributed pointwise measurements.

Fig. 2. Distributed piecewise measurements.

• α0,i, α1,i are not all zero in such a way that mixed Dirichlet
and Neumann boundary conditions may coexist.

2.1. Output measurement

In this work, the measurement vector of the system described
n (6)–(7) is assumed to be defined as follows

(t) =

⎡⎢⎢⎣
∫ 1
0 c1(z)cT1x(z, t)dz

...∫ 1
0 cny (z)cTnyx(z, t)dz

⎤⎥⎥⎦ ∈ Rny (9)

where cj(z) ∈ R, j ∈ Nny , describes the distribution of the
measurement at the jth position over the spatial domain [0, 1]
and cj ∈ Rnx , j ∈ Nny , is a vector defining the measured variable
around that position.

Measurement sensors in a number of practical problems are
only placed at a finite number of discrete points or partial areas
of the spatial domain. Different shape functions cj(z) will lead to
different forms of local measurement. For instance, the following
definition

cj(z) = δ(z − ζj), j ∈ Nny , (10)

corresponds to pointwise measurement at position ζj, j ∈ Nny ,
while the functional form

cj(z) =
1
2εj

1[ζj−εj,ζj+εj] (11)

ith

[ζj−εj,ζj+εj] =

{
1, if z ∈ [ζj − εj, ζj + εj],

0, elsewhere
(12)

roduces ny zones of piecewise uniform sensing in the interval
[ζj−εj, ζj+εj], for all j ∈ Nny . These cases are illustrated in Figs. 1
nd 2, respectively.

. Observer design — Instrumental tools

Consider the following Luenberger-like state observer for (6)–
7):

t x̂(z, t) = D∂2
z x̂(z, t) − V∂z x̂(z, t)

− Kx̂(z, t) + B ud(t) + G r(x̂(z, t))
+ LD(z)

(
y(t) − ŷ(t)

)
(13)

or (z, t) ∈ (0, 1) × (0, ∞), subject to

α0∂z x̂(0, t) + Mβ0 x̂(0, t) = u0(t) (14)

α1∂z x̂(1, t) + Mβ1 x̂(1, t) = u1(t) (15)
3

and the initial condition

x̂0(z) = x̂(z, 0) (16)

for z ∈ [0, 1]. Here LD : [0, 1] → Rnx×ny is the output injection
gain to be designed.

Let

e(z, t) = x(z, t) − x̂(z, t) (17)

be the estimation error vector. Then, the estimation error dynam-
ics is given by

∂te(z, t) = D∂2
z e(z, t) − V∂ze(z, t)

− Ke(z, t) + G
[
r (x(z, t)) − r

(
x̂(z, t)

)]
− LD(z)

(
y(t) − ŷ(t)

)
(18)

subject to

Mα0∂ze(0, t) + Mβ0e(0, t) = 0 (19)

Mα1∂ze(1, t) + Mβ1e(1, t) = 0 (20)

and the initial condition

e0(z) = e(z, 0). (21)

In the sequel, the output injection gain is designed using a
Lyapunov-based technique in order to obtain sufficient conditions
guaranteeing the stability of the estimation error dynamics de-
scribed by (18)–(21). To this end, based on the assumption that
r(·) is locally Lipschitz, notice that the function denoted as

ν(z, t) = r(x(z, t)) − r(x̂(z, t)) (22)

and the estimation error e(z, t) satisfy different algebraic condi-
tions [26]. Hence, to deal with the term ν(z, t), a sector condition
based on the boundedness of the Jacobian matrix of the nonlinear
function r(·) will be considered.

