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Abstract 

The ability to search for similar documents is a well-known problem on the Web and 

Information Retrieval field. For example, identifying similar profiles across different government 

agencies is an important process during intelligence gathering. Nonetheless, when data belongs 

to multiple parties, internal security policies and government regulations cannot allow the 

participating parties to freely share their sensitive documents. In our project, we aim to address 

the following problem: Given a user’s query Q and an encrypted database of documents stored 

on a third-party cloud server, we want to retrieve top-k documents similar to Q without 

disclosing Q and the contents of the database to the cloud server. We translated documents into 

bloom filter representations and used the Jaccard Coefficient metric in order to find similarity 

between each document and Q. We will be conducting empirical tests to validate the reliability, 

speed, and space efficiency of using Bloom Filters in order to perform operations over Encrypted 

data. Our proposed solution allows users to keep the contents of documents hidden from 

unauthorized parties and at the same time facilitating end-users to efficiently retrieve top-k 

similar documents from the cloud in a secure manner. In our experiments, we found that using a 

bloom filter provided adequate security amongst the entities involved. The use of bloom filters to 

measure the Jaccard coefficient accuracy showed good results at a reasonable bit size.  
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1. Introduction 

1.1 Background and Motivation 

 

The ability to search for similar documents is a well-known problem on the web and 

Information Retrieval field. The importance of gathering information in a secure way is growing 

in today’s interconnected digital world. When protecting data, one cannot allow the participating 

parties to freely share their sensitive documents due to privacy issues. These sensitive documents 

can be critical personal information, also called “personal identifiable information” or “personal 

health information”. This data can include health records, social security numbers, and financial 

information, such as bank account and credit card numbers. Thus, data privacy is crucial when 

handling personal data in compliance with data protection laws, regulations, and general privacy 

best practices.  

To achieve privacy, data security must be implemented. However, in software 

development, speed is a critical factor when trying to reach deadlines or deployment schedules. 

This can lead to lack of security throughout every step of production process in identifying 

coding flaws before deploying them into software projects. It is no wonder that according to 

Forbes, “In 2021, the average number of cyberattacks and data breaches increased by 15.1% 

from the previous year” [8].  

With the increase of data and its need for storage, companies have even outsourced data 

to the cloud. Cloud computing has become a pivotal tool in the technology field due to its 

flexibility. Nowadays, the use of cloud computing has grown to where it is easy to use for the 

average person. Cloud computing has become important for businesses for its easy accessibility, 

cost savings, and disaster recovery. The ability for users to access their own personal data from 

anywhere around the world has become the norm. Disaster recovery is also an attribute of cloud 
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computing. Cloud computing has solidified its role in data backup from individuals to large 

companies. Having data backed up onto the cloud has given users that extra layer of safety in the 

case of main systems being damaged.  

Finally, the use of cloud computing has become a cheaper way to backup information 

compared to the cost of using an in-house backup system. With the growth in popularity of cloud 

computing, the risk of having this data being leaked or compromised can bring major problems. 

 

1.2 Problem Statement 

 

In this paper, we are looking in the scenario of a set of encrypted documents on a cloud. 

An extra layer of security is provided when encrypting these documents before uploading them 

onto a cloud service. However, once a document is encrypted, it becomes difficult to identify 

which document is the one that is needed. A user can choose to perform local encryption, but 

that would require the user to download all the files from the cloud, decrypt them, until finally 

being able to read or perform modifications.  

In our proposed solution, we use an architecture that involves four entities: the data 

owner, the client, and two clouds that can be named Cloud 1 and Cloud 2. These four entities 

collaborate in a system that can search through encrypted documents while keeping all data 

secure. They are described as the following: 

• The Data Owner: 

The data owner uploads encrypted documents and encrypted meta-data to Cloud 

1. The data owner prepares the documents and encrypts them using AES 

encryption. On the other hand, the meta-data is encrypted by using pallier 

encryption which has homomorphic properties.  
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• The Client: 

The client sends queries to the cloud to receive documents of relevance. The 

client will generate a bloom filter that acts as meta data of the query and is 

encrypted. 

• Cloud 1 and Cloud 2: 

These two entities would collaborate in the computation of top-k documents for a 

given query in a private-oriented way.  

 The main goal of this proposed solution is to securely compute the top-k documents to 

avoid disclosing query, Q, and the contents of the database to the cloud server. In the event of a 

security breach or leak, the contents recovered would be encrypted and the information gathered 

would be inconsequential. In this paper, we aim to run experiments using bloom filters to test 

whether it is an accurate and a viable solution for the computation of top-k documents.  

