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Abstract 

Gathering and extracting security requirements adequately requires extensive effort, experience, 

and time, as large amounts of data need to be analyzed. While many manual and academic 

approaches have been developed to tackle the discipline of Security Requirements Engineering 

(SRE), a need still exists for automating the SRE process. This need stems mainly from the 

difficult, error-prone, and time-consuming nature of traditional and manual frameworks. 

Machine learning techniques have been widely used to facilitate and automate the extraction of 

useful information from software requirements documents and artifacts. Such approaches can be 

utilized to yield beneficial results in automating the process of extracting and eliciting security 

requirements. However, the extraction of security requirements alone leaves software engineers 

with yet another tedious task of prioritizing the most critical security requirements. The 

competitive and fast-paced nature of software development, in addition to resource constraints 

make the process of security requirements prioritization crucial for software engineers to make 

educated decisions in risk-analysis and trade-off analysis.  

To that end, this thesis presents an automated framework/pipeline for extracting and prioritizing 

security requirements. The proposed framework, called the Security Requirements Extraction 

and Prioritization Framework (SecREP) consists of two parts: 

 SecREP Part 1: Proposes a machine learning approach for identifying/extracting security 

requirements from natural language software requirements artifacts (e.g., the Software 

Requirement Specification document, known as the SRS documents) 

 SecREP Part 2: Proposes a scheme for prioritizing the security requirements identified in 

the previous step. 
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For the first part of the SecREP framework, three machine learning models (SVM, Naive Bayes, 

and Random Forest) were trained using an enhanced dataset the “SecREP Dataset” that was 

created as a result of this work. Each model was validated using resampling (80% of for training 

and 20% for validation) and 5-folds cross validation techniques. For the second part of the 

SecREP framework, a prioritization scheme was established with the aid of NLP techniques. The 

proposed prioritization scheme analyzes each security requirement using Part-of-speech (POS) 

and Named Entity Recognition methods to extract assets, security attributes, and threats from the 

security requirement. Additionally, using a text similarity method, each security requirement is 

compared to a super-sentence that was defined based on the STRIDE threat model. This 

prioritization scheme was applied to the extracted list of security requirements obtained from the 

case study in part one, and the priority score for each requirement was calculated and showcased. 

Keywords-machine learning, natural language processing, text classification, software 

security, security requirements engineering, security requirement prioritization. 
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CHAPTER 1: Introduction 

Security in the context of software systems is an ever-growing concern especially with 

the degree of ubiquity and availability the world is witnessing in software driven services, 

networking, and shared resources. With that in consideration, security presents itself as an 

integral part in implementing a successful and satisfactory software that incorporates the 

necessary measures for protecting the stakeholders’ assets [37]. 

Security concerns must be addressed and accounted for in the early stages of the software 

development lifecycle (SDLC) to prevent security risks, exploits, and financial loss 

[2,13,28,33,36,38,51,55]. The high costs incurred by organizations due to poor security 

requirement engineering (SRE) show that there would be a high value to even a small 

improvement in this area. By the time that an application is deployed in its operational 

environment, it is very difficult and expensive to significantly improve its security [36]. Bearing 

in mind these elements, security requirements engineering and elicitation, was granted a specific 

area of knowledge in the information technology literature.  

Security Requirements Engineering (SRE) is an activity conducted during the early stage 

of the software development process. SRE involves eliciting, analyzing, and documenting 

security requirements. However, SRE is still a new area of knowledge that requires considerable 

efforts and expertise for identifying complex security requirements. Additionally, for most 

software systems used and sold on commercial levels, the system requirements specification 

(SRS) document is normally of a large size and intertwined nature. This could result in 

neglecting or incorrectly identifying valuable security requirements [1,46].  
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The elicitation and identification of security requirements alone, leaves software 

engineers with yet another tedious task of prioritizing the most critical security requirements. 

Even though one might think that all security requirements are considered relevant, 

implementing all security mechanisms that protect the software against every possible threat is 

not feasible and almost impossible. The competitive and fast-paced nature of software 

development, in addition to resource constraints makes the process of security requirements 

prioritization crucial for software engineers to make educated decisions in risk-analysis and 

trade-off analysis and guarantees that at least the topmost security measures are accounted for 

and implemented, especially in the software’s early releases [8,15,17,38,41,57,58]. 

Machine learning techniques have been widely used to facilitate and automate strenuous 

and complex tasks [53]. Machine learning refers to the area of knowledge that falls under the 

realm of artificial intelligence (AI). Where an algorithm is fed a series of data to either transform, 

restructure, extract information, find similarities, or predictions from that said data, using 

predefined sets of rules and/or mathematical equations. This can be used in a variety of 

applications such as, image recognition, weather prediction, fraud detection, information 

extraction, etc. Under the concept of machine learning falls yet another sub area of knowledge, 

that is Natural language processing (NLP). NLP offer in depth techniques and focus on 

processing natural language raw text artifacts into desired useful information. 

The opportunity that presents itself here is to introduce a machine learning process to 

automatically identify the security requirements from a software system’s requirements 

specifications artifact (these artifacts generally tend to be 100s of pages in length, depending on 

the size of the software being developed). Additionally, a prioritization process can be added that 



15 

 
provides a reliable scheme for the identified security requirements in a single automated pipeline. 

Such pipeline would offer great value, save time, and labor, and potentially improve the 

efficiency and the accuracy of an otherwise manual process.   

1.1 Goal 

The overarching goal of this work is to establish a refined process where security is 

adequately incorporated in the early stages of the SDLC, namely the requirements elicitation and 

specification stage. This will ensure that the security risks to the software and any future 

correction measures can be significantly minimized.  

Thus, the overall goal of this thesis is stated as follows:  

“To automate the identification/extraction and prioritization of security requirements 

from natural language software requirements artifacts” 

1.2 Related Work 

The literature as it stands offers abundant work in security requirements engineering, as 

well as prioritization. Additionally, many scholars tackled the uses of machine learning 

approaches to address the extraction, elicitation, and prioritization of software requirements. 

However, most of the previous work is mostly focused on the general concept of automating the 

extraction of software requirements, without addressing in depth the specificity of security 

requirements extraction and prioritization. This section summarizes relevant work addressing 

either the identification of security requirements using machine learning approaches, or the issue 

of prioritizing security requirements. 
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11.2.1 Machine learning for security requirements classification 

In the context of utilizing machine learning techniques for extracting security 

requirements form natural language artifacts Riaz et al. [46] introduced a framework that takes as 

input natural language artifacts documents. The process then examines each sentence in the 

document to determine whether it is a security relevant sentence and then classify it according to 

the security objectives, that are either explicitly stated or implied by that sentence. The authors 

used and compared the results of a -NN classifier, and from Weka[20], a multinomial naïve 

Bayes classifier, and a SMO (sequential minimal optimization classifier). As for the training data 

the authors selected six different documents form the health care domain, and with the aid of 

three experts classified 10,963 sentences and extracted corresponding security objectives. The 

manual analysis showed that 46% of the sentences were security relevant. Of these, 28% 

explicitly mention security while 72% of the sentences are functional requirements with security 

implications. The proposed tool predicted and classified 82% of the security objectives for all the 

sentences (precision) and identified 79% of all security objectives implied by the sentences 

within the documents (recall). Finally based on an analysis they conducted; the authors develop 

context-specific templates that can be instantiated into a set of functional security requirements 

by filling in key information from security relevant sentences. 

Kobilica et al.[29] work was more focused on examining to what extent shallow machine 

learning classifiers, with basic pre-processing technique, can achieve in terms of accuracy. The 

authors conducted multiple experiments to examine twenty-two different machine learning 

approaches. Th training was conducted using the SecReq [59] dataset and the results showcased 

that ensemble techniques such as LSTM Ensemble Boosted Trees and CNN gave the best 

accuracy performance. requirements. Despite that fact that the Long Short-Term Memory 
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(LSTM) reached the highest accuracy level, the authors recommend the use of supervised 

machine learning classification approaches in the context of security requirement. Since deep 

learning approaches such as the LSTM exhibit longer training time that might not be suitable for 

instant and fast classification.  

In another paper published by Kurtanovic et al.[32] on the use of supervised learning 

machine learning to classify requirements as either functional (FR) or non-functional (NFR). 

This classification was conducted on the “Quality attributes (NFR)” dataset. Furthermore, the 

non-functional requirements were identified as either usability, security, operational, or 

performance requirements. The process the authors adopted in this work consisted of first 

identifying whether a security requirement is a functional or a non-functional requirement. In 

doing so the most informative features in the text were also identified and the top ten were 

selected to conclude the classification. For the non-functional requirements further classification, 

the authors filtered out the functional requirements from the dataset and then assessed four 

binary classifiers for identifying the four most frequent NFRs in the dataset: usability, security, 

operational, and performance. Then a multi-class classifier was used for predicting these four 

classes. 

Abad et al. [1] work tackles classifying requirements into functional requirements (FR) 

and non-functional ones (NFR), and how automated classification of requirements into FR and 

NFR can be improved. The proposed approach introduced a preprocessing solution that 

standardizes and normalizes requirements before applying the classification algorithms. By 

leveraging rich sentence features and latent co-occurrence relations, the authors showcased 

improved results in precision when the classification was applied to the processed dataset using 
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the proposed technique. In addition to this work the authors also conducted an analysis to 

showcase the performance of several existing machine learning methods that are used for the 

automatic classification. This study was conducted on 625 requirements provided by the 

OpenScience tera-PROMISE repository. 

Dave et al. [10] also used the PROMISE repository dataset of functional and non-

functional requirements, to conduct their experiments. The main premises of this work was to 

automate the classification of software requirements into FN and NF requirements, and to further 

classify the NF requirements into nine different categories. Using three machine learning 

algorithms, SVM, Stochastic Gradient Descent (SGD), and Random Forests, the authors 

conducted a comparison of these machine learning performances. Where the results showed that, 

SVM with TF-IDF produced the best results when classifying FRs, the SGD with TF-IDF 

produced the best results for NFRs, and in the case of both FRs and NFRs, the 3 models 

produced quite similar results. 

Another consideration regarding the elicitation of software requirements was brought to 

light by Emebo et al.[11,44] work on identifying the Implicit Requirements (IMRs) of a said 

system. IMRs are assumed needs that a system is expected to fulfill though not elicited during 

requirements gathering. The authors highlight that addressing such requirements is crucial for the 

completeness and success of the overall system. Especially that, studies have shown that a major 

factor in the failure of software systems is the presence of unhandled IMRs. To address this issue 

the authors, propose a novel framework called the COTIR (Commonsense knowledge, Ontology 

and Text mining for Implicit Requirements) for identifying and managing IMRs based on 

combining three core technologies: common sense knowledge, text mining and ontology.  