3.1. Sector condition

Let Γ1, Γ2 ∈ Rnr×nx be two constant matrices whose entries
are the local lower and upper bounds, respectively, of the Jacobian
matrix entries of r(·), which is defined as

Γ (x(z, t)) = ∇r(x(z, t)). (23)

By the virtue of Lemma 1, we obtain

ν(z, t) = ∇r
(
x̆(z, t)

)
e(z, t) (24)

where x̆(z, t) ∈ Co(x(z, t), x̂(z, t)). Thus, the following inequality
holds

Γ1 e(z, t) ≤ ν(z, t) ≤ Γ2 e(z, t) (25)

and the following sector condition can be straightforwardly ob-
tained

(ν(z, t) − Γ1e(z, t))T (Γ2e(z, t) − ν(z, t)) ≥ 0 (26)

leading to⟨[
e(z, t)
ν(z, t)

]
,

[
Γ T
1 Γ2+Γ T

2 Γ1
2 −

Γ T
1 +Γ T

2
2

−
Γ1+Γ2

2 Inr

]
  

M

[
e(z, t)
ν(z, t)

]⟩
≤0 (27)

3.2. Abstract formulation

The error dynamics described by (18)–(21) can be rewritten as
an abstract first order ordinary differential equation in the Hilbert
space H = Lnx2 (0, 1) according to

∂te(z, t) = (A − LD(z)C)e(z, t) + Gν(z, t),
(28)
e(z, 0) = e0(z) ∈ H
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Fig. 3. Lure-System representation of the error dynamics.

here the operators A : D(A) → H, C : D(C) → Rny are defined
s

e(z, t) = D∂2
z e(z, t) − V∂ze(z, t) − Ke(z, t)

D(A) = {e(z, t) ∈ H : e(z, t), ∂ze(z, t)
are absolutely continuous,

∂2
z e(z, t) ∈ H and
Mα0∂ze(0, t) + Mβ0e(0, t) = 0,
Mα1∂ze(1, t) + Mβ1e(1, t) = 0

}
.

Ce(z, t) =

⎡⎢⎣ ⟨c1(·), cT1e(·, t)⟩
...

⟨cny (·), cTnye(·, t)⟩

⎤⎥⎦ .

The error dynamics in (28) can be represented as a Lure
system, depicted in Fig. 3, where the sector condition for the es-
timation error e(t) and the deviation function ν(t) are expressed
through the scalar constraint (27) that can be embedded into the
stability analysis by applying the S-Procedure [27].

3.3. Lyapunov convergence analysis

The state estimation convergence is evaluated within a
weighted Lyapunov framework, with the weight function as a
degree of freedom [15]. The analysis of the corresponding dis-
sipation mechanism leads to an LMI condition, which depends
on the spatial coordinate, the observer gain, and the Lyapunov
weight functional.

To this end, let V : Lnx2 (0, 1) → R be the (positive definite)
weight functional candidate as defined below:

V (t) = ⟨e(·, t),Pe(·, t)⟩ (29)

where P : Lnx2 (0, 1) → Lnx2 (0, 1) is a strictly positive operator
defined by a polynomial matrix W (z) (to be defined later in this
section) as follows:

(Pe)(z) = W (z)e(z). (30)

for all z ∈ (0, 1).
The following Lemma shows how two positive semi-definite

matrices Q and R, and a positive scalar ϵ can be used to define
the polynomial matrix W (z) such that the operator P is positive
and therefore the functional V (t) is a Lyapunov candidate for the
estimation error dynamics (18)–(21).

Lemma 3 ([18,23]). Let Q , R ∈ Snx(m+1) be positive semi-definite
matrices, and define

Z(z) = Z (z) ⊗ I , (31)
m nx

4

g(z) = z(1 − z), (32)

nd

(z) = Z(z)T (Q + g(z)R)Z(z) + ϵInx , (33)

for some ϵ > 0, where z ∈ [0, 1], Zm is a vector of monomials with
a degree equal to or smaller than m and ⊗ stands for the Kronecker
product.

Then, the functional V : Lnx2 (0, 1) → R, defined as

V (e(·, t)) = ⟨e(·, t),Pe(·, t)⟩

=

∫ 1

0
e(z, t)TW (z)e(z, t)dz,

(34)

is strictly positive over Lnx2 (0, 1), for e(·, t) ̸= 0, and satisfies

V (e(·, t)) = ⟨e(·, t),Pe(·, t)⟩ ≥ ϵ∥e(·, t)∥2,

∀ e(·, t) ∈ Lnx2 (0, 1). (35)

In order to design the observer gain LD(z), consider the follow-
ing dissipation inequality:

V̇ (t) + 2γV (t) ≤ 0, (36)

where γ is a positive scalar. If (36) is satisfied along the trajec-
tories of the estimation error dynamics (28), the estimation error
dynamics is exponentially stable with a guaranteed decay rate γ ,
since it can be readily shown that the following holds

∥e(·, t)∥ ≤ Me(e0)e−γ t , (37)

where

Me(e0) =

√
V (e0(z))

ϵ
. (38)

Next, substituting (29) and (30) into (36), it follows that

V̇ (t) + 2γV (t) = ⟨∂te(·, t),Pe(·, t)⟩ +

⟨e(·, t),P∂te(·, t)⟩ + 2γ ⟨e(·, t),Pe(·, t)⟩. (39)

Using the self-adjointness of P , (39) can be cast as follows

V̇ (t) + 2γV (t) = 2⟨e(·, t), P∂te(·, t)⟩
+2γ ⟨e(·, t),Pe(·, t)⟩, (40)

which along the trajectories of the error dynamics (28) leads to

V̇ (t) + 2γV (t) = 2⟨e(·, t),PAe(·, t)⟩ +

2⟨e(·, t),PGν(z, t)⟩ − 2⟨e(·, t),PLD(z)Ce(·, t)⟩
+ 2γ ⟨e(·, t),Pe(·, t)⟩. (41)

In the following section, the dissipation inequality in (36)
considering (41) is recast in terms of parameterized LMI con-
straints which can be solved using standard sum of squares (SOS)
tools [20].

4. Observer design — Main result

In this section, an LMI formulation of the distributed obser-
vation problems is developed. The local exponential stability of
the estimation error system (18)–(21) is ensured for two cases
of in domain distributed measurement: pointwise measurement
and piecewise measurement.

4.1. Pointwise measurements at ζj, ∀j ∈ Nny

In this case, as shown in Fig. 4, we divide the spatial domain
[0, 1] into n subintervals [z̃ , z̃ ], j ∈ N according to the
y j j+1 ny
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Fig. 4. Distributed pointwise measurements.

position of the measurement sensors. From Fig. 4, we get that
0 = z̃1 < · · · < z̃ny+1 = 1 and

ζj ∈ [z̃j, z̃j+1], ∀j ∈ Nny . (42)

Remark 1. For a given set of pointwise measurements at {ζj :

j ∈ Nny}, the selection of the auxiliary set {z̃j : j = 2, . . . , ny}

s a degree of freedom for the solution of the observer design
roblem, i.e., different configurations according to Fig. 4 may lead
o different feasible solutions and observer performance.

heorem 1. The error dynamics in (18)–(21), with cj(z), j ∈ Nny ,
iven by (10), is exponentially stable with a guaranteed decay rate
, if there exist

• m, q ∈ N, and real positive scalars ϵ, τ ;
• either positive semidefinite matrices Q , R ∈ Snx(m+1) (for the

equi-diffusivity and equi-advectivity case, i.e., D = dInx and
V = υInx ) or diagonal matrices Q , R ∈ Snx(m+1) such that the
polynomial matrix W : [0, 1] → Rnx×nx satisfies (33); and

• qth degree polynomials lj : [0, 1] → Rnx , ∀ j ∈ Nny defining
the observer gain

LD(z)=
[
1[z̃1,z̃2]l1(z) · · · 1[z̃ny ,z̃ny+1]lny (z)

]
, (43)

such that the following matrix inequalities hold:

2D̃(1)M−1
α1

Mβ1 + ∂z D̃(1) + Ṽ(1) ≥ 0

2D̃(0)M−1
α0

Mβ0 + ∂z D̃(0) + Ṽ(0) ≤ 0
(44)

Pj(z) − τ

[
M 0(nx+nr ),nx
∗ 0nx

]
≤ 0 (45)

∀j ∈ Nny and z ∈ [0, 1], where

Pj(z) =

⎡⎢⎢⎣
Πj(z) G̃(z) π2ϵ

2p2j
Inx − l̃j(z)cTj

∗ 0nr 0nr ,nx

∗ ∗ −
π2ϵDmin

2p2j
Inx

⎤⎥⎥⎦ (46)

ith

j(z) = ∂2
z D̃(z) + ∂z Ṽ(z) − K̃ (z)

