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Abstract

Introduction: We developed machine learning (ML) designed to analyze structural

brain magnetic resonance imaging (MRI), and trained it on the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database. In this study, we verified its utility in the

Japanese population.

Methods:A total of 535 participants were enrolled from the Japanese ADNI database,

including 148AD, 152 normal, and 235mild cognitive impairment (MCI). Probability of

ADwas expressed as AD likelihood scores (ADLS).

Results: The accuracy of AD diagnosis was 88.0% to 91.2%. The accuracy of predicting

the disease progression in non-dementia participants over a 3-year observation was

76.0% to 79.3%. More than 90% of the participants with low ADLS did not progress to

AD within 3 years. In the amyloid positron emission tomography (PET)–positive MCI,

the hazard ratio of progression was 2.39 with low ADLS, and 5.77 with high ADLS.

When high ADLS was defined as N+ and Pittsburgh compound B (PiB) PET positivity

was defined as A+, the time to disease progression for 50% of MCI participants was

23.7months in A+N+, whereas it was 52.3months in A+N-.

Conclusion: These results support the feasibility of ourML for the diagnosis of AD and

prediction of the disease progression.
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1 INTRODUCTION

The increased age of the global population has led to an increase in the

prevalence of dementia. Alzheimer’s Disease International estimated
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that >50 million people developed dementia worldwide in 2019; in

addition, a new case of dementia is diagnosed every 3 seconds.1 In

2014, the social cost of dementia in Japan was ≈14.5 trillion yen; it

is estimated to reach 24.3 trillion yen by 2060.2 The rapid growth of
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artificial intelligence (AI) has brought significant changes in the indus-

trial structure, including the field of medical imaging. The introduction

of AI into routine diagnostic imaging is expected to improve diagnostic

accuracy and reduce differences among clinicians, leading to reduced

medical costs.Machine learning (ML), the core algorithmofAI, requires

a large amount of reliable data, and large data such as Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) studies are most suitable for con-

structing AI for analyzing brain structure through magnetic resonance

imaging (MRI).3,4

Jo et al.5 systematically reviewed articles and selected the top 16

studies in which ML was used for AD diagnosis and/or predicting mild

cognitive impairment (MCI) progression by fluoro-2-deoxy-D-glucose

(FDG) positron emission tomography (PET) and MRI. Although these

studies have shown high performance of ML, it should be noted that

they lack validation based on independent trial data and do not take

into account metrics to maximize the overall accuracy of the classifica-

tion model while maintaining generalizability. We recently developed

ML that was trained in the North American ADNI, and validated in the

Australian ADNI database. Our ML performed well even in the valida-

tion database compared to the previous reports. Furthermore, when

its performance was compared with two expert neuroradiologists, our

ML outperformed the radiologists for AD diagnosis even though they

were provided with information about the degree of the hippocampal

atrophy.6

The use of ML has also been applied to predict amyloid beta (Aβ)
deposition before the onset of the disease. The prodromal phase

of AD can last for decades, and early detection of the pathophys-

iological changes might be useful for preventive intervention with

disease-modifying therapies (DMTs). Biomarker measurement from

cerebrospinal fluid (CSF) or PET has been established to detect the

presence of AD pathology, but they are neither affordable nor widely

available in all clinical settings because of their invasiveness and high

cost. Brain MRI is non-invasive and has been used widely to rule out

other abnormalities in subjects with suspected AD. The application of

ML to the analysis of structural MRI may have the potential to predict

the presenceofADpathology in theprodromal stage. There are several

studies showing that MRI combined with ML can predict amyloid pos-

itivity with sufficient accuracy to be cost-effective as a pre-screening

tool.7–9 With this background, it is necessary to examine whether our

ML could predict cerebral Aβ deposition.
The purpose of this study was to investigate the applicability of

ourML-based algorithm to the Japanese population.We examined the

relationship between the results of the algorithm and the risk of dis-

ease progression, biomarkers from CSF, and imaging biomarkers from

amyloid PET. We evaluated the effectiveness of the algorithm in the

diagnosis of AD, the prediction of disease progression in individuals

without dementia, and the risk estimation of brain Aβ deposition. The
present study is the first empirical report of the applicationof theML to

the Japanese population. Traditionally, hippocampal atrophy has been

used as an important biomarker for AD on MRI, probably because it

can be easily assessed visually. In this study, maximizing the extraction

of features from the brain structure over the entire brain enables pre-

diction of Aβ accumulation and high risk for disease progression. As a

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed the litera-

ture using traditional sources (such as PubMed) and

the “progress reports” of the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) publishedyearly inAlzheimer’s

& Dementia.

