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ABSTRACT 

The flexibility and vitality of the Internet along with technological innovation have fueled 

an industry focused on the design of portable devices capable of supporting personal activities 

and wellbeing. These compute devices, known as wearables, are unique from other computers in 

that they are portable, specific in function, and worn or carried by the user. While there are 

definite benefits attributable to wearables, there are also notable risks, especially in the realm of 

security where personal information and/or activities are often accessible to third parties. In 

addition, protecting one’s private information is regularly an afterthought and thus lacking in 

maturity. These concerns are amplified in the realm of healthcare wearable devices. Users must 

weigh the benefits with the risks. This is known as the privacy calculus. Often, users will opt for 

the wearable device despite the heightened concern that their information may or will be 

disclosed. This is known as the privacy paradox. While past research focused on specific 

wearable technologies, such as activity trackers and smartphones, the paradox of disclosure 

despite concern for privacy has not been the primary focus, particularly in the realm of the 

manifestation of the paradox when it comes to the acceptance and use of healthcare wearable 

devices.  

Accordingly, the objective of the present research was to propose and evaluate a research 

model specifically oriented towards the role of privacy in the realm of healthcare-related 

wearables’ acceptance and use. The presented model is composed of sixteen constructs informed 

from multiple theories including multiple technology acceptance theories, the Protection 

Motivation Theory (PMT), the Health Belief Model (HBM), and multiple privacy calculus 

theories. Using a survey-oriented approach to collect data, relationships among privacy, health, 

and acceptance constructs were examined using SmartPLS with intentions to validate the posited 

hypotheses and determine the influence of the various independent variables on the intention to 

disclose and the intention to adopt healthcare-wearables. Of particular interest is the posited 

moderating effects of perceived health status on intention to disclose personal information.  

The research endeavor confirmed significant evidence of the cost/benefit decision 

process, aka the privacy calculus, that takes place when deciding whether or not to disclose 

personal information in the healthcare wearables space. Perceived privacy risk was negatively 

correlated to intention to disclose while hedonic motivation and performance expectancy were 

positively correlated to intention to disclose. Furthermore, significant evidence was discovered 
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pertaining to the privacy paradox via the moderating role that perceived health status plays 

regarding the relationships between the constructs of perceived privacy risk and intention to 

disclose and hedonic motivation and intention to disclose. Intention to disclose was also found to 

have a significant positive influence on intention to adopt. Contributions include understanding 

and generalization in the healthcare wearables adoption knowledge space with a particular 

emphasis on the role of privacy, as well as practical implications for wearable manufacturers and 

users. 
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CHAPTER 1 

INTRODUCTION 

Background of the Problem 

The flexibility and vitality of the Internet along with technological innovation have 

fueled an industry focused on the design of portable wearable devices capable of supporting 

personal activities and wellbeing (Ferraro & Ugur, 2011). These portable devices are known 

as wearables. Wearables are unique from other computers in that they are portable, specific in 

function(s), and worn or carried by the user (Jayden, 2018). They are a specialized category of 

Internet of Things (IoT) devices, a term coined by the Massachusetts Institute of Technology 

in 1999 (GAO, 2017). These devices are interconnected imbedded computing devices, 

forming an ecosystem of systems (Yuchen et al., 2017). Wearables are specialized in that they 

are IoT devices worn by the user. In addition to wearables, IoT devices include household 

thermostats, refrigerators, audio systems, and door locks to name a few. 

Wearables can be classified under several categories including smart watches (Kritzler 

et al., 2015), body motion trackers (Yang et al., 2016), performance monitors, implantables, 

heart rate monitors (Muaremi et al., 2013), pedometers (Zenonos et al., 2016), and blood 

pressure monitors (Nadeem et al., 2015). These categories fall under two classifications 

including consumer wearables and special-purpose wearables (Perez & Zeadally, 2018). They 

are designed to accommodate a variety of body placements including the wrist, stomach, 

chest, arm, head, thigh, waist, knee, ankle, back, finger, neck, pocket, and over the body 

(Jayden, 2018). An example of the latter are IoT-enabled baby clothes designed to monitor 

temperature, respiration, and activity levels of the child wearing them (GAO, 2017). These 

versatile characteristics solicit a plethora of uses promising significant appeal for years to 

come.   

The utility and attractiveness of wearables is made possible by the mobility afforded 

by the Internet, the increase in computational-power to consumption-power ratio, and the 

advancement of miniaturized sensors (Perez & Zeadally, 2018). The Internet has been of 

particular benefit due to the necessity to store and process data resulting from monitored 
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activities. This has been enhanced by advancements in wireless communications. For 

example, IoT-enabled fitness trackers can utilize a smartphone as a gateway device. The 

wearable fitness tracker connects to the smartphone via Bluetooth while the smartphone 

connects to the Cloud via Wi-Fi or cellular technologies (GAO, 2017). The increase in 

computational-power to consumption-power ratio as well as the miniaturization of sensors is 

attributable to the advancement in technology as manufacturers continue to increase the 

density of components and thus increase the effectiveness and utilization of the device’s 

footprint. The ability to miniaturize sensors is particularly important towards expanding the 

capabilities of wearable technologies. 

The benefits and attractiveness of wearables to the consumer have not gone unnoticed 

by the commercial sector. Consumers have accepted wearables into their everyday lives, 

considering them essential to their daily routines, wellness, and health. The global market 

value of wearables technology in 2015 was over $24 billion (Perez & Zeadally, 2018). It was 

estimated that 130 million people used fitness trackers alone (GAO, 2017). By 2019, 

wearables were forecasted to reach $42 billion (Costello, 2018), and by 2026, the market 

value is projected to increase by over 250% to $150 billion (Perez & Zeadally, 2018). This 

projection reveals the untapped “blue ocean” opportunities resulting from the potential of 

wearables innovation over the coming years. 

While there are definite benefits attributable to wearables, there are also significant 

risks, especially in the realm of privacy and security. Merriam-Webster defines privacy as 

“freedom from unauthorized intrusion” (2017). When applied to personal privacy, this 

definition can be rephrased as one’s control over disclosure of their personal information. The 

question to consider in the current research is whether privacy (loss of control over 

disclosure) is at risk regarding the context of wearables. The answer to this question is 

complicated due to the issue of security, which speaks to the issue of device and/or data 

compromise by bad actors. This concern rises to the surface considering that design of IoT 

devices, including wearables, is often absent or severely lacking when it comes to security 

(Wei & Piramuthu, 2014). Even more concerning is the thought of compromise of health-

oriented devices such as implantable medical devices (IMDs) which could threaten the life or 

wellbeing of the patient (Zhou et al., 2019). Privacy concerns are not necessarily confined to 

the individual. In 2018, locations of secret U.S. military installations were at risk as a result of 
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disclosure of exercise-related activity data collected from wearable fitness trackers worn by 

U.S. service personnel (Jernejcic & Kettani, 2019). Utilizing an online “heat map”, these 

secret bases, along with other military activities, were revealed based on data collected by 

Strava, a data service focused on collecting and analyzing fitness related data (Hsu, 2018). 

The discovery by an Australian National University student, who posted his findings on 

Twitter (Jernejcic & Kettani, 2019), prompted the U.S. military to reconsider its security 

policies in light of the potential impact to the safety of its personnel and the implication 

towards national security (Hsu, 2018). This highlights the criticality of understanding privacy 

concerns and the personal and national consequences pending should personal information be 

lost, stolen, and/or exposed. 

Data is particularly at risk for two reasons. First, before transmission, data are stored 

on the wearable device, which, as noted, is often less than secure (Wei & Piramuthu, 2014). 

Second, once data has been transmitted, it now resides in a vendor and/or Cloud environment, 

accessible to the vendor or other third-party entities (Padyab & Ståhlbröst, 2018). Considering 

the context and purpose of the wearable device, the information stored will include personal 

information (Padyab & Ståhlbröst, 2018). At minimum, the information will represent 

monitored activities; however, it could also include Personally Identifiable Information (PII) 

and health-related data that the user may or may not want others to know. In addition to the 

concern that personal data might be accessible to known entities, the potential exists that 

information could be inadvertently lost, or worse, stolen by cybercriminals. Considering that 

security is often an afterthought when it comes to wearables, and IoT devices in general (Wei 

& Piramuthu, 2014), this latter concern of stolen information is a real threat that should not be 

marginalized.  

Statement of the Problem 

The biome of the decision process is complex when it comes to venturing into the 

world of wearable technologies. Users must weigh the benefits with the risks. This is known 

as the privacy calculus (Smith et al., 2011). The benefits entice the individual to pursue the 

technology while the risks threaten to counter any potential gains through the disclosure and 

potential abuse of a person’s privacy. Today, many individuals are conscious and 

apprehensive of their private information with over 94% of Americans reporting to exhibit 
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such concern (Malhotra et al., 2004). Often, although concerned with their privacy, users will 

openly opt for the wearable and forego concerns with whether their information may or will 

be disclosed. This is known as the privacy paradox (Barth & de Jong, 2017; Norberg et al., 

2007; Spiekermann et al., 2001). The privacy paradox combines reluctance to disclose with 

acceptance to disclose.  

Past research focused on privacy in the realm of wearable technologies, such as (Bott, 

2017; Doyle, 2019; Lehto & Lehto, 2017; Lidynia et al., 2017; Vitak et al., 2018), and other 

research efforts have investigated reasons and benefits for accepting the technology such as 

(Meyer et al., 2015; Preusse et al., 2017); however, little has been done to investigate the 

multi-dimensional role of privacy on the decision making process, particularly, the impact of 

the privacy calculus on the intention to disclose private information and the downstream 

effect regarding wearables’ acceptance and use, specifically healthcare-related wearable 

devices. The present research sought to fill this gap by investigating constructs and 

relationships related to the privacy calculus and determining how the aggregate of those 

constructs influence (or fail to influence) a person’s willingness to adopt a healthcare 

wearable device.  

Objectives of the Dissertation 

The objective of the present research was to develop and test a research model 

specifically oriented towards the role of privacy in the realm of healthcare-related wearables’ 

acceptance and use. Consequently, this endeavor sought to answer two research questions. 

The first question was: 

RQ1: To what extent does the implication of the privacy calculus impact intentions to 

disclose information in the process of adopting healthcare wearables?  

The privacy calculus represents the cost/benefit decision or privacy trade-off (Kehr et 

al., 2015) process assumed by the user to elect whether to disclose his or her personal 

information (Wilson & Valacich, 2012). Based on prior research, we conclude that this 

process imposes consequences towards intentions to use a wearable device (Smith et al., 

2011). This question sought to measure the effect of the privacy calculus on a person’s 

intention to disclose. The second question was: 
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RQ2: To what extent is the privacy paradox observed in the context of healthcare 

wearable adoption decisions? 

 The privacy paradox represents the situation where users contradict expressed 

concerns regarding privacy (Wilson & Valacich, 2012). In other words, in reference to the 

privacy calculus, users indicate a net concern regarding the disclosure of their personal 

information while still opting to disclose. This apparent paradox has been attributed to other 

moderating situational dynamics that override users’ general privacy concerns, resulting in the 

decision to disclose (Wilson & Valacich, 2012). In search of the manifestation of the privacy 

paradox in healthcare-related wearables, RQ2 sought to measure the moderating effect of 

perceived health status on intention to disclose. 

As noted, significant research has been directed towards understanding the dichotomy 

between an individual’s privacy concerns and the willingness to disclose his or her personal 

information in a healthcare wearables environment. In addition, research has sought to 

understand factors influencing the acceptance and use of wearables. This research endeavor 

sought to study the potential of the privacy paradox as a contributor to disclosure and 

wearable device acceptance and use.  
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CHAPTER 2 

LITERATURE REVIEW 

Stimulated by the maturity of the Internet, Cloud computing, advancements in 

communications, and the miniaturization of sensor technologies, the phenomena of wearables 

continues to grow in both function and use (Perez & Zeadally, 2018). This is particularly 

relevant in the arena of personal health and wellbeing (Preusse et al., 2017), as well as in the 

workplace (Jayden, 2018; Kritzler et al., 2015; Yang et al., 2016). Although the benefits of 

wearables are real and their importance undisputed, their rapid development and utilization 

are sometimes at the expense of security and privacy concerns. It is urgent for innovators and 

researchers alike to take note and assume an offensive role to identify security and privacy 

concerns and address them in a manner apropos in protecting the consumer.  

One of the necessities of any research project is to investigate past efforts in order to 

understand what is known about a particular topic and discover and contribute to the ongoing 

discussion and progression towards viable solutions to a related but new research problem 

(Machi & McEvoy, 2016). This section addresses this challenge by exploring the current state 

of knowledge regarding IoTs, wearables, and privacy with the objective of investigating the 

role of the privacy calculus and the manifestation of the privacy paradox regarding wearables 

acceptance and use. Related work in the context of wearables security and adoption will also 

be explored as a basis for the proposed theoretical model.  

IoTs and Wearables 

As previously noted, the ascription of the term Internet of Things (IoTs) refers to 

Internet-enabled devices with a focus of providing a specific function or set of functions for 

an individual (Perez & Zeadally, 2018). Finding its roots as far back as 1964 with the 

teletypewriter and 1972 with the transmission of energy consumption by telephone (GAO, 

2017), typical devices of today entail a host of “smart” devices including Blu Ray players, 

smart televisions, thermostats, refrigerators, garage doors, automobiles, and many other 

devices designed to enhance a consumer’s experience through the interconnectedness of a 

network and connectivity to the Internet (GAO, 2017). The Internet vastly expands the 
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capability and governance of devices by providing Cloud-enabled services and data storage as 

well as remote user administration and management. 

Wearables are a specific category of IoTs referring to IoT devices that are worn and/or 

easily carried on the body by the user (Perez & Zeadally, 2018). Body locations include wrist, 

arm, finger, chest, thigh, head, upper body, and eye and wearable categories include fitness 

tracker, heart rate monitor, digital pedometer, and blood sugar monitor to name a few (GAO, 

2017; Jayden, 2018). The construction of wearables consists of sensors, microprocessor, 

embedded storage, communication interface, and output devices (Perez & Zeadally, 2018). 