−
π2ϵDmin

2p2j
Inx + 4γW (z) (47)

D̃(z) = W (z)D, Ṽ(z) = W (z)V,

K̃ (z) = He{W (z)K }, G̃(z) = W (z)G,

l̃j(z) = W (z)lj(z), Dmin = min
∀i∈Nnx

di,

p2j = max{(ζj − z̃j)2, (z̃j+1 − ζj)2}, ∀j ∈ Nny .

roof. Consider the linear dissipation expression of the Lya-
unov function given in (41) with LD(z) as defined in (43). Then,
ubstituting (18) into (41) yields

˙ (t) + 2γV (t) = 2
∫ 1

0

⎧⎩eT (z, t)W (z)
⎧⎩D∂2

z e(z, t)

−V∂ e(z, t) − (K − γ I )e(z, t)
⎫⎭ dz

⎫⎭
z nx

5

+ 2
∫ 1

0
eT (z, t)W (z)Gν(z, t)dz

2
ny∑
j=1

∫ z̃j+1

z̃j

eT (z, t)W (z)lj(z)cTj e(ζj, t)dz. (48)

Regarding the definitions of D̃(z), Ṽ(z), K̃ (z), G̃(z) and l̃j(z)
n (47), we must recall the constraints on the definitions of
, R, D̃(z), and Ṽ : [0, 1] → Snx . Hence, in order to apply the

integration by parts in (48), we take (74) and (77) into account
as presented in Appendix. Thus, (48) becomes

V̇ (t) + 2γV (t) = −eT (1, t)
⎧⎩2D̃(1)M−1

α1
Mβ1

+ ∂z D̃(1) + Ṽ(1)
⎫⎭ e(1, t)

+eT (0, t)
[
2D̃(0)M−1

α0
Mβ0 + ∂z D̃(0) + Ṽ(0)

]
e(0, t)

− 2
∫ 1

0
∂zeT (z, t)D̃(z)∂ze(z, t)dz

+ 2
∫ 1

0
eT (z, t)G̃(z)ν(z, t)dz

+

∫ 1

0

⎧⎩eT (z, t)
⎧⎩∂2

z D̃(z) + ∂z Ṽ(z) − K̃ (z)

+ 2γW (z)
⎫⎭ e(z, t)dz

⎫⎭
− 2

ny∑
j=1

∫ z̃j+1

z̃j

eT (z, t)l̃j(z)cTj e(ζj, t)dz. (49)

Notice by the virtue of Wirtinger’s inequality that the follow-
ing hold

−

∫ ζj

z̃j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

−π2ϵDmin

4(ζj − z̃j)2

∫ ζj

z̃j

e(j)(z, t)T e(j)(z, t)dz (50)

−

∫ z̃j+1

ζj

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

−π2ϵDmin

4(z̃j+1 − ζj)2

∫ z̃j+1

ζj

e(j)(z, t)T e(j)(z, t)dz. (51)

where

e(j)(z, t) = e(z, t) − e(ζj, t).

Next, summing up (50) and (51) leads to

−

∫ z̃j+1

z̃j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

−
π2ϵDmin

4p2j

∫ z̃j+1

z̃j

eT (z, t)e(z, t)dz

+
π2ϵDmin

2p2j

∫ z̃j+1

z̃j

eT (z, t)e(ζj, t)dz

−
π2ϵDmin

4p2j

∫ z̃j+1

z̃j

eT (ζj, t)e(ζj, t)dz (52)

Hence, substituting (52) into (49) yields

V̇ (t) + 2γV (t) ≤

− eT (1, t)
[
2D̃(1)M−1

α1
Mβ1 + ∂z D̃(1) + Ṽ(1)

]
e(1, t)

+ eT (0, t)
[
2D̃(0)M−1M + ∂ D̃(0) + Ṽ(0)

]
e(0, t)
α0 β0 z
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P
T
g

V

w

t

+

ny∑
j=1

⎧⎪⎪⎪⎩∫ z̃j+1

z̃j

⎧⎩eT (z, t)
⎧⎩∂2

z D̃(z) + ∂z Ṽ (z) − K̃ (z)

