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Abstract

Speech quality estimation is the process of estimating how human listeners respond

to speech. This is often implemented by designing a relevant perceptual model and

fitting the model to the datasets containing speech and quality ratings obtained through

subjective tests. These quality models are used in various contexts, including speech

codec evaluation and development, as well as regression testing for online systems such

as Google Meet. The production environment has substantially different requirements

from those of the research context, in terms of the speech data, as well as stability and

efficiency. Production-driven adjustments are often needed. Changes to ViSQOL (an

open source speech quality estimation framework) in this context are discussed.

Intrusive subjective speech quality estimation of mean opinion score (MOS) often in-

volves mapping a raw similarity score extracted from differences between the clean

and degraded utterance onto MOS with a fitted mapping function. A multi-dimensional

mapping function using deep lattice networks (DLNs) to provide monotonic constraints

with input features provided by ViSQOL is presented. The DLN improved the speech

mapping to 0.24 mean-squared error (MSE) on a mixture of datasets that include voice

over IP (VoIP) and codec degradations, outperforming the 1-D fitted functions, SVR, as

well as PESQ and POLQA. Additionally, we show that the DLN can be used to learn a

quantile function that is well calibrated and a useful measure of uncertainty.

Identifying the relevant predictors that can be used to estimate quality is a non-trivial

task. Often, a quality model is fit to a dataset that contains predictors that are related

only to the speech waveform. Other metadata such as the rating statistics of each indi-

vidual rater, as well as the language of the rater may also be relevant. The majority of

speech quality models use deterministic or frequentist approaches for estimation. We

propose to model speech quality as a process with uncertainty that has certain priors in a
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Bayesian context. The models that included language and/or rater obtained significantly

lower errors (0.601 versus 0.684 root-mean-square error (RMSE)) and higher correla-

tion than those that did not. Additionally, individual rater models matched or exceeded

the performance of MOS models.

Speech quality estimation will continue to evolve due to the continuous development of

speech synthesis models, as well as the cultural reception and trends of natural speech.

The immediate future looks to combine un- and semi-supervised training to satisfy the

data-hungry models of deep learning that have shown immense promise in virtually

every other speech domain.

Keywords— Speech Quality Estimation - Bayesian - Mean Opinion Score - Language
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1 | Introduction

1.1 Motivation

Communication is the transfer of information between separate entities. Commu-

nication occurs over distances that are very large, such as the information about in-

terstellar space sent back to us from the Voyager 2 space probe which is currently

some 19.1 billion kilometers away from earth, to the microscopic scale, such as

the signaling molecules that change the behaviors of cells. The Voyager exam-

ple is clearly man-made communication that exists due to technological progress.

The cell example has naturally arisen as a product of evolution. Speech communi-

cation is interesting in that it has aspects of it that are man-made and aspects that

are natural, and others that are hard to classify in a binary fashion. For example,

while speech is one of the oldest and primary forms of communication between

people, the telephone, television, and computer has resulted in an increasingly

large number of humans communicating with speech at vast distances in a tightly

connected manner that has never been possible until recently.

Humans are not the only consumers of speech. In today’s technological landscape

with deep learning, machine listening consumes arguably more speech than hu-

mans due to the simple fact that machines can process speech at speeds much

faster than humans can. For an increasing number of problems, like chess, go,

image classification, and speech recognition, machine learning is able to reliably

outperform humans. However, quality estimation is arguably in a different cate-

gory from these because an objective physical target, subjective human behavior

itself is the target that is being modeled. One interpretation of this is that quality

models will never be able surpass human performance. A consequence of this is

that the problem itself is less well-defined, and the term ’quality’ itself is subject

1
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to many different interpretations.

What exactly is meant by ’speech quality’? It does not refer to any standard ob-

jective signal metric such as signal-to-noise ratio (SNR), because there are many

signals that have very low SNR but still will be perceived as ’sounding good’. For

example, flipping the polarity of a signal will produce a signal with a very low

SNR, but will sound identical to humans. Typically, it refers to how humans per-

ceive and react to a speech utterance. If it sounds ’good’, then it is usually easy

to understand, without significant artifacts or noise. If it sounds ’bad’ then it may

be unintelligible. Intelligibility is only one factor of many with regards to quality.

Perception is dependent on the complex physical and psychological hearing sys-

tem that humans have. Science and research has developed some understanding

of this system, but it is still unknown how exactly a human will react to a given

speech utterance unless they are directly observed and surveyed.

The most common method of surveying humans on speech quality is known as

opinion score testing, which asks raters to assign a numeric value indicating in-

creasing levels of quality, usually given speech from some application, for exam-

ple, from network transmission [1]. For a given speech signal, there is significant

variation and uncertainty in the scores that can be observed from these surveys.

Often, researchers are interested in the average of these scores, known as the mean

opinion score (MOS). MOS is often compared between classes of signals to show

how one class compares to another. For example, when designing a speech codec

like Lyra or Opus, the MOS values for these two systems will be compared to

show that one has equal or better performance overall compared to the other. This

kind of application of MOS is useful for virtually all speech synthesis domains.

Designing a proper experiment and preparing the data for the test is a compli-

cated matter. An even larger problem is that gathering human listening subjects
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for these types of tests is expensive and time consuming. The proliferation of

crowdsourcing-based testing has lowered the hurdle to this, but the costs of gath-

ering the data still remain high compared to other domains such as speech or

image recognition where the labels are often freely available.

What tools are available to speech and audio researchers and engineers to measure

quality that cannot afford to conduct an expensive subjective test at each stage of

research and development? There are numerous objective metrics available, i.e,

metrics obtained by measurements on the audio signal, to assess the quality of

recorded audio clips. Examples of physical measurements include signal-to-noise

ratio (SNR), total harmonic distortion (THD), and spectral (magnitude) distor-

tion. When estimating perceived quality, PESQ [2, 3] and POLQA [4, 5] have

become standards for measuring speech quality. There are other notable exam-

ples, e.g., PEAQ [6] and PEMO-Q [7]. Most of these metrics require commercial

licenses. ViSQOL [8] and ViSQOLAudio [9] (referred to collectively as ViSQOL

below), are freely available alternatives for speech and audio. These metrics are

continually being expanded to cover additional domains. For example the work

on AMBIQUAL [10] extends the same principles used in ViSQOLAudio into the

ambisonics domain.

Are these existing options good enough? There is always room for improvement.

However, the target is always moving. Speech-related technologies have advanced

significantly in the past few years. We have been able to record and resynthesize

speech at a near-transparent level for quite some time. Speech coding, which

compresses information for efficient transmission of speech, has produced in-

creasingly efficient results due to advancements in deep learning such as LPC-

Net [11], Lyra [12, 13], SoundStream [14], and the HuBERT-based model [15]

that can bring the bitrate down to just 365 bits per second, which is an order of

magnitude less than what was possible just a few years ago. Another application

3
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is speech enhancement [16], which processes audio to restore quality and intelli-

gibility. Yet another is packet loss concealment [17], which attempts to recover

gracefully from speech transmissions that are missing a piece of information due

to network issues. All of these applications strive to obtain resynthesized speech

of a higher quality. As such, it may be worthwhile to analyze the performance of

these objective quality estimators for these new systems. For example, the genera-

tive models in particular are problematic for existing full reference speech quality

metrics due tendency to produce small time and pitch differences.

1.2 Aim and Objectives

This thesis attempts to describe how speech quality estimation systems are de-

signed, and proposes improvements that can be made. The author is the pri-

mary maintainer of the github repository for ViSQOL, a speech quality frame-

work which will be described in detail and used as a reference point for these

improvements.

In intrusive contexts, where a reference speech utterance is compared to a test

utterance, speech quality and similarity have a monotonic relationship. This con-

straint is straightforward to preserve in the one-dimensional context, but the prob-

lem of maintaining monotonic relationships between the predicted MOS and high-

dimensional similarity vectors is more difficult. Chapter 3 discusses this problem

and proposes a solution that uses deep learning.

There is no such thing as a perfect metric, because the metric depends on the ap-

plication and context. Depending on the context, there may be various problems

with using MOS models. How can these problems be addressed? First, MOS

models are often too reductive for certain applications. That is, it is not diagnostic

- MOS models predict overall quality but do not inform the user on which specific
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aspects of the quality are good or bad, which limits the user from being able to

diagnose what the cause of the low quality is. Next, the mean opinion does not de-

scribe the distribution of scores, but rather discards various important information

such as variance and individual rater information. Additionally, when conducting

a large subjective test, MOS is often aggregated over results from test subjects of

different cultures and languages, which each have their own biases that are not

directly comparable. This problem is discussed extensively in Chapter 4.

1.3 Thesis Outline

The remainder of this report is organized as follows:

Chapter 2 — introduces ViSQOL, a popular speech quality estimation

framework.

Chapter 3 — presents a probabilistic model of speech quality using deep

lattice networks.

Chapter 4 — considers the relationship between the subjective test meta-

data (cultural, rater, and language information) and the quality scores re-

ported.

Chapter 5 — summarizes and concludes the thesis, and describes future

directions.
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2 | ViSQOL v3: An Open Source Production

Ready Objective Speech and Audio

Metric1

2.1 Introduction

ViSQOL is a full-reference mean opinion score (MOS) estimator for speech and

audio. ViSQOL uses traditional signal processing methods to extract a similarity

score that is mapped to MOS. It was originally designed with a polynomial map-

ping of the neurogram similarity index measure (NSIM) [19] to MOS, and later,

ViSQOLAudio was developed by extending ViSQOL to use a model trained for

support vector regression on audio.

This chapter describes the C++ version of ViSQOL, v3 (conformance version

310), which is the most recent version on GitHub as of the time of publishing.

Compared to previous Matlab v2 versions, ViSQOL v3 contains incremental im-

provements to the existing framework based on real-world feedback, rather than

fundamental changes such as end-to-end DNN modeling. Since ViSQOL has

been presented and benchmarked in a large number of experiments that have val-

idated its application to a number of use cases [8, 20, 21, 9, 22, 23] we consider

it relatively well analyzed for the known datasets, which tend to be smaller and

relatively homogeneous. We instead turn our attention to the data and types of

problems encountered “in the wild” at Google teams that were independent of

ViSQOL development, and the iterative improvements that have come from this

1The content from this chapter was originally published and presented at the International
Conference on Quality of Multimedia Experience (QoMEX) 2020 with co-authors Felicia S. C.
Lim, Jan Skoglund, Nikita Gureev, Feargus O’Gorman, and Andrew Hines [18].
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analysis. Adapting it to these cases has yielded various improvements to usability

and performance, along with feedback and insights about the design of future sys-

tems for estimating perceptual quality. Since the nature of these improvements fill

in the ’blind spots’ of the datasets, they are not expected to improve its results on

these datasets. Until there is the creation of more diverse subjective score datasets,

real-world validation seems to be a reasonable compromise.

Alongside improving the quality of MOS estimation from real-world data, we

are concerned with how to make ViSQOL more useful to the community from

a practical tooling perspective. Even though ViSQOL was available through a

MATLAB implementation, there were still unnecessary hurdles to use it in certain

cases, e.g. production and continuous integration testing, (which may need to run

on a server), or may not have MATLAB licenses available. As a result, we chose

to re-implement it in C++ because it is a widely available and extensible language

that can be wrapped in other languages, such as python. The code was released

on GitHub for ease of access and to obtain feedback and contributions from the

community.

This chapter is structured as follows: In section 2.2, we present the general design

and algorithmic improvements that are in the new version. In section 2.3, a case

study of the findings and challenges encountered when integrating ViSQOL into

various Google projects. Then in section 2.4, the improvements with respect to

the case studies are discussed. Finally, we summarize in a concluding section 2.5.

