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SHORT COMMUNICATION

Abstract The present study was aimed to determine the lethality of the insecticide fipronil on two early life 
stages, post-larvae, and fingerling, of Colossoma macropomum, by determining the lethal concentration 50 
(LC50). Five nominal concentrations (0.12; 0.165; 0.21; 0.255 and 0.30 mg/L) and a control in 4 replicates 
per treatment for 48 hours of exposure were used for the post-larvae; and other nominal concentrations 
(0.22; 0.27; 0.34; 0.43 and 0.54 mg/L) and a control in 3 replicates per treatment for 96 hours of exposure 
were used for the fingerling stage. The LC50 value was calculated as 0.22 mg/L and 0.33 mg/L for the 
post-larvae and fingerling stages, respectively. In addition, the maximum concentration that causes no 
mortality (MCNM) and the minimum concentration that causes mortality (MCM) for the post-larvae stage 
were determined as 0.12 and 0.15 mg/L, respectively; and 0.16 and 0.22 mg/L for the fingerling stage, 
respectively. C. macropomum showed erratic swimming, spasms in the region of the peduncle, caudal fin, 
and accelerated opercular movement in both life stages. The LC50 values calculated in the present study 
are considered “highly toxic” for the early stages of life of this non-target organism, suggesting that C. 
macropomum may be a sensitive species to fipronil insecticide.
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Introduction

Fipronil is a broad-spectrum phenylpyrazole insecticide registered in the 1990s and used for agricultural 
purposes ever since (Beasley 2020). This insecticide has been extensively used in seed-coasting formulations 
(Raveton et al. 2007) and direct soil treatment to control a wide range of underground pests (dos Santos et al. 
2016). The worldwide popularity of fipronil is attributed to its effectiveness against pests that are resistant 
to conventional pesticides, such as pyrethroids and organophosphates (Pino-Otín et al. 2021). The action 
mechanism of fipronil acts by targeting and inhibiting the γ-aminobutyric acid (GABA) receptor chloride 
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channels in the nervous system (Wang et al. 2016). Insect exposure to fipronil causes blockade of the 
inhibitory nerve transmission, resulting in hyperexcitability and death (Page 2008). The binding affinities 
of fipronil to mammalian gamma-aminobutyric acid (GABAA) neurotransmitter receptors are significantly 
weaker than in insects (Zhao et al. 2003), demonstrating its low toxicity to mammals. However, fipronil 
can be highly toxic to other non-target organisms, such as terrestrial and aquatic species (Stehr et al. 2006; 
Gunasekara and Troung 2007; Taillebois et al. 2015). In terrestrial invertebrates, fipronil is known to cause 
lethal effects of the collembolan species Folsomia candida (Alves et al. 2014, Oliveira 2017), as well as 
sub-lethal effects in honeybees species Apis mellifera (Carrillo et al. 2013; Pisa et al. 2015; Holder et al. 
2018). Concerning aquatic species, fipronil is known to cause acute lethal effects in Cyprinodon variegatus, 
Lepomis macrochirus, and Oncorhynchus mykiss (Beggel et al. 2010).  The evidence regarding the toxicity 
of fipronil on non-target organisms led to its restricted use (Zhang et al. 2018). 

On the other hand, the species “gamitana” (Colossoma macropomum) is an Amazonian fish of major 
importance to freshwater aquaculture in Southern and Central American countries (Sandre et al. 2017). 
The success of C. macropomum in Amazonian aquaculture relies on its relatively fast growth rate, diverse 
diet composition, and nutritional value (Ramos et al. 2016; Sousa et al. 2002). However, given the inherent 
exposure to chemicals associated with agriculture in the Amazon (Silva et al. 2019), the production of 
C. macropomum could be compromised. Recent studies have evaluated the ecotoxicological effects of 
common pesticides in C. macropomum (Soares et al. 2016; Rico et al. 2011). However, there are still no 
environmental regulatory standards of fipronil, especially for aquatic ecosystems, in Peru. This evidences 
the lack of information on the toxicity that this insecticide may cause on aquatic biota, such as organisms 
cultivated for human consumption or those that play key ecosystemic roles. In this sense, it is necessary to 
carry out acute and/or chronic toxicity tests that generate information and contribute with the Peruvian public 
environmental entities to establish maximum permissible limits for fipronil. Therefore, this study aimed to 
determine the lethal concentration 50 (LC50) of the commercial insecticide Regent© in concentrated solution 
(SC) (A.I = fipronil 18.87%) in two early life stages (post-larvae and fingerlings) of C. macropomum 
with the purpose of establishing reference values for future toxicity studies and in this way, suggesting 
environmental regulatory measures for this insecticide in the Peruvian Amazon as it could pose a threat to 
freshwater aquaculture.