 
Figure 1: Entities in Proposed Solution 

Note. Image of the entities involved in the proposed solution. 
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2. The Related Work 

 

2.1 Similarity Search 

 

Similarity Search, also known as searchable encryption, is a new developing information 

security technique that would enable users to search over encrypted data through keywords 

without having to decrypt the data. One of the first searchable encryption schemes that was 

proposed was by Song et al. [1], where each word needed to be encrypted with a special 

construction. Soon after, there were other schemes that used similar index such as Wang et al [4], 

that used a remote file server and offered solutions, for searchable encryption, under well-

defined security requirements. However, this scheme is hindered in the fact that it only supports 

single keyword search. Like Wang et al., Chauhan [2], also uses LSH with a combination of 

Shingling and Bloom Filters to reduce search time, respectively to compute Jaccard similarity 

scores.  

Other schemes, such as, Li et al. [5] proposed the use of a fuzzy keyword search scheme 

over an encrypted cloud data. They combined edit distance with wildcard-based technique to 

construct fuzzy keyword sets. This scheme managed to address problems such as minor typos 

and format inconsistence in some manner, however, its performance is dependent on the 

parameter of edit distance.  

Fu et al. [3] proposed a document-based similarity search scheme over encrypted cloud 

document that found the scheme was quite efficient on real-world datasets. Their experiments 

had transformed documents into a fingerprint with simhash and hamming distance is used at the 

similarity metric between documents. Finally, their use of trie-based index was adopted to 

address the top-k problem and thus, search efficiency showed improvement.  
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3. Preliminaries 

 

In our proposed solution, there were many methods that we used which included Bloom 

Filters, Jaccard Coefficient, union and intersection of sets, Pallier Encryption, and Secure 

Multiplication. To begin, the use of bloom filters played a big role in our proposed approach. 

This method would allow us to find the top-k similar documents while keeping the contents of 

each file private. In our performance evaluation, there are two experiments that are conducted to 

analyze the practicality and accuracy of the use of bloom filters. 

 

3.1 Bloom Filters 

A bloom filter is a probabilistic data structure used to optimize memory space and have 

the property membership checking at O(k) time complexity. Invented by Burton Bloom, in the 

1970s, “Bloom filters do not store the items themselves and they use less space than the lower 

theoretical limit required to store the data correctly, and therefore, they exhibit an error rate” 

[12]. It is a data structure that can tell whether an element may be in a set or definitely isn’t. 

There can be a trade-off between performance and accuracy (reporting false positives). A bloom 

filter will only give false positives and never false negatives. That is to say that it would never 

report that an element isn’t in our bloom filter if it really is in it. 

 

Implementation 

An empty bloom filter is a bit array of m bits where all bits are set to 0. To add an 

element, it is fed to the hash functions to get 𝑘 bit positions, and the bits at these positions are set 

to 1. To check whether an element is in the bloom filter, it is passed to the hash functions and if 

any 𝑘 bit positions is reported to have a 0 then it is definitely not in the set.  
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Figure 2: Example of a Bloom filter 

Note. An example of a Bloom filter, representing the set {x, y, z}. The colored arrows show the 

positions in the bit array that each set element is mapped to. The element w is not in the 

set {x, y, z}, because it hashes to one bit-array position containing 0. For this figure, m = 

18 and k = 3 [6]. 

 

The metrics used when constructing a bloom filter are the size of the bloom filter – m, the 

number of hashes – h, and the number of top similar documents – k. The number of hash 

functions can also be modified to reduce the probability of collisions or false positives. The 

number of elements in a bloom filter can be denoted by n.  

The probability of positive can be controlled by design parameters set upon the bloom 

filter [7]. By modifying the parameters of number of hash functions and the size of the bit vector, 

we can reduce the number of collisions. The false positive probability is approximated by the 

following formula:  

𝑝 = (1 − 𝑒−
𝑘𝑛
𝑚 )

𝑘
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The optimal value for the number of hash functions is as follows: 

 

𝑘 =
𝑚 

𝑛
ln 2 

 

In this formula, we can examine that 𝑚/𝑛 is the number of bits per element in a bloom 

filter. Hence, the optimal number of hash functions is linear with the number of bits per element. 