2.2 Design and improvements

This section summarizes the previous version and describes the changes made to

the new version. Figure 2.1 shows the overall program flow and highlights the

new components of the system that are referred to in the subsections.
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Ref. Signal Deg. Signal

Global Alignment

Gammatone Spectrogram

Spectrogram Thresholding

Voice Activity Detection

Patch Alignment

Subpatch Alignment

Calculate NSIM

SVR
Mapping

SVR
Model

MOS

Polynomial
Mapping

Figure 2.1: System Diagram. The inputs and outputs have white fill, and the pro-
cessing components have blue fill. New components have thick edges. The dashed
and dotted fill represent speech-only and audio-only components, respectively.
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2.2.1 Signal processing modules

The ViSQOL algorithms described in [8] and [9] share many components by de-

sign with v3, such as the gammatone spectrogram and NSIM calculation. It then

seems reasonable that the common components be shared and developed together.

The differences between the two algorithms are related to differences in the char-

acteristics of speech and music. For example, the use of voice activity detection

(VAD) for speech, and analysis of the higher bands (up to 24 kHz) for general

audio/music. The common components of both speech and audio systems include

creating a gammatone spectrogram using equivalent rectangular bandwidth (ERB)

filters, creation of patches on the order of a half-second, aligning them, computing

the NSIM from the aligned patches, and then mapping the NSIM values to MOS.

There were minor changes to some of these components in ViSQOL v3 because

of practical reasons, such as modifying dependencies, or fixing issues found in

case studies or test failures. For example, the VAD implementation uses a simple

energy-based VAD, which should be sufficient given the requirement of clean

references. As another example, window sizes were updated to be 80 ms with a

hop of 20 ms after discovering an issue with the windowing of previous versions.

The common individual processing modules for ViSQOL’s speech mode are de-

scribed here, in order. Additions in v3 are described later.

2.2.1.1 Global alignment and normalization

The first step normalizes the energy of the input reference and degraded signals.

A global alignment is conducted next, using cross correlation to shift the degraded

signal by the computed lag.

9
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2.2.1.2 Gammatone spectrogram

A 21-band gammatone filterbank, which can be viewed as a coarse model of the

human auditory system, is used to create a spectrogram for both of the aligned

reference and degraded signals. The frame length is 80 milliseconds, with a hop

length of 20 milliseconds.

2.2.1.3 Voice activity detection

A RMS energy-based voice activity detection algorithm is used on the reference

signal to identify the frames of the spectrogram that are likely to have voice ac-

tivity. The reference is assumed to be clean, which allows a relatively simple

threshold and gate-based algorithm to identify active regions.

2.2.1.4 Patch alignment

The next step creates 400 millisecond ’patches’ from the reference signal, wher-

ever there is voice activity. A dynamic time warping algorithm is used on the de-

graded signal to create corresponding degraded patches for each reference patch.

These patch pairs will be used to compute similarity. This is necessary because

the global alignment step that was initially done does not handle local shifts in

time, which can happen because of packet loss and jitter, or because of generative

codecs like WaveNet that can shift the onset of each phoneme by some amount.

2.2.1.5 NSIM calculation

The neurogram similarity index measure (NSIM) is computed over each spectro-

gram. As the name suggests, NSIM was originally used on neurograms, but has

been shown to be useful for indicating similarity for speech signals when applied

on an audio spectrogram [24]. The output of the NSIM calculation is another

10
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spectrogram that indicates similarity between the aligned patches. These spectro-

grams are aggregated over time by taking the mean, producing 21 NSIM values

for the 21 frequency bands. Depending on the subsequent mapping function, they

can also be aggregated over frequency bands to produce a single scalar.

2.2.1.6 NSIM to MOS mapping

Finally NSIM is mapped to MOS using a function that has been fit to subjective

data. Previous versions of ViSQOL used a third order polynomial function, and

v3 uses an exponential function.

2.2.2 Constraints and Usage Recommendations

ViSQOL was originally designed for speech codec and VoIP use cases, which

has produced a system that has certain constraints. The general constraints are

illustrated in table 2.1. Many of the constraints come from the historical use case

of speech coding and VoIP, as well as the conventions for subjective tests (e.g. the

recommendation of a 5 to 10 seconds length for input utterances). At the same

time, a number of the recommendations are arbitrary or chosen based on design

principles (e.g. a 0.4 second patch length was chosen to have patches contain at

least a few phonemes). As the number of applications grows, ViSQOL is used

outside of these recommendations as well, with varying success.

The parameters and recommendations were informed by a number of factors, in-

cluding the ITU-T P.800 absolute categorical test procedure recommendations [1],

as well as conventional and historical choices. For example, the P.800 recommen-

dation for presenting two five second utterances means the MOS datasets that

ViSQOL is trained on most frequently contain input that is 5 or 10 seconds in

length (with some tests omitting the second utterance). The reference speech ut-

11
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Table 2.1: Parameters and Recommendations for ViSQOL speech mode.

Parameter Value
Recommended Utterance Duration 5-10 seconds

Clean Reference Required Yes
Maximum Misalignment 2 seconds

Sample Rate 16000 Hz
Spectrogram Kernel Gammatone Filter

Spectrogram Frame Length 80 milliseconds
Spectrogram Hop Length 20 milliseconds
Voice Activity Detection RMS energy threshold

Patch Duration 0.4 seconds

terance should be relatively clean and correspond to the degraded utterance. The

input should be 16000 Hz for both narrow and wideband speech use cases.

2.2.3 C++ Library and Binary

To make ViSQOL more available, we uncoupled the dependency on MATLAB by

implementing a C++ version with only open source dependencies. The new ver-

sion, v3, is available as a binary or as a library. The codebase was made available

on GitHub because we wish for it to be easy to use by the public, and to invite

external contributions.

The majority of users were binary users, but some had requirements for finer

control. For this purpose we designed a library with protobuf support and error

checking, which the binary depends on. This library would also be useful for a

user that wishes to wrap the functions in a different language, such as with python

bindings.

There were several changes to the input and output. Verbose output has also

changed to include the average NSIM values per frequency band and mean NSIM

per frame. Because ViSQOL is continuously changing to adapt to new problems,

12
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a conformance version number is included in the output. Whenever the MOS

changes for known files, the conformance number will be incremented. Lastly,

batch processing via comma-separated value (csv) files are also supported.

A number of Google-related projects were used to build this version. The appli-

cation binary was implemented using the Abseil C++ application framework [25].

The Google Test C++ testing framework [26] was integrated and various tests

were implemented to ensure correctness, detect regressions, and increase stability

for edge cases. 23 test classes with multiple tests were implemented. These in-

clude not only unit tests, but also a test to check the conformance of the current

version to known scores. The Bazel framework [27] was used to handle building

and dependency fetching, as well as test development.

2.2.4 Fine-scaled Time Alignment

Although the previous versions of ViSQOL did two levels of alignment (global

and patch), there were still issues with the patch alignment due to the spectrogram

frames being misaligned at a fine scale. To address this, we implemented an addi-

tional alignment step that offsets by the lag found in a cross correlation step on the

time-domain regions that corresponds to the aligned patches as described in [28].

Next, the gammatone spectrogram is recomputed for sample-aligned patch audio

and the NSIM score is taken.

2.2.5 Silence Thresholds

To deal with the problem of log-scale amplitudes discussed in 2.3.3, we introduce

silence thresholds on the gammatone spectrogram. Because NSIM is calculated

on log-amplitudes, we found that it was too sensitive to different levels of ambient

noise. For example, a near-digital silence reference compared against a very low
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level of ambient noise would still have a very low NSIM score, despite being

perceptually transparent. The silence threshold introduces an absolute floor as

well as a relative floor that may be higher for high amplitude frames.

The thresholded amplitude yt,f (x) for a time t and frequency band f given an

input spectrogram x is subject to:

yt,f (x) = max(Ymin, Yfmin(t), x(t, f)) (2.1)

where:

Yfmin(t) = max(rf (t), df (t))− Yfmin (2.2)

given reference and degraded log amplitudes rt,f and dt,f , and global absolute

threshold Ymin, and relative per-frame threshold Yfmin.

2.2.6 NSIM to MOS Model

The changes above ultimately affect the NSIM scores. This requires that a new

SVR model is trained to map the frequency band NSIM to MOS using libsvm [29].

We conducted a grid search to minimize the 4-way cross validation loss on the

same training set (TCDAudio14, CoreSV14, AACvOpus15). However, we ob-

served in Section 2.3 that this model was too specific to the training data and

would behave poorly on very low bitrate (6-18 kbps) audio. This appears to be

related to the fact that there is no monotonicity constraint in the SVR model used

by ViSQOL (a strictly higher NSIM for out of distribution data produced lower

MOS). To address this issue for the default model, we relaxed the SVR parame-

ters by lowering the cost and gamma parameters to have a slightly higher cross

validation error while providing behavior that was closer to monotonic behavior.

Additionally, this version includes some tooling and documentation that allows
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for users to train their own SVR model by the use of CSV input files if the user

can provide subjective scores for degraded/reference pairs. By following the grid

search methods described by libsvm authors, users should be able to tailor a model

that is able to represent their data.

2.3 Case Studies and User Feedback

This version of ViSQOL is the result of the integration process of ViSQOL, using

real production and integration testing cases at Google. The case studies described

in this section were initiated by individual teams that were independent of prior

ViSQOL development. They typically consulted with a ViSQOL developer to

verify appropriate usage, or read the documentation and integrated ViSQOL on

their own.

2.3.1 Hangouts Meet

The Meet team has been successfully using ViSQOL for assessing audio quality

in Hangouts Meet. Hangouts Meet is a video communication service that uses

WebRTC [30] for transmitting audio. Meet uses a testbed that is able to reliably

replicate adverse network conditions to assess the quality of audio during the call.

For this use case they have 48 kHz-sampled reference and degraded audio samples

and use ViSQOLAudio for calculating the results.

In order to ensure that ViSQOL works reliably for this use case, it was compared

to an internal no-reference audio quality metric that is based on technical metrics

of a WebRTC-based receiver. The metric is on a scale from 0 to 1, with lower

scores being better. ViSQOL’s MOS is able to correlate to this metric, as seen in

Figure 2.2.
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Figure 2.2: Hangouts Meet’s internal no-reference metric has components to de-
tect audio degradations. ViSQOL successfully detected these degradations in au-
dio that contained them (blocks 1 and 4), while in the audio blocks that were not
affected the scores from ViSQOL were higher (blocks 2 and 3).

In this use case, Meet developers were mostly interested in the sensitivity of

ViSQOL to audio degradations from network impairments. In Figure 2.3 there

is a comparison between mean ViSQOL scores during a call that shows that the

metric is sensitive to how audio quality changed from a good network conditions

scenario with scores ranging from 4.21 to 4.28, to a medium impaired scenario

with scores ranging from 4.04 to 4.16, to finally an extremely challenging network

scenario with scores from 3.72 to 3.94. Although the exact network conditions can

not be shared, here good network conditions indicated that the connection should

allow for both video and audio to be near perfect in the call, medium conditions

indicate that the call might have issues, but the audio should continue to be good,

while in extremely challenging conditions we expect to see both video and audio

perceptually degraded, but the call would still go through.

In order to ensure that ViSQOL performs reliably, several hundreds of calls were

collected from the testbed. The mean values obtained from ViSQOL and the in-

ternal metric from these calls were plotted in Figure 2.4. The results were reliably

reproduced. Following the positive results from this investigation, ViSQOL is cur-
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Figure 2.3: Comparison between mean ViSQOL MOS and network degradations.
Some of the calls were run with good network conditions (green), some were sim-
ulating average network conditions, where the product should still perform well
(yellow), while others were simulating extremely challenging network conditions,
where it is expected to for issues to appear (red).
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rently one of the main objective audio quality metrics deployed by the Hangouts

Meet product team at Google.

Figure 2.4: Scatter plot of ViSQOL MOS versus a no-reference internal metric.
Each point represents a call.