19 

 
Additionally, and building on the COTIR tool, Emebo et al.[43] conducted another work which 

incorporates CNN-based deep learning to further enhance the COTIR detection of IMRs from 

complex SRS big data such as images and tables. This approach aimed to deploy a Convolutional 

Neural Network (CNN) for further analysis of IMRs. This enhanced COTIR framework ability to 

extract IMRs was evaluated using three SRS documents and compared against eight software 

engineering experts (SE researchers and IT professionals). Where, the eight study participants 

first carefully read each of the SRS documents supplied to them and identified requirements with 

implicit patterns. As a result of this manual effort, all participants collectively were able to 

identify 8 potential IMRs. The COTIR tool was then used to identify the following types of 

implicit patterns in the SRS documents: i) Ambiguity, ii) Incomplete Knowledge, iii) Vagueness, 

and iv) Miscellaneous. The experts’ evaluation served as the ground truth. A major result of this 

study was that the COTIR approach was able to identify 6 out of 8 known instances of implicit 

patterns in the supplied requirements. The authors conclude that, such results provide evidence 

that COTIR can relieve human analysts from the tedious manual task of reading huge SRS 

documents to find IMRs. 

What is worth mentioning here is that several approaches and studies were conducted to 

classify natural text as functional requirements (FR) or non-functional requirements, and/or the 

NFR were classified as security, performance, usability. However, there is clear shortage in 

addressing the classification of security requirements as a specific principle of their own. 

Security requirements intertwine with all categories of requirements, and many security 

requirements can be expressed as functional requirements, performance, availability, and 

usability. Thus, security requirements must be extracted from functional requirements and non-

functional requirements alike to achieve the completeness of the security requirements elicitation 
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process and aid the shift of how to address security concerns and issue in software systems. With 

that, this work will retain from any pre-classification and instead will aim to extract security 

requirements from any sentence described as a requirement. 

11.2.2 Security Requirements Prioritization 

The extraction and identification of security requirements appears to be the focus of most 

of the current literature work when it comes to the use of automation and machine learning 

technologies. Which draws the attention to the lack of such automated frameworks for the 

purpose of prioritizing security requirements. However, there are significant work that addresses 

the issue and suggests feasible process to manually elicit, identify, and prioritize security 

requirements. Even though such frameworks require experts’ skill and significant efforts, they 

still provide sufficient aid for software engineers. For example, Yoo et al. [58] proposed a rather 

easy to understand and implement technique for prioritizing security requirements, which the 

authors called the enhanced misuse-case. The enhanced misuse-case extends upon the well-

established use-case diagram. This is perhaps what is most appealing about this approach. The 

proposed solution addresses the prioritization of security requirements in terms of the number of 

functional requirements and/or assets each security requirement is addressing. In addition to the 

risks value that each security requirement is trying to mitigate. The authors suggest calculating 

this risk value using the Common Vulnerability Scoring System (CVSS).   

In another work presented by Carvalho et al. [8] that was mainly concerned with the 

security issues and incidents associated with smart toys that uses sensors and cloud-based 

services to collect data. To adequately address these security issues associated with such 

systems, the authors proposed an approach where they used the Microsoft SDL method to 
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identify a comprehensive list of security issues based on specific regulations, threats based on 

surface attack analysis, and security requirements that address security issues and threats.  As for 

prioritization, the authors presented a method based on risk assessment, AHP, and generic 

scenarios. The suggested process to prioritize security requirements requires to first, identify the 

severity of all threats addressed by the security requirements using the security bug bar. Second, 

the severity of all security issues addressed by the security requirements must be defined using 

standards and regulations that must be considered in the context of a system. Finally, the risk of 

each security requirement is calculated based on the severity of the threats and the security issues 

addressed by it. This final value is then used to prioritize the security requirement. In the case of 

security requirements with the same risk values the authors suggest that using the AHP 

techniques provides the most reliable results.  

Park et al. [45] approach for prioritizing security requirements facilitates the threat 

modeling model to create a process that allows for the prioritization of security requirements via 

the valuation of assets, threats, and countermeasures. Modeled in a tree-like structured graph 

referred to as a “valuation graph”. The valuation graph requires a total of eight steps: six steps 

that must proceed the prioritization scheme to achieve the prioritization, that is manifested in 

seventh and eighth steps. The suggested prioritization scheme derives its principle from 

identifying the system’s assets, the threats per asset, and their valuation in terms of impact and 

risk. Once assets and threats and their values are well established, security requirements become 

the countermeasures that can be used to mitigate and address these threats. The priority of these 

security requirements is then calculated using the total impact (TI) of threats that a 

countermeasure mitigates, the gain (G) of each countermeasure, and the value of assets that the 

countermeasure protects.  
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1.3 Contributions of this Study 

The contributions of this work can be summarized as follows: 

1. An enhanced dataset (called the SecREP dataset), which includes samples of 

requirements classified as either a security requirement or non-security requirement. This 

enhanced dataset is a combination of the SecReq [59] dataset and the NFR dataset 

available on “zenodo.org” [52,60], in addition to some requirements gathered from 

security requirements specifications documents. 

2. A comparison between three machine learning models (SVM, Naïve Bayes, and Random 

Forest) trained using the enhanced dataset. 

3. A process that employs a voting ensemble approach for extracting security requirements 

from software language artifacts (such as SRS documents).  

4. A novel semi-automatic prioritization scheme for security requirements. This scheme 

uses sentence features and relation extraction to identify assets, threats, and security 

properties. In addition, the scheme uses a sentence similarity technique to identify threats 

that correspond to STRIDE [30] modeling. 

1.4 Thesis Structure 

This thesis presents the Security Requirements Extraction and Prioritization Framework 

(henceforth referred to as SecREP).  The SecREP pipeline consists of two major parts: Part One, 

wherein a machine learning based approach for security requirements identification/extraction is 

proposed and evaluated; Part two, wherein a security requirements prioritization scheme is 

proposed. 
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The thesis structure is summarized in Figure 1 and a description of the two-step SecREP 

pipeline is provided below. 

Part One: this part represents the process and the steps taken to conduct the security 

requirements extraction framework. The proposed extraction process was a result of the 

following iterations: 

1. Using the SecReq [59] dataset after manual cleaning, and modifications which yielded a 

total of approximately 584 requirements. 

2. Using the enhanced SecREP dataset, which included the SeqReq [59] dataset, a portion 

of the NFR dataset [52,60] and manually extracted requirements from SRS documents 

(total of 752 requirements)  

3. For each iteration three machine learning models (SVM, Naïve Bayes, and Random 

Forest) were trained, after applying preprocessing techniques to the input datasets. The 

trained model was used to extract security requirements from a real-world system 

requirements specification artifact (a list of 30 requirements). Using background 

knowledge and judgment to evaluate the extracted security requirements list. Satisfactory 

results were achieved in the third iteration using the enhanced SecREP dataset. 

4. The performance for each model was evaluated in terms of precision, accuracy, recall, 

and F1 scores. Using 80% training and 20% testing resampling approach as well as 5-

folds-cross validation.  

5. The final extracted security requirements list was based on an ensemble decision where 

all three trained models classified a requirement as a security requirement. 
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Part Two: the second part of this work represents the process and the steps taken to 

conduct a prioritization scheme for the security requirements that were extracted from the 

previous part (part one). The proposed prioritization process was a result of the following steps: 

1. The extracted security requirements list from the ensemble extraction process, was 

treated with preprocessing techniques to be normalize and reshaped. 

2. Using spaCy [23] pretrained natural language medium model, feature extraction 

techniques were applied on the processed security requirements list to identify the assets, 

threats, and security attributes (such as Authentication, Integrity, Confidentiality…etc.) 

that appear in the extracted list. 

3. For each security requirement a total score was calculated based on the number of assets, 

threats, and security properties present in the said security requirement. 

4. For additional mapping, spaCy [23] Word2Vec text similarity algorithm was utilized to 

calculate the similarity of each security requirement to a super-sentence. Each super-

sentence corresponds to a STRIDE [30]threat definition. 

5. A weight of 1 was added to each STRIDE [30] threat that appears in the security 

requirement, based on a similarity of at least 90% to each super-sentence. 

6. The total count of STRIDE [30] similarity weight and the total count of assets, threats, 

and security properties, becomes the priority score of the security requirement. 
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Figure 1: Security Requirements Extraction and Prioritization Pipeline (SecREP) 



26 

 
CHAPTER 2: Background 

2.1 Requirements Engineering and Elicitation  

Requirements Engineering (RE) is defined as the process of gathering, eliciting, 

analyzing, documenting, and maintaining requirements in the software development process 

[42]. Requirements engineering (RE) is an essential step that must proceed the design and 

development of a software’s code [5]. This importance stems from the fact that addressing 

requirements errors, such as ambiguous, incomplete, or omitted requirements, is more expensive 

to fix when the software is operational. Due to that its notable that extensive work is done in the 

early stages of the software development life cycle (SDLC). 

An important outcome of the requirements’ engineering process is the elicitation of the 

system’s requirements specification (SRS). Where the functional requirements are distinguished 

from the nonfunctional requirements. Functional requirements are those that can directly relate to 

an action the system is expected to perform as per the end-user expectations. Nonfunctional 

requirements on the other hand are more ambiguous to derive and normally refer to those 

requirements that express a system’s constraint or quality, such as performance, reliability, 

efficiency, and security[21,34] . Table 1 Provides examples of functional and nonfunctional 

requirements to clarify the differences between the two concepts. 
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Table 1: Examples of Functional and Nonfunctional Requirements 

Requirement Example Category  

The system should allow users to change the 

color scheme of the website.  

Functional requirement: allows for changing 

colors. 

Ability to upload large pictures and videos of up 

to 5Gb 

Nonfunctional requirement: performance, 

load  

Users should receive notifications of new 

features  

Functional requirement: allows for 

notification action 

The system should send emails to the users in 

less than 3 seconds of adding new content to the 

website 

Nonfunctional requirement: performance, 

efficiency 

The system should allow users to interact with 

each other.  

Functional requirement: allow for 

communication action 

Warning and instructions issued by the system 

should be, in English without disclosing any 

sensitive information. Error messages should be 

colored red. Instruction messages should be 

colored green.  

Nonfunctional requirement: reliability, user 

experience, security.  