2. Interpretation: We showed that our machine learning

(ML) algorithm, which is trained on the North American

ADNI database, performed well in the Japanese popu-

lation. Hippocampal atrophy is an important and easily

identifiable biomarker of neuronal injury in AD visualized

using routine magnetic resonance imaging (MRI). How-

ever, mild hippocampal atrophy can occur pathologically

even in Braak’s stage IV or earlier; the sole reliance on the

presence of hippocampal atrophy can limit the diagnosis

of AD and prediction of disease progression. ML can ana-

lyze a large amount of information and guide to an opti-

mal conclusion. This means extracting biomarkers from

MRI that cannot be achieved by conventional methods.

Our experience in adjusting thehyperparameters that are

manually set andmanaging variables to introduce intoML

have led to excellent results in the Japanese population.

3. Future Direction: The availability of disease-modifying

therapy against amyloid beta (Aβ) has increased in clinical
practice. The issue lies in formulating an efficient strategy

for candidate selection. A consensus has been reached

regarding the benefits of antihypertensive agents in the

prevention of stroke. However, this consensus is due to

the ease of monitoring blood pressure in daily practice.

Because cerebral amyloidosis is often observed in nor-

mal elderly people, we believe that technology is also

needed to screen for the risk of progression to AD by

using widely available MRI. The specificity of the method

may be improved by using biomarkers from blood and

other sources in the future.

result, it is considered to be useful for the preliminary selection ofDMT

subjects that will be needed in the future.

2 METHODS

2.1 Japanese ADNI database

The Japanese ADNI (JADNI) database was used to obtain data from

535 participants consisting of 148 patients with AD, 235 with MCI,

and 152 normal individuals (NL). In 2007, the JADNI was initiated as

a longitudinal, multi-center cohort study of healthy elderly adults and

patients with MCI and early AD. The current study included native
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Japanese speakers between the ages of 60 and 84, who were accom-

panied by a study partner. Approximately 25% of the participants

underwent 1.5T and 3.0TMR examinations, but only 1.5T images were

used in this study. Pittsburgh compound B (PiB) enhanced PET scan

was performed on a total of 156 participants, including 41 AD, 53 NL,

and 62 MCI participants. At baseline, CSF biomarkers were measured

on a total of 297 participants including 54 AD, 54 NL, and 189 MCI

participants.

The JADNI data were extracted from the National Bio-

science Database Center (hum0043.v1). The study protocol

(UMIN000001374) was approved by the institutional review com-

mittees at the 38 participating clinical sites, and the ethics committee

of our university. Informed written consent was obtained from all

participants at each clinical site.

2.2 MRI Analyses

All MR images at baseline were downloaded and analyzed using soft-

ware named brain anatomical analysis using diffeomorphic defor-

mation (BAAD, version 4.4) that was developed in our laboratory.

More information about BAAD can be found elsewhere.6 We inducted

anatomical region of interest (ROI) as a unit to reduce dimensional-

ity, and created an algorithm with a support vector machine (SVM).

Technically, the introduction of standardized variables that have been

adjusted for covariates improves ML performance. Voxel-based mor-

phometry (VBM) is an algorithm capable of standardizing variables

by unifying the brain shape through coordinate transformations and

correcting the local volume with covariates for each voxel. Details

of a standard VBM procedure were discussed in a previous study.10

Because neural connections form a functional or anatomical unit in the

brain, hypertrophy or atrophy of neurons appears as clusters, which is

recognized as “autocorrelation” among voxels. This seems to be true in

AD atrophy as well, because tau lesions may spread from cell to cell

via neuronal connections.11 For comparison, we used software named

Voxel-based Specific Regional Analysis System for Alzheimer’s Disease

(VSRAD) as a representative example. This software simply examines

the degree of atrophy of medial temporal structures. The details of

VSRAD were discussed in previous studies.12,13 The VSRAD software

has an ROI in the medial temporal structures where atrophy is com-

mon in AD patients including the entorhinal cortex, hippocampus, and

amygdala.