−
π2ϵDmin

2p2j
Inx + 2γW (z)

⎫⎪⎪⎪⎭ e(z, t)dz

⎫⎪⎪⎪⎭⎫⎪⎪⎪⎭
+ 2

ny∑
j=1

∫ z̃j+1

z̃j

eT (z, t)G̃(z)ν(z, t)dz

−

ny∑
j=1

π2ϵDmin

2p2j

∫ z̃j+1

z̃j

eT (ζj, t)e(ζj, t)dz

+

ny∑
j=1

π2ϵDmin

p2j

∫ z̃j+1

z̃j

eT (z, t)e(ζj, t)dz

−2
ny∑
j=1

∫ z̃j+1

z̃j

eT (z, t)l̃j(z)cTj e(ζj, t)dz, (53)

which can be cast as follows

V̇ (t) + 2γV (t) ≤

− eT (1, t)
[
2D̃(1)M−1

α1
Mβ1 + ∂z D̃(1) + Ṽ(1)

]
e(1, t)

+ eT (0, t)
[
2D̃(0)M−1

α0
Mβ0 + ∂z D̃(0) + Ṽ(0)

]
e(0, t)

+

ny∑
j=1

∫ z̃j+1

z̃j

eT (z, t)Pj(z)e(z, t)dz (54)

where ej(z, t) = [e(z, t) ν(z, t) e(ζj, t)]T .
Therefore, in order to ensure the negativity of the right-hand

side of (54), it suffices that

2D̃(1)M−1
α1

Mβ1 + ∂z D̃(1) + Ṽ(1) ≥ 0

2D̃(0)M−1
α0

Mβ0 + ∂z D̃(0) + Ṽ(0) ≤ 0
(55)

and

Pj(z) ≤ 0, ∀j ∈ Nny . (56)

Applying the S-procedure to (56) and (27), we obtain

Pj(z) − τ

[
M 0(nx+nr ),nx
∗ 0nx

]
≤ 0, ∀j ∈ Nny . (57)

Then, (55) and (57) imply that V (t) ≤ e−2γ tV (0) and (37) taking
Section 3.3 into account, which completes the proof. □

4.2. Piecewise measurements

In this case, as shown in Fig. 5, the spatial domain [0, 1] is
divided into ny subintervals [z̃j, z̃j+1], j ∈ Nny , according to the
position of the measurement sensors. Also, from Fig. 5, notice that
0 = z̃1 < · · · < z̃ny+1 = 1 and

[ζj − εj, ζj + εj] ⊂ [zj, zj+1], ∀ j ∈ Nny , (58)

with the scalars ε1, . . . , εny being such that

ζj − εj < z̃j and ζj + εj < z̃j+1, j ∈ Nny ,

to avoid overlapping among the measurement intervals.

Theorem 2. The error dynamics in (18)–(21), with cj(z), j ∈ Nny ,
given by (11), is exponentially stable with a guaranteed decay rate
γ , if the conditions in Theorem 1 are satisfied with pj, j ∈ Nny , in
(47) being redefined as follows:

p2j = max{(ζj + εj − z̃j)2, (z̃j+1 − ζj + εj)2},

∀ j ∈ N . (59)
ny

6

Fig. 5. Distributed piecewise measurements.

roof. This proof follows similar steps to the proof of Theorem 1.
hus, the linear dissipation expression of the Lyapunov function
iven in (41) along (18) can be expressed as follows:

˙ (t) + 2γV (t) = 2
∫ 1

0

⎧⎩eT (z, t)W (z)
⎧⎩D∂2

z e(z, t)