 

22.1.1 Security Requirements Engineering  

Security requirements are most categorized under the non-functional requirements of the 

system. These types of requirements describe the constraint on the system’s functions, where 
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these constraints operationalize one or more security goals [19]. Security requirements are 

dynamic in nature and evolve as the software is developed. Most researchers classify them as 

nonfunctional requirements because they do not have a clear criterion for their specification and 

satisfiability [2].  However, security requirements can be also expressed as functional 

requirements that describe the system’s behaviors to achieve these security goals of a said 

system.  

The process of security requirements engineering provides valuable information that 

covers the definition of security requirements and the concepts that correlate with it like, assets, 

objects, threats, and vulnerabilities. Which in turn provokes important questions, such as what 

assets should be protected? Against whom? How should these assets be protected? And to what 

extent? It is important to recognize that security requirements do not represent security measures 

and policies, nor should they describe the underlying mechanisms that implement these security 

measures. With that it is notable that security requirements are complex, and they integrate with 

the general concept of requirements. Making the process of eliciting security requirements a 

challenging task, that must be addressed early in the software’s development stages [8,31,54] .  

When addressing security requirements, it is difficult to derive conclusive rules that can 

be used to determine if a requirement is a security requirement or a non-security requirement. 

The system’s needs and nature, the standards and regulations of the operational country and 

environment, and the software engineers’ expatriates, are some of the important variables that 

can drastically influence the categorization of a software requirement. However, guidelines and 

standards can still be utilized to tackle the issue of deciding if a requirement is a security 

requirement. For example, in information security confidentiality, integrity, and availability are 
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broadly known as the security “Tried” and they are considered the three most important concepts 

within information security. Considering these three principles and what they present, could 

alone provide a sustainable start to define a security requirement, where a requirement could be 

considered a security requirement if it addresses the protection of these concepts and/or the 

prevention of the inverse of them. Table 2 Provides some examples of security requirements 

expressed as functional and nonfunctional requirements. 

Table 2: Security Requirements as Functional and Non-Functional Requirements. 

Security Requirement as Functional 

requirements 

Security Requirements as Nonfunctional 

requirements 

The system must issue emails to users if their 

data was compromised  

The system must protect users’ information 

and prevent any illegal access to users’ 

sensitive data. 

All secrete data must be encrypted/hashed and 

must not be stored or transmitted in plain text 

format.  

All critical functionalities must be available 

and accessible to authorized users. 

The system must perform regular scanning to 

any data entering the operational environment 

as well as any user input. 

The system must guarantee the integrity of 

users’ assets stored and retrieved within the 

system environment. 

22.1.2 Prioritization of Security Requirements 

Despite the significance of security in software applications. Implementing all security 

measures is expensive in time, cost, and effort, in addition to the performance and availability 

restrains that it might reflect on the system.  Absolute software security is an unrealistic 
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expectation. Thus, it is important to identify the topmost critical security requirements that must 

be addressed and accounted for. Which in turn, guarantees that at least the most essential 

protection measures are incorporated in the software’s early release [8].  

Ideally security requirements prioritization must be considered as an essential task in the 

process of requirements engineering. Additionally, the lack of a prioritization process could 

leave the process of security requirements elicitation ambiguous and incomplete. Leaving the 

decision of which security measures to be implemented to the expertise and skills of the software 

engineers performing the elicitation. One might easily argue that without prioritization the 

establishment of security requirements alone does not utilize them into tangible use. The optimal 

purpose of security requirements is to support the objectives of a project and its overall quality. 

Prioritization offers great value for risk-analysis and trade-of-analysis aiding stakeholders and 

software engineers in making educated decisions. Many factors are at play when attempting to 

prioritize software requirements more so for security requirements. Unlike clear requirements 

that present the end-users and stakeholders needs, security requirements tend to be difficult to 

evaluate and valuate[2,48,54]. However, a common criterion on how to address and guide the 

process of security requirements prioritization can still be derived and established using the most 

common factors found in a security requirement. Examples of these factors include, the system 

and user assets, the security attribute being addressed according to the security tried 

(confidentiality, integrity, and availability), the threats being addressed, and the risks associated 

with these threats [8,16,22,26,45,51,58]. 
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2.2 Machine Learning and Natural Language Processing 

Machine learning (ML) approaches have become in recent years, a necessary part in 

numerous commercial and industrial applications and appliances. With the explosion of data 

gathering and information mining, a new paradigm emerged where the use of ML is the 

automatic determination for otherwise impossible, complex, and/or manual tasks. Such tasks and 

applications include robotics, text and image recognition, fraud and anomalies detection, 

intelligent chat bots, data classifications and predictions in whether, medical diagnosis, and 

navigation...etc. [7,40].  

Machine learning (ML): is the scientific study of algorithms and statistical methods that 

computer systems use to effectively perform a specific task without using explicit instructions, 

relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine 

learning algorithms build a mathematical model of sample data, known as "training data", in 

order to make predictions or decisions without being explicitly programmed to perform the task. 

There are five types of machine learning algorithms: supervised, semi-supervised, active 

learning, reinforcement, and unsupervised learning [7,27,40].  

Natural language processing (NLP): is a subset of artificial intelligence and a 

significant filed machine learning. NLP refers to the process where a computer system is used to 

understand, parse, and extract human language that is in the form of raw text in often times. NLP 

is a broader term where several problem areas fall under it, such as text 

categorization\classification, syntactic parsing, part-of-speech tagging (POS), named entity 

recognition (NER), coreference resolution, machine translation, and the sub area of natural 

language understanding (NLU). Natural language understanding (NRU) describes the area of 
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NLP where the computer systems are trained to extract context, intent, and what is inclined by 

the text. NLU is commonly used in areas such as, relation extraction, paraphrasing, semantic 

parsing, sentiment analysis, question and answering, and summarization [4,27].  

Figure 2 demonstrate the relation between these three fields (AI, ML and NLP), where is 

Figure 3 demonstrate the problem areas where NLP and NLU are used in relation to each other. 
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Figure 2: NLP in Relation to AI and ML 

 

Figure 3: Natural Language Processing (NLP) Knowledge Areas 
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22.2.1 Information Extraction and Text Classification 

Information extraction and classification are both popular applications of NLP. 

Information extraction focuses on transforming raw text into structured and relevant information 

to the problem at hand. Whilst text classification is more concerned with labeling and grouping 

the unstructured data with relation to its content into two or more classes. Text classification can 

be used on either raw data or on restructured data that is the result of an information extraction 

process [27,47]. Such pipeline has the potential of producing more accurate and powerful results 

for many cases, as shown in Figure 4. 

 

Figure 4: Information Extraction and Classification 

2.2.2 Text Preprocessing 

In machine learning approaches the most important factor that determines the quality of 

the process outcome is the condition, completeness, and plausibility of the data that is being fed 

to the machine for training. Incorrect or poor-quality input will always produce faulty output. 

More so for NLP techniques, since making a numeric based machines such as computers 

understand and derive meaning from human spoken languages is a far more difficult task than 
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processing numeric data. Text preprocessing, describe the cleaning and preparing operations that 

transforms the raw text, into a well-defined sequence of linguistically meaningful units. Raw text 

datasets normally contain noisy, duplicated, lengthy, high dimensional, corrupted, and empty 

data that is not valuable for the NLP task. Which makes preprocessing a vital step that must 

proceed every NLP task to produce more accurate and reliable results [27,56]. Below is a 

description for essential text preprocessing techniques that were also used in later chapters in this 

work.   

Manual cleaning: while many automated libraries exist that provide reliable text 

preprocessing techniques, in some cases manual cleaning and validation of the dataset is still 

necessary. For example, in some cases where many samples are unlabeled, experts’ judgment 

will be required to provide an accurate classification and prevent losing the sample. In other 

cases, reducing the sentence length would also be a manual task to ensure that this reduction did 

not jeopardize the integrity and usefulness of that data sample [27]. 

General Cleaning: it is important to understand the dataset that will be used for the NLP 

task. Therefore, it is advised to scan the text, understand its structure, and content. This helps 

identify what cleaning processes might be needed. Additionally, as a rules of thumb, a general 

cleaning step that includes removing extra white spaces and line breaks is always a good start to 

a better dataset. This can be easily done with a simple automated codes and regular expressions. 

 

Fixing Null and NaN values: Data needs to be checked for NaN and Null values. Such 

values do not only compromise the training process but for many cases they can cause the 

machine learning algorithm to fail its execution. Null and NaN values can be handled either 
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manually or automatically after importing the data. In many cases it is recommended to fix the 

sample where there is a null/Nan value instead of removing it [27]. This fix can be done 

manually using expert judgment, or automatically using mean values or estimated values that can 

fill the missing data. 

Tokenization: or text segmentation is the process of converting a sentence into a series 

of words. Each token carries a semantic meaning that is associated with it. The importance of 

this process is that it breaks down larger pieces of text into smaller more meaningful ones.  The 

tokenization process can be achieved by defining the boundaries for a word and separating them 

by whitespace and punctuation as well as splitting contractions [4,27].  

Stop Words Removal: stop words are very abundant and common in natural language 

artifacts, and they provide little to no value in terms of analyzing the special meanings of a given 

text. Hence removing stop words reduces the noise in the given data and promotes better results. 

Example of such strop words include auxiliary verbs (be, do and have), conjunctions (and, or) 

and articles (the, a, and an) [4,25,27].  

Stemming and Lemmatization: Stemming refers to reducing inflected (or sometimes 

derived) words to their word stem base or root. For example, the words ‘goes’, ’gone’ and 

‘going’ will map to ‘go’. Lemmatization on the other hand determines the lemma (the infinitive 

form of verbs and the singular form of nouns and adjectives) of each word. For example, the 

verbs ("see", "saw", "seeing", "seen"}) will all map to “see”.  Both or either techniques can be 

used depending on the task at hand, to improve the accuracy of the result, and to reduce the 

overhead of finding text similarity problems. However, lemmatization is often recommended and 
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is broadly regarded as more useful than stemming, since it adds a morphological analysis to the 

words [4,12,27].  

Punctuation Removal: similar to stop words, punctuations also add extra noise to the 

data that might affect the tokenization, classification, and extraction processes. However, for 

some scenarios it might be necessary to keep some punctuations, for example to detect the end of 

a sentence, extract questions, extract quoted phrases…etc. [12,27].  

Convert to Lowercase: converting the text to lowercase is vital for text parsing, 

similarity extraction, and words vector presentations. For example, the words “Apple” and 

“apple” will be given different numerical and weight values. While in essence these words serve 

the same purpose and meaning. 