We used the radial basis function as the kernel for the SVM, and the

values of parameters were optimized using the North American ADNI

database. TheBAAD software expressed the probability of anADdiag-

nosis as an AD likelihood score (or ADLS). ADLS represents the dis-

tance to the hyperplane and is obtained from the posterior probability

function Pr = (Y = k|X = x) , the probability is the class Y is the class k

given that the input variable X is x. The probability is transformed by a

sigmoid function to compress the value within the range of [0, 1]; the

larger the value, the more likely is the diagnosis of AD. In addition, we

used theMini Mental State Examination (MMSE) score for theML and

expressed the probability as ADLS cognitive (ADLSc).

2.3 Amyloid beta imaging

PET imaging was performed with three-dimensional (3D) dynamic

scans and intravenous administration of PiB. All PET images taken at

each site were subjected to the J-ADNI PET quality control (QC) pro-

cess, which corrects head motion between frames before creating a

total frame image.14

The positive and negative results were based on the JADNI PiB PET

central reading judgment. A positive result of Aβ deposition was con-

sideredwhen the PiB accumulation was found in any region of the four

cortices spreading over more than one brain gyrus, and was evidently

higher than the white matter found in the precuneus/posterior cingu-

late gyri, frontal, lateral temporal, and lateral parietal lobes. The def-

inition of positive, equivocal, and negative regional uptake has been

described in a previous study.15

2.4 CSF biomarker measurement

CSF sampleswere examined for the presence of Aβ1-42, total tau (tTau),
and phosphorylated tau (pTau) using Innogenetics (INNO-BIA AlzBio3;

Ghent, Belgium) and the multiplex xMAP Luminex platform (Luminex

Corp., Austin, TX, USA). The results were validated at the J-ADNI

Biomarker Core at Niigata University.16 The optimal cutoff values for

Aβ1-42, pTau, and tTau were obtained using receiver-operating char-

acteristic (ROC) curves for discrimination of the individuals with AD

(n= 54) and NL (n= 54) at baseline.

2.5 Statistics

Statistical analyses were performed using JMP software (version 14.3,

SAS Institute, Cary, NC,USA). ROC curveswere used to assess the abil-

ity of themodel to classify diseases. Theoptimal cutoff pointwas deter-

mined using the Youden index method. Details of the equations for

accuracy, sensitivity, specificity, positive predictive value (PPV), nega-

tive predictive value (NPV), F1, and Matthews correlation coefficient

(MCC) have been described in previous studies.17,18 The significance

level was set at P< .05.

3 RESULTS

Among the individuals who underwent PiB PET (n = 156), three

were clinically diagnosed with AD but with negative PiB accumulation.

Therefore, we set a subgroup consisting of 38 AD, 62 MCI, and 53 NL,

excluding these 3 individuals. The demographic features of the individ-

uals are summarized in Table 1. The AD and MCI groups were signif-

icantly older than the NL group (t-test, P < .001), and the MMSE and

clinical dementia rating values were significantly different among the

three groups (Wilcoxon, P< .001).
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TABLE 1 Demographic features of the Japanese ADNI

Group NL(*) MCI(a) AD(b)

Subjects(n) 152 53 235 62 148 38

Age 68.2± 5.6a,b 66.4± 4.6a,b 73.3± 5.8* 72.0± 5.4*b 73.9± 6.6* 74.3± 6.7*b

Sex (F/M) 80/72 26/27 117/118 31/31 85/63 22/16

Education (y) 13.8± 2.8a,b 13.8± 2.4b 13.0± 2.8* 13.7± 2.9 12.4± 3.2* 12.7± 2.7*

MMSE 29.1± 1.2a,b 29.3± 1.1a,b 26.3± 1.8*b 26.6± 1.9*b 22.5± 1.8*a 22.2± 1.8*a

CDRmemory 0.0± 0.0a,b 0.0± 0.0a,b 0.54± 0.15*b 0.55± 0.15*b 0.96± 0.37*a 0.95± 0.38*a

CDR global 0.0± 0.0a,b 0.0± 0.0a,b 0.50± 0.03*b 0.50± 0.00*b 0.67± 0.24*a 0.64± 0.23*a