Materials and methods

C. macropomum larvae with yolk-sac were acclimatized in glass aquariums of 150 L of volume, with 
temperature = 27 °C, dissolved oxygen = 9.83 mg/L, pH = 8.00, and water hardness = 80 mg/L. Then, 
during the post-larvae stage (20 days after hatching; 0.019 ± 0.01 g; 1.14 ± 0.05 cm), the organisms were 
fed with Artemia sp. nauplii for 10 days and co-fed with ground balanced food for 10 days (Álvarez et al. 
2008). In the fingerling stage (40 days after hatching; 0.08 ± 0.01 g; 1.67 ± 0.06 cm), the organisms were 
fed with extruded balanced food (protein 28%) three times a day.

Toxicity Test

Both toxicity tests followed the Fish Early Life Stage Toxicity Test (Organization for Economic Cooperation 
and Development – OECD 2013) guidelines. Feeding was suspended 24 hours before starting the toxicity 
tests to then transfer 10 organisms to aquariums (3 L) of soft water and finally, each aquarium was placed 
in larger aquariums (50 L) in a water bath system (temperature = 30 °C) controlled by thermostats. Two 
hours before starting the toxicity test a stock solution was prepared by diluting 0.1 ml of Regent© SC (A.I 
= 200 g/L) in 1 L of soft water, resulting in a final concentration of 20 mg/L. The final concentrations used 
in the toxicity test with the organisms in the post-larvae stage were determined through preliminary tests 
(Organization for Economic Cooperation and Development – OECD 2013), and the final concentrations 
for the toxicity test with the organisms in the fingerling stage were determined based on the results obtained 
in the final toxicity tests with the post-larvae. First Acute Toxicity Test: For the post-larvae stage, the 
nominals concentrations were: Control; 0.12; 0.165; 0.21; 0.255 and 0.30 mg/L with four replicates per 
treatment and 48 hours of exposure; Second Toxicity Test: For the fingerlings, the nominals concentrations 
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were: Control; 0.22; 0.27; 0.34; 0.43 and 0.54 mg/L with three replicates per treatment and 96 hours of 
exposure. Both toxicity tests were carried out in a static system and the water quality parameters were 
monitored at the beginning and the end of the assay (temperature = 30 ± 0.5 oC; pH = 7.87 ± 0.05; 
dissolved oxygen = 4.15 ± 0.05 mg/L and hardness 80 mg/L as CaCO3). The LC50 values were calculated 
using the log-logistic model fixed with the “drm” function of the “drc” package from the R statistical 
software v. 4.0.2 (R 2019). The MCNM and MCM were calculated from the adjusted log-logistic model 
i.e. we calculated the difference between the mortalities corresponding to consecutive concentrations of 
fipronil (in our case every 0.01 mg/L). Thus, were defined as the limit concentration that the mortality is 
not greater than 0.1% (MCNM) and 1% (MCM). For our study, MCNM would represent the predicted 
no-effect concentration (PNEC), that is, the concentration that protects 99.9% of the species. In the case 
of the predicted environmental concentration (PEC), the environmental quality standards (ECA) of the 
Netherlands legislation (Tennekes 2018) were used, with the PEC of fipronil = 0.00007 μg/L. In this sense, 
the ecological risk was calculated using the hazard ratio (HQ) approach (HQ = PEC/PNEC) (EC 2011), 
which was considered significant when HQ> 1. In addition, the difference between the LC50 of post-larvae 
and fingerlings was also evaluated, for that reason, the combination of all mortalities by treatments (T) 
and replicates by treatments (R) was used to obtain a set of LC50 for post-larvae (4096 combinations) and 
fingerlings (729 combinations). The total combination was performed as RT. The Kruskal-Wallis test was 
used to evaluate the statistical difference (P <0.05) between the LC50 values of the development stages 
and also, to determine statistical differences between the physicochemical parameters of the treatments (P 
<0.05), using the “pgirmess” package from the R program.