Part of Speech (POS) Tagging: in linguistic features, text is analyzed to extract features 

related to the interested objective. Part of Speech (POS) tagging involves tagging a word with a 

part of speech label (such as noun, verb, adjective, etc.) based on the definition and its context 

within the sentence in which it is found [12,23]. 

22.2.3 Word vectors 

Word vectors or word embeddings are numerical representations of words in 

multidimensional space through metrices. It is well established that, the working language of 

computers is numbers. Which represents a challenge for natural language processing and words 

analysis from the perspective of the computer architecture. With that said, many methods were 

established to address this limitation where words are converted into corresponding unique 

numbers the computers can understand and process quickly. This process of encoding documents 

in a numeric feature space is called feature extraction or, vectorization.  
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One of those initial methods, is the bag of words, where words are stored in a dictionary, 

each word is that dictionary key and its numerical representation is the value. For example, 

{“the”: 1, “she”: 3} etc. However, in such method and while the computer can recognize the 

word, it is unable to identify or derive meaning of it, in terms of how that word functions within 

a sentence, how it works within a language, and how it relates to other words. Word vectors on 

the other hand, add dimensionality to the word, where a word is represented by an array of 

decimal numbers. These dimensions are honed via machine learning models that consider the 

frequency of that word alongside words across a body of text, in addition to, the appearance of 

other words in similar contexts. This allows for the computer to determine the syntactical 

similarity of words numerically. Hence why, vectorization is often referred to as Feature 

selection. Word vectors approaches use Matrices to represent these relationships numerically. To 

represent these matrices more concisely, models flatten a matrix to a float (decimal number) 

where the number of dimensions represent the number of floats in the matrix [4,6,27].  

Below is a description of two vectorization models that were used in later chapters of this 

work. 

22.2.3.1 Term Frequency—Inverse Document Frequency (TF-IDF) 

The TF-IDF approach is very commonly used for vectorizing terms and extracting 

features based on occurrence. It is used in many search engines, information retrieval, and text 

mining systems. TF-IDF combines two metrics, the raw frequency value of a term in a particular 

document (TF), and the inverse of the document frequency for each term (IDF). 

The term frequency TF of a word w in a document can be calculated as follows: 
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( ) =
Number of times the word w occurs in a document

      
 

The inverse of the document frequency IDF for each term w can be calculated as follows: 

( ) = log
Total number of documents

Number of documents containing word w
 

Finally, the weight of word w in document d can be calculated as follows: 

( , ) = ( , ) ( ) 

Hence and according to the above equations, the weight of word w in document d is the 

product of the TF of word w in document d and the IDF of word w across the text corpus. 

[6,27,35]. 

22.2.3.2 Word2vec 

Word2vec [39] was introduced by Google in 2013 and it was developed by Mikolov et a 

l. At Google. Later the model was made available as an open source for the community to use 

and build on [27]. In essence the Word2vec is a model that enables the building of word vectors 

using contextual information from the neighborhood of a word. For every word whose 

embedding is developed, it's based on the words around it. Word2Vec is a pre-trained two-layer 

neural network, that takes as input a text corpus and outputs a set of feature vectors that represent 

words in that corpus [27,39]. Word2vec models can be trained by two approaches, as follows: 

 Continuous Bag Of Words: this approach takes as input the context of each and tries to 

predict the word corresponding to the context. Where the context in this case is the 

surrounding words. 
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 Skip-gram: the skip-gram predicts the context word using the target word as input. In 

this approach the target word, (i.e., the word to generate a representation for) is used to 

predict the context. 

Figure 5 showcases a simple representation of the two approaches that can be used to 

train a Word2Vec model.  

 

Figure 5: Word2vec Continuous Bag Of Words and Skip-gram Training Methods 

2.3 Text Similarity 

Text similarity from the perspective of the machine is the distance between two vectors 

where the vector dimensions represent the features of two objects. Similarity provides insights 

into the distance between two vectors and measures how different or alike two data objects are. 

If the distance is small, the objects are said to have a high degree of similarity and vice versa. 

Once the vector representation of the text, or the text embedding is established, text similarity 
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becomes a simple distance task that can be calculated using simple well-known mathematical 

equations, such as the Euclidean Distance and the Cosine similarity [23,27]. 

2.4 Naïve Bayes 

The Naïve Bayes (NB) is a classification technique based on the Bayes' theorem: the 

basic assumption is that the predictor variables are independent of each other. It is a statistical 

classifier that performs probabilistic prediction. A simple naïve Bayesian classifier has 

comparable performance with decision tree and selected neural network classifier.  

The Bayes' theorem is mathematically expressed as follows: 

( | ) =  
( | ) ( )

( )
 

 

 P(A) and P(B) are the probabilities of observing A and B without regard to each other. 

 P(A|B), a conditional probability, is the probability of observing event A give that B is 

true. 

 P(B|A) is the probability of observing event B given that A is true 

For a text classification problem, A can be set to the probability that a specific word 

vector/ words vectors belongs to the targeted class, and B as the entire vectors in the vocabulary 

set. If P(A|B) > P(¬A|B), then a sentence can be classified accordingly [4,6,12,27,40].  

2.5 Support Vector Machines 

Support Vector Machines (SVM) is a supervised classification method that works for 

both linear and nonlinear data. The SVM algorithm aims to find the optimal hyperplane (i.e., 



42

Decision Boundary) that separates the data points that need to be classified. Naturally, there are 

many possible hyperplanes that could be chosen. However, the objective is to find a plane that 

has the maximum distance between data points of both classes (i.e., the margin between the two 

classes data points).  

Hyperplanes: the decision boundaries that separate the data points. Data points falling on 

either side of the hyperplane can be attributed to different classes. The dimensionality of a 

hyperplane correlates to the number of features each date point presents. If the number of 

features is 2, the hyperplane is just a line. If the number of features is 3, then the hyperplane 

becomes a two-dimensional plane. Figure 6 demonstrates the SVM hyperplanes.  

 

Figure 6: SVM Hyperplanes 

Support vectors: are considered as the critical elements of a dataset. These represent the 

data points closest to the decision boundary. Consequently, if these points are removed, altered, 

or the data is changed, the position of the dividing hyperplane will be changed and recalculated.  

The margin: the distance between the hyperplane and the nearest data point from either 

class is known as the margin. 
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Maximum marginal hyperplane (MMH): the hyperplane with the greatest possible 

margin which yields a greater chance of new data being classified correctly. 

Figure 7 demonstrates the SVM support vectors and margins. 

 

Figure 7: SVM Support Vectors and Margins 

Calculating the hyperplane and the margin: 

SVM algorithm takes the output of the well-known linear function (y=mx+b) and if that 

output is greater than 1, the point is placed in one class and if the output is -1, it’s places with 

another class. Since the threshold values are 1 and -1 in SVM,  this reinforcement range of 

values ([-1,1])  can be obtained, and act as margin. 

The separating hyperplane function is defined as follows: 
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( ) = . + = . + = 0 

where W= {w1, w2, …, wn} is a weight vector, and b is a scalar called the bias. The 

margin can then be calculated as: 

=
2

|| ||
 

The goal of the SVM as mentioned before, is to determine the weight vector w and bias b 

that maximize the margin m to create a distinct hyperplane that satisfies the following constrains: 

( ) =
1  + 1
1  + 1 

 

Where f(x) is the decision function used to create a distinct separating hyperplane that 

classify input data in either positive or negative class [4,6,14,18,27,56]. 

2.6 Random Forest  

Random forest (RF) classifiers fall under the broad umbrella of decision trees and 

ensemble-based learning methods. Random forests are proven to be a very powerful and 

successful techniques in pattern recognition and machine learning for high-dimensional 

classification. As the name suggests, random forests consist of a large number of individual 

decision trees that operate as an ensemble. Each individual tree in the random forest produces a 

class prediction and the class with the majority vote (mode) across them becomes the model’s 

prediction. Among other benefits, this voting approach has the effect of correcting for the 

undesirable property of decision trees to overfit training data. The reason for this effect is the low 
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correlation between the models. Where the trees protect each other from their individual errors 

(assuming the low probability of all trees constantly producing similar errors). 

In the training stage, random forests apply a technique known as bagging to individual 

trees in the ensemble. Bagging allows each individual tree to repeatedly select a random sample 

from the dataset with replacement, resulting in different trees. Each tree is grown without any 

pruning. The number of trees in the ensemble is a free parameter learned automatically using the 

out-of-bag error (OOB). The OOB error is the average error for each bootstrap sample calculated 

using predictions from the trees that do not contain in their respective that bootstrap sample. This 

allows the random forest classifier to be fit and validated during its training. Hence, the random 

forest, generates trees that are not only trained on different sets of data (du to bagging) but also 

use different features to make decisions. Figure 8 demonstrate how a random forest model is split 

into different decision trees using different features for each sub tree. [3,12,14]. 

 

Figure 8: Node splitting in a Random Forest Model 
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2.7 Performance Measures 

Performance measures in machine learning are used to evaluate the correctness and 

completeness of the trained model performance in a specific classification problem. These 

performance metrics include accuracy, precision, recall, and F1-score. Such metrics provide 

tangible insight regarding the strengths and limitations of these trained models, especially when 

making predictions on new samples.  

True Positive (TP): true positive measures how well the model can correctly predict the 

positive class. Where the model predicts that a data sample is positive, and it is actually positive.  

False Positive (FP): false positive is the case when the model wrongly predicts the class 

of a given data sample. That is, a data ample classified under the negative class, but the model 

retrieves it as a positive class sample. 

True Negative (TN):  true negative measures how well the model can correctly predict 

the negative class. Where the model predicts that a data sample is negative, and it is actually 

negative. 

False Negative (FN): false negative is the case when the model wrongly predicts the 

class of a given data sample. That is, a data ample classified under the positive class, but the 

model retrieves it as a negative class sample. 

The Precision Score: measures the proportion of positively predicted labels that are 

actually correct. Precision is also known as the positive predictive value. Precision is used in 

conjunction with the recall to trade-off false positives and false negatives. Precision is affected 

by the class distribution. If there are more samples in the minority class, then precision will be 

lower. The precision score of a model can be calculated using the following equation: 
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 =
TP

(FP + TP)
 

Where TP is the machine learning model true positive measure, and FP is its false 

positive measure. 

The Recall Score: represents the model’s ability to correctly predict the positives out of 

actual positives. Unlike precision which measures how many predictions made by models are 

actually positive out of all positive predictions made. Thus, when calculating the recall score the 

value of the model’s false-negative measure would impact the recall score. The recall score for a 

model can be calculated using the following equation 

 =
TP

(FN + TP)
 

Where TP is the machine learning model true positive measure, and FN is its false 

negative measure. 