Sensors facilitate the purpose of the device, which is to monitor the biological functions of the 

body and, depending on their design, to treat and/or supplant those functions in order to 

enhance the quality of life of the individual (Ferraro & Ugur, 2011). The microprocessor and 

embedded storage units support the processing and storage needs of the wearable and the 

communication interface facilitates access to other wearables via a Personal Area Network 

(PAN) and/or to the Internet, forwarding data to a Cloud-based application (Perez & Zeadally, 

2018). Finally, the wearable’s output devices communicate status to the user via vibrations, 

sounds, and lights based on data collected from the sensors (Perez & Zeadally, 2018). 

Considering the complexities of the components supporting these relatively small devices and 

the personal nature of the data collected, security plays an important and critical role in 

keeping the user’s information safe and sound from prying eyes.  

Many, if not most, of today’s wearables devices interface with Cloud-based 

applications (Perez & Zeadally, 2018). These wearable devices interface with applications and 

data repositories located in the Cloud. The Cloud is a general reference to Internet-based 

services existing in highly abstracted compute environments that are exceedingly scalable and 

can be provisioned almost instantly in response to need and usage (Catteddu et al., 2012). 

Considering the continuous and often unformatted nature of the data collected by wearable 

devices and transmitted to the Cloud application, Big Data repositories are the ideal solution 

for data storage. Big Data permits the collection, management, analysis, and extraction of 

large volumes of traditional (structured) and digital (unstructured) data (Arthur, 2013; 

Jernejcic & Kettani, 2019). This is particularly apropos considering the trend towards clinical 

Big Data, which is the collection and storage of clinical-based data into Big Data repositories 

for the purpose of data analysis, providing more substantial information for the purpose of 
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patient diagnosis and treatment (Amft, 2018). The integration of data from both clinical and 

wearable sources offers a significant advancement in medicine with the potential to advance 

biomedical knowledge (Amft, 2018). 

While the advantages of the Cloud and Big Data are substantial in the realm of health-

related wearables (Hahanov & Miz, 2015), the collection of personal data via the wearable 

device and the storage of such data on the Internet prompts numerous concerns (Jernejcic & 

Kettani, 2019). Who has access to the user’s private data? Can the data be sold or made 

available to other third parties? How secure is the data? What measures are implemented to 

ensure the confidentiality, the integrity, and the availability of the data? Finally, will the 

user’s private data be purged once no longer relevant (Ge et al., 2020)? These are vital 

questions that strike at the heart of concerns for privacy as well as general security. 

Understandably, apprehensions are justified considering hosting organizations have a vested 

interest in not only providing the wearables user with a service and a worthwhile experience, 

but ultimately in increasing profit (Uzialko, 2018). In order to garner consumer trust, 

wearables organizations must assure current and potential customers that their data is safe, 

and that privacy is of the utmost priority. 

Privacy 

There are multiple definitions attributed to privacy. Merriam-Webster (2017) defines 

privacy as “freedom from unauthorized intrusion”. Based on a review of privacy-related 

research literature, Bélanger and Crossler (2011) summarized privacy as the autonomy one 

has over his or her own personal information. While one may attribute the term “personal 

information” to static information commonly employed to identify a person such as name, 

birthdate, and social security number, in regards to wearables, we argue the term expands to 

include biophysical characteristics as well as personal behavior. In the process of formulating 

an argument for legislative intervention regarding protection of privacy on the Internet, Clark 

(1999) identifies four dimensions of privacy that include person, personal behavior, personal 

communications, and personal data, all of which indeed encapsulate the various kinds of data 

that might be captured and synthesized by wearables. The motivation for Clark’s (1999) 

research was the potential for lack of “trust in the information society” due to the 
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encroachment of cyberspace into the private lives of individuals with little or no protections 

regarding privacy (1999, p. 1). 

Although somewhat “behind the eight ball” due to the aggressiveness of IoT and 

wearables innovation (Peppet, 2014), the uptick in concern for one’s privacy and wellbeing in 

the digital realm has manifested itself in the form of various laws, regulations, standards, and 

agreements. The Health Insurance Portability and Accountability Act (HIPAA), established in 

1996 (Pulipaka, 2019), addresses the responsibilities of the health care provider, health plan, 

and businesses associates regarding the confidentiality of an individual’s health information 

(Glenn & Monteith, 2014; Peppet, 2014); however, not all data will fall under the protection 

of HIPAA since data generation is at the discretion of the consumer (Boysen et al., 2019; De 

Mooy & Yuen, 2017). Some leaders in the wearables and mobile app industries have 

established their own standards regarding the collection and use of wearables data 

(Polonetsky & Gray, 2017). Certain court rulings, such as the Third-Party Doctrine (resulting 

from two U.S. Supreme Court decisions) have weakened the case for legal protection of 

privacy for wearables regarding third-party access by affirming no Fourth Amendment 

protections (Scott, 2020). In addition, license agreements sometime erode privacy protection 

due to vague or open-ended declarations (Bergenstock, 2017). In that light, with the lens of 

legal protection somewhat gray, consumers need to be more diligent than ever to ensure they 

understand the privacy risks associated with wearables before volunteering their own personal 

and private information. 

Privacy Calculus Theories 

Research has shown that wearable device consumers are indeed concerned with their 

privacy and the necessity for organizations to solicit informed consent before sharing with 

other third-party entities (Anaya et al., 2018).  Privacy concerns are influenced by multiple 

factors including privacy experiences, privacy awareness, personality differences, 

demographic differences, culture, organizational trust, and state-based regulations (Smith et 

al., 2011). These factors inform the wearables user’s determination of risk regarding 

disclosing personal information. The perceived sensitivity and vulnerability of one’s 

information and the confidence level to effectively respond to corresponding threats also 

plays a significant role in determining risk (Kehr et al., 2015). This assessment of threats and 
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the perceived capacity to cope is known as the risk calculus (Zhang et al., 2018), which is 

informed by the Protection Motivation Theory (PMT) of threat and coping appraisals (Li, 

2012). Perceived privacy risk (net risks) represents the conclusion of this appraisal process. 

Risks associated with disclosing personal data are counterbalanced with the perceived 

benefits of healthcare wearables acceptance and use. Some of these benefits include but are 

not limited to fitness activity tracking (Meyer et al., 2015), blood pressure monitoring 

(Nadeem et al., 2015), heart rate monitoring (Muaremi et al., 2013), and other health-related 

activities focused on the health and wellbeing of the individual. Referred to as “personal 

metrics” (Page, 2015), the data collected via a multitude of embedded sensors offer the 

benefit of motivation, proactive detection, and, in some cases, early warning of life-

threatening conditions. The process of weighing the costs/risks of disclosure against these 

benefits is recognized as the privacy calculus (Smith et al., 2011). As noted earlier, the 

privacy calculus represents the privacy trade-off (Kehr et al., 2015) process assumed by the 

user to elect whether to disclose his or her personal information (Wilson & Valacich, 2012). 

The joint representation of the risk calculus and privacy calculus theories is referred to as the 

dual-calculus model, which conceptualizes intentions of disclosure (Li, 2012). 

Privacy theory research is not limited to the protection and disclosure of PII, but to 

personal health-related information as well. Shen (2019) created the Content-validated 

eHealth Trust Model in response to an investigation regarding the antecedents to trust, 

structural assurance, and a patient’s privacy perspective and the influence of trust and the 

privacy calculus (perceived benefit and perceived risk) on behavior. Zhang et al. (2018) 

integrated the dual-calculus model and PMT to investigate the antecedents and consequences 

of health information privacy concerns in the realm of online health communities. In addition 

to discovering the negative effects of response efficacy and self-efficacy and the positive 

effects of perceived vulnerability and severity on privacy concerns, the study found that 

Perceived Health Status (PHS) has a moderating effect on the relationships between perceived 

benefits and perceived risks and the intention to disclose Personal Health Information (PHI). 

It was found to weaken the influence of perceived benefits of informational and emotional 

support and strengthen the influence of perceived risk of health information privacy concerns 

on PHI disclosure intention. 
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Although the pledge of allegiance to the importance of privacy might be popular 

(Rainie et al., 2013), behavioral observance suggests that many are content to surrender 

privacy despite concerns for the welfare of their personal data (Williams et al., 2016). The 

motives for behavior towards the use of wearable devices despite risk-oriented intentions has 

been somewhat allusive (Gerber et al., 2018); however, Williams et al. (2016) identified five 

categories of antecedents contributing to the privacy paradox including education and 

experience, usability and design, privacy risk salience, social norms, and policies and 

configurations. Turow et al. (2015) observed that resignation to the loss of autonomy over 

personal privacy is a contributor to the privacy paradox. The Antecedents, Privacy Concerns, 

and Outcomes (APCO Macro) model as presented by Smith et al. (2011) presents the 

antecedents of privacy concerns as well as the influence of the privacy concern on the privacy 

calculus. The APCO model suggests that there is an opportunity for the privacy paradox to 

manifest itself between user intentions and user behavior since most research measures the 

former and not the latter. Borrowing from the old cliché that actions speak louder than words, 

consumers’ intentions to error on the side of safety by intending to avoid disclosure is not 

necessarily representative of actual behavior, which is to choose the wearable device despite 

leanings towards privacy (Page, 2015). 

Privacy in Wearable Technology 

The significance of privacy in the wearable technology domain has prompted multiple 

studies. Bott (2017) investigated the role of the privacy calculus as it pertains to personal 

mobile devices. The author developed a Personal Mobile Device Privacy Calculus model with 

the intention of predicting and explaining privacy disclosure behavior. Developed in the 

context of actual behavior, testing of the model revealed that a person’s resignation to the 

perception that he or she has no control over disclosure contributes to actual disclosure. Vitak 

et al. (2018) researched the effect of concerns regarding general privacy and user-generated 

data in the realm of fitness trackers on users’ perception of personal fitness information 

privacy. They observed a positive relationship between a user’s concern for privacy and the 

value a user places on fitness data. Although the above noted studies were significant in the 

realm of privacy and wearable technology, they offered little in the way of the effect of 

privacy on technology acceptance. 
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Gao et al. (2015) performed an empirical study on the adoption of healthcare wearable 

technologies. In their empirical quest to discover and test antecedents of adoption of 

healthcare wearable devices, they found that fitness device users were most influenced by 

hedonic motivation, functional congruence, social influence, perceived privacy risk, and 

perceived vulnerability to a health risk. In contrast, they discovered that medical device users 

were more influenced by perceived expectancy, self-efficacy, effort expectancy, and 

perceived severity of health risk. Pulipaka (2019) investigated the impact of privacy concerns 

and user perceptions on healthcare wearable devices. The author discovered that performance 

expectancy, effort expectancy, facilitating conditions, and trust strongly predicted device 

usage intentions. Harper (2016) investigated the role of security awareness on the decision of 

consumers to adopt IoT devices finding that awareness had a significant influence; however, 

it was not the primary factor of adoption. Lehto and Lehto (2017) investigated the perception 

of users towards the sensitivity of their health information and their willingness to share such 

information with appropriate parties. Based on the results of ten interviews, the researchers 

found that users in general were not concerned with information collected by wearables as it 

was perceived to be unimportant (not sensitive) and not private. Consequently, decisions to 

accept and use wearables appeared to not be based on concerns of privacy; however, the small 

sample size of ten individuals and the lack of statistical analysis in the study prompts concern 

for the need for further research to support the conclusions. Finally, Scott (2020) reported on 

research concerning the acceptance and use of smartwatch wearables in correlation with 

concerns of privacy. It was discovered that privacy awareness significantly contributed to the 

adoption of smartwatches and that privacy concerns posed a negative influence on intention to 

use. 

The above identified studies focus on privacy in the realm of wearable technologies 

with four out of seven specifically targeting healthcare devices. While they contribute towards 

the discussion of privacy and the acceptance and use of wearables, there remains a gap 

regarding the role played by the privacy calculus and the inter-play of other factors on the 

decision-making process. Of the four studies targeting healthcare devices, none of them 

specifically target the role of the privacy calculus and the impact of the privacy paradox on 

the decision-making process, particularly, the summarized influence of privacy and disclosure 

on healthcare-related wearables’ acceptance and use. In addition, while the Gao et al. (2015) 
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study does consider the impact of perceived health threat on intention to adopt, none of the 

acceptance-related studies consider the influence of perceived health status on intention to 

disclose.  

Considering the importance of healthcare-related wearable devices in the effort to 

contribute to improved health and wellbeing, it is critical to comprehensively consider privacy 

on adoption as opposed to a cursory approach. It is equally important to consider the role of 

the status of one’s health in the decision to disclose the information warranted by the wearable 

device (Zhang et al., 2018). The present research sought to fill this gap by investigating 

constructs and relationships related to the risk calculus, the privacy calculus, health status, and 

the presence of the privacy paradox, in combination with other acceptance-related constructs, 

in determining how the aggregate of those constructs influence (or fail to influence) a 

person’s readiness to participate in the use of healthcare wearable devices. This was 

accomplished via the adaptation and merging of the two aforementioned research efforts of 

Zhang et al. (2018) and Gao et al. (2015) with the former primarily informing health-related 

privacy and the latter primarily informing healthcare-related wearables acceptance and use. 

The first model was extended via adaptation of health privacy disclosure in a wearables 

context. The second model was extended via expansion of its privacy component to a more 

complete and expanded health information context as well as consideration of the moderation 

of perceived health status on the newly introduced privacy calculus. 
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CHAPTER 3 

THEORETICAL MODEL 

Figure 1 represents the current research model. The objective of the model was 

multifold. First, we sought to capture and measure the theoretical constructs regarding factors 

influencing the adoption and use of wearable devices. Second, we sought to capture and 

measure the factors that influence intention to disclose privacy information. The composite of 

the latter factors, which includes the assessment of risk (risk calculus) and the balance of risk 

and benefits of disclosure and their influence on a user’s intention to disclose (privacy 

calculus), is representative of the dual calculus model. Finally, we sought to measure the 

moderated effect of perceived health status (perceived health vulnerability and perceived 

health severity) on the relationship of perceived privacy and intention to disclose (privacy 

paradox). 