Results

In agreement with what was proposed by the Organization for Economic Cooperation and Development 
(OECD 2013), the control group presented 0% mortality in all cases. The lethal endpoints were calculated 
as LC50-48h = 0.22 mg/L for post-larvae and the LC50-96h = 0.33 mg/L for fingerlings (Fig. 1). Additionally, for 
the post-larval stage, the MNCM and MCM values were 0.12 mg/L and 0.16, respectively. In the case of the 
fingerling stage, the MNCM and MCM values were 0.15 mg/L and 0.22 mg/L, respectively. 

The HQ for the post-larvae stage was 0.0005833 and for fingerlings, it was 0.0004375. No significant 
differences (P > 0.05) were found in the temperature, dissolved oxygen, and pH among treatments at the 
start and end of the toxicity tests (Fig. 2). There were significant differences (P < 0.05) in the mean LC50 
between post-larvae and fingerlings (Fig. 3).

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Concentration-mortality modeled curves (red line) and observation (black points) for both acute toxicity tests. The values of 
LC50 are also indicated (green line). 

  

Fig. 1 Concentration-mortality modeled curves (red line) and observation (black points) for both acute toxicity tests. The values of 
LC50 are also indicated (green line).
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 Fig. 2 Variation of the physicochemical parameters for different treatments during toxicity tests post-larvae and fingerling 
stage 
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Fig. 3 Comparison of LC50 values calculated for post-larvae and fingerlings of C. macropomum 

  
Fig. 3 Comparison of LC50 values calculated for post-larvae and fingerlings of C. macropomum

Discussion

This is the first report to determine the LC50 of fipronil insecticides on early life stages of freshwater fish 
C. macropomum. Comparing our results with other studies, Ardeshir et al. (2017) determined the LC50-96h 
(572 μg/L) in fingerlings of white Caspian, Rutilus frisii kutum, which was highly toxic to fish. Al-Badran 
et al. (2018) reported the LC50-96h (1.3 μg/L) of fipronil in juvenile brown shrimp Farfantepenaeus aztecus. 
Similarly, Gómez-Manrique (2009) determined the LC50-96h (0.08 mg/L) of fipronil in guarú Poecilia 
reticulata fingerlings, classifying these values as extremely toxic and Cella (2009) reported the LC50-96h 
(1.04 mg/L and 0.34 mg/L) of fipronil in juveniles of pacu Piaractus mesopotamicus and paulistinha Danio 
rerio, respectively. The LC50 values calculated in post-larvae and fingerlings were compared to previous 
studies that evaluated the toxicity of different pesticides on C. macropomum (Table 1).  Soares et al. (2016) 
reported a slightly higher LC50-96h (0.58 mg/L) of the pesticide Lufenuron in juveniles. Similarly, Duncan 
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et al. (2020) and da Silva et al. (2020) calculated the LC50-96h of the insecticide Trichlorfon as 0.87 mg/L 
in juveniles. The lowest LC50-96h calculated for the insecticide deltamethrin was reported by de Souza et al. 
(2020a), reaching 6.69 10-3 mg/L in fry C. macropomum. In another study, the LC50-96h of the insecticide 
Malathion was evaluated by Rico et al. (2011), where the stage of development was not reported, and by 
(de Souza et al. 2020b), where the experiments were carried out on fingerlings. Furthermore, the rate of 
mortality showed significant differences among treatments (P < 0.05) for both toxicity tests, demonstrating 
the concentration-response behavior of C. macropomum mortality in the early stages of development. 