The Accuracy Score: is described as the ratio of true positives and true negatives to all 

positive and negative observations. Accuracy provides insight into how often a machine learning 

model will correctly predict an outcome out of the total number of times it made predictions.  

Mathematically, it represents the ratio of the sum of true positive and true negatives out 

of all the predictions. The accuracy of a machine learning model can be calculated using the 

following equation: 

 =
(TP + TN)

(TP + FN + TN + FP)
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Where TP is the machine learning model true positive measure, FP is its false positive, 

FN is its false negative measure, and TN is its true negative measure. 

The F1-Score: represents the model’s score as a function of its precision and recall. The 

F1-score gives equal weights to the model’s Precision and Recall scores to measure its 

performance in terms of accuracy. Making it an alternative to Accuracy metrics (it doesn’t 

require us to know the total number of observations). It’s often used as a single value that 

provides high-level information about the model’s output quality. The F1-Score for a machine 

learning model can be calculated using the following equation: 

1 =
2  Precision Score Recall Score

Precision Score + Recall Score
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CHAPTER 3: Isolating Security Requirements from Requirements 

Datasets  

The objective of this thesis work is to 1) produce an automatic framework that extracts 

security related requirements from a software system’s natural language artifacts, for example, a 

Software Requirements Specification document (an SRS). And 2) to produce a prioritization 

scheme where the extracted list of security requirements can be further refined into a prioritized 

list. This section represents the design and approach adopted to tackle the first step in the 

SecREP pipeline showed before in Section 1.4. 

3.1 The Datasets 

The datasets used in this work’s experiments, were mainly the SecReq [59] dataset, and 

the NFR [52,60] dataset. Both datasets were obtained online from “zenodo.org”. 

33.1.1  SecReq Dataset 

The SecRecq dataset introduced by Houmb et al. [24] Is composed of three industrial 

SRS documents: Customer Premises Network (CPN), Common Electronic Purse (ePurse), and 

Global Platform Specification (GPS). In total the dataset contains 510 samples of non-functional 

requirements labeled as either a security requirement or non-security requirement.  

Table 3 provides examples form the SecReq dataset. 
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Table 3: Requirements Samples from the SecReq Dataset 

SRS 

Document 

Requirement Description Label 

CPN The CNG may support mechanisms supporting nomadism of the 

users and their subscribed services from one physical customer 

environment to another. 

Non-security  

The diagnostic operations on the CPN by an operator shall be 

performed in accordance with rules protecting the users' privacy. 

Security  

ePurse A single currency cannot occupy more than one slot. The CEP 

card must not permit a slot to be assigned a currency if another 

slot in the CEP card has already been assigned to that currency. 

Non-security  

Load and unload functions must be authenticated using end-to-

end security between the card and the card issuer. 

Security  

GPS The Card Issuer is responsible for Working with Application 

Providers to create and initialize Security Domains other than 

the Issuer Security Domain. 

Non-security  

"The Card Issuer is responsible for Enforcing standards and 

policies for Application Providers governing all aspects of 

Applications to be provided to the Card Issuer or operated on the 

Card Issuer's cards. 

Security  
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33.1.2 The NFR Dataset 

The NFR [52,60] dataset that can be accessed on “zenodo.org” is also known as the 

PROMISE dataset. This dataset can be attributed to Jane Cleland-Huang and was provided for 

the RE'17 Data Challenge [9]. It was first made available on the PROMISE Software 

Engineering Repository [52] 

The NFR [60] software requirements dataset contains a total of 625 software 

requirements sentences. All requirements not labeled with “F” are non-functional with the 

following types: A=Availability, L = Legal, LF = Look and feel, MN = Maintainability, O = 

Operational, PE = Performance, SC = Scalability, SE = Security, US = Usability, FT = Fault 

tolerance, and PO = Portability. Table 4 provides examples form the NFR dataset. 
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Table 4: Requirements Samples from the NFR Dataset 

Requirement Description Label 

The system shall display the Events in a graph by time. F 

The product shall be available for use 24 hours per day 365 days per year. A  

The product shall retain user preferences in the event of a failure FT 

The System shall meet all applicable accounting standards.  The final version of the 

System must successfully pass independent audit performed by a certified auditor. 

L 

The website shall be attractive to all audiences.  The website shall appear to be fun, and 

the colors should be bright and vibrant. 

LF 

The product must be highly configurable for use with various database management 

systems for the end users.  80% of end users are able to integrate new database 

management systems with the product without changing the product’s software code. 

MN  

The product is expected to integrate with multiple database management systems.  The 

product will operate with Oracle SQL Server DB2 MySQL HSQL and MS Access. 

O 

The search results shall be returned no later 30 seconds after the user has entered the 

search criteria. 

PE 

The product is expected to run on Windows CE and Palm operating systems. PO 

system shall be able to handle all the user requests/usage during business hours. SC  

Only authorized users shall have access to clinical site information. SE  

The system shall be used by realtors with no training. US  
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33.1.3 The Enhanced Dataset (SecREP) 

The SecREP enhanced dataset was the result of multiple iterations experimenting with 

three different combinations of the SecReq dataset [59] and the NFR dataset [60], in addition to 

requirements that were handpicked from general SRS documents. In each iteration the dataset 

was revisited for further enhancement and expansion until satisfactory results were reached.  

These alterations made to the datasets were a result of a number of issues that were 

encountered working with the above datasets. 

 The issues with the SecReq [59]dataset are summarized as follows: 

1. The dataset’s security requirements samples are all expressed as non-functional 

requirements. Which would jeopardize the completeness of extracting all security 

related requirements, since and as explained before, security requirements 

intertwine with functional and non-functional requirements.  

2. The dataset contained a significant number of corrupted data, large sentences, null 

values, unlabeled samples, and samples labeled as security requirements in a 

subset of the dataset and non-security in another. 

3. Removing these corrupted, unclear, and unlabeled samples will significantly 

reduce the size of the dataset (from 510 to 375). This, consequently, made the 

machine learning models predictions considerably poor and unreliable. 

The issues with the NFR dataset [60] are summarized as follows: 

1. Similar to the case with the SecReq dataset [59], all security requirements are 

classified as non-functional requirements. Additionally, the 11 categories of NFR 
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could also be expressing a security concern, and thus a considerable amount of 

these requirements can also be extracted as security requirements.  

2. Manually adjusting the classification of the 625 records, to transform the 

dataset into the shape that servers the classification problem at hand requires 

multiple experts ruling, taxing time, and considerable effort to ensure the 

correctness and completeness of such a large-scale problem. 

To address these issues, multiple experiments were conducted with different 

combinations of the available datasets. Each experiment/iteration helped improve the prediction 

of the trained machine learning models. 

First Iteration: using a cleaned version of the SecReq dataset [59] where all corrupted, 

unlabeled, unclear requirements where removed. Which yielded a total of 375 requirements 

classified as either security or non-security. After using preprocessing techniques to reshape and 

vectorize the text. The processed list was fed to the machine learning models namely: SVM, 

Naive Bayes and RF. Despite the good performance measures scores, all models exhibited poor 

predictions when subjected to a list of requirements from an SRS document.  

Second Iteration: in this iteration using educated judgments, the raw SecReq [59] was 

manually cleaned, fixed, and reshaped as follows: 

1. Corrupted records were rewritten.  

2. Unclassified entries were labeled. 

3.  Some large and unclear requirements samples were split into 2 or more 

requirements and labeled accordingly. 



55 

 
4.  Finally, requirements that were classified as “unknown” were addressed and 

added to the list. Which yielded a total of 584 requirements classified as either 

security or non-security.  

After using preprocessing techniques to reshape and vectorize the text. Theis processed 

list was fed to the machine learning models namely: SVM, Naive Bayes and RF. Despite the 

good performance measures scores, all models exhibited poor predictions when subjected to a 

list of requirements from an SRS document.  

Third Iteration: in this iteration the cleaned 584 requirements extracted from the 

SecReq dataset [59] were combined with some samples obtained from the NFR [60] dataset.  

The sample selection criteria applied on the NFR [60]dataset was as follows:  

1. All requirements marked as “LF” (look and feel), and “US” (usability) were 

added to the list and labeled as non-security requirements. Since it is safe to 

assume that these types of requirements do not express a direct security concern 

on the system’s functionality and/or operations in its environment. 

2. All requirements marked as “L” (legal) where classified as non-security 

requirements. Examining the provided samples that are labeled as “legal” 

requirements. It was determined that even though these may contain security 

related terms and vocabulary, they do not represent security concerns that effect 

the system functionality and ability to operate in its environment. And hence this 

classification would yield more reliable results identifying the security 

requirements that address operational threats. 
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3. All requirements marked as “SE” (security) were added to the list and labeled as 

security requirements. 

4. All requirements marked as “A” (availability) were added to the list and labeled 

as security requirements. Since availability has a direct correlation to the security 

CIA Triad (Confidentiality, Integrity, and Availability). 

5. Functional requirements labeled with “F” and the remaining non-functional 

requirements (SC, PO, PE, O, MN, and FT) were excluded from the final dataset. 

6. Finally, several handpicked samples of security requirements and non-security 

requirements from general SRS documents were added. In order to further expand 

the diversity and coverage of the dataset.    

The combined and enhanced dataset was then subjected to preprocessing techniques and 

transformed into a machine digestible form. The processed list consisting of a total of 752 

requirements, was then fed to the machine learning models namely: SVM, Naive Bayes and RF. 

Despite the slight drop in performance measures scores, all models exhibited improved 

predictions when subjected to a list of requirements from an SRS document. The validation on 

this iteration concluded that the predictions results were satisfactory. 

 Table 5 shows the difference in the predictions results between the SecReq dataset [59] 

used in “Iteration Two” and the SecREP dataset used in “Iteration Three”. 

The enhanced SecREP dataset is available on the following link, and can be made 

available for interested researchers upon request: 

https://github.com/shadakhanneh/SecREP-Dataset 
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Table 5: Machine Learning Predictions Results Comparison 

Requirement description  Iteration Two (Clean and 

fixed SecReq dataset) 

Iteration Three (SecREP) 

The system should support 

secure virtual private network 

connections 

Machine 

Learning 

Model 

Prediction Machine 

Learning 

Model 

Prediction 

SVM Non-security  SVM Security  

Naive Bayes Non-security  Naive Bayes Security  

Random 

Forest 

Non-security  Random 

Forest 

Security  

The system should be extensible 

to provide access to the 

interfaces through PDA’s and 

mobile data terminals 

SVM Security SVM Security 

Naive Bayes Non-security  Naive Bayes Security 

Random 

Forest 

Security Random 

Forest 

Security 

The system should be designed 

for access through browser-

based systems and must impose 

minimal requirements on the 

client device 

SVM Non-security  SVM Security 

Naive Bayes Non-security  Naive Bayes Security 

Random 

Forest 

Non-security  Random 

Forest 

Security 

Use of AJAX based technology 

to improve user experience. 