The theoretical foundation of the research model was informed by multiple technology 

acceptance models, the Protection Motivation Theory (PMT), the Health Belief Model 

(HBM), and multiple privacy calculus theories. The core objective of technology acceptance 

models is to predict the use of technology-based systems (Davis et al., 1989). Researchers 

have developed many models and theories over the past several decades to explain 

acceptance, three of which have garnered significant popularity in the annals of technology 

acceptance research. First, the Technology Acceptance Model (TAM), developed by Davis 

(1986) with a foundation based on Fishbein’s and Ajzen’s (1975) Theory of Reasoned Action 

(TRA), postulates that Actual System Usage (AU) is based on Behavioral Intention to Use 

(BI) and BI is influenced by the Perceived Usefulness (PU) of the technology plus the 

Attitude (AT) towards using it. In addition, AT is influenced by PU along with the additional 

determinant of Perceived Ease of Use (PEOU). The constructs of PU and PEOS, in turn, are 

influenced by other external variables. TRA’s construct of Subjective Norm (SN) was 

thoughtfully excluded from the TAM model due to the lack of understanding (at the time) 

surrounding proper placement of its effects. It is important to note that additional evaluation 

and refinement of TAM resulted in just three constructs including PU, PEOS, and BI (Davis 
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et al., 1989; Venkatesh et al., 2003). Finally, TAM2, an extension of TAM, reconsidered SN 

as a significant contributor to technology acceptance (Venkatesh & Davis, 2000). 

Second, the Unified Theory of Acceptance and Use of Technology (UTAUT), 

developed by Venkatesh et al. (2003), is informed by eight previous theories/models asserting 

that BI is predicted by Performance Expectancy (PE), Effort Expectancy (EE), and Social 

Influence (SI). The construct AU is predicted by Facilitating Conditions (FC) and BI. 

Informing models include TRA, TAM, the Motivational Model (MM), the Theory of Planned 

Behavior (TPB), a model combining TAM with TPB (C-TAM-TPB), the Model of PC 

Utilization (MPCU), the Innovation Diffusion Theory (IDT), and the Social Cognitive Theory 

(SCT). All relationships are moderated by Gender (G), Age (AGE), Experience (EX), and 

Voluntariness of Use (VU) with the exception of the relationship between BI and AU. The 

authors’ findings were noteworthy, resulting in an adjusted R2 of 69% for the original inquiry 

and 70% for subsequent testing, significantly beating the performance of the individual 

contributing models. 

The third significant technology acceptance model is the extended UTAUT model 

(UTAUT2), which was developed by the creators of the UTAUT theory (Venkatesh et al., 

2012), attempts to improve UTAUT through the addition of three new constructs including 

Hedonic Motivation (HM), Price Value (PV), and Habit (HT). Moderators are reduced to G, 

AGE, and EX, removing VU from the model. The results proved to be significant with an 

increase in explained variance regarding behavioral intention (74% compared to 56% for 

UTAUT) and actual technology use (52% compared to 40% for UTAUT). We used this latter 

extended model to inform the research model of the current research effort. 

Often, a person’s decision to adopt technology is influenced by threats associated with 

its adoption (Gao et al., 2015). The Protection Motivation Theory (PMT) addresses this 

phenomenon by seeking to explain a person’s ability to cope and respond to a threat (Woon et 

al., 2005). A person’s response is grounded on the net effect of the person’s threat appraisal 

and coping appraisal.  The PMT theory was originally developed to model a person’s 

response process to a physical event that would influence his or her health (Rogers, 1975); 

however, since its inception, it has been extensively utilized in the Information Systems (IS) 

research space. As opposed to addressing one’s physical health, the theory is instead applied 

regarding the threat to one’s wellbeing resulting from using technology and their willingness 
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to adopt technology or technology-related practices and processes (Boysen et al., 2019; Gao et 

al., 2015; Herath & Rao, 2009). We considered PMT in its application towards decisions to 

disclose private information. 

The research model is comprised of sixteen constructs. These include Perceived 

Threat Vulnerability (PTV), Perceived Threat Severity (PTS), Response Efficacy (REF), Task 

Self-Efficacy (SEF), Perceived Privacy Risk (PPR), Hedonic Motivation (HMO), 

Performance Expectancy (PEX), Effort Expectancy (EEX), Social Influence (SIN), 

Technology Self-Efficacy (TSE), Functional Congruence (FCG), Perceived Health Status 

(PHS), Intention to Disclose (ITD), Perceived Health Vulnerability (PHVU), Perceived 

Health Severity (PHSE), and Intention to Adopt (ITA) healthcare wearable devices. The 

current model extended Gao et al.’s (2015) conceptual model, which was constructed to 

examine factors related to the adoption of healthcare wearable devices, and Zhang et al.’s 

(2018) conceptual model, which was constructed to examine factors influencing health 

information-related privacy concerns. 

Adopted from PMT, Perceived Threat Vulnerability (PTV) concerns an individual’s 

evaluation of how likely they are to succumbing to privacy threats (Zhang et al., 2018). We 

hypothesize that: 

H1. Perceived threat vulnerability is positively related to an individual’s overall state 

of perceived privacy risk in the realm of healthcare wearable devices. 

Adopted from PMT, Perceived Threat Severity (PTS) concerns an individual’s 

evaluation of the severity of consequences due to succumbing to privacy threats (Zhang et al., 

2018). We hypothesize that: 

H2. Perceived threat severity is positively related to an individual’s overall state of 

perceived privacy risk in the realm of healthcare wearable devices. 

Adopted from PMT, Response Efficacy (REF) concerns an individual’s evaluation of 

the effectiveness of current protective measures to prevent succumbing to privacy threats 

(Zhang et al., 2018). We hypothesize that: 

H3. Response efficacy is negatively related to an individual’s overall state of 

perceived privacy risk in the realm of healthcare wearable devices. 
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Figure 1: Research Model (adapted from Zhang et al. (2018) and Gao et al. (2015)) 

Adopted from PMT, Task Self-Efficacy (SEF) concerns an individual’s evaluation of 

his or her ability to effectively implement the appropriate tasks necessary to respond to 

privacy threats (Zhang et al., 2018). We hypothesize that: 

H4. Task self-efficacy is negatively related to an individual’s overall state of perceived 

privacy risk in the realm of healthcare wearable devices. 

 Perceived Privacy Risk (PPR) represents the measurable representation of the privacy 

risk perceived by an individual regarding use of the wearable device. It is based on four 

dimensions of privacy concerns including collection, errors, secondary use, and unauthorized 

access to one’s information (Smith et al., 2011). We hypothesize that: 

H5. Perceived privacy risk is negatively related to an individual’s intention to disclose 

privacy information in the realm of healthcare wearable devices. 
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 Adopted from UTAUT2, Hedonic Motivation (HMO) represents the intrinsic 

motivation experienced by the user (Venkatesh et al., 2012). Intrinsic motivation is concerned 

with the pleasure one experiences by using the wearable device (Brown, 2005). We 

hypothesize that: 

H6. Hedonic motivation is positively related to an individual’s intention to disclose 

privacy information in the realm of healthcare wearable devices. 

H7. Hedonic motivation is positively related to an individual’s intention to adopt 

healthcare wearable devices. 

 Adopted from UTAUT, Performance Expectancy (PEX) is concerned with the degree 

of benefit expected by the user regarding use of the wearable device (Venkatesh et al., 2003). 

We hypothesize that: 

H8. Performance expectancy is positively related to an individual’s intention to 

disclose privacy information in the realm of healthcare wearable devices. 

H9. Performance expectancy is positively related to an individual’s intention to adopt 

healthcare wearable devices. 

 Adopted from UTAUT, Effort Expectancy (EEX) represents the level of effort 

regarding ease of use and complexity expected when using the wearable device (Venkatesh et 

al., 2003). We hypothesize that: 

H10. Effort expectancy is positively related to an individual’s intention to adopt 

healthcare wearable devices. 

 Adopted from UTAUT, Social Influence (SIN) represents the perceived emphasis of 

others deemed important to the user regarding use of the wearable device (Venkatesh et al., 

2003). We hypothesize that: 

H11. Social influence is positively related to an individual’s intention to adopt 

healthcare wearable devices. 

 Technology Self-Efficacy (TSE) is concerned with a user’s perception or belief 

regarding their ability to use specific functions of the wearable device (Gao et al., 2015). 

Although TSE was dropped from the UTAUT model regarding general technology 

acceptance, it has been demonstrated to influence intentions to adopt in the realm of emerging 

health technologies (Sun et al., 2013). We therefore include it in the current research and 

hypothesize that: 
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H12. Technology self-efficacy is positively related to an individual’s intention to 

adopt healthcare wearable devices. 

 Adapted from self-congruency theory (Huber et al., 2010), Functional Congruence 

(FCG) captures the perceived suitability of the wearable device to satisfy expectations 

regarding functional and basic product-related needs (Gao et al., 2015; Wenling et al., 2015). 

In contrast to PEX, which concerns the perceived basic effectiveness of the device to fulfil its 

stated purpose, FCG captures the aggregated quality of the wearable device, in terms of the 

level of comfort in wearing it, its durability, and price acceptance (Gao et al., 2015). In other 

words, although it may perform as expected (PEX), it also must be practical and applicable in 

light of the user’s personal encounter and utilization of the device. We hypothesize that: 

H13. Functional congruence is positively related to an individual’s intention to adopt 

healthcare wearable devices. 

 Informed by PMT, Perceived Health Vulnerability (PHVU) represents the user’s 

perception regarding the likelihood of succumbing to the health threat(s) directly or indirectly 

addressed by the wearable device (Gao et al., 2015). We hypothesize that: 

H14. Perceived health vulnerability is negatively related to an individual’s overall 

state of perceived health status in the realm of healthcare wearable devices. 

 Informed by PMT, Perceived Health Severity (PHSE) is concerned with the user’s 

perception regarding the extant of the health threat(s) directly or indirectly addressed by the 

wearable device (Gao et al., 2015). We hypothesize that: 

H15. Perceived health severity is negatively related to an individual’s overall state of 

perceived health status in the realm of healthcare wearable devices. 

 Perceived Health Status (PHS) is one’s perception of their level of illness and wellness 

(Jung A Kim et al., 2015), which has been found to moderate privacy/disclosure relationships 

(Zhang et al., 2018). Therefore, we posit a similar moderating effect in the current research 

model. Informed by HBM (Janz & Becker, 1984), which asserts that self-protective behavior 

is motivated by increases in perceived risk (Deng & Liu, 2017), we posit that PHS is an 

antecedent to intention to adopt, asserting that higher levels of PHS (better health) have a 

negative influence on adopting healthcare wearables. We hypothesize that: 

H16. Perceived privacy risk has a stronger influence on intention to disclosure with 

high levels of perceived health status. 
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H17. Hedonic motivation has a weaker influence on intention to disclosure with high 

levels of perceived health status. 

H18. Performance expectancy has a weaker influence on intention to disclosure with 

high levels of perceived health status. 

H19. Perceived health status is negatively related to an individual’s intention to adopt 

healthcare wearable devices. 

 Intention to Disclose (ITD) identifies the intentions of the user to disclose personal 

information as required when using the healthcare wearable device (Zhang et al., 2018). We 

hypothesize that: 

H20. Intention to disclose is positively related to an individual’s intention to adopt 

healthcare wearable devices. 

Intention to Adopt healthcare wearable devices (ITA) identifies the intentions of the 

user to adopt a healthcare wearable device (Gao et al., 2015). 
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CHAPTER 4 

RESEARCH METHODOLOGY 

Survey Instrument 

The survey instrument (Appendix A) consisted of a succession of questions where 

respondents were requested to submit responses in the form of a Likert seven-point scale with 

one representing “strongly disagree” and seven representing “strongly agree” (Dittrich et al., 

2007). The construct PHS was the one exception, which was measured based on a single 

question, which queried the participant regarding whether they perceived their health to be 

“very poor”, “poor”, “fair”, “good”, or “excellent”. Past research has shown that the self-

rating of one’s general health condition has been observed to demonstrate significant 

performance and is considered an acceptable alternative to multiple item measurements 

(Zhang et al., 2018). Each question measured a specific model construct and had been 

validated and tested based on prior research. It was vital each question stand on its own 

without influence of other questions in order to avoid common methods bias, a threat to 

construct validity (Straub et al., 2004). Key demographic information was also collected 

including use, gender, age range, and education. 

Data Collection 

Primary data was collected employing surveys circulated to a sample population of 

diverse individuals who have genuinely contemplated using healthcare-related wearable 

devices.  It was vital to query a large enough sample to enable generalizing back to the 

general population (Roberts, 2012). A minimum of 200 responses were projected. Qualtrics 

was the tool of choice for building the survey and for assistance with survey distribution. The 

target audience for the survey were persons 18 years of age and older who have used, are 

using, or have considered using healthcare wearable devices. While demographic information 

was solicited such as use, gender, age range, and education level, no specific demographics 

were targets of the survey.  In addition, no identifiable information was collected in order to 

ensure audience anonymity. The survey was distributed via email, social media and related 
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discussion board forums. Social media distribution included LinkedIn, Facebook, Twitter, 

Reddit, and Pinterest. There was a pledge to donate $0.50/survey participant to a not-for-

profit disaster-relief organization with a maximum donation of $500. 