On the other hand, several studies have determined chronic toxicity values and assessed sub-lethal 
effects for other pesticides in aquatic organisms (Soares et al. 2016; Salazar-Lugo et al. 2011). In this 
context, we found no observed effect concentrations (NOECs) and the lowest observed effect concentrations 
(LOECs). However, their use has been widely criticized, i.e. due to their computation only taking into 
account the concentrations of the test chemicals used in the treatments (Warne and Dam 2008). Therefore, 
we propose the values of the MCNM and MCM for post-larvae and fingerlings in our study. Both values 
may serve to set the ground for national legislation, specifically, determining the Maximum Permissible 
Limits for use in agricultural crops and Environmental Quality Standards in Peruvian waters, including 
Amazonian aquatic environments. Finally, we demonstrate the difference between the LC50 of post-larvae 
and fingerlings, despite presenting similar experimental setups, the estimated values that differed in about 
an order of magnitude, may likely be due to the difference in the developmental stage of the test organisms 
used in this study. According to our results, the toxicity of fipronil for the post-larvae and fingerlings 
stage of C. macropomum is considered “high”, since they are within the range of LC50 = 0.11-1.0 mg/L in 
agreement with the classification for insecticides proposed by Helfrich et al. (2009). The toxicity of fipronil 
is based on its main mechanistic interaction with gamma-aminobutyric acid (GABA) receptors and other 
sublethal effects Wang et al. (2016). In that sense, several studies have demonstrated the sublethal effects 
of fipronil on C. macropomum. López et al. (2011) exposed C. macropomum fingerlings to 75 μg/L of 
fipronil, the frequency of nuclear aberrations (micronucleus) in peripheral blood samples was double than 
that of the control group after 48h of exposure. Dallarés et al. (2020) demonstrated that spiked food at a 
concentration of 10 mg/kg fipronil was metabolized by European sea bass Dicentrarchus labrax, ultimately 
causing metabolic disturbances and gonadal histological alterations. Sanahuja et al. (2020) demonstrated 
that fipronil exposure (7 and 14 days) caused a significant increase in brain acetylcholinesterase and 
carboxylesterases activities. Silva et al. (2019) demonstrated that Roundup®, a glyphosate-based herbicide, 
caused increased glutathione-S-transferase and catalase activities in the livers, as well as cellular and DNA 
damages, which were exacerbated by scenarios of hypoxia. Roundup© may also cause histopathological 
damage in gills and alterations in hematological parameters (Braz-Mota et al. 2015). A different pesticide, 
Trichlorfon, causes errand swimming and behavior shortly after exposure (da Silva et al. 2020), as well as 
brain and muscle acetylcholinesterase inhibition at low concentrations (~0.7 mg/L) (Duncan et al. 2020).

 
Conclusion

This study showed that the commercial insecticide Regent SC (fipronil) is highly toxic for the early 
stages of life of this freshwater fish, demonstrating its sensitivity and suggesting C. macropomum as a 
test organism. In addition, the use of these acute toxicity values in monitoring programs is recommended, 
since they would represent a threat to Amazonian aquaculture areas and would serve in the development of 

Table 1 Comparative studies of the CL50 of pesticides for C. macropomum in different stages of development 
 
Type of pesticide Name Stage Duration LC50(CI) Reference 
Insecticide Fipronil Post-larvae 48h 0.22 mg/L (0.20 – 0.24 mg/L) This study 
Insecticide Fipronil Fingerling 96h 0.33 mg/L (0.29 – 0.36 mg/L) This study 
Insecticide Malathion Fingerling 96h 1.51 mg/L (1.36 – 1.67 mg/L) (Rico et al. 2011) 
Insecticide Malathion Juvenile 96h 15.8 mg/L (de Souza et al. 2020b) 
Antifungal Carbendazim Fingerling 96h 4.16 mg/L (3.43 – 5.04 mg/L) (Rico et al. 2011) 
Insecticide Lufenuron Juvenile 96h 0.58 mg/L (0.46 – 0.71 mg/L) (Soares et al. 2016) 
Insecticide Deltamethrin Fry 96h 6.69 µg/L (5.58 – 8.01 µg/L) (de Souza et al. 2020a) 
Insecticide Trichlorfon Juvenile 96h 0.87 mg/L (0.66 – 1.15 mg/L) (Duncan et al. 2020; da Silva et al. 2020) 

 

Table 1 Comparative studies of the acute tests of pesticides for C. macropomum in different stages of development
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environmental regulations for Perú. 
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