CDT§ 4.6± 1.0a,b 4.6± 1.1a,b 4.2± 1.1*b 4.3± 1.1* 3.9± 1.3*a 3.9± 1.4*

BNT 28.0± 4.9a,b 28.0± 5.8a,b 25.4± 5.1*b 26.7± 4.9*b 24.2± 5.2*a 24.5± 4.8*a

ADAS-11 4.6± 2.6a,b 4.6± 2.6a,b 10.9± 4.4*b 9.5± 4.5*b 16.1± 4.9*a 16.5± 4.2*a

ApoE4 number 0.25± 0.46a,b 0.36± 0.56a,b 0.59± 0.62*b 0.53± 0.62*b 0.76± 0.72*a 0.54± 0.64*a

ApoE4 (0/1/2) 116/34/2 36/15/2 114/104/17 33/25/4 61/62/25 19/14.26/3

Abbreviations: AD,Alzheimer’s disease;ADAS-11,Alzheimer’sDiseaseAssessment Scale-Cognitivewith11 tasks; ApoE, apolipoprotein E; BNT,BostonNam-

ingTest; CDR,ClinicalDementiaRating; CDT,ClockDrawingTest;NL, cognitively normal subjects;MCI,mild cognitive impairment;MMSE,Mini-Mental State

Examination.

Gray boxes are the data from the subjects who underwent PiB PET.

The special symbols in parentheses in the top roware symbols for displaying the significant differencebetween the twogroups. For example, in theNLcolumn.
a,bIndicates that there is a statistically significant difference (P< .05) betweenNL-MCI andNL-AD.

Age and years of education were tested by t-test; the others were tested byWilcoxon test.
cThe full score for CDT is five points; approximately circular dial, symmetry of number placement, correctness of numbers, presence of two hands, and hands

being oriented correctly.

TABLE 2 Performance of BAAD and VSRAD for AD/NL discrimination

All participants (n= 300) Participants with PiB PET (n= 91)

ADLS ADLSc VSRAD ADLS ADLSc VSRAD

AUC 0.9461 0.9930 0.9178 0.9727 0.9995 0.9499

Accuracy (%) 88.0 95.3 85.0 91.2 97.8 86.8

Sensitivity (%) 85.1 95.3 84.5 89.5 100.0 86.8

Specificity (%) 90.8 95.4 85.5 92.5 96.2 86.8

PPV (%) 90.0 95.3 85.0 89.5 95.0 82.5

NPV (%) 86.3 95.4 85.0 92.5 100.0 90.2

F1 (%) 87.5 95.3 84.7 89.5 97.4 84.6

MCC (%) 76.1 90.7 70.0 81.9 95.6 73.2

PLR 9.2 20.7 5.8 11.9 26.5 6.6

NLR 0.2 0.0 0.2 0.1 0.0 0.2

Post-test odds 9.0 20.1 5.7 8.5 19.0 4.7

Abbreviations: AUC, area under the curve; PPV, positive predictive value;NPV, negative predictive rate;MCC,Matthews correlation coefficient; PLR, positive

likelihood ratio; NLR, negative likelihood ratio.

3.1 Diagnostic performance for AD

The optimal cutoff values determined by the Youden index to clas-

sify AD and NL in the JADNI database were 0.42, 0.23, and 1.26 for

ADLS, ADLSc, and VSRAD, respectively. Because the optimal cutoff

value forADLSvalidatedusing theNorthAmericanADNIdatabasewas

0.48,6 the cutoff points for ADLS and ADLSc were set at 0.5, and for

VSRAD at 1.3 for the subsequent analysis. Accuracy, sensitivity, and

specificity are influenced by prevalence (eg., the percentage of AD and

NL patients of the data); therefore, the MCC and F1 scores were also

expressed. The ROC curves and statistical results are shown in Table 2.

When including all participants, the accuracy was measured at 95.3%

for ADLSc, followed by 88.0% and 85.0% for ADLS andVSRAD, respec-

tively. Similarly, in the subgroup excluding PiB PET-negative AD, the
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TABLE 3 Prediction of Aβ deposition in each algorithm

AD (n= 41) MCI (n= 62) NL (n= 53)