−V∂ze(z, t) − (K − γ Inx )e(z, t)
⎫⎭ dz

⎫⎭
+ 2

∫ 1

0
eT (z, t)W (z)Gν(z, t)dz

− 2
ny∑
j=1

∫ z̃j+1

z̃j

eT (z, t)W (z)lj(z)cTj e(ζ̄
t
j , t)dz (60)

here e(ζ̄ t
j , t) corresponds to the application of the first mean

value theorem for integration, since for each j ∈ Nny and any
≥ 0, there exists a scalar ζ̄ t

j ∈ [ζj − ϵj, ζj + ϵj] such that

1
2ϵj

∫ ζj+εj

ζj−εj

e(z, t)dz = e(ζ̄ t
j , t) (61)

holds.
Regarding the definitions of D̃(z), Ṽ(z), K̃ (z), G̃(z) and l̃j(z)

in (47) and applying the integration by parts into (60), we ob-
tain (49) where e(ζj, t) is now substituted by e(ζ̃ t

j , t). Hence, by
applying the Wirtinger’s lemma, it follows that:

−

∫ ζ̃ t
j

z̃j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

−π2ϵDmin

4(ζ̃ t
j − z̃j)2

∫ ζ̃ t
j

z̃j

ej(z, t)T e(j)(z, t)dz

(62)

−

∫ z̃j+1

ζ̃ t
j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

−π2ϵDmin

4(z̃j+1 − ζ̃ t
j )2

∫ z̃j+1

ζ̃ t
j

ej(z, t)T ej(z, t)dz.

(63)

where

Dmin = min
∀ i∈Nnx

di and e(j)(z, t)=e(z, t)−e(ζ̃ t
j , t).

Since ζ̃ t
j ∈ [ζj − εj, ζj + εj] ⊂ [zj, zj+1], ∀ j ∈ Nny and t ≥ 0,

we obtain

ζ̃ t
j − z̃j ≤ ζj + εj − z̃j, z̃j+1 − ζ̃ t

j ≤ z̃j+1 − ζj + εj (64)

Next, summing up (62) and (63) yields

−

∫ z̃j+1

z̃j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

−
π2ϵDmin

4p2j

∫ z̃j+1

z̃j

eT (z, t)e(z, t)dz

+
π2ϵDmin

2p2j

∫ z̃j+1

z̃j

eT (z, t)e(ζ̃ t
j , t)dz

−
π2ϵDmin

2

∫ z̃j+1

eT (ζ̃ t
j , t)e(ζ̃

t
j , t)dz (65)
4pj z̃j
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Table 1
Parameter values.
Parameters Numerical values

l 1 m
kA 18.1 (h weight fraction)−1

kB 1.7 h−1

kC 4.8 (h weight fraction)−1

d 0.5 m2h−1

υ 2 mh−1

xA,in 0.7 weight fraction
xB,in 0 weight fraction

where

p2j =max{(ζj+εj−z̃j)2, (z̃j+1−ζj+εj)2},

for all j ∈ Nny .
Hence, the inequality in (54) holds by taking into account (65)

with the substitution of e(ζj, t) by e(ζ̃ t
j , t)). Finally, conditions (55)

and (57) ensure that

∥e(·, t)∥ ≤ Me(e0)e−γ t

holds for all t ≥ 0, with Me(e0) as defined in (37). □

Remark 2. An analytical feasibility analysis of the conditions in
Theorems 1 and 2 is burdensome. By evaluating the solution of
LMIs (44) and (45), it can be easily shown that the assumption
di ≥ Dmin > 0 is a necessary condition to find a solution for (44)
and (45). A more detailed feasibility analysis is quite intricate.
Nevertheless, a numerical analysis via feasibility regions may
provide a good view of the method applicability under different
numerical values of system and design parameters as achieved in
Section 5.

5. Application example

As a case study, a tubular catalytic cracking reactor is consid-
ered. Indeed, catalytic cracking is one of the most important con-
version processes in petroleum refineries. It is widely used to con-
vert high-boiling, high-molecular weight hydrocarbon fractions of
petroleum crude oils into more valuable gasoline, olefinic gases
and other products [28]. Particularly, a tubular catalytic cracking
reactor is considered where the following reactions occur

A
kA
→ B

kB
→ C,

A
kC
→ C,

(66)

where A represents gas oil, B gasoline and C other products
(e.g butanes, coke, etc.) and xA and xB the weight fractions of
reactants A and B, respectively. Considering an isothermal process
with axial dispersion, mass balances within the reactor yield the
following parabolic PDE system [28]

∂txA(z, t) = d∂2
z xA(z, t) − υ∂zxA(z, t)

− (kA + kC )x2A(z, t),

∂txB(z, t) = d∂2
z xB(z, t) − υ∂zxB(z, t)

+ kAx2A(z, t) − kBxB(z, t),

(67)

along with the boundary conditions

d∂zxA(0, t) = υ(xA(0, t) − uA(t)),
d∂zxB(0, t) = υ(xB(0, t) − uB(t)),

∂zxA(l, t) = 0,
∂zxB(l, t) = 0.