2.3.2 Opus Codec

Google contributes to the development of the Opus codec. ViSQOL and POLQA

were used to benchmark the quality of the Opus coder for both speech and music

at various bitrates and computational complexities. In previous studies ViSQO-

LAudio has been shown to perform reasonably on low bitrate audio [9]. However,

ViSQOL’s speech mode did not specifically target the low bitrate case. Addition-

ally, recent advancements in Opus have pushed the lower bound of the range of

bitrates further downwards for a given bandwidth since the time ViSQOL was

introduced. For example, Opus 1.3 can produce a wideband signal at 9 kbps,

whereas the TCDAudio14 [31], CoreSV14 [32], and AACvOpus15 [23] datasets

that ViSQOL’s support vector regression was trained on have bitrates that only go

as low as 24 kbps.
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POLQA and the original version of ViSQOL in speech mode display similar

trends that are consistent with expectations with respect to the bitrate and com-

plexity settings. The differences in the lower bitrates are more pronounced ac-

cording to POLQA. The differences in higher bitrates are more pronounced ac-

cording to ViSQOL. Although subjective scores were not available, the developers

expected that MOS should be less sensitive to changes in higher bitrates, giving

POLQA a better match. After the improvements described in section 3, ViSQOL

v3 MOS was a closer match to the expectation as can be seen in Figure 2.5.

For musical examples, the developers found that both metrics display similar

trends with respect to bitrates. However, POLQA shows higher discrimination

between 6-8 kbps, 10-12 kbps and 16-24 kbps. ViSQOL is able to discriminate

between the different bitrates with monotonic behavior, but one point of concern

is that this results in ViSQOLAudio being relatively insensitive to differences in

complexity settings. In light of this, we would not recommend using ViSQOL for

automated regression tests without retraining the model. The improvements made

in section 3 slightly ameliorate these issues, as can be seen in Figure 2.6. On the

other hand, ViSQOL identified a spurious bandwidth ‘bump’ at 12 kbps for the

5 and 6 complexity settings (which was perceived as higher quality in informal

listening), where POLQA did not.

Lastly, ViSQOL was used to analyze the results for both clean and noisy refer-

ences. This is not a case ViSQOL was designed for, as it presumes a clean refer-

ence, similar to PESQ [3] and POLQA [5]. However, it was found to perform in

a similar fashion to the clean cases for both speech and audio in the noisy cases.

It was concluded that ViSQOL could be used for regression testing for speech.

However, formal listening tests would be desirable for two reasons: to better in-

terpret the differences between POLQA and ViSQOLAudio, and to allow training
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Figure 2.5: Estimated MOS for varying bitrates (6-64 kbps) and complexity set-
tings on Opus-encoded speech.
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Figure 2.6: Estimated MOS for varying bitrates and complexity settings on Opus-
encoded music (legend as per Fig. 2.5). The bitrates follow the same key as Figure
2.5. The bump at complexity 5, 6, and 10 for 12 kbps is related to Opus deciding
to use a 12 kHz bandwidth for some fraction of the files instead of the 8 kHz
bandwidth it used for complexities 2-4 and 7-9.
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a model that represented the low bitrate ranges.

2.3.3 Other Findings

A number of other teams have also adapted ViSQOL for their products. In the ma-

jority of cases, their use case vaguely resembles the training data (e.g. wideband

speech network degradations or music coding), but often has marked differences.

For example, one team chose to analyze the network loop with a digital and analog

interface, requiring a rig to be built for continuous automated testing. Typically

these teams also had access to PESQ, POLQA or subjective scores for their cases

and wanted to evaluate the accuracy of ViSQOL measurements as well as iden-

tify limitations. A frequent issue was related to the duration and segmentation of

the audio that would be used with ViSQOL when used in an automated frame-

work. While ViSQOL in speech mode has a voice activity detector, it was found

that ViSQOLAudio would perform poorly for segments where the reference was

silent, because of either the averaging effects, or because of the lack of log-scale

thresholding which was overly sensitive to small absolute differences in ambient

noise levels. To resolve the averaging effects, it was recommended to extract seg-

ments of audio of 3 to 10 seconds where there was known activity. A solution to

the thresholding issues is discussed in the next section.

2.4 Discussion

Here we present a discussion of the use cases and feedback in light of the improve-

ments. This is followed by reflection on trends and the areas that are promising as

future work.

The case studies mentioned in Section 2.3 highlight the challenges with real world

applications of ViSQOL. The findings are generally that ViSQOL can be used for
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various applications, but careful investigation is required for any use case. The

users of these tools are the very developers of new audio processing and coding

techniques, and are often analyzing new types of audio that are “out of sample”.

In some cases, we can allow the user to retrain a model to match the new data.

We find that developers are reasonably skeptical about how well ViSQOL will

apply to their problem, given that it almost always has unique characteristics. Al-

though ViSQOL is not guaranteed to give a meaningful absolute MOS for cases

that are significantly different from what it was originally designed with, the de-

velopers in our case studies found some correlation that was useful for their use

case. However, this conclusion is often facilitated by the use of additional metrics

that can be used to validate ViSQOL’s application.

In other cases, for example, in the generative case, it is possible that it requires

a redesign of the algorithm at a fundamental level, which could include differ-

ent spectrogram representations or DNNs. Projects like LibriTTS [33] have cu-

rated large amounts of freely available speech data, which has been a boon to

speech-related DNNs, there is yet no standard and widely available subjective

score dataset that is of similar scale. A larger dataset would enable new develop-

ment, but also require rethinking of existing tools, such as support vector regres-

sion, used by ViSQOLAudio, which is intended for use on smaller datasets on the

order of hundreds of points.

2.5 Summary

This chapter introduced the history, fundamental properties, and design of ViSQOL.

It described a new version of ViSQOL which is available for use on GitHub. The

integration to real world problems by different teams at Google yielded a number

of insights and improvements to the previous version. However, the described
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version of ViSQOL relies on traditional signal processing modules. There are

a number of promising avenues for improvements on top of ViSQOL that will

be discussed in the next two chapters, including DNN based approaches, a more

general model, and taking the new generative audio approaches into account.
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3 | Speech Quality Estimation with Deep

Lattice Networks1

3.1 Introduction

As seen in the previous chapter the estimation of speech quality is useful in

a wide range of applications, such as channel transmission and speech coding.

PESQ [2, 3], POLQA [4, 5], and ViSQOL [8, 9, 18] are popular tools for objec-

tively estimating the mean opinion score from a subjective test intrusively, that

is, by comparing the degraded signal to a clean reference signal. The input space

for such estimators is constantly expanding due to the innovations in synthesis,

coders, and hardware capabilities, which create new categories of audio data and

their associated biases, artifacts, and perceptual exploits. Audio coding examples

of this are the frequency masking in MPEG audio coding, and the recent advent

of neural generative models for speech, such as WaveNet [35], which achieved

a new state of the art in speech synthesis. WaveNet diaspora include low bitrate

parametric vocoder conditioning [12] and LPCNet [11], both of which provide

very low bitrates (as low as 1.6 kbps) while maintaining reasonable speech qual-

ity. These models add subtle shifts in time and pitch that are problematic for

traditional speech quality estimators which typically have an alignment prepro-

cessing stage that was only designed for shifts in VoIP artifacts. Recent work

has investigated the design of a metric that is able to track the quality of these

generative models [36]. Generative adversarial networks (GANs) [37] for speech

such as MelGAN [38] produce realistic output of yet another nature because the

adversarial loss encourages the output to be plausible and realistic. Voice over

1The content from this chapter was originally published in the Journal of the Acoustical Society
of America in 2021, vol. 149, no.6, with co-authors Jan Skoglund and Andrew Hines [34].
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IP (VoIP) applications produce new classes of artifacts when introducing novel

methods for packet loss concealment [39], which prompt new speech quality mod-

els [40]. These are just a few examples; there are many other areas of research

that contribute to the increasing diversity of computer generated audio, such as

speech enhancement, physical modeling, text-to-speech, style transfer, and so on.

There are also non-technological and indirect natural processes that continuously

affect subjective opinion and add additional sources of uncertainty. In contrast

to the rapid development of speech synthesis and signal processing, the phys-

ical properties of hearing and human auditory anatomy are relatively constant,

subject to a slow evolutionary time scale. On the other hand, geographical and

technology-driven developments in society affect subjective opinion of these new

technologies on a faster time scale. Language, culture, and nationality also are

considered to affect subjective testing [41]. Additionally, while human hearing

is relatively stable, natural speech production changes from generation to gen-

eration within a given region. The dialects and accents of regions and cultures

develop slowly compared to technology, but fast enough that changes can be no-

ticed within a region or across generations [42]. These types of societal changes

happen over decades, in parallel with technology, and care must be taken to update

and validate the models over time to reflect the current opinion. This is analogous

to the changes in models that have occurred over the last decade for measuring

the quality associated with page load time of web applications as network speeds

have increased and evolving user expectations [43]. Speech quality can be as-

sessed by using subjective listening tests to rate samples by a group of subjects

scoring using a 5-point absolute category rating scale. The per subject results are

averaged to produce a mean opinion score (MOS) to score the quality [1]. Besides

social and cultural differences, it is inevitable to have non-zero measurement and

sampling error in MOS between tests because of environmental differences, or
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pre- and post-screening methods. Efforts such as the ITU-T listening test recom-

mendations in ITU-T Rec. P.800 [1] try to limit the extent to which this happens,

although various biases are present in all standard listening tests [44]. Rather

than trying to eliminate or minimize the uncertainty and variation in the data due

to biases, uncertainty from biases could be seen as a property that can be mod-

eled [45, 46]. However, there are valid questions about whether MOS is the most

useful property to model for speech quality [47, 48].

Machine learning has been applied to acoustics in a wide array of fields. Deep

learning has become more prevalent as the collection of acoustic data becomes

more convenient (e.g. with crowdsourcing and cheaper storage), and compute

capabilities grow. Acoustics problems fundamentally involve physical constraints,

and years of research has yielded interpretable models to solve these problems.

Rather than an opaque, purely data-driven model, it may be preferable to have a

hybrid model that is able to harness the power of deep learning while being aware

of acoustic constraints and other known relationships between the input and the

output [49].

Within quality estimation, traditional models typically rely on digital signal pro-

cessing toolboxes, where each component has a well recognized function (e.g.

low pass filters, signal alignment, and resampling modules). In the recent surge of

progress in deep neural networks (DNNs), deep learning has also been applied to

speech quality estimation with increasingly good results and flexibility. For exam-

ple, [50] have developed a convolutional neural network (CNN) based approach

to estimating MOS both intrusively and non-intrusively. One of the general criti-

cisms of deep learning is that it tends to create a ’black box’ model. That is to say

the explainability and interpretation of the modular components of the model are

traded for prediction accuracy. Additionally, traditional methods relied upon sig-

nal processing and other accumulated knowledge that effectively served as priors
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are not, in general, included in DNN-based solutions. Bayesian models were also

explored to handle complex models with greater transparency [51]. Recent work

in shape constraints for DNNs in the form of deep lattice networks (DLNs) [52]

provides methods of using prior information to constrain the output in meaningful

ways. Previous work has also used constraints to map a factor to quality with lin-

ear and additive models. For example OPINE’s [53, 54] influence on the E-model

used additive psychological factors that enforced a monotonic constraint on the

MOS with respect to the factors [55].

This chapter considers the usage of DLNs for MOS estimation from a measure

of similarity to satisfy several desiderata and prior constraints. First, the model

should be aware that MOS is only defined in the 1 to 5 range. This seems like

a trivial constraint, yet it introduces problems for mapping functions that are un-

aware of this. Second, as similarity increases, the MOS should generally increase,

i.e., the model should be aware of the monotonic relationship between similarity

and MOS. The proposed experiment considers the effects of using a DLN with

these constraints to learn a high dimensional mapping function that operates on

input features provided by ViSQOL. The resulting system uses traditional signal

processing components and has prior shape constraints and explainable mappings.