ADLS ADLSc VSRAD ADLS ADLSc VSRAD ADLS ADLSc VSRAD

AUC 0.8333 0.8509 0.7105 0.8258 0.8316 0.7613 0.5606 0.5985 0.4634

Accuracy (%) 87.8 100.0 82.9 79.0 77.4 72.6 75.5 79.2 73.6

Sensitivity (%) 89.5 100.0 86.8 80.5 82.9 75.6 0.0 0.0 11.1

Specificity (%) 66.7 – 33.3 76.2 66.7 66.7 90.9 95.5 86.4

PPV (%) 97.1 100.0 94.3 86.8 82.9 81.6 0.0 0.0 14.3

NPV (%) 33.3 – 16.7 66.7 66.7 58.3 81.6 82.4 82.6

F1 (%) 93.2 100.0 90.4 83.5 82.9 78.5 0.0 0.0 12.5

MCC (%) 41.4 – 14.9 55.1 49.6 41.1 -12.9 -9.0 -2.8

PLR 2.7 – 1.3 3.4 2.5 2.3 0.0 0.0 0.8

NLR 0.2 – 0.4 0.3 0.3 0.4 1.1 1.0 1.0

Post-test odds 34.0 – 16.5 6.6 4.9 4.4 0.0 0.0 0.2

Abbreviations: AD, Alzheimer’s disease;MCI,mild cognitive impairment;NL, normal subjects; AUC, area under the curve; PPV, positive predictive value;NPV,

negative predictive rate; MCC,Matthews correlation coefficient; PLR, positive likelihood ratio; NLR, negative likelihood ratio.

accuracies of the ADLS, ADLSc, and VSRAD were 91.2%, 97.8%, and

86.8%, respectively. The positive likelihood ratio (PLR) was high for

ADLS and ADLSc, ranging from 9.2 to 11.9 and 20.7 to 26.5, respec-

tively, whereas it was 5.8 to 6.6 for VSRAD; these values indicate the

effectiveness of the examination. Likelihood ratios above 10 and below

0.1 are thought to provide strong evidence to rule in or rule out diag-

noses in most circumstances.19 In particular, the extremely high dis-

crimination ability of ADLS and ADLSc is supported by their likeli-

hood ratios,which indicates theexcellent performanceof the algorithm

implemented in the BAAD software.

3.2 Prediction of amyloid beta deposition from
ML-MRI

In the AD group, the PiB-positive rates were 97.1% and 100%, at the

cutoffs ofADLS>0.5 andADLSc>0.5, respectively. In theNLgroup, the

PiB-positive rate was 0% for both ADLS >0.5 and ADLSc >0.5 cutoffs.

In theMCI group, at the cutoffs of ADLS>0.5 andADLSc>0.5, the PiB-

positive rates were 86.8% and 82.9%, respectively (Table 3).

3.3 Determination of the cutoff values for CSF
biomarkers

The distributions of Aβ1-42, pTau, and tTau concentrations in the CSF

from54ADand54NL participants are shown in Figure S1. The optimal

cutoff values of Aβ1-42, pTau, tTau, and pTau/Aβ1-42 ratio determined

by the Youden indexmethodwere 333 pg/mL, 44 pg/mL, 86 pg/mL, and

0.14, respectively. The cutoff value of 333 pg/mL for Aβ1-42 was equal
to that in a previous report.20 Because themean age of the two groups

were different (AD: 73.2 ± 5.9; NL: 68.3 ± 5.5), age was accounted for

in themodel.

3.4 Prediction of disease progression and risk
assessment by biomarkers

During the 3 years of observation, among the 387 participants with

NL or MCI, 119 MCI had converted to AD, 4 NL to MCI, and one NL

to AD. Ten cases of reverse conversion from MCI to NL and one case

from AD to MCI were observed. A total of 111 participants under-

went PiB PET, and 3 participants who converted to AD were PiB neg-

ative at the initial visit. The prediction accuracy of disease progres-

sion in non-dementia individuals was 77.4% to 79.4% for ADLS and

79.6% to 80.4% for ADLSc. The PPV suggested that 50% to 60%

of non-dementia individuals with high (>0.5) ADLS or ADLSc con-

verted to AD within 3 years. Conversely, >90% of the individuals with

low (<0.5) ADLS or ADLSc did not progress to AD for 3 years. For

reference, the prediction accuracy for disease progression by PiB PET

was 75.7%. The details of the results can be seen in the Supplemental

Table.