(68)

In the above equations, kA, kB and kC are the kinetic constants
of the reactions; d, υ , xA,in and xB,in are the axial dispersion coeffi-
cient, the superficial velocity, the inlet weight fraction of compo-
nent A and the inlet weight fraction of component B, respectively.
7

Table 2
γmax of the proposed approach for
different combinations of m and q.
(m, q) γmax

(3, 2) 1.2
(4, 2) 3.4
(5, 2) 4.5

The adopted numerical values for the process parameters are
taken from Table 1.

The system modeled by (67)–(68) takes the form of (6)–(7) by
considering

x(z, t) =
[
xA(z, t) xB(z, t)

]T
, ud = 0,

u0(t) =
[
xA,in xB,in

]T
, u1(t) = 0,

D = d I, V = υ I, K = diag(0, kB),

B = 0, G =

[
−(kA + kC )

kA

]
,

Mα0 =
d
υ
I, Mβ0 = −I, Mα1 = I, Mβ1 = 0,

r(x) = x2A.

(69)

with rate function defined as r(x) = x2A and corresponding
Jacobian given by ∇xr(x) =

[
2xA 0

]
. Considering the domain of

operation of the state variables

D =
{
(xA, xB) ∈ R2

: 0 ≤ xA ≤ 0.85
}
,

the local lower and upper bound matrices of the Jacobian matrix
are respectively

Γ1 =
[
0 0

]
Γ2 =

[
1.7 0

]
. (70)

The online measurement vector is given by one piecewise
measurement

y(t) =
1
2ε1

∫ ζ1+ε1

ζ1−ε1

xA(z, t)dz, (71)

which sets c1(z) =
1

2ε1
1[ζ1−ε1,ζ1+ε1], c1 = [1 0]T . To obtain the

output injection gain LD : [0, 1] → R2×1 through the application
of Theorem 2 we assume that ζ1 = 0.75 and ε1 = 0.01. Thus, we
solve the LMI in (44) for different values of m and q and using
bisection search we calculate γmax for each case. The results are
given in Table 2.

5.1. Observer tests

The observer and system responses are generated via numer-
ical simulation with initial profiles xA(z, 0), xB(z, 0), x̂A(z, 0) and
x̂B(z, 0) in the form of positive polynomials satisfying the bound-
ary conditions and matching the initial output measurement so as
to obtain a faster convergence. Figs. 6 and 7 show the evolution
of the actual profiles of xA and xB (red lines) with their respective
estimation x̂A and x̂B (blue lines) in four different time instants.

Fig. 8 shows the evolution of the estimation error norm. Since
the generated initial estimation profiles are already a good ap-
proximation of the actual state variables, the estimation error
norm converges quickly, and hence, provides very satisfactory
estimates.

The semi-definite programming framework for the observer
synthesis allows assessing the feasibility of the method under
different numerical values of system and design parameters.
Namely, the dependence among the design and system param-
eters can be analyzed by solving the LMIs related to Theorems 1
and 2 for different parameter values. This numerical feasibility
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i

i

a
a
t
t
r

Fig. 6. Time evolution of the spatial profile of xA(z, t) and x̂A(z, t) at time
nstants t1 = 0, t2 = 0.12, t3 = 0.36, t4 = 0.6.

Fig. 7. Time evolution of the spatial profile of xB(z, t) and x̂B(z, t) at time
nstants t1 = 0, t2 = 0.12, t3 = 0.36, t4 = 0.6.

Fig. 8. Time evolution of the estimation error norm ∥e(z, t)∥.
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Fig. 9. Feasibility regions related to superficial velocity υ .

nalysis may be used to determine the location of the unique
vailable sensor as well as to analyze the sensitivity with respect
o model parameters in our example. In this context, Fig. 9 shows
he feasibility region of the LMIs conditions (44) and (45) with
espect to the sensor position ζ1 and the lower bound of the decay
rate γ keeping the same numerical values for the other design
parameters.