SVM Non-security  SVM Non-security  

Naive Bayes Non-security  Naive Bayes Non-security  
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Aggressive page loading to be 

considered based on the screen 

and estimate usage pattern 

Random 

Forest 

Non-security  Random 

Forest 

Non-security  

3.2 Data Preprocessing  

In machine learning approaches the most important factor that determines the quality of 

the process outcome is the condition, completeness, and plausibility of the data that is being fed 

to the machine for training. Incorrect or poor-quality input will always produce faulty output. for 

NLP techniques the raw text requires considerable preprocessing in order to transform it into a 

digestible form that the machine can process and understand. Raw text datasets normally contain 

noisy, duplicated, lengthy, high dimensional, corrupted, and empty data that is not valuable for 

the NLP task. This makes preprocessing a vital step that must proceed every NLP task to 

produce more accurate and reliable results. Detailed descriptions for each text preprocessing 

technique used in this work’s experiments is provided in Section 2.2.2 

The below listed text preprocessing techniques were performed before feeding the 

SecREP to the machine learning models.  

1. Manual cleaning and Null/NaN values substitution, which were performed 

inherently while producing the enhanced dataset. As described before in Section 

3.1. 

2. Stop words, non-numeric and punctuation removal 

3. Stemming and lemmatization 

4. Lower case text conversion 
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5. Part-of-speech (POS) tagging to understand if the word is noun or verb or 

adjective…etc.  

6. Vectorization using Term Frequency—Inverse Document Frequency (TF-IDF). 

Additionally in the context of text preprocessing, negation handling represents a common 

issue that must be taken into account especially in sentiment analysis problems. However, 

for the problem at hand, negations were considered irrelevant and hence removed. This 

decision was made based on the observation, that a security requirement is classified as 

such depending on what it offers to the system or what it prevents or both. For example, a 

requirement could be considered a security requirement if it is addressing the act of 

“access” or the act of “no access”, where both cases will provide similar outcomes to the 

classification prediction.  

Table 6 shows examples of the dataset before and after applying the preprocessing 

techniques. 
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Table 6: Dataset Text Examples Before and After Preprocessing  

Original Requirement Text  Requirement Text after Preprocessing  Label 

Successful authentication is a 

prerequisite for the processing of 

any on-line or offline CEPS 

transaction 

Successful authentication prerequisite 

processing offline ceps transaction. 

Security  

In the case of an unlinked load, 

no presumption may be made as 

to the business relationship 

between the cardholder, the 

funds issuer, the card issuer, or 

the load acquirer 

case unlinked load presumption may make 

business relationship cardholder fund issuer 

card issuer load acquirer 

Non security  

 

3.3 Machine Learning Techniques 

This section describes the training and validation processes adopted to train the selected 

machine learning models, which are the SVM, Naive Bayes and Random Forest (These models 

are explained in detail in Chapter 2 Background). These three models are highly regarded and 

widely praised to exhibit accurate results in classification tasks. Especially for small-size 

datasets. Where despite the enhanced SecREP dataset of 752 records, is still the case. For 

example, machine learning models such as the Convolution Neural Networks (CNN), Recurrent 

Neural Networks (RNN) are known to require thousands of samples to produce satisfactory 

result.  
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33.3.1 Training 

 The three selected machine learning models: SVM, Naive Bayes and Random Forest, 

were trained using the Scikit-Learn library [50] implementation. After applying the selected 

preprocessing steps described earlier in Section 3.2. These pre-built models were trained using 

the cleaned 584-SecReq dataset, and the enhanced SecREP dataset of 752 requirements. Two 

validation methods were applied in each training experiment: Resampling and N-Folds Cross 

Validation.  The performance of each model was assessed using the performance measure: 

Precision, Recall, Accuracy, and the F1-Score. These performance measures or metrics are 

described in detail in Section 2.7. 

3.3.2 Experiment 1  

Using the 584-SecReq dataset, the three machine learning models were trained and 

validated using a resampling of 80% training and 20% testing and a 5-folds cross validation. 

Additionally, the performance metrics for each validation approach were calculated.  

The resulting training curve for each model is exhibited in Figure 9. 

 

Figure 9: Machine Learning Models Learning Curve for the SecReq Dataset Training 
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The performance metrics results for each machine learning model using resampling of 

80% for training and 20% for validating are showcased in Table 7 and Figure 10. While the 5-

folds cross validation performance metrics results are showed in Table 8 and Figure 12.  

Table 7: Performance Measures Results Using the SecReq Dataset and 20% Resampling 
Validation  

Model Accuracy correctly 

classified samples 

Precision Recall 

Score 

F1 

Score 

Naive Bayes (NB) 85.47 100 0.81 0.71 0.76 

Support Vector Machine 

(SVM) 

92.30 108 0.89 0.86 0.88 

Random Forest (RF) 90.59 106 0.90 0.78 0.84 

 

Figure 10: Performance Measures Results Graph Using the SecReq Dataset and 20% 
Resampling Validation 

Figure 11 below illustrates the confusion metrics used in calculating the performance scores for 

each model. 
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Figure 11: Machine Learning Models Confusion Metrics for the SecReq Dataset Training 
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Table 8: Performance Measures Results Using the SecReq Dataset and 5-Folds Cross 
Validation 

Model Mean 

Accuracy 

Mean 

Precision 

Mean Recall 

Score 

Mean F1 

Score 

Naive Bayes (NB) 0.70 

 

0.77  0.67 0.64 

Support Vector Machine 

(SVM) 

0.70 0.76 0.68 0.66 

Random Forest (RF) 0.67 0.75 0.64 0.60 

 

Figure 12: Performance Measures Results Graph Using the SecReq Dataset and 5-Folds 
Cross Validation 

33.3.3 Experiment 2 

Using the SecREP dataset, the three machine learning models were trained and validated 

using a resampling of 80% training and 20% testing and a 5-folds cross validation. Additionally, 
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the performance metrics for each validation approach were calculated.  The resulting training 

curve for each model is exhibited in Figure 13. 

 

Figure 13: Machine Learning Models Learning Curve for the SecREP Dataset Training 

The performance metrics results for each machine learning model using resampling of 

80% for training and 20% for validating are showcased in Table 9 and Figure 14. While the 5-

folds cross validation performance metrics results are showed in Table 10 and Figure 16. These  

Table 9: Performance Measures Results Using the SecREP Dataset and 20% Resampling 
Validation  

Model Accuracy correctly 

classified samples 

Precision Recall 

Score 

F1 

Score 

Naive Bayes (NB) 92.71 140 89 0.93 0.91 

Support Vector Machine 

(SVM) 

93.37 141 0.90 0.93 0.92 

Random Forest (RF) 90.59 136 0.89 0.85 0.87 
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Figure 14: Performance Measures Results Graph Using the SecREP Dataset and 20% 
Resampling Validation 

Figure 15 below illustrates the confusion metrics used in calculating the performance scores for 

each model. 

 

Figure 15: Machine Learning Models Confusion Metrics for the SecREP Dataset Training 
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Table 10: Performance Measures Results Using the SecREP Dataset and 5-Folds Cross 
Validation 

Model Mean 

Accuracy 

Mean 

Precision 

Mean Recall 

Score 

Mean F1 

Score 

Naive Bayes (NB) 0.68 0.76 0.68 0.65 

Support Vector Machine 

(SVM) 

0.71 0.77 0.71 0.68 

Random Forest (RF) 0.65 0.71 0.65 0.62 

 

Figure 16: Performance Measures Results Graph Using the SecREP Dataset and 5-Folds 
Cross Validation 

33.3.4 Case Study 

For both experiments once the training process was completed. Each trained model was 

fed a list of a software specifications that was acquired from an SRS document. The 

specifications list contained 30 requirements in total. Table 11 shows examples taken from that 

requirements list. 
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To obtain a robust list that can be determined as a security requirement list of a said 

system. First the list of 30 requirements were subjected to the preprocessing techniques 

addressed earlier in Section 2.2.2 to transform it into a machine understandable form. Second, a 

majority vote ensemble was adopted, where a requirement is added to the list if the three-trained 

models (the SVM, the Naïve, and the Random Forest) label that requirement as security related.  

Table 11: Examples from the Software Requirements List Used for The Case Study 

Requirement Description   

The system should support multilingual interface 

The system should work even in an offline mode with the critical functionality 

The search should fetch only the fields that need to be displayed to the user. Only when the user 

clicks on a particular record to view its further details should a query be fired to fetch the additional 

details for this particular record only 

Database Indexes should be applied on the key columns used for searching 

The system must support multiple types of communication services for remote access 

The system should be built on a common User Access and Authentication Service to ensure Single-

Sign on for the end-user 

The system should have capability to support public access to a subset of data and functionality 

 

For the first experiment where the ensemble models were trained using the SecReq 

dataset [59], the ensemble majority vote extracted only 3 requirements as security requirements. 

Examining the ensemble extracted list in comparison to the original 30 requirements list. It was 

clear that there was a significant loss in valuable requirements that clearly address security 

threats or protect the system assets.  
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Table 12 shows the requirements that were extracted as security related from the first 

experiment using the SecReq dataset [59]. 

For the second experiment where the ensemble models were trained using the enhanced 

SecREP dataset, the ensemble majority vote extracted 17 requirements as security requirements. 

Examining the ensemble extracted list in comparison to the original 30 requirements list. The list 

does exhibit satisfactory results were all the extracted requirements do address a security issue in 

terms of threats that need to be accounted for, system assets that needs protecting, or both. 

Additionally, and in comparison, to the original 30 requirements list that was fed to the 

ensemble, and using educated judgments the extracted list was comprehensive, and included all 

the requirements that are indeed security related.  

Table 13 shows the requirements that were extracted as security related from the second 

experiment using the SecREP dataset. 
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Table 12: Security Requirements List Extracted from First Experiment Using the SecReq 
dataset 

No. Requirement Description   

1: The system should be built on a common User Access and Authentication Service to 

ensure Single-Sign on for the end-user. 

2: The system should ensure secure transmission of data over the network and utilize SSL 

and 2-way digital signatures. 