Lastly, the DLN’s ability to have monotonic output is used to produce an inverse

cumulative distribution function, or quantile function, that is able to provide cali-

brated estimates for an arbitrary quantile. The estimates are calibrated in the sense

that a given percentile estimate will have approximately that percent of the data

below the estimate. Calibration allows for the model to express uncertainty, for

example, in the form of quantile intervals which may be more meaningful to the

user than a point estimate without any notion of uncertainty.

This chapter is presented as follows. First, a system overview of DLNs and

ViSQOL is provided. Next, the design choices and training methods for the
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DLN-based mapping function, as well as the probabilistic quantile function, are

described in detail. The following section describes the experimental results of

various models over several datasets. In the next section the results are discussed

in a wider context, as well as the implications they have on other applications.

Lastly, a concluding section summarizes the work.

3.2 System Design

A deep lattice network is used as a component of ViSQOL to estimate MOS.

Several modules serially process the input waveform to compute the input features

for the DLN. An overview of the system is available in figure 3.1.

At a high level, the system estimates mean opinion score by applying the fol-

lowing transformations in sequence. First, the reference and degraded signals are

normalized on RMS energy and globally aligned via cross correlation lag. A gam-

matone filterbank [56] is chosen for its resemblance to the auditory design of the

cochlea, and a spectrogram for both the reference and degraded is created with

it. Next, a simple energy-based voice activity detection algorithm is used to de-

tect the segments of the reference signal that contain active speech. These active

regions are broken up into patches of hundreds of milliseconds and paired with

equivalent patches in the degraded signal. The neurogram similarity index mea-

sure (NSIM) [24] is calculated on the difference of these paired patches. Simple

thresholding is applied to limit the sensitivity of the logarithm to small differ-

ences in low-energy segments. Lastly, a mapping function is applied to obtain

an estimate of the MOS. PESQ and POLQA have similar components, but no-

table differences as well. For example, they have normalization and alignment

steps, but they use Bark spectrum and time-masking. Notably, PESQ and POLQA

both use a 3rd order polynomial mapping function as the final step to calculate
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MOS [57].

3.2.1 High-dimensional monotonic constraints

Here a description of the various mapping functions under consideration is pro-

vided. The cubic polynomial mapping function maps a one-dimensional similarity

to MOS. A one-dimensional exponential mapping function may be chosen over

the polynomial mapping because of saddle points and non-monotonic fittings that

arose from the data. With either of these mapping functions, the one dimensional

mean-reduction of the across frequency bands may introduce significant error due

to the nature of the lossy reduction as the data becomes more dispersed. The is-

sue being described can be seen in figure 3.5, and will be discussed further in

section 3.3.

Higher dimensional mapping functions provide a solution to this problem. Sup-

port Vector Regression (SVR) [58] is able to obtain higher accuracy but can have

significant regions of non-monotonicity, and a tendency to overfit. Other solutions

such as piecewise linear functions and DNN-based approaches present interesting

solutions to the high-dimensional monotonic problem, and a method that com-

bines these techniques is considered.

3.2.2 Deep lattice networks

Deep lattice networks (DLNs) [52] provide a method for using functional shape

constraints, such as monotonicity or convexity with deep learning. This is accom-

plished with high dimensional piecewise linear functions that interpolate, and is

related to earlier work on monotonic calibrated interpolated look-up tables [59].

The tf.lattice framework [60] is used to realize the DLN.

Figure 3.2 illustrates the layers of the system. At the input layer of the lattice
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Figure 3.1: System Diagram. The inputs and outputs have white fill, and the
processing components have blue fill. New components have thick edges. The
dotted fill represents optional mapping functions.
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during training by sampling the uniform distribution. Each lattice ensemble L
uses τ and a random subset of input features.
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network, each input feature (such as NSIM means and energy) is calibrated into

monotonic piecewise linear functions with k pieces so that each piece is a bucket

large enough to contain a uniform 1
k

fraction of the training data (which provides

a quantile-based normalization). These calibrated features are combined in a net-

work of N lattices by randomly choosing M unique input features, with the guar-

antee that one of the features in each lattice will be the quantile parameter, τ ,

to allow for MOS to be monotonic on a global feature. Each lattice interpolates

subsets of the calibrated features in more than one dimension, with some of these

features having monotonic constraints. Finally, the lattice outputs are combined

linearly and the output is optionally calibrated with the same method that the input

was calibrated with.

The number of parameters per lattice is the product of the lattice sizes of each

feature in that lattice. The maximum number of lattice parameters is K, but varies

due to the random selection of features with differing lattice sizes. If the lattice

exceeds that number of points, then features are removed until it is below that

limit. This is important because the per-frequency band average NSIM (FVNSIM)

feature has a different lattice size than the other features, which have the minimum

lattice size of 2. Therefore, the total number of parameters in all lattices is less

than NK.

Other prior constraints can be placed on the model based on the design of the

subjective test, such as the requirement of output in the 1 to 5 interval. This prior

can be modeled by the DNN directly, instead of naively clamping an unbounded

output to the interval. This lets the network be aware of the sensible limits of the

problem and has been shown to address issues with out of sample data producing

nonsensical values, which can be an issue with traditional DNNs. Furthermore, if

the model outputs a distribution, it allows the model’s probability density function

to have support for meaningful values.
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The following subsections describe how the lattice network is adopted to the MOS

estimation task and is illustrated in figure 3.3.

Quantile
(τ )

NSIM
means

NSIM
std-
devs

Degraded
energy

Lattice Network

MOS Estimate

MOS

Pinball Loss

Only used in training

Figure 3.3: Deep Lattice Network Subsystem. The MOS estimate for a pair of
reference and degraded audio depends on the quantile at which it is requested.
Features with thick arrows indicate that the model will produce a MOS estimate
that is monotonic on them.

3.2.3 Learning a quantile function

Mean squared error is perhaps the most popular criterion for regression methods.

Section 7.3.2 of the ITU-T Rec. P. 1401 [61] describes minimizing root mean

squared error (RMSE) for 1-D mapping functions. Mean absolute error (MAE)

is also sometimes considered as a loss function. Using MSE, RMSE, or MAE to

estimate the mean will invariably fail to represent the true distribution, because

they use point predictions that discourage outliers, with MSE having the largest

penalty for these. In contrast, estimators that predict a distribution instead of

a single point typically minimize loss terms such as maximum likelihood or the

pinball loss (described below), and will be penalized for failing to have support for

outliers. Consider the scatter plot of the point-estimate based system for the expo-
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nential mapping (which uses an MSE loss) in figure 3.5. The extreme predictions

nearest to 1.0 and 5.0 are compressed by the squared error. Adding a standard

deviation output partially resolves this problem, but introduces other issues, since

the mean and variance alone would be able to specify a normal distribution, but

are not sufficient statistics for arbitrary distributions. The definition of MOS im-

poses a constraint on the distribution by truncating the ends from 1 to 5, meaning

that a normal distribution is not useful here without transformation. For example,

by assuming a normal distribution and sampling means near the extremities, it is

easy to obtain values beyond the allowed values (e.g. 5.2 or 0.5).

The Bayesian approach to solving the MOS constraints problem would use a prior

that only has support from the 1 to 5 region, with some support near the extrem-

ities. The naive DNN approach of point estimates clamped to the 1 to 5 range

would have the advantage of handling higher dimensional input, but does not

solve the problem of mapping the output to the boundary or monotonic constraints

without post-processing. Clamping a DNN’s output limits the ability to model the

distribution of point estimates, but it is also difficult to model a quantile function

from the data alone without being aware of the bounds due to the fact that rare

events are unlikely to be represented in a dataset of limited size (which is often

the case for speech quality datasets). The approach of both using priors to capture

intrinsic properties of the problem and the modeling of uncertainty is desirable

for this reason. Although DLNs are not Bayesian models, they use the concept of

priors to solve this problem. Estimating quantiles functions using regression [62]

also provides these advantages, and this idea fits well into the DLN framework

because of its support for monotonic features.

It has been shown that the quantile learning problem can be solved in a deep

learning context with a deep lattice network [63]. The DLN learns a monotonic

quantile function f(x, τ), which predicts a MOS given the features x (e.g. NSIM)
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and an auxiliary quantile parameter τ . This function has monotonicity enforced

on the quantile parameter τ by the DLN, which allows f(x, τ) to be used as an in-

verse cumulative distribution function, also known as a quantile function. During

training, τ is randomly sampled from the uniform distribution U(0, 1), and trained

with the so-called ’pinball loss’ [62] which can be written as

Lτ (y, ŷ) =

(y − ŷ)τ if y ≥ ŷ,

(ŷ − y)(1− τ) otherwise

= max(τ(y − ŷ), (τ − 1)(y − ŷ)).

(3.1)

During inference, the user can provide the value of τ for the desired quantile along

with the input audio. With this method, one can draw samples from the posterior

distribution of the estimated MOS by sampling τ from a uniform quantile and

should be able to recreate the input distribution if the model is working well,

without the effects of compression of the output space due to regression on mean

squared error. Since the quantile fully specifies the distribution and should be

well-calibrated because of the pinball loss (as is verified in section 3.3.5), it may

be more useful to output a quantile interval to provide some information about

the uncertainty in the estimate. As the distribution is arbitrary, this interval is

not necessarily symmetric around the mean. This should be an advantage over

standard-deviation based confidence intervals for the MOS problem due to its

value constraints (e.g. a very high median MOS of 4.9 should have an interval

of at most 5.0 for its upper value, but it could have a value lower than 4.8 for its

lower value). The user may also use the model to deterministically estimate the

median MOS value for a pointwise estimate (or any other fixed quantile other than

the mean). It is less convenient to compute the mean from the quantile function,

although it is possible with integration. For most applications it may be more

36



Tokyo Denki University Chinen, Probabilistic Models of Speech Quality

convenient to use the median τ = .5 and a compatibility interval.

3.2.4 Mapping function input features

The neurogram similarity index measure (NSIM) over the gammatone spectro-

gram for 21 frequency bands is used as the input features. NSIM is calculated for

each aligned patch and frame, and is then aggregated by taking the mean over all

frames. This input feature efficiently aggregates the time dimension, but discards

information about the distribution of NSIM scores within the band. We propose

that by including the variance or standard deviation of NSIM per frequency band

(which we refer to as FSTDNSIM below), the mapping function may be able to

make more informed choices. Additionally, with the introduction of a quantile

function, the variance of the band’s similarity measure can be used to help quan-

tify the width of the distribution as well.

Additionally, we propose to add the per-frequency band energy of the degraded

signal as an additional input feature for the mapping function. NSIM is a relative

measure, so it is difficult for the model to infer how important a low or high NSIM

score is without knowing the absolute energy of one of the signals. Including the

degraded energy feature allows the model to distinguish the importance of each

band in reference and degraded signals that have significantly different levels of

energy. A frequent case where this happens is when comparing two signals that

are narrowband or low-passed, and do not have significant energy in some upper

frequency bands.

3.3 Experiments

To test the effectiveness of the deep lattice network-based mapping function, we

compare the use of different mapping functions that use features provided by
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ViSQOL, as well as SVR, POLQA and PESQ.

3.3.1 Datasets

Table 3.1: Dataset properties

Dataset Utterances Conditions Description
ITU-T P. Supplement 528 44 Transmission standards and codecs

23 Exp. 1 from early 2000’s (e.g. G.729)
ITU-T P. Supplement 800 50 Channel degradations (e.g. packet loss,

23 Exp. 3 car noise, bit errors)
TCD-VOIP 384 84 VoIP network degradations

(e.g. echo, packet loss, clipping)
Genspeech 192 10 Neural speech codecs

(WaveNet, LPCNet, OpusNet)

Three MOS datasets were chosen and aggregated for training purposes. The

names and properties of the datasets are summarized in table 3.1. The first dataset

is TCD-VOIP [64], which has a variety of VOIP conditions with wideband sig-

nals. ITU-T P. Supplement 23 [65] (Experiments 1 and 3), has a mixture of com-

binations of narrowband codecs and transmission artifacts. Lastly, we chose an

internal dataset that evaluated generative speech codecs such as LPCNet and a

WaveNet conditioned on vector quantized log-mel spectrograms, which was con-

ducted as a MUSHRA test and linearly transformed to the MOS range. The total

number of utterances in these combined datasets is 1904.