Kaplan-Meier plots for the conversion from MCI to AD in each

biomarker are shown in Figure 1 (with 95% confidence intervals

in Figure S2). In this figure, results from PiB PET and ADLS were

shown as solid lines, and those from CSF Aβ1-42 (Aβ) and pTau were

shown as dotted lines. MCI individuals with amyloid PET positive A(+)

and high ADLS N(+) or CSF Aβ positive Aβ (+) and pTau positive

pTau(+) progressed faster than theMCI with amyloidosis, A(+)N(−) or

Aβ(+)pTau(−). Similar to MCI participants with negative biomarkers,

A(−)N(−) or Aβ(−)pTau(−), MCI with amyloid PET negative (A−) and

high ADLS N(+) were less likely to convert to AD. In the MCI individ-

uals who are amyloid PET positive, the proportional hazard ratio (HR)

of conversion fromMCI to AD was 2.39 when ADLS was low, whereas

it was 5.77 when ADLS was high. The estimated time to conversion for

50% of theMCI participants with amyloid PET-positive and high ADLS

A(+)N(+) was 23.7 months, for 90% was 62.5 months. The estimated

time to conversion for 50% of the MCI participants with A(+)N(−)
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F IGURE 1 Progression rate frommild cognitive impairment (MCI)
to Alzheimer’s disease (AD). Kaplan-Meier analysis for disease
progression fromMCI to AD. In this figure, results from Pittsburgh
compound B (PiB) positron emission tomography (PET) (A) and AD
likelihood scores (ADLS) (N) are shown as solid lines, and those from
cerebrospinal fluid (CSF) Aβ1-42 (amyloid beta, Aβ) and
phosphorylated tau (pT) are shown as dotted lines

was 52.3 months, and for 90% was 137.9 months. The HRs for each

biomarker are summarized in Table 4.

4 DISCUSSION

In this study, we investigated the usefulness of our VBM-ML algo-

rithms that uses information fromMMSE andMRI.MMSE is thewidely

accepted as a simple test to provide an overall measure of cognitive

function in clinical practice, whereasMRI is the most available imaging

modality to determine the cause of dementia, such as neurodegener-

ation, infarction, tumor, and hydrocephalus. Because ADNI is a simpli-

fied model that excludes dementia other than AD, it is premised that

several examinations such as assessment of symptoms and signs, neu-

ropsychological tests, dopamine transporter scans, metaiodobenzyl-

guanidine (MIGB) scintigraphy, and single-photon emission computed

tomography (SPECT) for cerebral blood flow are considered to exclude

other types of dementia.

Hippocampal atrophy is an important biomarker for AD and is nec-

essary in its investigation. VSRAD has been established in Japan as an

adjunct tool for AD diagnosis by demonstrating the degree of atrophy

(z-score) of medial temporal structures.21 This software is used widely

in Japan, and the Japanese Radiological Society (JRS) recommends its

use. We investigated whether regions other than the medial temporal

structures could be used for the diagnosis of AD, and tried to present

the degree of atrophy in whole brain regions. However, the difficulty

of analyzing numerous amounts of data has led us to introduce ourML

algorithm for analysis. In thisway,weexpected that the algorithmcould

adapt to the varied atrophy patterns of AD. As a result, ourML outper-

formed VSRAD in diagnosing AD, predicting Aβ deposition and disease
progression in non-dementia cases.

We estimated that the optimal cutoff of the z-score for VSRAD in

JADNI was 1.3, which was lower compared to a previous report.22

A standard deviation of 1.3 is considered to be in the normal range;

therefore, it may be difficult for clinicians to visually determine hip-

pocampal atrophy. The low cutoff value may result from the study

design of the ADNI that targeted patients with mild dementia with

an MMSE score of at least 20. Given that the hippocampal atrophy is

TABLE 4 Hazard ratio ofMCI to AD conversion

Level 1 Level 2 HR 95%CI Wald test

N(+) N(−) 3.22 1.99-5.22 <0.0001*

A(+)N(−) A−N− 2.39 0.33-17.08 0.3856

A(+)N(+) A+N− 2.42 0.56-10.47 0.2388

A(+)N(+) A−N− 5.77 1.31-25.35 0.0203*

A(−)N(+) A−N− 1.84 0.16-21.17 0.6258

Aβ(+)pT(−) Aβ(−)pT(−) 2.08 0.41-10.42 0.3751

Aβ(+)pT(+) Aβ(+)pT(−) 2.26 0.68-7.48 0.1814

Aβ(+)pT(+) Aβ(−)pT(−) 4.69 1.41-15.59 0.0116*

Aβ(−)pT(+)a Aβ(−)pT(−) 8.38 2.04-34.39 0.0032*

Aβ(+)tT(-) Aβ(-)tT(-) 5.62 1.15 - -27.43 0.0326*

Aβ(+)tT(+) A(+)tT(-) 1.04 0.44-2.44 0.9355

Aβ(+)tT(+) Aβ(-)tT(-) 5.83 1.36-25.06 0.0179*

Aβ(-)tT(+)a Aβ(-)tT(-) 9.53 1.91-46.80 0.0055*

Abbreviations: A, amyloid deposition from Pittsburgh compound B (PiB) PET; N, neuronal injury fromADLS; Aβ (amyloid beta) , CSF Aβ1-42; pT, CSF phospho-
rylated tau; tT, CSF total tau. The sign indicates positive (+) and negative (−).