Lastly, the optimal size for a bloom filter can be as follows: 

 

𝑚 = 
𝑛 log (

1
𝑝
)

(ln 2)2
 

 

3.2 Jaccard Coefficient 

The Jaccard Coefficient (or Jaccard Index) is a statistical metric for gauging the similarity 

and diversity of sample sets. This similarity index named after researcher, Paul Jaccard, and 

proposed in 1901, has many applications in set theory. The Jaccard index requires little 

computational expenses in nature. Luciano da Fontoura Costa writes, “Besides its vast range of 

applications, most of them related to binary or categorical data, the Jaccard index also motivated 

some extensions and generalizations, including its adaptation to discrete multisets with positive 

multiplicites” [11].  In this project, we implement the Jaccard Index score of our sets in plain text 

and then the encrypted Bloom filters of that sample set to compare the reliability of Bloom 

Filters. The formula to compute the Jaccard index of two sets can be denoted in Figure 3 [9].  
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Figure 3: Jaccard Index Formula 

Jaccard Index of sets A and B is the Intersection divided by the Union of the sets.  

 

3.3 Union and Intersection of two sets 

 

When computing the Jaccard Index, the union and intersection between two sets were 

calculated. Calculating these values for plaintext sets can be easy with Java programming, 

however, finding the union and intersection of a Bloom Filter sets is different from the formula 

in Figure 3. Throughout this research we found that there are formulas to find these values in an 

easier way. To find the union of two bloom filters, we can perform a bitwise OR on every bit. 

Another way to calculate the union can be denoted as: 

 

| 𝐵𝑥  ∪  𝐵𝑦 | = 𝑙 − (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜 𝑝𝑎𝑖𝑟𝑠) 

 

This formula describes that the union of two bloom filters can be calculated with the length of 

the bloom filter minus the number of zero pairs (where the value on the two bloom filters is set 

to 0 on the same index). The length of these bloom filters is computed to be of equal size. One 

way to calculate the intersection of two bloom filters is to perform a bitwise AND on every bit of 
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the bloom filters [10]. Another way to calculate this value is to find the union value first, and 

then use the formula of the intersection of two bloom filters which be denoted in the following: 

 

| 𝐵𝑥  ∩  𝐵𝑦 | = |𝐵𝑥| + |𝐵𝑦|  − | 𝐵𝑥  ∪  𝐵𝑦 | 

 

One of the key differences between the size of a set and of a bloom filter, is that the size of a 

bloom filter is the number of 1’s contained and not the bit size itself. Hence, in |𝐵𝑥| and |𝐵𝑦|, we 

would need to count number of 1’s to find their sizes. The summation of these two sizes is then 

subtracted by the union value and this would give the intersection of the two bloom filters.  

 

3.4 Pallier Encryption 

 

Pallier Encryption is a well-known public key encryption scheme which also plays an 

important role in our proposed solution. As being a public encryption scheme, Pallier Encryption 

also takes advantage of using public and private keys, where the public key is used to encrypt, 

and the private key is used to decrypt. The Pallier encryption scheme is denoted as: 

 

𝐸(𝑚) = 𝑔𝑚 × 𝑟𝑛 𝑚𝑜𝑑 𝑛2 

 

Where m represents the message that is being encrypted, g represents the generator, and r 

is the random number. Pallier encryption has two homomorphic properties that we take 

advantage of, in our project, that differentiates it between other schemes such as RSA. Both 

properties are the additive properties of homomorphic encryption. The first property is as 

follows:  
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𝐸(𝑚1) × 𝐸(𝑚2) = 𝐸(𝑚1 +  𝑚2) 

 

When an encryption scheme is homomorphic, it means that for a fixed key, it is 

equivalent to perform operations on the plaintexts before encryption, or on the corresponding 

ciphertexts after encryption [13]. The second property is denoted as 𝐸(𝑚)𝑐 = 𝐸(𝑐 ∙ 𝑚). Which is 

shown by: 

 

𝐸(𝑚)𝑐 = 𝐸(𝑚) ∗ …∗ 𝐸(𝑚)⏟          
𝑐

 

 

In our proposed solution, we use the Optimized-Pallier. In the Optimized-Pallier, the 

generator is replaced by (1 + n). This would change the final equation to be denoted as: 

 

𝐸(𝑚) = (1 + 𝑛𝑚) ∙ 𝑅 𝑚𝑜𝑑 𝑛2 

 

On top of this change, R can also be pre-computed beforehand. In the formula above, R is 

equal to 𝑟2. The values of r can be created from a table of computed values that are related to r.   