3.3.2 Lattice Configuration

The deep lattice network was configured with hyperparameters in table 3.2 after

a grid search. The model was trained for 140 epochs on a local CPU, which

took approximately 5 minutes, with typical convergence. The lattice network was

trained on 80 percent of the data, and 20 percent was held out for testing.
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TCD-VOIP

P. Supp. 23

GenSpeech

Figure 3.4: Spectrograms from selected utterances for each dataset. The reference
spectrogram is on top, and the degraded spectrogram is below. All examples are
8 seconds, with frequencies up to 8kHz in mel scale.
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Figure 3.5: 1-D exponential mapping functions. (a) is a plot of NSIM on the x-axis
to subjective MOS for all three datasets for the exponential mapping function fit to
TCD-VOIP only, with a green line representing the 1-D mapping. (b) is the same
model’s estimated MOS on the x-axis to the subjective MOS fit to TCD-VOIP
only. (c) and (d) are an exponential fit to all three datasets.
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Table 3.2: Hyperparameters for deep lattice network. FVNSIM and FSTDNSIM
are per-frequency band NSIM means and standard deviations, respectively.

Hyperparameter Value
Learning Rate 0.005

Batch Size 100
Monotonic features FVNSIM, τ

Non-monotonic features FSTDNSIM, Degraded Energy
Max Lattice Rank 16

Number of Lattices 40
Maximum Lattice Parameters 10368

Lattice Construction Custom
FVNSIM lattice size 3

Other features lattice size 2
Feature Calibration Keypoints 20

Output Calibration True

To deal with overfitting, several measures are taken. First, the monotonic prior

introduces a regularization effect. Next, the lattice size for the standard deviation

and degraded energy features have the minimum value of 2, which strongly limits

the amount of overfitting possible with those features. Next, the lattice is config-

ured with wrinkle and Laplace regularization. The number of epochs used during

training is experimentally determined by finding the point at which the test loss

does not decrease. Figure 3.6 shows the difference between train and test using

these techniques.

3.3.3 Comparison to other models methods

We compare the results from the deep lattice model to those from other mapping

functions, as well as the popular PESQ and POLQA metrics. Table 3.3 shows a

comparison of all of the discussed models.
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Table 3.3: Comparison of mapping functions and metrics on all three datasets.
Where applicable, train and evaluation values are separated by a slash.

Model MSE Pearson
Polynomial mapping 0.61/0.57 0.48/0.53
Exponential mapping 0.61/0.58 0.48/0.54

PESQ 0.61 0.76
POLQA 0.48 0.76

SVR 0.27/0.38 0.81/0.71
Deep Lattice Network (ours) 0.20/0.24 0.87/0.84

3.3.3.1 1-D exponential and polynomial mapping

A 1-D exponential mapping function was fit to TCD-VOIP. A 3rd-order polyno-

mial mapping was also fit. The fits were found using scipy’s ’curvefit’ method,

which minimizes the mean-squared error. As can be seen in figure 3.5, the ex-

ponential fit is acceptable for modeling TCD-VOIP in isolation, but adding ad-

ditional datasets adds significant entropy at every level of MOS or NSIM. Due

to the dispersion of the data, this is not related to the specific 1-D function se-

lected. Whether exponential or polynomial, the single dimension mean reduction

of NSIM is not able to resolve MOS for multiple datasets, and this uncertainty

results in a very compressed range of MOS to minimize outliers due to the MSE

criterion. Our conclusion is that if NSIM is the input feature for sufficiently di-

verse data, then additional dimensions or features are needed. The main appeal

of the exponential fit (and certain polynomial fits) is that it is relatively simple

and provides the monotonic constraint. Having just 3 or 4 parameters, these 1-

D mappings have virtually no risk of overfitting, which explains why the test set

performs marginally better than the train set, (which does not occur the higher di-

mensional mappings). In contrast, the lattice network outperforms the 1-D fitting

in the accuracy metrics and maintains the monotonic constraint.
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3.3.3.2 Support vector regression

Support vector regression (SVR) provides the ability to fit a high-dimensional

mapping function over the data. SVR is not ideal for similarity mapping because

it is subject to non-monotonic behavior that causes inconsistent results outside

of the training data. However, for the sake of comparison we include it here to

test raw accuracy performance. Using a grid search on SVR hyperparameters to

search over thousands of models we found the best SVR model on these three

datasets to have a mean-squared error of 0.27 for train and 0.38 for a five-fold

cross validation, which is roughly equivalent to the 20 percent evaluation holdout

used with the other mapping methods. The test performance is marginally worse

than the lattice model, and does not provide a monotonic function. The differ-

ence between train and cross validation MSE is larger than the DLN which is an

indicator of relatively larger amounts of overfitting.

3.3.3.3 PESQ and POLQA

PESQ and POLQA were evaluated over all three datasets, and achieved an MSE

of 0.99 and 0.48, respectively. This is significantly higher than the lattice net-

work or SVR, but better than the exponential and polynomial mapping. PESQ

was used in narrowband mode for the narrowband cases, and wideband mode for

all other cases due to the unexpected performance mentioned in P.682.3 recom-

mendations [66].

It is also worth mentioning that both POLQA and PESQ were not designed around

or trained on the generative speech data, which came into existence after their

development. Because PESQ and POLQA are not adopted on the two non ITU-T

datasets, it is perhaps not surprising that it does not perform well on them. Still,

both POLQA and PESQ have correlation coefficients that are significantly higher
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than the 1-D fitted exponential and polynomial mappings, but perform worse than

SVR and the DLN.

3.3.3.4 Deep Lattice Network Mapping Function

Figure 3.6 visualizes the dispersion over the entire dataset for the DLN model.

The original exponential fit has a larger error, and is compressed in range. The

deep lattice network trained on the mean NSIM per frequency band features im-

proves significantly over the original exponential and polynomial mapping. The

predicted MOS is no longer heavily compressed towards the middle scores, with

the points on the entire diagonal. The network is able to predict in the 1.0 to 4.75

range unlike the exponential fit (i.e., the compression due to MSE penalizing the

output for the exponential fit limited the maximum MOS to approximately 4.0, as

can be seen in figure 3.5c).

It is also typical to report the correlation coefficients over each individual dataset,

and over the aggregated conditions. Figure 3.7 shows the conditions aggregated

by mean for the same deep lattice network.

3.3.4 Predictive model evaluation

We analyze the results of the quantile lattice models, which produce a posterior

distribution conditional on the input. First, we consider the calibration of the

learned quantile MOS function f(x, τ). That is, for a given a quantile τ , we

expect the proportion of the dataset that has subjective MOS values below the

estimated MOS quantile f(x, τ) to be approximately equal to τ .

Next, we consider the forecasting power of the quantile lattice model. Mean-

squared error penalizes outliers, and as a result, a model trained with an MSE cri-

terion will produce estimates with a compressed distribution that does not match

44



Tokyo Denki University Chinen, Probabilistic Models of Speech Quality

1 2 3 4 5
Estimated MOS

1

2

3

4

5

Su
bj

ec
tiv

e 
M

O
S

TCD-VOIP
ITU P.Supp23
GenSpeech

train

1 2 3 4 5
Estimated MOS

1

2

3

4

5

Su
bj

ec
tiv

e 
M

O
S

TCD-VOIP
ITU P.Supp23
GenSpeech

test

1 2 3 4 5
Estimated MOS

1

2

3

4

5

Su
bj

ec
tiv

e 
M

O
S

TCD-VOIP
ITU P.Supp23
GenSpeech

all

Figure 3.6: Scatter plot and marginals for the median quantile for each datapoint
over three datasets using the deep lattice network model with ViSQOL. The x-axis
is the predicted median MOS given by the deep lattice network model, and the Y
axis is the subjective (ground truth) MOS.
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Figure 3.7: Median quantile of the deep lattice network for aggregated conditions
per dataset

the shape of the input distribution if there is a non-zero error. Furthermore, the

previously used point-estimate model does not describe the uncertainty of the pre-

diction, which can be useful information for diagnostics or sampling. The quantile

model produces an arbitrary distribution that can be used to draw samples from,

or to provide the user with more information, for example in a quantile interval

or histogram. When there is uncertainty about the prediction, the model should

reflect this by producing a marginal distribution that is similar to the target distri-

bution.

In Figure 3.8 we see that sampling the predictive distribution with a random quan-

tile τ ∼ U(0, 1) leads to a marginal distribution that is more similar to the ground

truth distribution, without the compression seen in other models. Since the com-

pressed models have areas of literally no support, and the quantile models gener-

ally have support anywhere the input lies, meaning that the KL divergence is lower
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Figure 3.8: Samples drawn from a random quantile for each datapoint. Compared
to the median quantile, the accuracy decreases but the marginals become more
similar.

for the posterior models. In other words, for a certain level of quantization (which

is required due to only having samples of the distributions), the posterior mod-

els have a finite KL-divergence against the ground truth, whereas the predictive

distribution would have an infinite KL-divergence.

The quantile model can make point predictions using the median, mode, or mean,

although the median is the most straightforward. As can be seen in figure 3.6,

the median point samples reduce the expected error in a similar fashion to how

mean point samples would, although the MSE should be optimal for mean point

samples. However, mean and median are both insufficient statistics to describe

the conditional distribution of MOS given a signal. Both types of point samples

provide less information about the prediction than using the entire estimated dis-

tribution or a summary such as a quantile interval. To determine what a useful
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quantile interval is, we consider the calibration of the quantile function next.

3.3.5 Calibration of quantile function

Table 3.4: The calibration, error, and correlation coefficients of the learned quan-
tile function for the selected model. The values before the slash are for train, and
the values after the slash are for test.

Quantile .0 .1 .25 .5 .75 .9 1.0
Ratio under prediction .039/.043 .078/.11 .23/.27 .53/.49 .77/.75 .92/.92 .99/.99

Mean squared error 0.89/0.94 0.58/0.61 0.29/0.33 0.20/0.24 0.29/0.34 0.57/0.64 1.03/1.13
Pearson .86/.83 .87/.83 .87/.84 .87/.84 .87/.84 .86/.83 .84/.82

Spearman .86/.85 .87/.83 .87/.84 .87/.84 .87/.84 .86/.83 .85/.82

The calibration of the quantile function refers to how accurately the model de-

scribes its uncertainty. For example, at the .5 quantile, half of the predictions

should be above and half below, and at a quantile of .9, the model should overes-

timate all but 10 percent of the data.

Figure 3.9 visually shows that the quantile function of the model is reasonably

calibrated for various quantiles. As expected, as the quantile becomes closer to

1.0, the predictions shift to towards a larger estimated MOS. However, it is impor-

tant to note that the quantiles are not a linear transformation, but are conditional

on the data and subject to uncertainty, which is modeled by the pinball loss. Thus

it can be seen that the relative order of the data points changes to some extent,

since the inputs with larger uncertainty have a larger change.

Table 3.4 shows the calibration accuracy for the selected model for various quan-

tiles. As the percentage of underestimates are aligned with the quantile, we con-

clude that the result is generally well-calibrated, although there is some skew and

bias observed in the extremes as can be seen in figure 3.9. As such, we consider

that a median prediction along with a .1 to .9 quantile interval should be useful

information to report to users (e.g. ’Estimated MOS median: 4.3, 10% quantile:
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Figure 3.9: Calibration of estimated to actual MOS scores for various τ quantiles
over the same data. For the median τ = .5, see fig. 3.6
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3.8, 90% quantile: 4.6’).