HR: proportional hazard ratio over the 3-year follow-up adjusted for age, sex, and education period.

*P< .05 inWald test.
aOf the 12 cases of Aβ(-)pTau(+), five underwent PiB PET, and three were amyloid positive. Similarly, of the 16 cases of Aβ(-)tTau(+), six underwent PiB PET,

and four were amyloid positive.
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F IGURE 2 Scatter plot between AD likelihood scores (ADLS) and z-score of voxel-based specific regional analysis system for Alzheimer’s
disease (VSRAD) or hippocampus. Left panel: The horizontal axis represents the ADLS, and the vertical axis represents the z-score of VSRAD. The
subjects in the lower right quadrant are subjects with less medial temporal atrophy, but with higher ADLS. The upper left quadrant is a group of
subjects withmedial temporal atrophy, but with lower ADLS. Right panel: The horizontal axis represents the ADLS, and the vertical axis represents
the averaged z-score of the hippocampus on both sides. In the lower right quadrant, 12/16 patients (75.0%) were diagnosedwith AD. In the upper
left quadrant, 17/21 (81.0%) subjects were NL. AD, Alzheimer’s disease; NL, cognitively normal subject; PiB(-)AD; subjects whowere clinically
diagnosedwith AD but Pittsburgh compound B negative.

relatively identifiable visually, cortical atrophy may be even more diffi-

cult to assess visually in the early stages of AD. VSRAD supports radi-

ologists by providing information of hippocampal atrophy, but our ML

outperformed radiologists even when supported by VSRAD,6 our ML

also outperformed VSRAD in the Japanese population (Table 1). Of

interest, the ML was also effective in predicting cerebral Aβ accumu-

lation (Table 3). The hippocampal-sparing (HS) type is found in≈15%of

AD patients.23 As shown in Figure 2, some AD patients with less pro-

nounced hippocampal atrophy were also found in JADNI, although not

strictly the “HS type” as defined by Murray et al.24 It was notable that

the BAADML suggested the possibility of AD even if the hippocampal

atrophywas inconspicuous, and conversely, the possibility ofNL even if

the hippocampal atrophy was significant. The presence of neurofibril-

lary tangles (NFTs) in the neocortex, corresponding to stage III/IV or

higher,25 is important in establishing a pathological diagnosis of AD;

thiswould indicate theneed for anMRIevaluationofbrain atrophyout-

side the medial temporal lobe. Although VSRAD focuses on hippocam-

pal atrophy, BAADML seems to perform flexible diagnostic prediction

by learning the atrophy pattern of the whole brain.

The selectionof individuals for disease-modifying therapy (DMT) for

Aβ depositionwill be an important challengewhen it becomes clinically

applicable. In the prospective population-based Mayo Clinic Study of

Aging inOlmsted County inMinnesota,26 the prevalence of Aβ positiv-
itywas 2.7% in the 50 to 59 age group, 18.3% in the 60 to 69 age group,

32.1% in the 70 to 79 age group, and41.2% in the 80 to 89 age group. In

Aβ-positive individuals, theHR for progression toMCI in thosewithout

dementia was 2.26 times higher than that of Aβ-negative individuals;

and the HR for progression to AD in Aβ-positive MCI was 1.86 times

higher than that of Aβ-negative MCI. In our estimation with Cox pro-

portional hazardsmodel adjusting for age, sex, and education in JADNI,

the HR for progression to AD in Aβ-positive MCI compared with Aβ-
negative MCI was 2.39, which was similar to the results of the Mayo

Clinic Study (Table 4). Accumulation of cerebral Aβ is a prominent risk

factor for AD; however, one-third of the population over the age of 70

was Aβ positive, and the rate increased with age. Therefore, it is not

practical to lead all elderly people to PET or CSF examinations with-

out prior selection.MRI is readily feasible and less invasive, and ourML

predicts cerebral Aβ deposition with high accuracy from MRI in non-

dementia participants, which may minimize the amount of PET or CSF

tests.