Analysis 

After assessing data for missing values, Partial Least Squares Structural Equation 

Modeling (PLS-SEM) was applied to discern cause and affect relationships through 

estimation of the measurement and structural models and testing of the hypotheses. While 

first generation multivariate techniques included cluster analysis, exploratory factor analysis, 

and multidimensional scaling, current (second generation) techniques are focused on the use 

of PLS-SEM (Hair et al., 2017). The PLS-SEM method, one of two types of Structural 

Equation Modeling (SEM), was chosen for this research effort due to its recognized aptitude 

towards exploratory research in the social science arena, and for its fortitude towards 

estimating causative relationships between constructs (Hair et al., 2017). Covariance-Based 

SEM (CB-SEM), the other SEM type, is specific to confirmation-based research to test 

existing theories. CB-SEM prefers a large sample sizes and data that is normally distributed 

whereas PLS-SEM is capable of handling smaller sample sizes and makes no assumptions 

regarding data distribution (Wong, 2013). The SmartPLS version 3.3.3 (Ringle et al., 2015) 

was chosen as the software tool for PLS-SEM estimation due to its acceptance among the 

academic community (Wong, 2019) and for its ease of use, graphical interface, and efficiency 

in estimation. See Appendix B for a list of parameters used for PLS-SEM estimation using 

SmartPLS. 

We selected PLS-SEM, also referred to as variance-based SEM (Hair et al., 2020), as 

the SEM of choice over CB-SEM due to multiple reasons. First, our project is exploratory in 

nature as we seek to investigate, measure, and predict relationships between latent constructs 

(Hair et al., 2017; Hair et al., 2011; Hair et al., 2020). One of the benefits of PLS-SEM, 

specifically Confirmatory Composite Analysis (CCA), is that it is both exploratory and 

confirmatory, eliminating the prerequisite for Exploratory Factor Analysis (EFA) (Hair et al., 

2020; Kianto et al., 2019). Second, we can still acquire significant results in the presence of 

non-normality, heteroscedasticity, and/or error term autocorrelation issues (Wong, 2019). 

Third, our research model contains multiple moderating relationships, which is effectively 
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addressed using PLS-SEM (Wong, 2019). Fourth, PLS-SEM is considered appropriate for 

smaller sample sizes (Hair et al., 2020). And fifth, our model is somewhat complex with 

sixteen variables and up to eight relationships with a single dependent variable (Hair et al., 

2017; Hair et al., 2020). Each of these characteristics are supported by PLS-SEM and thus 

make it an ideal candidate for our research effort. In addition, the PLS-SEM modeling 

approach has grown in popularity, particularly in the behavioral science and marketing 

domains, and has successfully endured the scrutiny of many relevant top-tiered journal peer 

reviews (Wong, 2019). 

The PLS-SEM structural equation model is comprised of two primary architectural 

components including the measurement model and the structural model (Wong, 2013). Figure 

2 presents an example of a PLS-SEM model. The measurement model, also referred to as the 

outer model, represents relationships between observed indicators and their corresponding 

latent variable constructs. A measurement model can be reflective or formative depending on 

its indicators (Hair et al., 2013). Reflective indicators reflect changes in the latent variable and 

are highly correlated and interchangeable (Hair et al., 2011; Hair et al., 2020; Wong, 2013). 

They are precipitated or influenced by the latent variable they are proposed to measure 

(Sarstedt et al., 2016). Graphically, they are identified with relationships that point from the 

latent variable to the indicator. Formative indicators cause changes in the latent variable and 

have varying levels of correlation and are not interchangeable (Hair et al., 2011; Wong, 

2013). Graphically, they are identified with relationships that point from the indicator to the 

latent variable. Related coefficients for these relationships are referred to as outer loadings for 

reflective relationships and outer weights for formative relationships (Hair et al., 2011). Our 

research model is reflective in nature.  

The structural model, also referred to as the inner model, represents relationships 

between independent (exogenous) latent variable constructs and corresponding dependent 

(endogenous) latent variable constructs. Independent latent variables are categorized as 

exogenous variables and dependent latent variables are categorized as endogenous variables. 

Graphically, they are identified with relationships that point from the independent variable to 

the dependent variable. Related coefficients for these relationships are referred to as path 

coefficients, which represent the effect of an independent variable on a dependent variable. 

Based on the sum effect of all independent variables pointing to a dependent variable, 



24 

Coefficient of Determination (R2) values are calculated, representing the total variance 

explained by the independent variables on the related dependent variable (Wong, 2019). 

 

Figure 2: Example PLS-SEM Model (Wong, 2013) 

The measurement and structural models were examined for validity and reliability. 

Construct validity, specifically convergent validity and discriminant validity, gauges how well 

one operationalizes the research model under evaluation (Drost, 2011). Indicator loadings of 

0.40 or higher is the criteria for indicator acceptance in exploratory studies (Hair et al., 2013); 

however, 0.70 is optimal to ensure accounting for a minimum of 50% of the variance by the 

matching construct (Gao et al., 2015). Indicators with loadings between 0.40 and 0.70 are 

candidates for deletion only if doing so results in a higher Composite Reliability (CR) or 

Average Variance Extracted (AVE) (Hair et al., 2017). Indicator reliability, calculated based 

on the square of the loadings, is the measure of shared variance among indicators (Hair et al., 

2019). A minimum value of 0.50 is considered acceptable (Hair et al., 2017).  

In addition to satisfactory indicator loadings and reliability, an AVE of 0.50 or higher 

(Dinev & Hart, 2006) is the criteria to ascertain convergent validity, which is concerned with 

how well measures meant to converge, do converge. The reliability of the latent constructs 

was determined based on Cronbach’s Alpha and CR measurements. Cronbach’s Alpha has 

been the traditional method for validating reliability; however, research suggests that it tends 
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to be too conservative for PLS-SEM analysis and that CR is a more appropriate option 

(Wong, 2019). Consequently, both Cronbach’s Alpha and CR were utilized in this study. 

Cronbach’s Alpha score above 0.60 and a CR of 0.70 or higher is the criteria for adequate 

reliability (Hair et al., 2017). Two criteria are used to verify discriminant validity, including a 

Heterotrait-Monotrait Ratio of Correlations (HTMT) score below the conservative cutoff 

value of 0.85 (Hair et al., 2020; Wong, 2019) and an HTMT interval not containing the value 

of one, assuming a confidence level of 95% (Hair et al., 2017; Wong, 2019). 

Performance analysis of the structural model included multiple areas of assessment. 

Coefficient of Determination (R2) values of 0.75, 0.50, and 0.25 are the criteria for 

determining whether each endogenous latent variable is considered substantial, moderate, or 

weak, respectively (Hair et al., 2011). The purpose of R2 is to identify the total variance of the 

endogenous latent variable explained by the contributing exogenous latent variables (Hair et 

al., 2017). A Variance Inflation Factor (VIF) of lower than 5.0 is the criteria for concluding 

that multicollinearity is not an issue (Hair et al., 2013). Multicollinearity measures the 

relationship between independent variables and to what extent they might vary in 

coordination with one another (Gefen et al., 2000). Path coefficient estimates are assessed for 

statistical significance utilizing the bootstrapping method (Hair et al., 2013). The absolute 

value of the coefficient determines the relative influence of the exogenous latent variable on 

the endogenous latent variable, with a positive value having a positive effect and a negative 

value having a negative effect on the endogenous latent variable. 

Model f2 effect sizes of 0.02, 0.15, and 0.35 are the criteria for determining whether 

the impact or effect of an exogenous latent variable on a corresponding endogenous latent 

variable is small, medium, or large, respectively, with a value below 0.02 being of no effect 

(Hair et al., 2013). For moderation analysis, f2 effect sizes of 0.005, 0.01, and 0.25 are the 

criteria for determining small, medium, or large effect, respectively, regarding the moderating 

influence on corresponding exogenous/endogenous variable relationships (Hair et al., 2017; 

Kenny, 2018). Model f2 effect size is determined by evaluating the change in R2 when an 

exogenous latent variable is omitted (Hair et al., 2017). Finally, the predictive relevance of the 

model is exhibited using the Stone-Geisser’s Q2 value. Blindfolding, with an Omission 

Distance (OD) of 7, is the technique utilized for calculating the Stone-Geisser’s Q2 value 

(Wong, 2019). Q2 values of 0.02, 0.15, and 0.35 are the criteria for determining predictive 
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relevance of weak, moderate, or strong, respectively (Hair et al., 2013). Although potentially 

conservative, a Standardized Root Mean Square Residual (SRMR) value less than 0.08 is the 

criteria for model fit; however, for PLS-SEM research such as ours, model fit analysis is still 

in its infancy and is currently considered ambiguous as an assessment measure (Hair et al., 

2017; Hair et al., 2020). 

External validity refers to how well generalizations may be employed towards the 

larger population (Petursdottir & Carr, 2018). It is supported through random selection of the 

general population (Bhattacherjee, 2012). This study has addressed external validity through 

the random polling of wearable device consumers. 

A significance factor of 0.05 has been employed as appropriate to assess the statistical 

significance of our findings. Determination of statistical significance of each component of 

assessment is ascertained based on the bootstrapping procedure utilizing a large number of 

subsamples (Wong, 2019). In this case, 5,000 subsamples were created, randomly selected 

from the original dataset. SmartPLS estimation was configured to stop after a maximum of 

300 iterations or after convergence had been established. Convergence in less than the 

maximum is the criteria for an acceptable estimation with the assumption of a significant 

sample size, no or non-influential outliers, and an acceptable quantity of similar values 

(Wong, 2019). 
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CHAPTER 5 

RESULTS 

The objective of this nonexperimental quantitative research effort was to explore the 

role privacy plays in the acceptance and use of healthcare wearables, and to explore the 

relevance of the privacy calculus and the privacy paradox in the wearables acceptance 

process. A review of the literature highlighted notable efforts in the privacy, healthcare, and 

wearables research space. These efforts have resulted in important and relevant theoretical 

explanations in their prospective areas; however, there was a gap discovered regarding the 

application of those findings in a more comprehensive and extensive focus specific to privacy 

and wearable acceptance and use.  

Capitalizing on the gains of previous efforts, this research effort sought to extend 

current theoretical understanding of privacy and technology acceptance to a broader and more 

comprehensive model, including drivers of privacy, drivers of acceptance, and the intersection 

of the two when it comes to healthcare-related wearables. This resulted in the afore mentioned 

research model (Figure 1) consisting of sixteen related constructs. Using the data collected via 

the survey instrument, this section discusses the results of the data collection process and 

reports on its findings. First, we present a description of the sample including sample size, 

missing data, and outliers. Second, we confer the results of a descriptive analysis of the data, 

including construct measurements and demographics. And third, we discuss the results of 

statistical analysis of the measurement and structural models. 

Description of the Sample 

As previously noted, data collection consisted of distribution of a survey instrument 

via email, social media outlets, and related discussion boards. The instrument consisted of 58 

measurements, including 52 Likert-based questions, one interval-based measurement, and five 

demographics. Qualtrics was utilized to build, test, and deploy the survey to the target 

audiences (upon IRB approval). At conclusion, a total of 225 (N=225) responses were 

collected. Table 1 provides a summary of a description of the sample, highlighting missing 

values and outliers for each construct indicator.  
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Table 1: Sample Description 

 

3rd/1st Quartile +/- 1.5 * IQR

3rd/1st Quartile +/- 3.0 

* IRQ

(Extreme)

PTV1 225 0 0.0%

PTV2 225 0 0.0%

PTV3 225 0 0.0%

PTV4 225 0 0.0%

PTS1 225 0 0.0%

PTS2 225 0 0.0%

PTS3 225 0 0.0%

PTS4 225 0 0.0%

REF1 225 2 0.9%

REF2 225 2 0.9%

REF3 225 2 0.9%

SEF1 225 0 0.0%

SEF2 225 1 0.4%

SEF3 225 0 0.0%

SEF4 225 0 0.0%

PPR1 225 0 0.0%

PPR2 225 0 0.0%

PPR3 225 0 0.0%

HMO1 225 0 0.0% 47, 50, 124, 183, 193, 204 24, 175

HMO2 225 0 0.0% 17, 47, 111, 124, 183, 184, 193 24, 175

HMO3 225 0 0.0%

HMO4 225 0 0.0% 76, 111, 118, 135, 155, 173 24, 175

PEX1 225 1 0.4% 63, 88, 99, 140, 146, 147, 217 34, 61, 175, 204

PEX2 225 0 0.0% 99, 153, 157, 184, 196, 197 24, 175

PEX3 225 0 0.0% 2, 34, 99, 111, 126, 146, 153 24, 175

EEX1 225 0 0.0% 125, 128, 131, 178, 183 15, 24

EEX2 225 0 0.0% 24

EEX3 225 2 0.9% 24

EEX4 225 0 0.0% 167, 186, 200, 208 24

SIN1 225 1 0.4% 95, 146, 171, 175, 181, 182, 184, 187, 204, 208

SIN2 225 1 0.4% 95, 146, 175, 204

SIN3 225 0 0.0% 146, 159, 164, 171, 175, 182, 204, 208, 210, 217

TSE1 225 1 0.4% 44, 118, 146, 217 24, 204

TSE2 225 2 0.9% 131 24, 204

TSE3 225 0 0.0% 18, 70, 165, 171, 173, 208, 210 24, 204

FCG1 225 0 0.0% 144, 146, 158 24

FCG2 225 0 0.0%

FCG3 225 0 0.0%

FCG4 225 1 0.4% 83, 133, 144, 155, 172, 195, 203 24, 76, 197

PHVU1 225 1 0.4%

PHVU2 225 1 0.4%

PHVU3 225 1 0.4%

PHSE1 225 1 0.4%

PHSE2 225 1 0.4%

PHSE3 225 2 0.9%

ITD1 225 0 0.0%

ITD2 225 1 0.4%

ITD3 225 0 0.0% 101, 115, 128, 147, 158, 169, 217 170, 175, 192

ITA1 225 0 0.0% 72, 80, 160, 175

ITA2 225 1 0.4%

ITA3 225 0 0.0% 72, 80, 175, 204

ITA4 225 0 0.0%

PHS PHS 225 0 0.0%
82, 133, 175, 202, 203, 

204, 215, 217, 218

Missing 

Values

PPR

SEF

REF

PTS

PTV

TSE

SIN

EEX

PEX

HMO

ITA

ITD

PHSE

PHVU

FCG

Outliers

Latent 

Variable
Indicators

% Missing 

Values
N
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The examination of missing data and non-response bias is important for PLS-SEM 

analysis in order to instill confidence in the results and to avoid highly biased results when it 

comes to heterogeneity analysis (Hair et al., 2013). Three of the of the cases (57, 116, and 

185) included missing values for all indicators for one or more constructs. These cases were 

removed due to the inability to measure specific constructs for those specific cases. For the 

222 remaining cases, there was one case with two missing values (separate constructs), or 4%, 

and eleven cases with one missing value per case, or 2%, for a total of 13 missing values, or 

0.11%, for the entire dataset. The maximum number of missing values for any specific 

indicator was 0.9%. Consequently, mean replacement was selected as the preferred method 

for missing value replacement during PLS-SEM analysis, since 0.9% falls well below the 

recommended 5% threshold (Hair et al., 2017).  