3.4 Discussion

The experimental findings presented above suggest that using deep lattice net-

works as a mapping function should be beneficial in several ways. First, the

general accuracy of the predictions is significantly higher than other methods we

tested. Second, the ability to model calibrated uncertainty via a quantile func-

tion should provide the user with valuable information. Third, the model is more

explainable than other high-dimensional mappings including SVR and typical

DNNs, because of the monotonic and shape constraining priors, as well as the

regularizing effect of small lattice sizes. In this section we discuss the findings in

a general context not specific to ViSQOL and speculate on interesting applications

in the quality estimation domain.

The finding that constraining MOS to be monotonic on NSIM performs well sug-

gests that there may be other metrics that would benefit from a monotonic, con-

vex, or concave model. This could be applied to a speech quality model where

mapping an internal representation to a human readable scale occurs, such as in

POLQA or PESQ. The findings are also interesting for other applications such as

intelligibility. For example, STOI [67] could be mapped to an intelligibility scale.

Another example where this could be useful are non-intrusive metrics which use

automatic speech recognition (ASR) and word error rate (WER) as proxy input

features that could be mapped to intelligibility and quality predictions.

The internal representation must still be chosen carefully, because it may con-

tain regions that are non-monotonic. For example, SNR of unaligned or subtly

warped signals will be lower than the SNR of aligned signals but the quality may

be equivalent, so a monotonic prior may not be able to model quality without sig-
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nificant uncertainty. It should therefore help the model to use an alignment step

before calculating SNR. The importance of feature design is critical in any quality

estimation framework, but adding prior shape constraints means that the system

designer must take extra care that the features actually do have the specified rela-

tionship with quality.

So far, only features related to the audio signals have been considered. However,

the ability to handle high dimensional inputs can also be extended to metadata

features. For example, the bias of culture, language, and test environment dis-

cussed in the introduction could be integrated as additional features of the model.

The user can then learn a model that can simulate and explain the effects and bias

of different subjective tests. This requires the model to be trained on this kind

of metadata. There are not many publicly available speech quality datasets com-

pared to general speech datasets, but fortunately there are a number of datasets

(such as the ITU-T P. Supplement 23 dataset) that test the same conditions in sev-

eral countries and languages that should be sufficient to test this idea. There has

been previous work that has explored the P. Supplement 23 dataset using Bayesian

models [45] to model the heterogeneity in the data, showing that this approach is

promising.

Adopting a more complicated model that has better performance often comes with

a cost in terms of size and complexity, which often affect explainability. Deep

learning methods typically produce ’black box’ models that are difficult to inter-

pret because of the many layers and non-linear transforms that make it compli-

cated to explain the model’s predictions. In contrast, the DLN approach uses deep

learning, but it is designed with explainability in mind (for example, the DLN au-

thors use it for applications in ML fairness [68], where explainability is essential).

The constraints that the system designer places on the model are strict constraints,

which the model is required to satisfy, providing immediate insight into how the
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model maps the input to the output. The network is also relatively shallow at four

layers compared to typical DNN models, all of which have an interpretable func-

tion. The only computationally intensive layer is the lattice ensemble layer, with

each lattice having a very small number of points (typically two or three) along

each feature dimension to interpolate over in piecewise linear fashion. The input

calibration ’layers’ can be calibrated in a preprocessing step before training oc-

curs. Although it can have a high dimensionality that may be difficult to visualize,

the lattice model is relatively more explainable than an RNN stack because it does

a straightforward interpolation lookup instead of a series of arbitrary transforms.

3.5 Summary

This chapter has presented the results of using Deep Lattice Networks to maintain

a monotonic constraint for high-dimensional similarity. The deep lattice network

outperforms the other mapping functions studied, and extends the functionality to

probabilistic quantile intervals that provide more information on the uncertainty

of the estimation. The metric provides robust predictions of speech quality for

several types of distortions. Namely, the three datasets studied contain VoIP, ad-

ditive noise, and coding degradations. Importantly, the quantile function from the

DLN has been shown to be reasonably calibrated and accurate.

This work has shown that DLNs can take advantage of NSIM as a monotonic prior

for speech quality. It is plausible that other speech or acoustic features will benefit

from the application of a DLN. For example, metrics such as speech intelligibil-

ity, word error rate, or direct-to-reverberant ratio (DRR) may serve as monotonic

priors for quality estimation or other applications. The calibrated uncertainty may

also be useful for other acoustic applications, for example, when it is critical to

provide bounds for an estimated value. Lastly, the DLN provides the ability to
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have domain-aware priors that may be useful for any bounded problem that can

help the problem of nonsensical predictions when the input is out of sample. This

frequently occurs in training with acoustic features due to environmental differ-

ences in training data and deployment.

Quality estimation from speech signals from subjective rating data tends to aggre-

gate multiple listeners and environments to a single MOS. Using other metrics,

such as modelling the individual listener response, and taking other factors such

as language and speaker gender into account may yield more accurate predictions.

The DLN structure should be compatible with such a model. This would provide

an interesting experiment for future work.
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4 | Marginal Effects of Language and

Individual Raters on Speech Quality

Models1

4.1 Introduction

Measuring and estimating speech quality is an important task for many fields. For

example, in speech synthesis and coding [13], subjective measurements of quality

can be used to validate novel designs, and may be especially useful when tradi-

tional objective metrics like SNR diverge from human perception. The absolute

categorical ranking (ACR) test asks raters to measure the quality of speech ut-

terances under various test conditions by assigning a score from from 1 (bad) to

5 (excellent), with recommendations for conducting the test in ITU P. 800 [1].

Typically, each utterance has multiple listeners. The mean opinion score (MOS)

can be calculated by aggregating the scores over each utterance or all the utter-

ances within a given condition. MOS is a standard measurement that is used in

research and development of many speech applications such as codecs and speech

enhancement [70].

Because it is expensive and logistically challenging to conduct a subjective exper-

iment, researchers and developers often use estimates of MOS that do not require

running a subjective test. Some MOS estimation techniques estimate MOS using

a model of the effects of different psychologically pertinent factors (e.g. echo, de-

lay, SNR, language, gender), without looking at the actual signal [53, 45]. Tools

such as ViSQOL [8, 18, 34], POLQA [5, 4], PESQ [3, 2], and the E-model [55, 71]
1The content from this chapter was originally published in the IEEE Access Journal, 2021,

volume 9 [69].
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provide immediate and objective estimates of MOS using an intrusive method that

looks mainly at the signal as opposed to these factors (by considering both the ref-

erence and degraded signal). These models obtain a MOS by fitting a mapping

function using features from the signals and MOS extracted from datasets such as

ITU-T P Supplement 23[65] by aggregating all listeners over each utterance.

Additionally, there are deep learning methods for estimating MOS non-intrusively,

which learn latent features that are mapped to MOS [50] by looking even further

into the lower level aspects of the signal. Deep learning requires significant data,

and some work has been done to bootstrap by augmenting the data [72] or by

clustering [73]. Another approach may be to use data more efficiently, by looking

at the causes of measurement and sampling error in individual scores. The trend

in research is to use machine learning to extract increasingly useful information

from the signal. The vast majority of MOS estimation tools use only-signal level

predictors, which effectively treats all populations of human raters as identical,

which is clearly not the case.

Identifying and employing interesting information in the data is important to be

able to design a good model. When the listeners are aggregated for fitting a map-

ping function to MOS, (e.g. by taking the arithmetic mean of all listeners), infor-

mation about the variance of the scores with respect to the utterances is discarded,

as well as information about the individuals. The resulting models are therefore

unable to describe the effect of the presence of individual listeners. As an ex-

treme example, if a very optimistic rater rated everything a ’5’, such a model is

not able to capture the fact that the presence of the rater causes a slightly higher

mean score and will instead have a higher error in predictions. The result is that

the individuals that are outliers have an oversized effect on the mapping.

Proper handling outliers properly is increasingly important with crowd-sourced
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data, e.g. listening tests that are conducted over a web service such as Amazon

Mechanical Turk. In these cases the quality of ratings can be worse than traditional

lab tests and may require additional pre-screening and restrictions [74], (e.g. raters

that always give the highest or lowest score due to any number of reasons includ-

ing bad headphones or malicious ratings), and outliers will have an undesirably

large influence on the mapping. The ITU provides post filtering recommenda-

tions that filter based on deviation from normal behavior, which generally works

well. However, the filtering process is sensitive and can have undesirable con-

sequences. Such filtering has the potential to remove genuine scores and leave

undesirable ratings in the data.

A model of the distribution of individual rater scores that is aware of the bias

that a particular rater has over multiple utterances should provide the ability to

exclude undesirable raters in a more systematic fashion, as well as extracting more

information in raters that have significant bias. Post filtering will exclude some

raters that simply have a positive or negative bias, although their relative ratings

match the overall trends. Modeling the individual listener score will allow for the

model to be able to take into account this rater data, accounting for the rater bias.

Additionally, many researchers have pointed out issues with using MOS as the

primary quality metric and have proposed alternatives [47, 48, 46]. Modeling the

individual rater score allows using the model for other metrics that are alternatives

or complements to MOS.

There are numerous other biases at work in a subjective audio quality test, in-

cluding many biases that are related to how the test is conducted [44]. Besides

the audio signal, test environment, and individual listener bias, the effect of lan-

guage and culture may have a causal relationship with opinion scores. Some lan-

guages and cultures rate the same set of test conditions higher or lower than others.

For example, Japanese listeners tend to rate the quality of speech lower on aver-
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age [41], and have less variance in their ratings than listeners with other native

languages. As another example where Japanese means are lower, Figure 4.3 de-

picts Japanese and French ratings in the ITU-T P Supplement 23 dataset with the

same test conditions. This effect appears to be cultural, or at least it is not exclu-

sively attributable to phonetic differences in languages, as other quality of experi-

ence (QoE) ratings from other non-speech domains (e.g. restaurant ratings) for the

Japanese seem to follow this trend [75]. To further confound this issue, the qual-

ity labels recommended in [1] (such as ’excellent’/’good’/’fair’/’poor’/’bad’) may

not imply a linear progression of quality within a language, and furthermore, it is

not likely that each level has equivalence between two different languages [44].

All of these factors suggest that for the same set of conditions, a certain differ-

ence in scores is expected for different languages. This difference means that a

model that does not have language as one of the model’s predictors will produce a

larger error on the predicted MOS when compared to a similar model that has the

language predictor. Furthermore, for users of a MOS estimation tool, it may be

more desirable to estimate the MOS for the language that is being tested, as op-

posed to the global MOS for all listeners from any language. Typically MOS tests

require that the listeners and utterances use the same language, so it should not

be expected of the model to perform well across languages unless extra consider-

ation or data is provided. Lastly, it should be considered that language, culture,

technology and perception are not frozen objects, but are constantly evolving and

interacting. This hints that a model should consider more than the signal alone,

such as attributes of the raters.

Opinion score data is scarce for quality assessment problems compared to other

fields such as speech synthesis, because human rating data does not occur as nat-

urally as raw speech and usually must be collected manually by conducting ex-

pensive tests. Bayesian models provide a solution to deal with limited and out-
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lying data by using prior distributions to provide a baseline that can be updated

instead of fully depending only on the observations. For example, there are of-

ten 24 listeners per utterance. If all of them happen to rate the score as a ’5’, it

is not reasonable to assume there is zero variance and all future raters will rate

it a ’5’ as well with total confidence. To handle these problems, we propose to

use a Bayesian hierarchical model of an ordered categorical distribution to model

individual opinion scores based on speech, listener, and language features.

The experiments for this chapter use a Bayesian model on individual rater score in-

stead of a MOS-based model with no loss of generality. That is, such a model can

be used to compute anything that a MOS-based model can. In addition, to provide

models that are closer to real-world MOS estimators, we propose to fit models that

include signal level predictors, to provide an indication of the marginal benefit of

adding language and rater predictors.