Another consideration is that the selection of patients who will

undergoDMTdepends on the cost-benefit performanceof the therapy,

so itmay be unlikely that all Aβ-positive patientswill be eligible for pro-
phylactic DMT for Aβ removal from the brain. In our estimation, theHR

for progression to AD in PiB-positive MCI with high ADLS (>0.5) was

5.77 compared with low ADLS (<0.5) MCI (Table 4). This result indi-

cates that our ML can detect MCI patients, who are likely to develop

dementia in the near future.

In the results of CSF biomarker measurement (Table 4), the Aβ-
negative groups with abnormal pTau or tTau levels were more likely to

progress to dementia, even greater than in the Aβ positive with pTau

positive or tTau positive groups. At this time, there is no clear evidence

to explain these results. It is known that amyloid PET andCSF biomark-

ers do not match in 10% to 20% of cases.27 Of the 12 Aβ-negative,
pTau positive MCI subjects, five underwent PiB PET, of which three

were Aβ positive. Similarly, of the 16 Aβ-negative, tTau-positive MCI

subjects, six underwent PiB PET, of which four were Aβ positive. This
showed that there were not a few cases that were Aβ negative by CSF
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measurement but Aβ positive by PiB PET. It is unclear whether this is

due to the inherent nature of the examinations, the stage of the dis-

ease, or the speed of disease progression. At least, elevated tau protein

in CSF reflects neuronal damage, which is consistent with disease pro-

gression.

As the pathogenesis of AD becomes clear, the NIA-AA research

framework has proposed a new diagnostic approach called the ATN

system,28 which is based on biomarkers instead of the conventional

clinical diagnosis. According to this system, apositive findingof amyloid

in PET or decreased Aβ1-42 concentration in CSF (A+) and increased

phosphorylated tau in CSF or positive tau PET (T+), that is, (A+T+) is

similar in concept to the diagnostic criteria for pathologic AD. The spe-

cific distribution of tau-PET signals is a strong indicator of the topogra-

phy of future atrophy at the single patient level, and there was a strong

relationship between baseline tau-PET and subsequent brain atrophy

(N+).29 Because AD pathology can be defined as A+T+ by biomarkers,

the optimal timing of DMT for Aβ suppression seems to be before sub-

sequent N+.

Considering this, it may be consequential to estimate the duration

until conversion to AD when it becomes N+. In this study, the Kaplan-

Meier analysis showed that the estimated time for 50% MCI to con-

vert to AD was 26.5 months for patients with A+ on PiB PET and

23.7 months for patients with A+N+ on PiB PET and ADLS. Therefore,

when these biomarkers are positive, half of MCI patients have only

about 2 years before dementia; the investigation of the effectiveness

of DMT in this short period remains an issue for future work. Recently,

the 221AD301 ENGAGE study reported that the clearance of aggre-

gated Aβ can reduce the cognitive decline due to AD pathology and,

above all, that the DMT window is still open in patients with MCI or

early-stage AD.30

This study has several limitations. First, NFT pathology is not the

sole cause of brain atrophy, and the pattern analysis of brain atrophy

alone limits specificity. In particular, TDP-43 is strongly associatedwith

hippocampal atrophy in the elderly, which is a vexing problem in MRI

analysis. In addition, 4R-tauopathy and cerebral amyloidosis are asso-

ciatedwith cerebral atrophy; therefore,molecular-targetedPET is nec-

essary in atypical cases. Second, aswas often discussed in studies using

the ADNI database, patients with dementia other than AD were care-

fully excluded from the model. Therefore, the clinical relevance of AD

diagnosis in this study is limited to situations in which patients have

been screened for other causes of dementia. Third, the definition of

MCI in the ADNI study is biased toward the amnestic type rather than

a clinical heterogenous MCI sample. The short observation period is a

drawback for the prediction analysis in this study. Some non-dementia

individuals may eventually progress to AD if the follow-up period is

long enough. Therefore, the results of the study cannot be adapted for

long-term preventive treatment.

In conclusion, this study supports the feasibility of ourML algorithm

for the diagnosis of AD and prediction of disease progression in the

Japanesepopulation. By assessing thewhole brainwithVBM, the infor-

mation obtained from MRI can be dramatically enhanced, and ML is

effective for this information processing.
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