3: The system should ensure high standards of security and access control through: a) 

Prevent cross-site scripting b) Validate the incoming data / user request c) Encode the 

incoming data / user request d) Prevent SQL Injection e) Utilize parameterized queries f) 

Sanitize the user-inputs g) Validate the data both at the client and server h) Do not allow 

hard delete and perform only soft tagging the row for deletion. 

 

Table 13: Security Requirements List Extracted from Second Experiment Using the 
SecREP dataset 

No. Requirement Description   

1: The system should work even in an offline mode with the critical functionality. 

2: The system should be designed to have satisfactory performance even in Police Stations 

connected on low-bandwidth. 

3: The system should be built on a common User Access and Authentication Service to 

ensure Single-Sign on for the end-user. 

4: The system should be developed to be deployed in a 3-tier datacenter architecture. 
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5: The system should be designed to have a n-tier architecture with the presentation logic 

separated from the business logic that is again separated from the data-access logic. 

6: The system should be extensible to provide access to the interfaces through PDA’s and 

mobile data terminals. 

7: The system should adopt standardized formats and common metadata elements. 

8: The system should be designed for access through browser-based systems and must 

impose minimal requirements on the client device. 

9:  The system should support SSL encrypted connections. 

10: The system should support secure virtual private network connections. 

11: The system should run on multiple browsers. 

12: The system should support selective encryption of the stored data. 

13: The system should ensure secure transmission of data over the network and utilize SSL 

and 2-way digital signatures. 

14: The system should ensure high standards of security and access control through: a) 

Prevent cross-site scripting b) Validate the incoming data / user request c) Encode the 

incoming data / user request d) Prevent SQL Injection e) Utilize parameterized queries 

f) Sanitize the user-inputs g) Validate the data both at the client and server h) Do not 

allow hard delete and perform only soft tagging the row for deletion. 

15:  Use of cache for storing frequent data. 

16: The search should fetch only the fields that need to be displayed to the user. Only when 

the user clicks on a particular record to view its further details should a query be fired to 
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fetch the additional details for this particular record only. 

17: Database Indexes should be applied on the key columns used for searching. 

 

3.4 Discussion 

To build part one of the SecREP pipeline where security related requirements can be 

identified in an automated manner using a machine learning classification approach. First, and as 

for all machine learning classification problems, a reliable dataset must be obtained. That is, a 

dataset with sufficient, clear, balanced, and assorted samples, that can be used to achieve a 

reliable prediction model. For the classification problem of identifying/extracting security 

requirements from software requirements natural language artifacts. Two datasets were identified 

that are publicly available and can serve this purpose, the SecReq dataset [59] and the NFR 

dataset [60]. However, both datasets present a major challenge to the problem at hand. The issues 

with the SecReq dataset [59] besides the intensive cleaning and fixing needed, the security 

requirements samples are all expressed as non-functional requirements. Which would jeopardize 

the completeness of extracting all security related requirements, since and as explained before, 

security requirements intertwine with functional and non-functional requirements. Similar to the 

SecReq dataset [59] the NFR dataset [60] also classifies the security requirements under the non-

functional requirements. Additionally, the 11 categories of NFR can also be expressing a security 

concern, and thus a considerable amount of these requirements can also be extracted as a security 

requirement.  To address these issues, different combinations of the available datasets were 

conducted and put under the test. Each experiment/iteration helped improve the predictions of 

the trained machine learning models. The resulting enhanced dataset “SecREP Dataset” is a 



73 

 
combination of a cleaned version of the SecReq dataset [59] where all corrupted records were 

rewritten, unclassified entries were labeled using educated judgments, and some large and 

unclear requirements samples were split into two or more requirements and labeled accordingly. 

This cleaned SecReq dataset [59] was then combined with some samples obtained from the NFR 

dataset [60]. The sample selection criteria from the NFR dataset [60] were based on educated 

judgments and experimentation. Finally, some samples were handpicked form SRS document to 

further increase the diversity of the dataset.  

To test the validity of the SecREP dataset, two experiments were conducted where in one 

the machine learning models were trained using the SecRq dataset and using the SecREP in the 

other.  The training results, in terms of performance measures, shows similar results for both 

variants of trained models. However, in the case study where each trained ensemble was fed a 

list of requirements obtained form an SRS document.  The trained model using the SecREP 

dataset exhibited significantly improved results, and the ensemble majority vote was able to 

extract 17 requirements that clearly address a security concern. Whereas the trained ensemble 

model using the SecReq [59] dataset was able to extract only 3 requirements as security related. 

These results highlight a notable loss of many requirements that should have been extracted 

when the training was conducted using the SecReq dataset, and a notable increase in the 

prediction performance using the SecREP enhanced dataset. 
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CHAPTER 4: Security Requirements Prioritization  

4.1 Prioritization Scheme  

The objective of this thesis work is to 1) produce an automatic framework that extracts 

security related requirements from a software system’s natural language artifacts, for example, a 

Software Requirements Specification document (an SRS). And 2) to produce a prioritization 

scheme where the extracted list of security requirements can be further refined into a prioritized 

list. This section represents the prioritization scheme adopted to in second step of the SecREP 

pipeline showed before in Section 1.4 

Security requirements are complicated in nature. They express many aspects of a 

software system and intertwine with all its properties, as well as with other types of 

requirements. Examining security prioritization techniques introduced in literature that were also 

summarized in Section 1.2.2. Many factors need to be identified in a security requirement to 

assess it is quality and importance. These factors can vary depending on the nature and 

functionality of the software system under question, the stakeholders need, and the system’s 

operational environment. However, and in terms of security, a few constant factors can be used 

to express the quality of a security requirement. These are, the assets a security requirement is 

protecting, the threats it is attempting to mitigate, and the security properties its expressing (e.g., 

Confidentiality, Integrity, Availability…).  

4.2 Proposed Prioritization Scheme 

The prioritization scheme in this work, considers the quality and valuation of a security 

requirements based on the three constant factors that were identified based on this work’s 

literature study. These factors are assets, threats, and security attributes. With the aid of NLP 
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approaches that can be used to extract information form a software system’s requirements 

artifacts, such factors can be more adequately identified  in the context of a specified system.  

To achieve the second part of SecREP framework, the extracted security requirements list 

from the first part was subjected to a part of speech tagging method and a named entity 

recognition method. To help recognize from that list, assets that need protecting, threats that 

need to be addressed, and security properties the system must incorporate. Once these factors are 

identified, a list of each factor can be established, where each security requirement can then be 

tested against each list and weighed according to the number of assets, threats and security 

properties being addressed in that specific security requirement. Additionally, to derive more 

meaning to the security requirement and ensure that all threats are accounted for, each security 

requirement was granted a STRIDE score. The STRIDE score was calculated based on text 

similarity scoring approach. For each STRIDE threat a super-sentence that describes how the 

system should prevent such threat was constructed. Using these super-sentences each security 

requirement similarity score to each STRIDE sentence can thus be calculated. The security 

requirement STRIDE score can then be expressed based on the number of STRIDE threats that 

sentence is addressing. Finally, the priority score of each requirement can then be the sum of it is 

corresponding STRIDE score, and the count score for each asset, threat, and security property 

present in the security requirement. 
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4.3 Case Sturdy and Prioritization Results  

Continuing with the case study presented in the first part of the SecREP pipeline under 

Section 3.3.4. The list of 17 security requirements was subjected to the preprocessing techniques 

discussed in Section 3.2. To transform the text into a machine digestible form.  

44.3.1 Constructing the Comparison Lists 

Following the proposed prioritization pipeline. First, three lists were constructed: a list of 

assets, a list of threats, and a list of security properties or attributes. The values in each of these 

lists were chosen using generic values of known assets, threats, and security properties. 

Additionally, the security requirements list was loaded into a spaCy natural language possessing 

medium model, to utilize the models Word2vec vectorization method discussed in Section 

2.2.3.2. In addition to the Word2vec method, the spaCy library offers several built in NLP 

techniques.  

To further enhance the comparison lists and make them specific to the context of the 

given system.  The spaCy Part-of-speech (POS) tagging method and the spaCy matcher were 

used to extract, subjects, objects, nouns, subjects followed by verbs, and objects followed by a 

verb. As expected, the resulting list from this extraction, contained a considerable number of 

items. However, using educated judgments, the list was reduced to cover what was considered 

either an asset, a threat, or a security property.  

With this new insight into the system at hand, the complete comparison lists were 

constructed, where each list contains general items, and items extracted from the specific nature 

of the security requirement list.  
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Table 14 shows the final comparison lists that were constructed as a result of processing 

the security requirements list. While Figure 17 demonstrates the identification of these items in 

the security requirements list.  

Table 14: Comparison lists  

Type Items  

Assets Data, network, information, database, client, datacenter, design, user inputs, 

record, architecture, access interface, client device, connection, business, 

certificate, user. 

Threats access, spoof, alter, change, delete, modify, update, edit, tamper, repudiation, 

denial, unauthorized, injection, deny, phishing, phish. 

Security 

Properties  

Authentication, authenticity, authentic, authorization, confidential, available, 

availability, confidentiality 
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Figure 17: Identifying Assets, Threats, and Security Properties  

44.3.2 Constructing the Super-Sentences 

To add more robustness to the SecREP framework prioritization scheme. An approach 

was adopted to identify if a security requirement protects against or is addressing a threat that 

corresponds to the STRIDE threat modeling. The STRIDE model developed by Microsoft [30] is 

a popular method used to identify security threats and groups them in six different categories: 

Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of 

privilege. 

To incorporate the STRIDE model into the prioritization scheme. First, each security 

requirement must be examined to see not only if a direct mention of a threat is present, but also if 
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that requirement derived meaning correlates to the definitions of the STRIDE threats. To tackle 

this task a text similarity technique was chosen. To use the idea of text similarity, first there must 

be another sentence that can be compared to the text under question, to see if that text contains 

the desired information. To do so, a list of super-sentences was constructed where each sentence 

in the list corresponds to a behavior or quality, that would protect against the STRIDE threats. 

With the establishment of the super-sentences, the problem becomes a simple similarity 

problem to see how similar each security requirement is to that defined super-sentence. For 

measuring a similarity score between each security requirement in the case study and the super-

sentences, the spaCy similarity function was used. The resulting score is represented as a 

percentage of similar. To simplify the results, a security requirement was given a weight of 1 for 

each STRIDE super-sentence with a similarity of 90% and above. Hence, the total STRIDE score 

of a security requirement is the sum of all STRIDE similarity scores. Thus, in this case the 

minimum STRIDE score a security requirement can have is 0 and the maximum is 6.  