 

3.5 Secure Multiplication 

 

 Secure multiplication is a method that involves two parties to get a desired output. These 

two parties can be denoted as 𝑃1 and 𝑃2. In secure multiplication, 𝑃1 would provide a private 

input (𝐸𝑝𝑘(𝑎), 𝐸𝑝𝑘(𝑏)) and 𝑃2 provides a secret key, 𝑠𝑘. The idea is for the two parties working 

together to return 𝐸𝑝𝑘(𝑎 ∙ 𝑏)  to 𝑃1 while not revealing any information to the other party [14]. 

The basis of secure multiplication is derived from the property: 
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𝑎 ∙ 𝑏 = (𝑎 + 𝑟𝑎) ∙ (𝑏 + 𝑟𝑏) − 𝑎 ∙ 𝑟𝑏 − 𝑏 ∙ 𝑟𝑏 − 𝑟𝑎 ∙ 𝑟𝑏  

 

𝑃1 initially randomizes a and b by computing: 

𝑎′ = 𝐸𝑝𝑘(𝑎) ∙ 𝐸𝑝𝑘(𝑟𝑎) 

𝑏′ = 𝐸𝑝𝑘(𝑎) ∙ 𝐸𝑝𝑘(𝑟𝑏) 

 

And sends them to 𝑃2, where 𝑟𝑎 and 𝑟𝑏 are random numbers only known to 𝑃1. After 𝑃2 receives 

this information, 𝑃2 decrypts and multiplies the value of  ℎ = (𝑎 + 𝑟𝑎) ∙ (𝑏 + 𝑟𝑏) 𝑚𝑜𝑑 𝑁. From 

here ℎ gets encrypted and sent back to 𝑃1. At this point 𝑃1 removes the random factors from 

𝐸𝑝𝑘((𝑎 + 𝑟𝑎) ∙ (𝑏 + 𝑟𝑏)) to get the result of 𝐸𝑝𝑘(𝑎 ∙ 𝑏) [14]. 

4. Overview of proposed solution 

 

This section would include a quick overview of the proposed solution and how we can 

utilize it to solve the top-k problem. As discussed in the Problem Statement, our solution 

includes an architecture of four entities which have their own roles. We propose the use of 

Bloom Filters and Jaccard Coefficient, as well as other methods including, Pallier Encryption 

and Secure Multiplication.  

In this proposed solution, there are two protocols, and each protocol includes three 

phases. The first two phases are similar in both protocols, but with minor differences in the third 

phase.  

 

4.1 Phase 1 

 

Phase 1 of the protocols involve data outsourcing. The Data Owner must prepare and 

send documents to Cloud 1, 𝐶1. Before sending the documents, they need to be encrypted for 
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security measures. The data owner will use AES encryption to encrypt the documents that are 

sent to 𝐶1. Each document that is uploaded onto 𝐶1 will be encrypted by the Data Owner with 

AES encryption key ek, where: 

 

𝐸𝑒𝑘(𝐷) = (𝐸𝑒𝑘(𝐷1), 𝐸𝑒𝑘(𝐷2)…  𝐸𝑒𝑘(𝐷𝑛)) 

 

Along with the documents, the Data Owner will upload extra materials, known as meta-

data, for each document to 𝐶1. The purpose of the meta-data itself is to make the search for 

documents easier. To make this step possible, the Data Owner will generate multisets denoted as:  

 

𝑀 = (𝑀1, 𝑀2, 𝑀3, … 𝑀𝑛) 

 

A multiset is an ordered collection of elements where the multiplicity, the number of 

times that an element appears in a set, of an element matter. These multisets are then translated 

into multiple sets 𝑆 = (𝑆1, 𝑆2…𝑆𝑛) by finding the unions and intersections of the multisets. A set 

is different as it doesn’t account for the multiplicity of elements.  

Next, the sets are translated into bloom filters, 𝐿 = (𝐿1, 𝐿2… 𝐿𝑛). The bloom filters 

themselves act as the meta-data for each encrypted document, 𝐸𝑒𝑘(𝐷). The goal is to transfer this 

data in a secure way to 𝐶1, hence, the meta-data will also be encrypted using the Pallier 

encryption scheme and its encryption key of pk. Thus, the set of all encrypted bloom filters can 

be denoted as the following: 

 

𝐸𝑝𝑘(𝐿) = (𝐸𝑝𝑘(𝐿1), 𝐸𝑝𝑘(𝐿2)…  𝐸𝑝𝑘(𝐿𝑛))  
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Once this is prepared, the Data Owner must send the encrypted document, the encrypted 

meta-data, and the encrypted size of the document which is part of the meta-data to 𝐶1. There 

will be a secret key provided by Cloud 2 that will be used for the decryption of this information 

that is sent.  