Using IBM SPSS for outlier analysis, outliers were discovered for 22 of the 53 

indicators. There were 109 outliers found to be greater than the 3rd/1st quartile +/- 1.5 * 

interquartile range (IQR) but less than the 3rd/1st quartile +/- 3.0 IRQ. There were 41 outliers 

found to be greater than the 3rd/1st quartile +/- 3.0 * IQR. These are considered extreme 

outliers (NIST, 2013). After a review of the data, there was found to be no apparent 

explanation for these outliers (e.g., entry errors) apart from recording the actual opinion of the 

respondent (Hair et al., 2017). Consequently, no adjustments or deletions were applied in the 

case of these outliers. This decision was later supported when estimating the model, which 

completed in three iterations, substantially less than the 300 iterations configured as the stop 

criterion (Wong, 2019). This also confirmed the resulting sample size of 222, which is 

sufficient for PLS-SEM analysis when seeking a statistical power of 80%, a significance level 

of 0.01, and a minimum Coefficient of Determination (R2) of 0.100 when estimating models 

with a maximum of ten exogenous variables pointing to a single endogenous variable (Hair et 

al., 2017). 

Descriptive Analysis 

Table 2 represents the statistical measures of central tendency and dispersion for 

demographic related data. Figures 3 and 4 provide graphical representations of the distribution 

of the data. First, we observe a mean of 2.78 and a standard deviation of 0.617 for USE, 

which identified whether the use of a wearable was recommended (1) or mandated (2) by a 



30 

physician, or neither recommended or mandated (3). We note that 10% of use was 

recommended, 1% was mandated, and 88% was neither recommended or mandated. Second, 

we observe a mean of 1.77 and a standard deviation of 0.419 for CHC, which identified 

respondents as having or not having a current chronic health condition. We note that 23% of 

respondents did have a current chronic health condition and 77% did not at the time of taking 

the survey. Third, we observe a mean of 1.6 and a standard deviation of 0.492 for GDR, 

which identified the gender of the participant. We note that 40% of the participants were male 

and 60% were female.  

 

Table 2: Statistical Measures of Central Tendency and Dispersion – Demographics 

 
 

 

Figure 3: Sample Distribution – USE, CHC, GDR, and AGE 

Demographic Description N Min Max Mean StdDev

USE Use recommended, mandated, or neither 222 1 3 2.78 0.617

CHC Current chronic health condition 221 1 2 1.77 0.419

GDR Gender 221 1 2 1.60 0.492

AGE Age 220 1 6 3.17 1.347

EDU Education 222 2 7 4.61 1.484

10% 1%

88%

0%

20%

40%

60%

80%

100%

RECOMMENDED MANDATED NEITHER

Use Recommended, 
Mandated, or Neither
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60%
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40%
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60%

70%
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10%
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19%
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UNDER
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OLDER

Age



31 

Fourth, we observe a mean of 3.17 and a standard deviation of 1.347 for AGE, which 

chronicled the age range of the participant. We note that 10% of participants were under the 

age of 24, 25% were between the ages of 25 and 34, another 25% were between the ages of 35 

and 44, 19% were between the ages of 45 and 54, 17% were between the ages of 55 and 64, 

and 3% were ages 65 or older. In light of the fact that wearables are an emergent technology, 

the observation that 60% of respondents were below the age of 44 is in alignment with current 

trends. Finally, we observe a mean of 4.61 and a standard deviation of 1.484 for EDU, which 

noted the education level of the participant. We observe no participants with less than a high 

school diploma, 3% with a high school diploma, 23% with some college but no degree, 29% 

with a bachelor’s degree, 22% with a master’s degree, 2% with a professional degree, and 

21% with a doctoral degree. 

 

 
Figure 4: Sample Distribution – EDU 

 

Table 3 represents the statistical measures of central tendency and dispersion for the 

measurement instrument. With the exception of PHS, all construct measurements consist of 

multiple indicators based on a Likert seven-point scale with one representing “strongly 

disagree” and seven representing “strongly agree” (Dittrich et al., 2007). The construct PHS 

was measured based on a single question, which queried the user regarding whether they 

perceived their health to be “very poor”, “poor”, “fair”, “good”, or “excellent. The statistical 

measures observed in Table 3 include the latent variable and corresponding indicators, sample 

size (which varies due to missing values), minimum and maximum values, mean, standard 

deviation, and skewness and kurtosis.   

0% 3%
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Table 3: Statistical Measures of Central Tendency and Dispersion – Measurement Instrument 

 

Statistic StdErr Statistic StdErr

PTV1 222 1 7 4.14 1.854 -0.169 0.163 -1.143 0.325

PTV2 222 1 7 3.97 1.780 0.007 0.163 -1.087 0.325

PTV3 222 1 7 4.85 1.732 -0.737 0.163 -0.398 0.325

PTV4 222 1 7 4.36 1.821 -0.292 0.163 -1.064 0.325

PTS1 222 1 7 3.75 1.782 0.183 0.163 -1.037 0.325

PTS2 222 1 7 4.04 1.843 -0.012 0.163 -1.217 0.325

PTS3 222 1 7 4.20 1.840 -0.135 0.163 -1.180 0.325

PTS4 222 1 7 4.40 1.902 -0.335 0.163 -1.185 0.325

REF1 222 1 7 4.13 1.545 -0.407 0.163 -0.580 0.325

REF2 222 1 7 4.00 1.518 -0.282 0.163 -0.632 0.325

REF3 222 1 7 4.39 1.508 -0.537 0.163 -0.166 0.325

SEF1 222 1 7 4.05 1.511 -0.299 0.163 -0.383 0.325

SEF2 221 1 7 4.12 1.629 -0.377 0.164 -0.820 0.326

SEF3 222 1 7 4.02 1.625 -0.202 0.163 -0.990 0.325

SEF4 222 1 7 4.01 1.648 -0.253 0.163 -0.893 0.325

PPR1 222 1 7 3.55 1.682 0.552 0.163 -0.763 0.325

PPR2 222 1 7 3.35 1.618 0.425 0.163 -0.564 0.325

PPR3 222 1 7 4.65 1.811 -0.577 0.163 -0.588 0.325

HMO1 222 1 7 5.46 1.175 -1.069 0.163 1.770 0.325

HMO2 222 1 7 5.45 1.209 -1.093 0.163 1.599 0.325

HMO3 222 1 7 5.16 1.328 -0.820 0.163 0.608 0.325

HMO4 222 1 7 5.32 1.273 -0.885 0.163 0.692 0.325

PEX1 221 1 7 5.26 1.312 -0.959 0.164 1.138 0.326

PEX2 222 1 7 5.60 1.163 -1.115 0.163 1.895 0.325

PEX3 222 1 7 5.49 1.199 -1.116 0.163 1.621 0.325

EEX1 222 1 7 5.90 1.059 -1.531 0.163 3.324 0.325

EEX2 222 1 7 5.82 1.078 -1.276 0.163 2.240 0.325

EEX3 220 1 7 5.83 1.144 -1.345 0.164 2.109 0.327

EEX4 222 1 7 5.82 1.106 -1.329 0.163 2.144 0.325

SIN1 221 1 7 4.24 1.534 -0.379 0.164 -0.327 0.326

SIN2 221 1 7 4.12 1.491 -0.262 0.164 -0.386 0.326

SIN3 222 1 7 4.05 1.497 -0.264 0.163 -0.341 0.325

TSE1 221 1 7 5.71 1.048 -1.408 0.164 3.722 0.326

TSE2 220 1 7 5.84 0.965 -1.418 0.164 4.651 0.327

TSE3 222 1 7 5.64 1.156 -1.273 0.163 2.288 0.325

FCG1 222 1 7 5.67 1.019 -1.082 0.163 1.797 0.325

FCG2 222 1 7 5.07 1.375 -0.776 0.163 0.389 0.325

FCG3 222 1 7 4.83 1.438 -0.645 0.163 -0.209 0.325

FCG4 221 1 7 5.41 1.246 -1.248 0.164 1.758 0.326

PHVU1 222 1 7 3.13 1.662 0.579 0.163 -0.651 0.325

PHVU2 222 1 7 3.11 1.617 0.619 0.163 -0.569 0.325

PHVU3 222 1 7 3.45 1.711 0.323 0.163 -1.010 0.325

PHSE1 222 1 7 3.87 1.655 -0.050 0.163 -0.866 0.325

PHSE2 222 1 7 3.97 1.683 -0.181 0.163 -0.904 0.325

PHSE3 221 1 7 4.04 1.738 -0.199 0.164 -1.015 0.326

ITD1 222 1 7 4.92 1.743 -0.947 0.163 -0.262 0.325

ITD2 221 1 7 4.71 1.851 -0.732 0.164 -0.705 0.326

ITD3 222 1 7 5.05 1.789 -1.087 0.163 0.033 0.325

ITA1 222 1 7 5.64 1.466 -1.442 0.163 1.922 0.325

ITA2 221 1 7 5.11 1.761 -0.839 0.164 -0.311 0.326

ITA3 222 1 7 5.55 1.515 -1.389 0.163 1.583 0.325

ITA4 222 1 7 5.02 1.892 -0.907 0.163 -0.393 0.325

PHS PHS 222 2 5 3.86 0.688 -0.400 0.163 0.373 0.325

PTS

EEX

SEF

PPR

HMO

PEX

PTV

MeanIndicator Min Max

ITA

PHSE

ITD

TSE

FCG

PHVU

Skewness Kurtosis

N StdDev

REF

SIN

Latent 

Variable
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Skewness measures asymmetry and Kurtosis measures the “peakedness” of the 

distribution of the data (Hae-Young, 2013, p. 2). Although PLS-SEM makes no assumptions 

regarding distribution (Wong, 2013), and is less sensitive to concerns of normality (Hair et al., 

2017), it is important to consider its presence as a part of the analysis process (Hair et al., 

2017). A skewness value greater than two and/or a kurtosis value greater than four (when 

using SPSS) is considered an extreme departure from normality (Hae-Young, 2013). Using 

this criterion, we observe no concerns regarding skewness and one concern (TSE2 = 4.651) 

regarding kurtosis. 

Figure 5 represents the sample distribution for PHS. We observe that none of the 

sampled participants perceived themselves as being in very poor health, 3% perceived their 

health as poor, 22% perceived their health as fair, 60% perceived their health as good, and 

14% perceived themselves to be in excellent health.  

 

 
Figure 5: Sample Distribution - PHS 

Statistical Analysis 

Figure 6 represents the research model post analysis using SmartPLS (Ringle et al., 

2015). Displayed are all indicators (yellow) and loadings for each latent variable construct 

(blue). Arrows pointing to the indicators are indicative of a reflective model (Wong, 2019). 

Endogenous variables are identified with their corresponding R2 values, which is a 

measurement of how much of the variable is explained by the exogenous variables (empty 

blue circles) that point to them (Hair et al., 2011). The green circles represent the moderating 

effects of PHS on the relationships PPR → ITD, HMO → ITD, and PEX → ITD. The 

indicators and their associated constructs are representative of the measurement model 
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whereas the exogenous and endogenous variables and their relationships represent the 

structural model. The next few sections will discuss testing results of both models.  

 

Figure 6: Analyzed Research Model 

Measurement Model Testing 

Table 4 represents a summary of the quality assessment of the measurement model, 

which included tests for convergent validity, internal consistency reliability, and discriminant 

validity using a significance level (alpha) of 0.05 and Bias Correction (BC) for interval 

analysis. All loadings, with the exception of three indicators, exceeded the recommended 

value of 0.70, which accounts for a minimum of 50% of the variance regarding the related 

constructs (Gao et al., 2015). Of the three that fell below, PPR3 and ITA4 measured just 

under the 0.70 minimum (Hair et al., 2017) at 0.678 and 0.677, respectively, and PTS4 

measured significantly under the recommended minimum with a value of 0.443. Table 5 

exhibits the significance of the measurement model after bootstrapping. 
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Table 4: Measurement Model Test Summary 

 

Loadings
Indicator 

Reliability
AVE

Cronbach's 

Alpha

Composite 

Reliability

>0.70 >0.50 >0.50 >0.60 >0.70 <0.85?