The main contributions of this work are as follows:

• We fit a Bayesian model with ordered categorical distributions and truncated

normal distributions to model individual scores, and compare these to mean

opinion score models.

• We measure the effects of language and listener in the observations and the

posterior samples.

• We compare various models and show that a language and listener-aware

model have significantly lower error than the model without it, even after

adding signal features.

An explicit non-goal should be stated: this chapter is not concerned with finding

the best model and predictors that produce the lowest error. Instead, it uses rel-

atively simple models that can be easily compared. The findings from this paper
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should be useful for model design and input feature selection in other frameworks

including existing MOS estimation tools and deep learning-based models that at-

tempt to find the most accurate model.

This paper is presented as follows: first, related work is described. The next

section describes the model, including the choice of individual scores, a causal

model, and the specific Bayesian models that are considered. The next section

describes the experiments, dataset, and results. A concluding section summarizes

the paper.

4.2 Related Work

There has been work on using hierarchical Bayesian models of MOS that con-

sider the heterogeneity of the data, evaluating the effect of speaker gender across

multiple languages [45] and loudness patterns [51]. This work showed the effec-

tiveness of Bayesian modeling given no signal level predictors. Signal predictors

have allowed existing frameworks like ViSQOL or POLQA to predict MOS with

an even higher accuracy. The next question to ask is whether there is a marginal

benefit to adding language predictors.

Previous work has explored using multinomial models to model the distribution of

all rater scores [47]. The multinomial distribution has advantages over modeling

MOS directly and is suitable for certain applications such as using the distribution

directly as a quality measure instead of MOS (and is able to generalize to a MOS-

model). However, it does not capture information about the individual raters.

As mentioned in previous work [34, 47], point estimates are strictly less useful

than distributions of the scores, which provide a measure of uncertainty. The

uncertainty is useful for both the end user, who may wish to know the range of
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scores to expect, but also to conduct statistical tests or compute probabilistic met-

rics. This is a separate question from whether or not to use individual scores or

per-utterance MOS data in the model. Bayesian models are always probabilistic,

so they always have a notion of uncertainty.

4.3 Model Design

In this section, the properties of a desirable model for opinion scores are dis-

cussed. The design of the model includes not only considering the type of model

(e.g. Bayesian, deep learning, or linear regression), but also the options for what

quantity to model (e.g. individual score or mean score), and what predictors to

use (e.g. signal-level features and language metadata) given a hypothetical causal

relationship between both the predictors and the outcomes.

4.3.1 Individual opinion score vs. mean opinion score

A model of individual opinion score is strictly more useful than a model of mean

opinion score, because a mean opinion score can be calculated by grouping the

posterior samples of the individual score model. The inverse, transforming a mean

opinion model into an individual score model is not possible without a very lossy

pseudoinverse.

The drawbacks of modeling an individual opinion score are twofold. The first

one is that it requires and uses more data and parameters, since the model will

be trained on many raters per utterance instead of a single mean score. For more

interesting models, individual raters might be modeled to learn their biases, which

increases the number of parameters in the model. The other drawback is that the

user must aggregate the individual scores to compute a MOS or median score,

which requires some additional design and computation.
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4.3.2 Bayesian models

4.3.2.1 Parameter uncertainty

In some frameworks, the model parameters θ, such as mean µ̂ and variance σ̂2

are fit without a notion of uncertainty about each parameter. In other words, a

point estimate µ̂ of a MOS implies that the model does not indicate a degree of

uncertainty or expected error between µ̂ and the true µ. This missing uncertainty

is not to be confused with the observed sample variance σ̂2 which is also a point

estimate with undefined uncertainty for the true variance σ2. Other frameworks

consider the standard error of the sample mean and variance by assuming a given

distribution that may or may not match the data. Point estimation of MOS is popu-

lar in existing frameworks (e.g. POLQA, and PESQ). Well-calibrated uncertainty

is a useful quantity for the user. For example, the user may want to know the

bounds of MOS, that is, what MOS value is unlikely to be exceeded for a given

utterance for a specified quantile. Additionally, these point estimate models of-

ten fit a mapping function by minimizing mean squared error, which means that

outliers are penalized. This causes the distribution of the predicted MOS to be

under-dispersed when compared to the observed distribution of MOS. That is, ex-

treme MOS values closer to 1 or 5 will be seen less often in the predictions than

in the real data. This compression effect of the true distribution into the narrower

predicted distribution will increase as the prediction error increases for point esti-

mate models. Alternatives to models fit with MSE include maximum likelihood or

quantile regression [62], which are useful and practical solutions, but have issues

with the observed variance problem described below.

When subjective tests are performed, it is common to see the results reported with

the sample mean µ̂ specified along with a 95% or 99% symmetric confidence in-

terval [µ̂ − cσ̂, µ̂ + cσ̂] where σ̂ is the sample standard deviation of the opinion
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score and c is a constant. This provides a basic uncertainty estimate about the

MOS, but again, this uncertainty assumes that µ̂ and σ̂ have no error. Addition-

ally, for the discrete 5-point scale used in subjective testing there are problematic

properties of this formulation of uncertainty. For example, the symmetry of the

confidence interval is not appropriate near the extremes of ’1’ or ’5’. It can also

be seen that the confidence interval is difficult to use with a smaller number of

ratings, because the variance becomes less reliable. For example, if the study has

only 5 raters and they all rate a ’5’, the variance will be zero, and the confidence

interval will also be zero. This problem of variance estimation still exists if the

raters give different scores with non-zero variance, although it is less obvious.

Bayesian models resolve the issues seen in the point estimate models and confi-

dence interval analysis. In the Bayesian framework, the appropriate model will

provide uncertainty estimates that are tailored to the 5-point outcome space by

looking at the distribution of posterior samples. This means they will produce

asymmetric credible intervals if the data requires it. The model will also start with

a prior selected by the system designer that contains a reasonable distribution for

each parameter (with non-zero variance), which handles the problem of sampling

limited data where the sample variance does not capture the true variance.

4.3.2.2 Entropic rationale for language predictors

Next, we consider the basis in Bayesian models that suggests that adding language

as a predictor will produce more accurate estimates. Given observed scores and

any collection of observed features and latent (e.g. learnable) parameters, Bayes’

formula provides a description of the uncertainty of each opinion score value as

P (score|features) = P (features|score)P (score)
P (features)

. (4.1)
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Note that this can also be written using the joint distribution on the right hand side

as

P (score|features) = P (features, score)

P (features)
. (4.2)

By modeling the joint distribution of features and scores the probability of each

score can be inferred. A Bayesian model is able to model a joint distribution of

the features (including features that are parameters and hyperparameters), and is

therefore able to give a probability estimate that is precise to the extent that the

joint distribution of features and scores has a low entropy.

Previous studies have shown that there is an effect of language on scores [41, 45],

so it seems reasonable to infer that score and language are not unconditionally in-

dependent, and that the mutual information I(S;L) between score and language

is positive. However, score and language may be conditionally independent given

the input features (which may contain language information). It follows then that

models that only use features with signal-level information, without information

about the language will have a strictly higher entropy unless the score is condi-

tionally independent of them given the signal-level features, since for variables S

as score, F as some chosen set of features, and L as language,

H(S|F ) = H(S|F,L) + I(S;L) (4.3)

from which it follows that

H(S|F,L) ≤ H(S|F ), (4.4)

with equality when the features are chosen such that scores are conditionally inde-

pendent of language information given these features. A higher entropy in score
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conditional on features that do not contain language information means that the

accuracy of the predictions should be worse, because the lowest error a model

conditional on these features can achieve will be higher due to the increased un-

certainty.

The language information may be present in fine-grained signal features, but typ-

ically for opinion score estimation, the signal features are coarse (e.g. a one-

dimensional scalar representation of similarity between the degraded and refer-

ence signals), and furthermore, the signal only contains the language of the utter-

ance and not necessarily that of the rater (although for the purposes of this work

the main focus is on native language testing). The simplest way to obtain con-

ditional independence between score and language is to add information about

the language to the feature set. Alternatively, depending on the causal assump-

tion (described in subsection 4.3.4) that other variables fully contain the language

information, such as rater identifiers, it can be sufficient to simply include infor-

mation about each individual rater without pooling them by language, although

including both may be desirable for other reasons.

4.3.3 Model outcomes

An individual rater score is represented by a discrete value from 1 to 5. These

values are ordered by perceived quality. Other Bayesian models have used nor-

mal distributions to model MOS [45]. A normal distribution does not model the

boundaries at 1 and 5, and further, is continuous, while individual rater scores

are discrete. Another work uses multinomial distributions to model histograms

of scores for each utterance [47]. The multinomial model has the advantage of

capturing a distribution of each of the five scores discretely per utterance, but is

not able to model an individual rater’s bias over multiple utterances, which is nec-

essary for the experiments involving individual raters. There are several options
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for the model that are reasonable given the individual rater problem. Here we

consider three different types of models based on their outcomes.

4.3.3.1 Ordered categorical outcomes

The ordered categorical distribution, also known as the ordered logit or ordered

logistic distribution, describes an ordered categorical (discrete) variable (such as

an opinion score that has categories such as ’bad’, ’poor’, ’fair’, ’good’, and ’ex-

cellent’ with a notion of order). Given N categories, there will be N − 1 log-

cumulative odds κ1, κ2, ..., κN−1, from which the linear categorical probabilities

p1, p2, ..., pN can be derived via softmax. Each individual logit is made cumula-

tive by using the probability that the outcome is less than a given cutpoint n, and

is given as

κk = log
Pr(yi ≤ k)

1− Pr(yi ≤ k)

= αk − φi,
(4.5)

where k is the category index and i is the observation, and φi is any model based

on predictors x, such as a simple linear model with one parameter β:

φi = βxi. (4.6)

Additional (possibly non-linear) terms will result from adding more predictors.

For the opinion score dataset, the features and model of φ depends on language,

individual rater, and signal similarity and is discussed in section 4.3.5.

4.3.3.2 Truncated normal outcomes

The normal distribution is not bounded, which can be a problem for opinion

scores. Rounding the outcome of a normal distribution to the opinion score range
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can produce undesirable results. An alternative to the ordered logistic distribution

that is appropriate for the opinion score problem is the truncated normal distribu-

tion, which specifies a PDF that has support entirely within a desired range. This is

similar to the normal distribution, but has a lower and upper bound (which would

be 1 and 5 for the MOS problem) that asymmetrically truncates the outcome. The

probabilities after truncation are normalized by the truncated density so that the

resulting PDF sums to 1.0. The main advantage of the truncated normal distribu-

tion over the ordered logistic is that it is difficult to formulate an ordered logistic

distribution that allows for regression on more than the φ parameter. That is, the

cutpoint parameters that control the thresholds of each category are typically not

indexed per group (e.g. all raters share the same cutpoints, and only differ by their

individual φ offset). The truncated normal should provide a more flexible model

for opinion score estimation, since some raters may have more or less variance but

the same mean. The disadvantage is that the truncated normal distribution outputs

continuous scalars, which will not match the discrete nature of the opinion scores.

As a result, the truncated normal is more useful for applications involving predic-

tion as opposed to simulation.

4.3.3.3 MOS outcomes

A third option is to model the mean of the opinion score per utterance directly.

Here, the data is aggregated before the model is fit, so there is no concept of

individual rater. However it is still possible to use language predictors with this

type of model. The formulation of this model is very similar to the truncated

normal outcome model of individual scores, using the utterance MOS instead of

individual scores.
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4.3.4 Causal model of opinion score

For pure prediction problems, it is not strictly necessary to have a thorough un-

derstanding of the causal model when designing a regression model. That is, the

system designer will generally achieve a more accurate prediction by adding as

many predictors as possible, without needing to worry about causation versus cor-

relation, or confounders. Deep learning presents many useful examples of this by

using as many input features as possible. However, many popular MOS estima-

tion frameworks use only signal level features, which ignore information about

the rater and their environment.