Table 15 describes the list of super-sentences.  
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Table 15: STIDE Threat Model and The Super-Sentences  

Threat type  Property Super-Sentence Description  

Spoofing  Authentication  Prevent illegal access and using another user's authentication 

information, such as username and password 

  

Tampering Integrity Prevent the malicious modification of data. Examples include 

unauthorized changes made to persistent data, such as that held in a 

database, and the alteration of data as it flows between two 

computers over an open network, such as the Internet 

Repudiation Non-repudiation 

services 

Prevent users from performing an illegal action without other parties 

having any way to prove otherwise, when a user performs an illegal 

operation, the system should provide the ability to trace that 

prohibited operations. The system should have the ability to counter 

repudiation threats. 

Information 

disclosure 

Confidentiality Prevent the exposure of information to individuals who are not 

supposed to have access to it. prevent the ability of users to read a 

file that they were not granted access to, or the ability of an intruder 

to read data in transit between two computers 

Denial of 

service 

Availability Prevent denial of service (DoS) to valid users. Prevent making a 

Web server temporarily unavailable or unusable. A system should 

be available and reliable 

Elevation of 

privilege 

Authorization Prevent an unprivileged user form gaining privileged access that is 

sufficient to compromise or destroy the entire system.  A system 

should protect against situations in which an attacker has effectively 



81 

 
penetrated all system defenses and become part of the trusted 

system itself 

 

44.3.3 The Prioritized List 

Each security requirement in the list was compared with each item in the three 

comparisons list that were constructed earlier. The weight of each security requirement is 

increased by 1 if a matching item in these lists appears in the security requirement. Similarly, 

after calculating the total STRIDE score for each sentence, the weight of each requirement was 

incremented by its STRIDE score. Thus, the priority score for a given security requirement is the 

sum of the count of all the assets, threats, and security properties it is addressing, in addition to 

its STRIDE score that was defined earlier. 

Figure 18 demonstrates the final extracted and prioritized security requirements list as a 

result of the SecREP pipeline.  

 

Figure 18: final extracted and prioritized security requirements list 
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4.4 Discussion  

To establish part two of the SecREP pipeline where extracted security related 

requirements can be further analyzed and prioritized. First, a prioritization criterion was 

established. The focus of this prioritization scheme was to incorporate NLP automated 

techniques, such that minimal human interaction is needed. The proposed prioritization assesses 

each requirement based on the number of assets, threats, and security properties that are directly 

being addressed by the requirement. Additionally, and to add robustness to the prioritization, the 

underlying meaning of a security requirement was also accounted for, using text similarity 

approach to compare the security requirement against six super-sentences each corresponding to 

the STRIDE threat model.  

The case study showed how this prioritization scheme is conducted and how the priority 

score was calculated. The final list of prioritized security requirements showcased the difference 

in priority score between security requirements. Additionally, inspecting the list, the topmost 

security requirements (with highest priority score) show a high level of correlation to critical 

security aspects that must be addressed in every software system. What is worth mentioning 

here, is that this prioritization scheme could be a reliable start to eliciting and prioritizing 

security requirements. However, to ensure the completeness of a security requirement and its 

priority, other factors and calculations must also be considered. For example, this proposed 

prioritization scheme could be adopted to help identify assets, threats, security properties, and to 

map the threats discussed by the security requirement to the STRIDE threat model. After doing 

so, software engineers can use this information to further assess the security requirement in terms 

of the risk value, the impact, the system’s vulnerabilities that can cause a threat to occur, the 

underlying cost of implementing the security mechanisms...etc. Such values can improve the 



83 

 
completeness and correctness to the security requirement and its priority. Additionally, further 

valuation of the security requirement can help address those with competing priority scores, that 

is two or more security requirement have the same priority weight. Additionally, techniques such 

as, the AHP[49,57] the CVSS (Common Vulnerability Scoring System), and the bug bars, can 

help in calculating these values and solve the issue with competing security requirements. 
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CHAPTER 5: Conclusion 

This chapter provides the major conclusions and the planned future work based on the 

results of this research effort.  

5.1  Conclusion 

This thesis has described the work and steps taken to achieve the Security Requirements 

Extraction and Prioritization (SecREP) framework/pipeline. The SecREP pipeline presented in 

this thesis consists of two major parts. Part one, demonstrates the efforts and experiments 

conducted to establish a machine learning ensemble that extracts/identifies security requirements 

from natural language software requirements artifacts. The majority vote ensemble was created 

using three machine learning models, SVM, Naïve Bayes, and Random Forests. Two different 

experiments were conducted to train and evaluation the machine learning models. In the first 

experiment the machine was fed the SecReq dataset [59]. In the second experiment the machine 

was fed the enhanced SecREP dataset that was conducted as a result of this work. Both trained 

ensembles were applied to a case study. Where each ensemble model was fed a list of 30 

requirements obtained form an SRS document. The results showed significantly improved 

predictions using the majority vote of the ensemble trained on the SecREP dataset. The proposed 

approach was able to extract 17 requirements as security requirements. In comparison, the 

ensemble trained using the SecReq dataset [59] was able to extract only 3 requirements. 

In the second part of the SecREP pipeline, a prioritization scheme was proposed to 

evaluate the importance and analyze the extracted security requirements.  The SecREP 

prioritization process, valuates the priority of each security requirements in terms of the assets it 
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is protecting, the threats it is addressing, and its security properties. In addition to its similarity to 

a super-sentence that corresponds to the STRIDE threat model. 

The proposed prioritization scheme was applied to the case study, to prioritize the 

extracted list of 17 security requirements. Using NLP techniques such as, Part-of-speech (POS) 

tagging and named entity recognition, three lists were conducted that represent the system assets, 

threats, and security properties. Each security requirement was then compared against each item 

in those lists, to extract the number of assets, threats, and security properties that are present in 

the requirement. Finally using the Word2Vec and text similarity methods provided in spaCy 

library [23], each security requirement was compared against 6 super-sentence that correspond to 

the STRIDE threats definitions.  In order to extract its STRIDE similarity score. The priority 

score for each requirement was calculated that is, the sum of its assets, threats, and security 

properties, and its STRIDE score. The final list of prioritized security requirements was 

evaluated using expert judgment, where the list exhibited a variance in the priority scores and the 

security requirements with highest priority scores do indeed show a high level of correlation to 

critical security aspects that must be addressed in every software system. 

5.2 Limitation of Study 

Obtaining a dataset that can be utilized in a machine learning approach for classifying 

security requirements was perhaps the most challenging aspect of this study. Two datasets that 

can be used for such problem were publicly available. The SecReq dataset [59] and the NFR 

dataset [60]. The concerns with these datasets are the low count of samples and the domain 

specific examples. Additionally, and what is perhaps the biggest limitation is the fact that all 

security labeled requirments are expressed as non-functional requirements. This classification 
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under non-functional requirements can jeopardize the task at hand. That is to extract a 

comprehensive list of security requirements for a software system form natural language 

artifacts. In order for that list to be complete and correct, security requirements must be extracted 

from functional and non-functional requirements alike. Due to the fact that security concerns and 

the security aspects of a system relate directly to many of its functoriality, environment and 

performance. 

Despite the construction of the SecREP dataset in this work. Training a machine learning 

model to extract security requirements from software systems natural language artifacts. Can be 

significantly improved by further improving the dataset to contain more versatile and correct 

samples that express the security requirements as functional and non-functional. Additionally, 

increasing the size of the dataset will produce better learnt machine models, and can also allow 

for training other machine learning models than the ones addressed in this study (SVM, Naïve 

Bayes, and Random Forest). For example, models such as the CNN, RNN and deep learning that 

require large datasets, can be used to obtain remarkable results. 

In terms of this work validity, the SecREP framework/pipeline was tested on one case 

study and its results evaluation was based on its performance with that example. Further testing 

can help fortify the validity of the SeREP framework/pipeline and can help recognize weak 

points that needs addressing.  

Finally, and what is worth mentioning here, is that this prioritization scheme provided by 

the SecREP is only a reliable start to eliciting and prioritizing security requirements. However, to 

ensure the completeness of a security requirement and its priority, other factors and calculations 

must also be considered. For example, the risk value, the impact, the system’s vulnerabilities that 
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can cause a threat to occur, the underlying cost of implementing the security mechanisms...etc. 

Such values can improve the completeness and correctness to the security requirement and its 

priority. Additionally, the prioritization scheme proposed in this work does not address the 

problem of security requirements with competing priority scores, that is two or more security 

requirement have the same priority weight. However, techniques such as, the AHP [45,52] the 

CVSS (Common Vulnerability Scoring System), and the bug bars, can help in calculating these 

missing values and solve the issue with competing security requirements. 

5.3 Future Work 

As a result of the work conducted in this thesis, several research opportunities, 

unexplored areas, and enhancements openings can be addressed in future work.  

 Enhancing the SecREP Dataset: The SecREP dataset can be further enhanced, in 

terms of size, completeness, correctness and diversity of the samples. A need is 

still dire for a large in scale dataset of software requirements classified as either 

security related as non-security related. That ensures to incorporate security 

requirements samples that are expressed as functional security requirements and 

non-functional security requirements.  

Additionally, different combinations of the SecReq [59] dataset and the NFR 

dataset [60] can still be tested to see if that would improve upon the SecREP 

dataset.  

Finally, there is an opportunity to use the SecREP extraction model, or similar 

models, to help extract security requirements samples from software systems 
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natural language artifacts, where these samples can be then added to the SecREP 

list and used to retrain the SecREP model or to train different models.  

 Evaluating other Machine Learning models: Other machine learning models for 

example, CNNs, RNNs, Decision tree, KNN algorithm, K-means…etc. Can still 

be experimented with using the SecREP dataset, the SecReq [59] dataset and the 

NFR dataset [60], or different combinations of them. 

 Additional Case Studies: The SecREP pipeline can be subjected to different case 

studies for different domains. For example, to extract security requirements form 

users reviews and feedback, or mobile applications reviews. Additionally, there is 

a comparison study opportunity, where the SecREP framework validity and 

performance can be tested against similar or related models.  

 Enhanced Prioritization: The prioritization scheme proposed by the SecREP 

framework, has many areas of improvements. First the prioritization can be 

further extended and automated to account for other important values regarding 

security requirements, for example risk calculation, threat impact, likelihood of a 

threat...etc. Second, a scheme can be added to the prioritization process to address 

the issue with competing security requirements with similar priority scores. Third, 

the scheme can be further automated to extract any human element, wherein the 

SecREP pipeline, software engineers need to finalize and review the comparison 

lists extracted by the process that correspond to their system assets, threats, and 

security properties. Finally, the prioritization scheme can be further tested on 

different case studies and can be compared and tested against other similar or 

related approaches.  
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