HTMT confidence 

level (BC) does 

not include 1

PTV1 0.901 0.812

PTV2 0.921 0.848

PTV3 0.885 0.783

PTV4 0.902 0.814

PTS1 0.938 0.880

PTS2 0.951 0.904

PTS3 0.953 0.908

PTS4 0.443 0.196

REF1 0.934 0.872

REF2 0.948 0.899

REF3 0.765 0.585

SEF1 0.905 0.819

SEF2 0.939 0.882

SEF3 0.940 0.884

SEF4 0.924 0.854

PPR1 0.840 0.706

PPR2 0.870 0.757

PPR3 0.678 0.460

HMO1 0.952 0.906

HMO2 0.943 0.889

HMO3 0.878 0.771

HMO4 0.851 0.724

PEX1 0.837 0.701

PEX2 0.918 0.843

PEX3 0.915 0.837

EEX1 0.928 0.861

EEX2 0.950 0.903

EEX3 0.907 0.823

EEX4 0.936 0.876

SIN1 0.952 0.906

SIN2 0.973 0.947

SIN3 0.969 0.939

TSE1 0.930 0.865

TSE2 0.910 0.828

TSE3 0.814 0.663

FCG1 0.850 0.723

FCG2 0.783 0.613

FCG3 0.740 0.548

FCG4 0.755 0.570

PHVU1 0.924 0.854

PHVU2 0.950 0.903

PHVU3 0.906 0.821

PHSE1 0.955 0.912

PHSE2 0.987 0.974

PHSE3 0.970 0.941

PHS PHS1 1.000 1.000 1.000 1.000 1.000 Yes Yes

ITD1 0.883 0.780

ITD2 0.907 0.823

ITD3 0.875 0.766

ITA1 0.930 0.865

ITA2 0.895 0.801

ITA3 0.806 0.650

ITA4 0.677 0.458

Yes0.847

Yes

0.613 0.863 Yes

Yes

Yes

0.864

0.790

Yes

0.859 Yes

0.942 Yes

Yes

0.970

0.916

Yes

0.948

0.980

Yes

Yes

0.918

Yes

YesYes

0.927

0.869

0.963

Yes0.949

Yes

Yes

Yes

0.948

0.963

Yes

Yes

0.860 0.961 Yes

0.641 0.841 Yes

0.864

0.946

0.715

0.786 Yes

Yes

Yes

0.916

HMO

PEX

0.976

0.693 0.899

ITD

ITA

TSE

FCG

PHVU

PHSE

0.790 0.919

0.785

0.823

EEX

SIN

0.793 0.920

0.866

0.931

0.867

Latent 

Variable
Indicator

Convergent Validty

PTV

Internal Consistency 

Reliability

0.9240.815 0.946

PPR

PTS

REF

SEF

Discriminant Validity

HTMT

0.851

Yes

0.723 0.907 Yes

Yes

Yes
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Table 5: Measurement Model Significance 

 

Confidence 

Interval (BC)
p-value

Confidence 

Interval (BC)
p-value

Confidence 

Interval (BC)
p-value

Confidence 

Interval (BC)
p-value

PTV1 [0.851, 0.937] 0.000

PTV2 [0.895, 0.942] 0.000

PTV3 [0.844, 0.917] 0.000

PTV4 [0.868, 0.928] 0.000

PTS1 [0.913, 0.956] 0.000

PTS2 [0.930, 0.969] 0.000

PTS3 [0.937, 0.965] 0.000

PTS4 [0.255, 0.596] 0.000

REF1 [0.907, 0.953] 0.000

REF2 [0.926, 0.964] 0.000

REF3 [0.652, 0.839] 0.000

SEF1 [0.868, 0.930] 0.000

SEF2 [0.915, 0.956] 0.000

SEF3 [0.917, 0.957] 0.000

SEF4 [0.869, 0.955] 0.000

PPR1 [0.770, 0.886] 0.000

PPR2 [0.820, 0.901] 0.000

PPR3 [0.564, 0.764] 0.000

HMO1 [0.930, 0.966] 0.000

HMO2 [0.917, 0.960] 0.000

HMO3 [0.822, 0.915] 0.000

HMO4 [0.777, 0.904] 0.000

PEX1 [0.742, 0.893] 0.000

PEX2 [0.867, 0.947] 0.000

PEX3 [0.878, 0.940] 0.000

EEX1 [0.882, 0.956] 0.000

EEX2 [0.916, 0.969] 0.000

EEX3 [0.839, 0.945] 0.000

EEX4 [0.894, 0.961] 0.000

SIN1 [0.922, 0.971] 0.000

SIN2 [0.952, 0.984] 0.000

SIN3 [0.952, 0.980] 0.000

TSE1 [0.885, 0.956] 0.000

TSE2 [0.850, 0.947] 0.000

TSE3 [0.644, 0.908] 0.000

FCG1 [0.765, 0.917] 0.000

FCG2 [0.665, 0.864] 0.000

FCG3 [0.572, 0.832] 0.000

FCG4 [0.605, 0.850] 0.000

PHVU1 [0.805, 0.964] 0.000

PHVU2 [0.874, 0.972] 0.000

PHVU3 [0.789, 0.964] 0.000

PHSE1 [0.355, 0.986] 0.000

PHSE2 [0.854, 0.994] 0.000

PHSE3 [0.839, 0.998] 0.000

PHS PHS [1.000, 1.000] 0.000 [1.000, 1.000] 0.000 [1.000, 1.000] NA [1.000, 1.000] NA

ITD1 [0.818, 0.924] 0.000

ITD2 [0.867, 0.938] 0.000

ITD3 [0.809, 0.916] 0.000

ITA1 [0.906, 0.948] 0.000

ITA2 [0.859, 0.921] 0.000

ITA3 [0.689, 0.875] 0.000

ITA4 [0.549, 0.778] 0.000

Internal Consistency Reliability

0.000

[0.808, 0.910] 0.000

[0.926, 0.965] 0.000

[0.947, 0.976] 0.000

[0.788, 0.916] 0.000

Cronbach's Alpha

[0.902, 0.944] 0.000

[0.809, 0.887] 0.000

[0.814, 0.900] 0.000

[0.926, 0.960] 0.000

Composite Reliability

[0.947, 0.975]

[0.963, 0.984]

0.000

0.000

Latent 

Variable
Indicator

Loadings

[0.772, 0.855]

[0.687, 0.764]

ITD 0.000

FCG 0.000

PEX 0.000

REF 0.000

Convergent Validty

PTV 0.000

[0.724, 0.847]

AVE

[0.898, 0.953]

[0.699, 0.856]

[0.542, 0.690]

[0.812, 0.966]

EEX 0.000

0.000

ITA 0.000 0.000

PHSE 0.000 0.000[0.930, 0.989]

[0.628, 0.751]

[0.887, 0.943]

[0.868, 0.923]

[0.955, 0.980] 0.000

[0.811, 0.910] 0.000

[0.791, 0.887] 0.000

0.000

PHVU 0.000 0.000

SIN 0.000 0.000

TSE 0.000 0.000[0.873, 0.947]

[0.825, 0.901]

[0.923, 0.968]

[0.719, 0.847] 0.000

[0.881, 0.945] 0.000[0.796, 0.908]

PPR 0.000 0.000

HMO 0.000 0.000

[0.725, 0.848]

[0.817, 0.905]

0.803, 0.871]

[0.931, 0.963]

[0.887, 0.944]

[0.582, 0.693]

[0.771, 0.867]

[0.631, 0.775] 0.000

[0.899, 0.948]

0.000

0.000

SEF 0.000 0.000

PTS 0.000 0.000

[0.931, 0.959]

[0.886, 0.926]

[0.887, 0.938]

[0.948, 0.971]

[0.727, 0.834]

[0.819, 0.893]
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The AVE values for all latent variables were higher than the minimum recommended 

value of 0.50 (Hair et al., 2017), confirming convergent validity. Internal consistency was 

measured against accepted values of 0.60 and 0.70 for Cronbach’s Alpha and Composite 

Reliability (CR), respectively. All constructs passed, indicating no problems with internal 

consistency (Hair et al., 2017). Finally, two criteria of Heterotriat-Monotrait (HTMT) were 

measured to assess discriminant validity, including an HTMT ratio of correlations score 

below the cutoff of 0.85 (Hair et al., 2020) and an HTMT interval not containing the value of 

one, considering a confidence level of 95% (Hair et al., 2017; Wong, 2019). All constructs 

were found to pass both criteria, confirming discriminant validity. Referring to Table 5, all 

tests were significant at the 0.05 significance level. 

 To ensure adherence to the recommended minimum for loadings, the three indicators 

with loadings less than 0.70 were removed and the research model reanalyzed (Figure 7).  

 

 

Figure 7: Analyzed Research Model (loadings > 0.70) 
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Table 7 and Table 8 represent the test and significance of the measurement model, 

respectively. We observe an increase in AVE and internal consistency reliability values, 

confirming the decision to remove the low performing indicators (Hair et al., 2017). For all 

constructs, we recognize continued compliance regarding convergent validity, internal 

consistency reliability, and discriminant validity at the required significance level. 

Structural Model Testing 

As noted, PLS-SEM modeling, using SmartPLS (Ringle et al., 2015), was applied to 

discern cause and affect relationships of the structural model. The model was estimated 

utilizing the PLS algorithm with complete bootstrapping using the bias-corrected confidence 

interval method, two-tailed test, 5,000 subsamples, and mean replacement for missing values. 

Table 6 represents a summary of the model estimation results pertaining specifically to the 

endogenous latent variables. We observe explained variances of 39.6% (moderate) for PPR, 

3.2% (very weak) for PHS, 24.1% (weak) for ITD, and 38.3% (moderate) for ITA (Hair et al., 

2011); however, the significance level (p-value) for PHS was notably larger than 0.05, casting 

doubt on the ability to estimate its explained variance. 

 

Table 6: Endogenous Variable Summary 

 

 

Blindfolding, utilizing an Omission Distance (OD) of 7, was the technique used to 

calculate Stone-Geisser’s Q2, which determines the predictive relevance of the model (Wong, 

2019). We observe weak predictive relevance for PHS, better than moderate relevance for 

PPR and ITA, and moderate relevance for ITD. 

 

  

Value
Confidence 

Interval (BC)
p-value Value

Confidence 

Interval (BC)
p-value

PPR 0.396 [0.285, 0.485] 0.000 0.385 [0.272, 0.476] 0.000 0.306

PHS 0.032 [0.004, 0.084] 0.227 0.023 [-0.005, 0.076] 0.385 0.014

ITD 0.241 [0.116, 0.336] 0.000 0.216 [0.088, 0.315] 0.000 0.170

ITA 0.383 [0.203, 0.511] 0.000 0.36 [0.173, 0.492] 0.000 0.287

Predictive 

Relevance Q2

Endogenous 

Latent 

Variable

Coefficient of Determination (R2) R2 Adjusted
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Table 7: Measurement Model Test Summary (loadings > 0.70) 

 

  

Loadings
Indicator 

Reliability
AVE

Cronbach's 

Alpha

Composite 

Reliability

>0.70 >0.50 >0.50 >0.60 >0.70 <0.85?

HTMT confidence 

level (BC) does 

not include 1

PTV1 0.900 0.810

PTV2 0.925 0.856

PTV3 0.878 0.771

PTV4 0.905 0.819

PTS1 0.949 0.901

PTS2 0.963 0.927

PTS3 0.957 0.916

REF1 0.933 0.870

REF2 0.949 0.901

REF3 0.765 0.585

SEF1 0.906 0.821

SEF2 0.938 0.880

SEF3 0.941 0.885

SEF4 0.924 0.854

PPR1 0.888 0.789

PPR2 0.916 0.839

HMO1 0.954 0.910

HMO2 0.945 0.893

HMO3 0.880 0.774

HMO4 0.846 0.716

PEX1 0.836 0.699

PEX2 0.918 0.843

PEX3 0.916 0.839

EEX1 0.929 0.863

EEX2 0.949 0.901

EEX3 0.910 0.828

EEX4 0.934 0.872

SIN1 0.951 0.904

SIN2 0.973 0.947

SIN3 0.970 0.941

TSE1 0.932 0.869

TSE2 0.908 0.824

TSE3 0.812 0.659

FCG1 0.857 0.734

FCG2 0.786 0.618

FCG3 0.740 0.548

FCG4 0.743 0.552

PHVU1 0.924 0.854

PHVU2 0.950 0.903

PHVU3 0.906 0.821

PHSE1 0.955 0.912

PHSE2 0.987 0.974

PHSE3 0.970 0.941

PHS PHS1 1.000 1.000 1.000 1.000 1.000 Yes Yes

ITD1 0.883 0.780

ITD2 0.908 0.824

ITD3 0.875 0.766

ITA1 0.938 0.880

ITA2 0.919 0.845

ITA3 0.846 0.716

Discriminant Validity

HTMT

0.953

Yes

0.914 0.970 Yes

Yes

Yes

Latent 

Variable
Indicator

Convergent Validty

PTV

Internal Consistency 

Reliability

0.9240.814 0.946

PPR

PTS

REF

SEF

HMO

PEX

0.976

0.814 0.929

ITD

ITA

TSE

FCG

PHVU

PHSE

0.790 0.919

0.785

0.823

EEX

SIN

0.793 0.920

0.866

0.931

0.867

Yes

0.860 0.961 Yes

0.814 0.897 Yes

0.864

0.946

0.773

0.786 Yes

Yes

Yes

0.916

Yes

YesYes

0.927

0.869

0.963

Yes0.949

Yes

Yes

Yes

0.948

0.963

Yes

Yes0.885

Yes

0.613 0.863 Yes

Yes

Yes

0.864

0.790

Yes

0.859 Yes

0.942 Yes

Yes

0.970

0.916

Yes

0.948

0.980

Yes

Yes

0.918
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Table 8: Measurement Model Significance (loadings > 0.70) 

 