As it may be seen in Fig. 9, the proposed methodology finds
feasible solutions even when the superficial velocity υ is set to
zero. These results are logical from a physical point of view since
a zero velocity (subfigure b) corresponds to a purely diffusive
system where the information travels equally in all directions and
where indeed the position of the sensor is indifferent, whereas a
more convective system (subfigure a) implies a position of the
sensor towards the end of the reactor. It is well known that a
purely convective system would imply the use of a sensor located
at the reactor outlet. For convective–diffusive systems, a local
optimum sensor location can be determined in order to improve
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. Conclusion

In this work, a late lumping approach is proposed for the
bserver design of transport-reaction systems described by a set
f coupled semilinear parabolic PDEs. In particular, the Lyapunov
heory is applied to derive observer design conditions in terms
f LMI constraints considering a Lure type representation of the
stimation error dynamics and a sector condition obtained from
boundedness assumption on Jacobian matrices, which reduces

he conservatism of the treatment of the nonlinearity of the
odel in comparison with the only use of the local Lipschitz
onstant to derive the corresponding LMI constraints. In con-
rast, some inevitable degree of conservatism is added by the
nclusion of the auxiliary variables {z̃j : j ∈ Nny+1} which may
odify the feasible solutions according to their numerical selec-

ion. The proposed methodology is also based on a polynomial
arametrization of the Lyapunov functional candidate and ob-
erver gain which is verified by means of standard semi-definite
rogramming tools that also allow performing a numerical feasi-
ility analysis to assess the method applicability under different
umerical values of system and design parameters as achieved
n Section 5 for the nonisothermal tubular reactor model. These
umerical simulations demonstrate the observer performance in
ealistic scenarios.
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ppendix

Consider first the one-dimensional integral
b

a
eT (z)Ṽ(z)∂ze(z)dz =

n∑
i,j

∫ b

a
ei(z)ṽij(z)∂zej(z)dz (72)

ith Ṽ : [a, b] → Rnx×nx and ṽij(z) being the (i, j) entry of Ṽ(z).
Thus, integrating by parts the terms of the summation, it is easy
to show that∫ b

a
eT (z)

(
Ṽ(z) + ṼT (z)

)
∂ze(z)dz =

eT (z)Ṽ(z)e(z)
⏐⏐⏐⏐b
a
−

∫ b

a
eT (z)∂z Ṽ(z)e(z)dz. (73)

If V : [a, b] → Snx , then we have∫ b

a
eT (z)Ṽ(z)∂ze(z)dz =

1
eT (z)Ṽ(z)e(z)

⏐⏐⏐⏐b −
1

∫ b

eT (z)∂z Ṽ(z)e(z)dz. (74)

2 a 2 a
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Similarly, considering the integral∫ b

a
eT (z)D̃(z)∂2

z e(z)dz =

n∑
i,j

∫ b

a
ei(z)d̃ij(z)∂2

z ej(z)dz. (75)

with D̃ : [a, b] → Rnx . Thus, its integration by parts yields∫ b

a
eT (z)D̃(z)∂2

z e(z)dz =

eT (z)D̃(z)∂ze(z)
⏐⏐⏐⏐b
a
−

∫ b

a
∂zeT (z)D̃(z)∂ze(z)dz

−

∫ b

a
eT (z)∂z D̃(z)∂ze(z)dz. (76)

If D̃ : [a, b] → Snx , we can apply the identity in (74) into the
last term of the right side of (76), thus we obtain∫ b

a
eT (z)D̃(z)∂2

z e(z)dz = eT (z)D̃(z)∂ze(z)
⏐⏐⏐⏐b
a

−
1
2
eT (z)∂z D̃(z)e(z)

⏐⏐⏐⏐b
a
+

1
2

∫ b

a
eT (z)∂2

z D̃(z)e(z)dz

−

∫ b

a
∂zeT (z)D̃(z)∂ze(z)dz. (77)
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