 

4.2 Phase 2 

 

The second phase begins with a query being sent by the client, or query sender. The client 

creates a query, Q which is then encrypted using the public key for Pallier provided by 𝐶2. Based 

on this query, a bloom filter, 𝐿𝑞, is also created that acts as meta-data of the query. This query 

bloom filter is also encrypted using Pallier’s scheme which results in 𝐸𝑝𝑘(𝐿𝑞) as the query meta-

data and the encrypted size of the bloom filter is also sent to 𝐶1.  

𝐶1 will then take the bloom filter of the documents, sent from the Data Owner, 𝐸𝑝𝑘(𝐿𝑑), 

and the bloom filter of the query, sent from the Client, 𝐸𝑝𝑘(𝐿𝑞), and perform a computation of 

the Jaccard Coefficient. The computation of this value happens disjointly between  𝐶1 and 𝐶2. A 

secure multiplication is performed to find the similarity score between 𝐸𝑝𝑘(𝐿𝐷𝑖) and 𝐸𝑝𝑘(𝐿𝑞). 

This similarity is used to find the union size. The secure multiplication would output the number 

of zero pairs of the two bloom filters which is denoted by T. Once the calculation of zero pairs is 

confirmed, the union formula is used between the query and document, 𝐸(|𝐷𝑖 ∪ 𝑄|) = 𝐸(𝑙 −

(𝑇)). The calculation of the intersection between these two bloom filters is denoted by 𝐸(|𝐷𝑖 ∩

𝑄|) = 𝐸(|𝐷𝑖| + |𝑄| − |𝐷𝑖 ∪ 𝑄|). At the end of this phase, only 𝐶1, knows the encrypted union 

and intersection sizes of 𝑄 and 𝐷𝑖, for 1 ≤ 𝑖 ≤ 𝑛. 
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4.3 Phase 3 

 

 To begin, 𝐶1 performs a secure division between the union and intersection is performed 

to calculate 𝐽(𝐷𝑖 , 𝑄). However, due to secure division protocols being inefficient, a different 

approach is proposed. First, the information that is in 𝐶1 is placed through a random permutation 

function, 𝜋1, that is provided by 𝐶1 itself. This is done to keep the actual locations of the 

documents hidden from 𝐶2. The union and intersection values are then sent to 𝐶2 where the 

decryption process is done using the secret key that is present on 𝐶2. Once decrypted, a division 

process takes place between the union and intersection values to compute the Jaccard 

Coefficient. After the Jaccard Coefficient is computed, the locations corresponding to the top-k 

scores are sent back to 𝐶1 where an inverse permutation function, 𝜋1
−1, is done to reveal the 

actual locations of the top-k documents. Finally, these documents are sent back to the querier.     

To avoid the access patterns becoming compromised, another approach is proposed 

which will be named Protocol 2. As stated before, Protocol 2 follows the same steps for Phase 1 

and Phase 2 but has some changes in Phase 3. The differences between Phase 3 begins with 

performing a random permutation function on the encrypted numerators and denominators and 

shuffles the data before sending to 𝐶2. The sizes of the numerators and denominators are 

decrypted using the secret key on 𝐶2 and then the Jaccard Coefficient is calculated. Next, 𝐶2 

generates a vector, x, that corresponds to the top-k locations are equal to 1 and those that aren’t 

stay at 0 and is then encrypted, E(x). This encrypted vector would then be sent back to 𝐶1 and an 

inverse permutation function is performed to reveal a vector of actual locations of the top-k 

documents, y, denoted as:  

𝑦 = 𝜋1
−1(𝐸(𝑥)) 
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The vector then goes through an exponentiation involving the encrypted document to 

give z which is denoted by:  

𝑧𝑖 = 𝑦𝑖
𝐸𝑘(𝐷𝑖), for 𝑖 = 1,… , 𝑛 

 

Finally, the vector goes through a second random permutation function, 𝜋2, and is then 

sent back to 𝐶2. The vector is then decrypted revealing the non-zero entries in the vector which 

are the entries of the top-k encrypted documents and are sent back to the client.   