Confidence 

Interval (BC)
p-value

Confidence 

Interval (BC)
p-value

Confidence 

Interval (BC)
p-value

Confidence 

Interval (BC)
p-value

PTV1 [0.844, 0.934] 0.000

PTV2 [0.901, 0.943] 0.000

PTV3 [0.832, 0.913] 0.000

PTV4 [0.871, 0.930] 0.000

PTS1 [0.929, 0.963] 0.000

PTS2 [0.942, 0.976] 0.000

PTS3 [0.939, 0.970] 0.000

REF1 [0.904, 0.952] 0.000

REF2 [0.927, 0.964] 0.000

REF3 [0.649, 0.838] 0.000

SEF1 [0.870, 0.930] 0.000

SEF2 [0.912, 0.955] 0.000

SEF3 [0.917, 0.958] 0.000

SEF4 [0.868, 0.955] 0.000

PPR1 [0.830, 0.919] 0.000

PPR2 [0.879, 0.937] 0.000

HMO1 [0.932, 0.967] 0.000

HMO2 [0.919, 0.961] 0.000

HMO3 [0.826, 0.918] 0.000

HMO4 [0.760, 0.904] 0.000

PEX1 [0.743, 0.893] 0.000

PEX2 [0.868, 0.948] 0.000

PEX3 [0.879, 0.940] 0.000

EEX1 [0.884, 0.956] 0.000

EEX2 [0.909, 0.970] 0.000

EEX3 [0.840, 0.948] 0.000

EEX4 [0.883, 0.961] 0.000

SIN1 [0.914, 0.971] 0.000

SIN2 [0.951, 0.984] 0.000

SIN3 [0.953, 0.981] 0.000

TSE1 [0.889, 0.961] 0.000

TSE2 [0.850, 0.947] 0.000

TSE3 [0.636, 0.908] 0.000

FCG1 [0.770, 0.925] 0.000

FCG2 [0.646, 0.874] 0.000

FCG3 [0.553, 0.837] 0.000

FCG4 [0.551, 0.852] 0.000

PHVU1 [0.803, 0.964] 0.000

PHVU2 [0.876, 0.972] 0.000

PHVU3 [0.805, 0.963] 0.000

PHSE1 [0.429, 0.986] 0.000

PHSE2 [0.891, 0.995] 0.000

PHSE3 [0.837, 0.998] 0.000

PHS PHS [1.000, 1.000] 0.000 [1.000, 1.000] 0.000 [1.000, 1.000] NA [1.000, 1.000] NA

ITD1 [0.820, 0.923] 0.000

ITD2 [0.868, 0.936] 0.000

ITD3 [0.805, 0.917] 0.000

ITA1 [0.918, 0.954] 0.000

ITA2 [0.891, 0.942] 0.000

ITA3 [0.752, 0.903] 0.000

0.000

0.000

SEF 0.000 0.000

PTS 0.000 0.000

[0.930, 0.958]

[0.959, 0.978]

[0.887, 0.937]

[0.963, 0.984]

[0.729, 0.833]

[0.818, 0.893]

PPR 0.000 0.000

HMO 0.000 0.000

[0.723, 0.849]

[0.817, 0.906]

0.862, 0.924]

[0.930, 0.963]

[0.886, 0.944]

[0.757, 0.858]

[0.768, 0.868]

[0.683, 0.835] 0.000

[0.898, 0.949]

0.000

PHVU 0.000 0.000

SIN 0.000 0.000

TSE 0.000 0.000[0.873, 0.948]

[0.823, 0.899]

[0.924, 0.967]

[0.718, 0.844] 0.000

[0.882, 0.945] 0.000[0.798, 0.906]

0.000

ITA 0.000 0.000

PHSE 0.000 0.000[0.945, 0.989]

[0.752, 0.861]

[0.887, 0.943]

[0.900, 0.949]

[0.956, 0.980] 0.000

[0.808, 0.908] 0.000

[0.833, 0.919] 0.000

Latent 

Variable
Indicator Loadings

[0.770, 0.852]

[0.887, 0.937]

ITD 0.000

FCG 0.000

PEX 0.000

REF 0.000

Convergent Validty

PTV 0.000

[0.724, 0.845]

AVE

[0.896, 0.954]

[0.698, 0.858]

[0.539, 0.688]

[0.847, 0.967]

EEX 0.000

Internal Consistency Reliability

0.000

[0.807, 0.911] 0.000

[0.925, 0.965] 0.000

[0.946, 0.976] 0.000

[0.786, 0.917] 0.000

Cronbach's Alpha

[0.902, 0.942] 0.000

[0.936, 0.966] 0.000

[0.815, 0.900] 0.000

[0.926, 0.960] 0.000

Composite Reliability

[0.947, 0.975]

[0.963, 0.984]

0.000

0.000
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Sorted by hypotheses, Table 9 provides a summary of the inspection of exogenous 

variables effects on corresponding endogenous variables. This includes the moderating effects 

of PHS. Considering VIF values of less than 5.0, we observe that multicollinearity is not a 

concern for all hypothesized relationships (Hair et al., 2013). Based on path coefficients and 

significance, we discover support for hypotheses H2, H3, H5, H8, H9, and H20 at an alpha of 

0.01 (***), H7, H14, and H17 at an alpha of 0.05 (**), and H4 at an alpha of 0.10 (*). H6, 

H11 and H16 were just over the 0.10 significance level with values of 0.105, 0.114, and 

0.116, respectively. H1 was somewhat beyond acceptable significance levels.  

 

Table 9: Structural Model Test Summary 

 

 

Hypotheses H10, H12, H13, H15, H18, and H19 were well beyond acceptable 

significance levels, indicating failure to infer any effect in the relationships between latent 

constructs. Effect size (f2) denotes the impact of exogenous variables on endogenous variables 

with 0.02, 0.15, and 0.35 being criteria for a small, medium or large impact, respectively 

Hypothesis Relationship

VIF

<5.0

Path 

Coefficient

Confidence 

Interval (BC)

Effect 

Size (f2)

H1+ PTV -> PPR 1.817 0.118 [-0.030, 0.274] 0.135 0.013

H2+ PTS -> PPR 1.375 0.301 [0.187, 0.410] 0.000 *** 0.109

H3- REF -> PPR 2.380 -0.209 [-0.362, -0.049] 0.009 *** 0.030

H4- SEF -> PPR 2.347 -0.148 [-0.312, 0.017] 0.079 * 0.016

H5- PPR -> ITD 1.112 -0.205 [-0.340, -0.061] 0.004 *** 0.050

H6+ HMO -> ITD 1.503 0.124 [-0.023, 0.280] 0.105 0.014

H7+ HMO -> ITA 1.688 0.182 [0.028, 0.349] 0.026 ** 0.032

H8+ PEX -> ITD 1.585 0.265 [0.094, 0.417] 0.001 *** 0.058

H9+ PEX -> ITA 2.356 0.363 [0.156, 0.560] 0.001 *** 0.091

H10+ EEX -> ITA 1.831 -0.020 [-0.170, 0.117] 0.780 0.000

H11+ SIN -> ITA 1.272 0.098 [-0.024, 0.219] 0.114 0.012

H12+ TSE -> ITA 2.038 -0.066 [-0.257, 0.113] 0.490 0.003

H13+ FCG -> ITA 1.690 -0.095 [-0.253, 0.023] 0.171 0.009

H14- PHVU -> PHS 1.137 -0.172 [-0.313, -0.038] 0.018 ** 0.027

H15- PHSE -> PHS 1.137 -0.018 [-0.134, 0.167] 0.811 0.000

H16+ PPR*PHS -> ITD 1.305 -0.116 [-0.246, 0.037] 0.116 0.014

H17- HMO*PHS -> ITD 2.069 -0.155 [-0.314, -0.010] 0.048 ** 0.021

H18- PEX*PHS -> ITD 2.054 0.059 [-0.094, 0.208] 0.438 0.003

H19- PHS -> ITA 1.063 0.000 [-0.108, 0.111] 0.993 0.000

H20+ ITD -> ITA 1.259 0.296 [0.137, 0.458] 0.000 *** 0.113

p-value
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(Hair et al., 2013). Of the significant relationships identified, H2, H9, and H20 had a 

somewhat medium impact, while the others had a somewhat small impact. 

Moderator Analysis 

Referring to Table 9 above, H16, H17, and H18 hypothesized a moderating effect of 

PHS on the relationships between the exogenous variables, PPR, HMO, and PEX, and the 

endogenous variable ITD. Regarding moderator analysis, the path coefficient is reflective of 

the interaction term. The graphs shown in figures 8, 9, and 10 exhibit the slope analysis of the 

moderating effect of PHS on these relationships when using the two-stage approach for 

creating the interaction terms. The x-axis represents the exogenous variable and the y-axis 

represents the ITD endogenous variable. The red line represents the effect of PHS at mean, 

the blue line at -1 standard deviation (SD), and the green line at +1 SD.  

Regarding PPR (Figure 8), which normally has a negative influence on ITD, we 

observe a significant decrease in the negative influence of PPR on ITD with lower levels of 

PHS (blue line) and a significant increase in the negative influence of PPR on ITD with 

higher levels of PHS (green line). This is reflected regarding the interaction term of -0.116 

and directly correlates with hypothesis H16. Specific to moderator analysis, effect sizes (f2) of 

0.005, 0.01, and 0.25 are the criteria for a small, medium or large effect, respectively (Hair et 

al., 2017; Kenny, 2018). Accordingly, we observe a somewhat large effect (0.014) of PHS on 

the PPR→ITD relationship.  

 

Figure 8: Moderating Effect of PHS on PPR→ITD 
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Regarding HMO (Figure 9), which normally has a positive influence on ITD, we 

observe a significant increase in the positive influence of HMO on ITD with lower levels of 

PHS (blue line) and a decrease in the positive influence with higher levels of PHS (green 

line). This is reflected in the interaction term of -0.155 and directly correlates with H17. We 

observe a somewhat large effect (0.021) of PHS on the HMO→ITD relationship. 

 

 

Figure 9: Moderating Effect of PHS on HMO→ITD 

 

Regarding PEX (Figure 10), which normally has a positive influence on ITD, we 

observe an increase in the positive influence of PEX on ITD with lower levels of PHS (blue 

line) and a decrease in the positive influence with higher levels of PHS (green line). This is 

reflected in the interaction term of 0.059 and is in alignment with H18. We observe a very 

small effect (0.003) of PHS on the PEX→ITD relationship; however, as referenced earlier, 

H18 was determined to be well outside acceptable significance levels, indicating failure to 

infer any effect. 
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Figure 10: Moderating Effect of PHS on PEX→ITD 
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CHAPTER 6 

DISCUSSION 

The objective of the research model was to emphasize the multi-dimensional role of 

privacy regarding the acceptance of healthcare wearables. This has been accomplished via the 

assimilation of well-established theories in the realm of technology acceptance and privacy. 

The results of this study afford significant evidence that privacy is truly a critical concern for 

potential users, and, joined with benefits to disclosure, are moderated by the perceived health 

status of the individual. Specific to the research questions guiding this endeavor, we observe 

significant evidence regarding the impact of the privacy calculus on intentions to disclose 

information on the healthcare wearables adoption decision process (RQ1). In addition, we 

observe participation of the privacy paradox in the context of healthcare wearable decisions 

(RQ2). The following narrative provides an explanation of the findings. 

The influence of PTV on PPR is somewhat inconclusive with a p-value of 0.135; 

however, PTS has the greatest significant positive effect, REF has a significant negative 

effect, and SEF has a somewhat negative effect on PPR. The inconclusiveness of PTV on PPR 

may be ascribed to a lack of knowledge by participants regarding threats to privacy specific to 

wearables, an emerging health technology (Sun et al., 2013). Even so, the net validation of H2 

through H4 supports the existence of the risk calculus where the balance of threats, joined 

with the ability to cope, determine concerns of privacy (Zhang et al., 2018). The construct 

PPR has a significant negative effect on ITD, concluding that threats to one’s privacy, and the 

ability to respond, influences one’s concern with privacy and their willingness to disclose 

personal information. 

The construct HMO is reservedly confirmed to have a somewhat significant positive 

effect on ITD. The same construct is found to have a significant positive effect on ITA. 

Construct PEX is discovered to have the greatest significant positive effect on both ITD and 

ITA. Accordingly, we understand that the pleasure of using a wearable device, and the 

expectation that the device will deliver the benefit expected, encourages disclosure of one’s 

private information as well as wearable acceptance. Referring to RQ1, the confirmation of 

H5, H6, and H8 provides evidence of the privacy calculus, the conceptualization of the 
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privacy trade-off process where privacy risks, the balance of threats and coping appraisals, are 

weighed with the benefits associated with disclosure (Kehr et al., 2015). This aligns with 

other health/privacy-oriented research (Zhang et al., 2018). Additionally, the net confirmation 

of H2 through H8 supports the conceptualization of the dual-calculus model, which jointly 

contemplates the risk calculus and the privacy calculus in the disclosure decision process (Li, 

2012). 

Of the four constructs, EEX, SIN, TSE, and FCG, only SIN has a somewhat 

significant positive influence on ITA. Consequently, H10, H12, and H13 are not supported 

and H11 is somewhat supported. We conclude that the effort required, one’s confidence in 

their ability to use the device, and the perceived suitability to satisfy expectations have no 

significant effect on adopting a wearable device; however, the effect of others, somewhat 

influences wearable adoption, but only at minimal levels. This corresponds to past wearable 

research, such as (Patton, 2018), which also found inconclusive evidence of similar constructs 

to ITA. One potential explanation could be due to the fairly even distribution of ages between 

24 and 64 years of age (see Table 1 above), which could also account for decreased levels of 

normality discovered for the noted constructs. Age has been shown to significantly effect 

factors related to technology acceptance (Morris & Venkatesh, 2000; Venkatesh et al., 2012), 

potentially skewing results when corporately analyzed.  

Another potential explanation for the low performance of EEX, TSE, and FCG 

concerns the type of wearable device, whether it be for fitness or medical purposes. 96% of 

the participants of this study were in fair to excellent health, 88% were neither recommended 

nor mandated to use a device, and 77% had no chronic condition, suggesting a fairly healthy 

pool of respondents. We infer from these demographics that the larger population of 

participants were considering the use of fitness-oriented devices. Prior research (Gao et al., 

2015) discovered that fitness wearable device users were more concerned with privacy and 

what others thought versus device effectiveness, the amount of effort required, and their 

ability to operate the device. Age has also been found to be a mitigating factor (Gao et al., 

2015), possibly because an older population generally has more health concerns and might be 

more likely to seek a healthcare-oriented wearable device to address a specific medical issue. 

Consequently, we recognize that the type of device considered and/or age of the participant 
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might also provide explanation of the low performance of EEX, TSE, and FCG as well as 

confirm somewhat significant findings for SIN. 

Construct PHVU is discovered to have a significant negative influence on PHS, 

confirming H14; however, the same influence is not confirmed for PHSE, rejecting H15. We 

conclude vulnerability to health issues does negatively affect one’s perception of health status. 

Hypotheses H16, H17, and H18 focus on the moderating influence of one’s perceived health 

status on their intention to disclose. We observe that higher levels of PHS have a somewhat 

significant positive effect on the influence of PPR on ITD at a significance level just above 

0.10, meaning that increases in the perception of one’s health increases the effect of their 

perception of privacy risk on disclosing private information, confirming H16. In regards to 

healthcare wearables, people are more concerned with the cost or risk of disclosure of their 

personal and private information with increased levels of perceived health status. We witness 

that higher levels of PHS also have a significant negative impact on the influence of HMO on 

ITD, confirming H17. People place less emphasis on the benefit of pleasure with increased 

levels of perceived health status. Finally, we observe no significant impact of PHS on PEX, 

rejecting H18. We conclude, that with higher perceptions of health status, a user’s concern for 

privacy has a higher negative influence on intentions to disclose, while the expected 

enjoyment they expect to receive from using a healthcare wearable device is less of a positive 

influence on the decision to disclose their personal information. Referring to RQ2, we 

discover the acuity of one’s health status does moderate the disclosure decision process, 

confirming the presence of the privacy paradox. 

We observe no significant influence of PHS on ITA, discounting H19. However, we 

do note a significant positive effect of ITD on ITA, supporting H20. We accept that one’s 

intentions to disclose private information does affect whether or not they intend to adopt a 

wearable device. This aligns with findings associated with Gao et al.’s (2015) research, where 

the single construct of privacy was found to significantly contribute to explaining wearable 

acceptance. In the current study, the construct of privacy was expanded in order to capture the 

intricate behavioral progressions surrounding its presence, conceptualized by the risk 

calculus, the privacy calculus, and the privacy paradox. Not only did the results align with the 

aforementioned study, we observe a greater influence with ITD explaining 29.6% of the 
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variance of ITA in the current study, as opposed to the singular construct of perceived privacy 

accounting for 21.5% in the former. 
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CHAPTER 7 

CONCLUSIONS 

The wearable device acceptance process is wrought with a plethora of various 

influences and thought processes, partially attributed to the sensitivity of the information 

captured. This is especially apropos in the realm of healthcare. While past research has 

focused on specific aspects of privacy and acceptance (Gao et al., 2015; Harmon, 2019; Scott, 

2020), there remained a gap as to a comprehensive analysis of privacy in the realm of 

healthcare-related wearables. Utilizing established research in the area of technology 

acceptance, PMT, HBM, and privacy calculus theories, this study sought to fill this gap by 

conceptualizing these influences and thought processes into a research model that could be 

measured and assessed based on a representative sample of the populace. The objective was 

particularly focused on the role of privacy in the form of the privacy calculus (RQ1) and the 

privacy paradox (RQ2) in the realm of wearable acceptance. Using survey research and PLS-

SEM analysis, this study successfully confirmed the presence of both theories in the context 

of wearable acceptance. 

This effort significantly expands what is currently known regarding the healthcare 

wearables’ privacy/acceptance paradigm and thus notably contributes to our understanding 

regarding the influences effecting the healthcare wearables’ acceptance process. Contributions 

include understanding and generalization in the healthcare wearables knowledge space as well 

as practical implications for wearable manufacturers and consumers. Specifically, this 

research endeavor furthers knowledge regarding the intersection of privacy and healthcare 

wearables acceptance and use. While many previous efforts such as (Gao et al., 2015; Li et 

al., 2016; Zhang et al., 2018) focused on specific research domains of the wearables paradigm 

and/or health privacy, the current research capitalized on the success of those prior initiatives 

and expanded on their findings. This research combined antecedents to privacy disclosure 

with antecedents to technology acceptance. In addition, the construct of perceived health 

status was introduced in order to capture how one feels about their health and how that 

perception contributed to their acceptance of the technology. Consequently, this study 

facilitated a more complete understanding of the decision processes inherent in the use of an 
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emerging technology, such as wearables, that is proving to add significance and practical 

value to those who utilize it.  

Wearable devices are no longer just a fad procured simply for the sake of curiosity, as 

demonstrated by 2022 projected sales of 189.9 million (Ubrani et al., 2018). This statistic 

suggests that consumers are indeed discovering sincere value in their use, especially in the 

realm of health-related wearables, which offer increased management and success over one’s 

health and wellbeing; however, their use is not without risk, especially in the realm of 

privacy. It is imperative that researchers and healthcare organizations understand the role the 

risk calculus, the privacy calculus, and the privacy paradox play regarding the decision of 

consumers to disclose or not to disclose personal information. This is particularly important in 

the realm of healthcare wearable devices due to the potential negative impact on the health 

and wellbeing of the individual, should they choose to avoid the technology, and the risk to 

privacy should they choose to accept it. The current research sought to conceptualize and 

address this imperative. 

For researchers, understanding the role of the privacy calculus theories facilitates 

sound conclusions and guides future research endeavors. This is especially apropos regarding 

the privacy paradox, which is still surrounded by a shroud of obscurity and complexity 

(Gerber et al., 2018; Kokolakis, 2017). For healthcare organizations, understanding informs 

the process of capturing, managing, and communicating personal information, including 

health-related data. Understanding will also highlight the importance of transparency and 

ethics regarding what information is captured and who will have access to it. This study 

further enlightens the privacy and healthcare wearable space, enhancing the value proposition 

of this recent and promising area of technology. 

As previously noted in the discussion, the privacy paradox was observed regarding the 

moderating effect of perceived health status on perceived privacy risk and hedonic 

motivation. In light of this significant observation and contribution in the realm of privacy and 

healthcare wearables, this study could be enhanced with continued research regarding the 

privacy paradox and health status, with a recommended focus on various types of wearable 

devices as well as different health concerns. Regarding health status, none of the respondents 

reported very poor health. Consequently, our study is incomplete when considering the full 
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spectrum of one’s health. The same insufficiency exists for education, where respondents with 

no degree were absent from the sample. 

There are multiple opportunities for future research resulting from the current study. 

First, it would be advantageous to resample the population followed by similar analysis with 

the intention to address this study’s shortcomings regarding health status, device type, and 

education. Health status and device type would be particularly helpful to shed light on those 

hypotheses with insignificant results. Second, we observe opportunity related to categorical 

moderation analysis (PLS-MGA) (Wong, 2019) based on participant demographics such as 

usage, chronic health condition, age, and education. This would offer opportunity to compare 

the moderating effect of each category. Finally, an opportunity arises regarding the variety of 

wearable devices currently on the market. Theoretical understanding would benefit by 

applying an adjusted research model (based on the findings of this study) and narrowing the 

target to specific categories of wearables.  
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APPENDICES 

APPENDIX A: RESEARH MODEL CONSTRUCTS MEASUREMENTS 

 

Seven-point Likert scale 

 

Perceived Threat Vulnerability (PTV) – Sourced from Zhang et al. (2018) 
PTV1: My information privacy is at risk of being invaded. 

PTV2: It is likely that my information privacy will be invaded. 

PTV3: It is possible that my information privacy will be invaded. 
PTV4: My information privacy is not safe from being invaded. 

 
Perceived Threat Severity (PTS) – Sourced from Zhang et al. (2018) 

PTS1: If my information privacy is invaded, it would be severe. 

PTS2: If my information privacy is invaded, it would be serious. 
PTS3: If my information privacy is invaded, it would be significant. 

PTS4: If my information privacy is invaded, it would not be irrelevant. 
 

Response Efficacy (REF) – Adapted from Zhang et al. (2018) 

REF1: The privacy protection measures provided by healthcare wearable manufacturers 
are suitable for protecting my personal information. 

REF2: The privacy protection measures provided by healthcare wearable manufacturers 
can effectively protect my personal information. 

REF3: My personal information is more likely to be protected when using privacy 

protection measures provided by healthcare wearable manufacturers. 
 

Task Self-Efficacy (SEF) – Sourced from Zhang et al. (2018) 
SEF1: Protecting my information privacy is easy for me when using healthcare wearable 

devices. 
SEF2: I have the capability to protect my information privacy when using healthcare 

wearable devices. 

SEF3: I am able to protect my information privacy without much effort when using 
healthcare wearable devices. 

SEF4: Protecting my information privacy is not difficult when using healthcare wearable 
devices. 

 

Perceived Privacy Risk (PPR) – Adapted from Zhang et al. (2018) 
PPR1: I believe that submitting health and other privacy information for the purpose of 

using wearable devices is not advisable at all. 
PPR2: Health and other privacy information submitted for the purpose of using wearable 

devices will be abused for sure once submitted. 

PPR3: Health and other privacy information submitted for the purpose of using wearable 
devices could be shared or sold to others once submitted. 
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Hedonic Motivation (HMO) – Adapted from Gao et al. (2015) 

HMO1: Healthcare wearable devices are fun to use. 
HMO2: Healthcare wearable devices are enjoyable to use. 

HMO3: Healthcare wearable devices are entertaining to use. 
HMO4: Healthcare wearable devices are not boring to use. 

 

Performance Expectancy (PEX) – Adapted from Gao et al. (2015) 
PEX1: Healthcare wearable devices add value to my personal life. 

PEX2: Using healthcare wearable devices helps me to achieve my healthcare goals more 
quickly. 

PEX3: Using healthcare wearable devices enhances the quality of my daily healthcare 

requirements. 
 

Effort Expectancy (EEX) – Adapted from Gao et al. (2015) 
EEX1: It is easy for me to learn how to use healthcare wearable devices. 

EEX2: Healthcare wearable devices are easy to use. 

EEX3: Becoming skillful at using healthcare wearable devices is easy for me. 
EEX4: Healthcare wearable device are not difficult to use. 

 
Social Influence (SIN) – Adapted from Gao et al. (2015) 

SIN1: Others who are important to me would feel that I should use a healthcare wearable 

device. 
SIN2: Others who influence me would feel that I should use a healthcare wearable device. 

SIN3: Others whose opinions I value would prefer that I should use a healthcare wearable 
device. 

 

Technology Self-Efficacy (TSE) – Adapted from Gao et al. (2015) 
TSE1: Using wearable devices make it easy for me to self-monitor my health-related 

conditions. 
TSE2: I am capable to use healthcare wearable devices to self-monitor my health-related 

conditions. 

TSE3: It takes little effort to use healthcare wearable devices to self-monitor my health-
related conditions. 

 
Functional Congruence (FCG) – Adapted from Gao et al. (2015) 

FCG1: Healthcare wearable devices are anticipated to be comfortable to use. 

FCG2: Healthcare wearable devices are anticipated to be fashionable. 
FCG3: Healthcare wearable devices are anticipated to be priced appropriately according to 

device quality. 
FCG4: Healthcare wearable devices are not anticipated to be unpleasant to use. 
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Perceived Health Vulnerability (PHVU) – Source/adapted from Gao et al. (2015) 
PHVU1: I am at risk of suffering one or more of the following concerns: having little 

knowledge about self-healthcare, monitoring personal daily healthcare, and/or 
suffering health-related diseases. 

PHVU2: It is likely that I will suffer one or more of the following concerns: having little 

knowledge about self-healthcare, monitoring personal daily healthcare, and/or 
suffering health-related diseases. 

PHVU3: It is possible for me to suffer one or more of the following concerns: having little 
knowledge about self-healthcare, monitoring personal daily healthcare, and/or 

suffering health-related diseases. 

 
Perceived Health Severity (PHSE) – Adapted from Gao et al. (2015) 

PHSE1: It would be severe if I suffered one or more of the following concerns: having 
little knowledge about self-healthcare, monitoring personal daily healthcare, 

and/or suffering health-related diseases. 

PHSE2: It would be serious if I suffered one or more of the following concerns: having 
little knowledge about self-healthcare, monitoring personal daily healthcare, 

and/or suffering health-related diseases. 
PHSE3: It would be significant if I suffered one or more of the following problems: 

having little knowledge about self-healthcare, monitoring personal daily 

healthcare, and/or suffering health-related diseases. 
 

Intention to Disclose (ITD) – Adapted from Zhang et al. (2018) 
ITD1: I am likely to provide general personal information in the use of healthcare 

wearable devices (e.g., such as name, email, profile image, etc.). 

ITD2: I am likely to provide specific personal information in the use of healthcare 
wearable devices (e.g., such as DOB, gender, ethnicity, race, etc.). 

ITD3: I am likely to provide personal fitness and health information in the use of 
healthcare wearable devices (e.g., such as fitness activity, exercise routines, 

medications, health history, vital signs, etc.). 

 
Intention to Adopt Healthcare Wearable Devices (ITA) – Adapted from Gao et al. (2015) 

ITA1: I anticipate using a healthcare wearable device in the future. 
ITA2: I have plans to use a healthcare wearable device whenever possible. 

ITA3: I foresee increasing use of healthcare wearable devices in the future. 

ITA4: I do not anticipate avoiding the use of healthcare wearable devices in the future. 
 

Interval Scale Measurements 

 

Perceived Health Status (PHS) – From Kim et al. (2015) 

1 = Very poor 
2 = Poor 

3 = Fair 
4 = Good 

5 = Excellent 
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Demographic 

 

Use recommended, mandated, or neither (USE) 
1: Recommended 

2: Mandated 

3: Neither 
 

Current chronic health condition (CHC) 
1: Yes 

2: No 

 
Gender (GDR) 

1: Male 
2: Female 

 

Age (AGE) – From Malhotra et al. (2004). 
1: 24 or under 

2: 25-34 
3: 35-44 

4: 45-54 

5: 55-64 
6: 65 or older 

 
Highest level of education completed (EDU) – From Malhotra et al. (2004) 

1: Some school, no degree 

2: Highschool graduate 
3: Some college, no degree 

4: Bachelor’s degree 
5: Master’s degree 

6: Professional degree 

7: Doctoral degree 
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APPENDIX B: SMARTPLS PARAMETERS 

PLS Algorithm 

 

 

Bootstrapping 
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Blindfolding 
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