 

5. Performance Evaluation 

 

In this section, we will discuss the two tests that are conducted to analyze the 

performance of bloom filters and whether it is a viable option. The two tests were divided into 

two different programs and the results were recorded in a database and put on a graph.  

In the two experiments, there were many similarities in the parameters. One of the 

parameters that really changed the outputs of the program was the bit size of the bloom filter. 

The accuracy of these bloom filters improved if the bit size was bigger than the possible size of 

the files themselves. We aimed to push the bloom filters to a small bit size and recorded the 

accuracy of them.  

Before computing the sets, a bit size – m, was chosen. The bit size of the two bloom 

filters needed to be of the same size rather than choosing an optimal size to avoid disclosing any 

information about the sets themselves. We aim to run our experiments with chosen bloom filter 

sizes as to keep the memory usage low. Likewise, the number of hash functions was set to 1 for 

both experiments. This was based solely on the fact that our sets only contained integers and by 
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adding multiple hash functions, it would make the number of elements in a bloom filter bigger 

than the sets themselves. 

 

5.1 Experiment #1 

 

For this experiment, the Jaccard Coefficient values between two randomly generated files 

or sets were analyzed. The files or sets were randomly generated to have a range of 1,000 to 

100,000 elements in size. The two values that were compared were of the files’ Jaccard index 

score in plaintext and encrypted version. The goal of this experiment was to measure the 

reliability of the Jaccard coefficient accuracy while the files were encrypted.  

First, the two sets were randomly generated between a number range to simulate real-

world file sizes. The sets consisted of positive integers from a number range and contained no 

duplicate integers. Next, the Jaccard Coefficient Index was calculated in plain text between these 

two sets. Then, the elements from the sets are hashed and added onto 2 bloom filters. The 

Jaccard coefficient index is then computed between these two bloom filters. The Jaccard index 

score of the plaintext sets is compared to the score of the bloom filters and the accuracy is 

produced. The results can be seen for our first program in Figure 5. As the bloom filter bit size is 

made smaller, the accuracy decreases. To conclude, the results were very accurate at a size of 

100,000 bits and thus, can show reliable results at a reasonable bit size. If a bloom filter is too 

small, it would have many collisions and report false positives. 
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Figure 4: Results for Experiment #1 

Note. This graph shows how accurate the estimated Bloom Filter Jaccard index score can be at 

different bit sizes. 

 

 

5.2 Experiment #2 

 

In this experiment, we try to measure the accuracy of bloom filters to solve the Top-k 

problem. Rather than generating two sets, we generate a base set and compare it to 1,000 

randomly generated sets stored on a matrix. Next, the sets are hashed and added onto their own 

respective bloom filters. The Jaccard index score is then computed, between the base set and all 

the random generated sets, in plain text and hashed bloom filter form. The hashed and unhashed 

scores, along with their file IDs, are then placed onto two arrays. The top-k similar documents 

are then computed by sorting the arrays and producing the file IDs with the highest Jaccard index 

score and an intersection operator is run against them to finally produce the accuracy. 
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Figure 5: Results for Experiment #2 

Note. As the parameter for top-k similar documents is increased, the accuracy is increased. The 

Blue line shows when the bloom filter bit size is at 100,000 and the orange line shows when the 

bloom filter bit size is at 50,000.  

 

 

 The results shown in Figure 5, proved that the accuracy produced from Bloom Filters can 

be dependable when given a reasonable bit size. Increasing the number of top-k documents, also 

improved the accuracy of the program. 

 

6. Conclusion 

 

6.1 Summary 

 

In this paper, we proposed a secure retrieval of encrypted similar documents using bloom 

filters. In our solution, we use an architecture that manages to keep user queries and the contents 
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the top-k problem. Experiments on the randomly generated sets proves that bloom filters can be 

an efficient and realistic solution to find encrypted similar documents.  

 

6.2 Future Work 

 

An outline explaining the future work for the proposed protocol that was presented in this 

thesis is as follows: 

• Security: In theory, the proposed protocol is secure and does not disclose its 

contents amongst the four entities. More experiments need to be done on this 

protocol to achieve security against leakage or unauthorized users.  

 

• Experiment variance: The experiments on files can be expanded to include 

several types of files such as text documents or spreadsheets. More research can 

be done to account for different file types. 
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