Culture

Language
Individual

Rater Quality
Mapping

Signal

Score

Score
Descriptions

DegradationsSpeech

Perception
of Signal

Listening
Environment

Figure 4.1: A plausible causal DAG for individual ratings. The acoustic properties
of the test signal are only a part of the process that determines the score.

It may be useful to consider a plausible causal DAG such as the one in Figure 4.1

to entertain potential non-signal predictors. In the DAG, several variables inde-

pendent of the speech signal are considered. ’Culture’ contains many attributes,

and is an unobserved variable, but since culture usually determines (native) lan-

guage, language may serve as a proxy for culture, which may include rating ten-

dencies. The ’Environment’ variable pertains to the listening environment that
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the rater conducts the test in, and contains many potentially unobserved attributes,

such as the listening equipment and presentation order of the signal (which may

cause listening fatigue), and even the weather during the test. The score descrip-

tion labels, which are text in the native language presenting along with each rating

level (e.g. ’poor’ in English, ’warui’ in Japanese, or ’mÃ©diocre’ in French for

the score ’2’), also affects the likelihood of a certain score, because the text may

imply different qualities in different languages. Furthermore, the choice of la-

bels may imply a nonlinear scale within a single language if the labels are not

perceived to be equidistant. The culture and language problem has been studied

to a considerable degree, for example, in [44], with some solutions using models

specific to a certain language [76, 77].

If unlimited computing capacity is available, it would be desirable to add as many

of these predictors to the model to obtain the highest accuracy. But in practice,

compute and data are scarce resources. Furthermore, the causal process is noisy,

and it is unclear to what extent each feature is actually useful in a predictive model

without experimentation. For example, neither culture nor region uniquely deter-

mines language. An experiment is needed to see to what extent information about

language improves the accuracy of the model, and so on for the other variables.

4.3.5 Features and parameters

MOS estimators typically will include features that are extracted from the speech

waveform. For this problem it is appropriate to use the neurogram similarity in-

dex measure (NSIM), which is a 1-dimensional indicator of similarity over all

frequency bands and time between the reference and degraded signals. NSIM has

shown to be useful for early versions of ViSQOL [24], and the one-dimensional

property allows for a relatively simple model with a single parameter related to the

signal. Signal predictors which provide more modeling power and less aggrega-
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Bayesian
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Figure 4.2: A system diagram showing the features that are used as predictors in
the model. The dashed arrows represent optional predictors.

tion certainly exist (e.g. multiple frequency band NSIM [9], mel-spectrogram, or

WARP-Q [36]). However, the purpose of this study is not to find the most useful

signal-level descriptors, but instead to find the effects of features that are exter-

nal to the signal, such as the individual rater and language bias. To this purpose,
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it is desirable to keep the signal level features minimally complex. Figure 4.2

illustrates the features that are used by the Bayesian model as predictors.

As previously mentioned, individual raters have a bias and variance that differs

from other raters. A rater identifier feature that is unique for each rater is added to

the model to allow it to be aware of this bias. Similarly, language identifiers can

be a feature that uniquely identifies the language. Because the raters of a given

language forms a group, it is sensible to apply a hierarchical model to share infor-

mation between individual raters. For the purposes of this study, this ’language’

feature will be a laboratory identifier where the native language is used to test, and

also encompasses other factors in the entire test environment such as the culture

of the laboratory, the listening equipment, and so on. Each rater and language

identifier is used as an index variable with normal priors that linearly influence

the φ offset for the ordered logit model, and an exponential model for NSIM, as

was found to be useful in [18]. The prior for φi can be described for individual

observation i, rater j, and language k, and NSIM observation xi as

φi = αj + γ

αj = Normal(µk, z)

µk = Normal(a, b)

γ = eβ(xi−θ)

β = Normal(c, d)

θ = Normal(e, f),

(4.7)

with user-defined constants a, b, c, d, e, f (to be found with prior predictive check-

ing). Note that the priors with subscripts denote that there is one prior for each

item in the group, e.g. the µk indicates multiple Normal priors, one for each of

the k languages, so the model will fit each item of the group separately. The trun-
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cated normal model is formulated similarly, with φi being used as the mean for

the truncated normal distribution, with an additional prior for variance.

4.3.6 Computing MOS from individual score models

An individual score model as described above outputs a discrete score for each

utterance and rater. MOS is often used as the mean aggregated over utterances,

or a collection of utterances within a certain test condition. Given an individual

rater’s score probability pr(s|x), the true MOS over a set of utterances X and

raters R can be computed as

MOS(X,R) = E[s|X,R]

=
1

|X||R|
∑
x∈X

∑
r∈R

∑
s∈S

pr(s|x)s
(4.8)

where s is the score in the set S = {1, 2, 3, 4, 5}. For example, the utterance MOS

uses X with a single element (a single utterance), and the condition MOS uses X

with all the utterances in the condition.

pr(s|x) is an unknown quantity that must be estimated. In a Bayesian model each

posterior sample is a sample from the joint distribution of all the parameters, so

multiple samples will produce different likelihoods for the same utterance and

rater pair. So in practice estimating pr(s|x) requires multiple samples. One way

to do this is to sample the model’s joint distribution many times to obtain the

probability by converting the histogram into a probability. However, since we are

interested in the expectation over X and R, the process can be further reduced

by simply taking the mean of the posterior scores as the estimated MOS. In other

words, although the observed data ratings have each listener rate each utterance

once, in the posterior samples each listener ’rates’ each utterance hundreds or

thousands of times, and the MOS can be estimated by taking the average of all
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samples.

4.4 Experiments

In this section, an appropriate dataset is analyzed, and experiments that use pro-

posed models are presented.

4.4.1 Dataset

The ITU-T P. Supplement 23 dataset (experiments 1 and 3) is well-suited for this

experiment. It is conducted across four different languages and laboratories with

all listeners being native speakers of the language used in the utterance. Addition-

ally, the recording conditions, and the signal processing chain including the pre-

and post-processing of the signals are well-documented, and each lab conforms to

the shared procedures. Lastly, all of the labs in a given experiment tested the same

conditions (e.g. street noise at 6dB SNR), so the results between the labs should

be comparable. These properties of the dataset enable this experiment to measure

the effect of language. There are 24 listeners in each experiment and laboratory

combination, and each listener rates many utterances, with the order of presenta-

tion randomized according to 4 different randomization patterns. All of the data

for individual raters is recorded in the dataset (i.e., the data is not aggregated into

MOS).

4.4.1.1 Analysis of distributions by language

In the P. Supplement 23 dataset, experiment 1 tests the performance of low bitrate

codecs with transmission standards. Experiment 3 tests the effects of channel

degradations. It may be useful to consider the distribution of the observed data for

both of these experiments.
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(b) Experiment 3

Figure 4.3: Distribution of individual rater scores in the ITU P Supp. 23 dataset
for different languages. Each laboratory conducted the experiment under the same
conditions in the native language. ’BNR’ is Bell Northern Research in Ottawa and
uses English.

Figure 4.3 compares the observed distribution of each rating between labs and

experiments. There are remarkable differences between the different languages.

Japanese raters tend to rate with very few ’fives’, and many ’ones’. French raters

are the opposite, being the least likely to rate as ’ones’, and the most likely to rate
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’fives’. It is expected that the content of the experiment affects the distribution

of scores. So while it is expected that the score distributions within a language

change in different experiments, it is interesting to note that the distribution pre-

serves some properties, such as the relative biases of the languages.

4.4.1.2 Analysis of individual rater distributions

Looking at the individual rater distributions within each language naturally con-

tains all of the information to describe the distribution of the language, since the

language data is simply the set of all raters of the language. But it also contains

some additional information pertaining to each individual rater’s tendencies that

is not in the language information alone. In figure 4.4 it can be seen that there are

language-level biases, and within a language that there are individual rater biases.

So it appears to be reasonable to construct a model that captures both language

and rater information.

4.4.2 Model specification

Several models are considered to show the effects of different predictors. These

models and the features they use are described in table 4.1. The most basic model

’Baseline’, uses no predictors (i.e. no input features) to predict a score. This

model will obviously not be able to predict the scores of individual listeners or

utterances accurately, but it should be able to model the overall distribution of the

input. It serves both as a control that other models can be compared against, as

well as to test whether the distribution of observed ratings has a dispersion that is

captured by an ordered categorical model with the provided priors.

The most complicated model ’LangRaterNSIM’ is the one that uses the features

described in 4.3.5 that we expect to contain information about the outcome score.
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(b) Experiment 3, Japanese
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(c) Experiment 1, French
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(d) Experiment 3, French

Figure 4.4: Distribution of scores for each of the 24 raters in the ITU P Supp. 23
dataset for Japanese and French amongst the two different experiments. Japanese
and French raters are the most different from each other in that they tend to rate
low and high respectively. The distributions are different enough to be visually ap-
parent, but have enough variance that there is overlap - the highest rating Japanese
rater tends to rate higher than the lowest rating French rater.

More specifically, the predictors are listener and language identifiers (indices)

along with a scalar NSIM predictor that indicates signal similarity between the

original reference and the degraded utterance that the rater has scored. Addi-

tionally, a model called ’Order’ with a single predictor uses the logarithm of the

presentation order of the utterance to predict the score.

Additionally, we fit two models (NSIMMOS and LangNSIMMOS) that have the

same predictors as NIM and LangNSIM, but are fit to pre-aggregated utterance

MOS data directly instead of using individual rater score, and a truncated normal

model (LangRaterNSIMTrunc) that has the same predictors as LangRaterNSIM.

All models that do not end with either ’MOS’ or ’Trunc’ are ordered logistic
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Table 4.1: Models and predictors

Predictors
Name Language Rater NSIM Order

Baseline
Order X
Lang X

LangRater X X
NSIM X

LangNSIM X X
LangRaterNSIM X X X

RaterNSIM X X

models.

4.4.3 MOS results

We use the method described in section 4.3.6 to estimate MOS for each utterance,

condition, and lab-specific condition. Table 4.2 shows the error and correlation

coefficients for each model for three types of aggregation. The most common

of these in the literature is aggregation by condition, which generally produces

the lowest error and highest correlation, followed by aggregation by utterance,

which produces a higher error due to the smaller number of samples. To better

understand the effects of language, an aggregation by condition within each lan-

guage is also presented. The models that add language predictors have a relatively

large improvement for the aggregation by language and condition (0.562 vs 0.464

RMSE for NSIM vs LangNSIM), and the differentiation of language is evident in

figure 4.7. Additionally, figure 4.6 visualizes the predictions in joint plots with the

ground truth MOS at the utterance level, where the language effect is also evident.

The ’Baseline’ model has no predictors at all and its MOS predictions naturally

converge on the MOS over all utterances, which is a value just below 3.0. The

distribution of the unaggregated individual score predictions matches the input
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distribution well. This can be seen in figure 4.5.

For comparison purposes ViSQOL exponential is added a an anchor that should

align with the Bayesian NSIM model, as it is a model that maps a single dimension

of physical similarity (e.g. mean similarity across all frequency bands and time)

to quality that is analogous to the NSIM predictor used by the Bayesian mod-

els. PESQ and POLQA are added as standard models that are known to perform

especially well on this dataset. The Bayesian NSIM model performs on par or

slightly better for RMSE than ViSQOL exponential [18], indicating that it makes

reasonable usage of the information in the signal predictor. As mentioned earlier,

the purpose of this study is not to compare a simple Bayesian model with state

of the art models that have complex predictors (e.g. multi-dimensional predictors

with similarity for multiple frequency bands), but to exploit the simplicity of the

Bayesian model to test the marginal benefit of adding language features on top of

signal features. For this reason the POLQA scores are not directly comparable,

and it is not surprising to see that POLQA has lower RMSE across the board.

Table 4.2: Model Comparison

Utterance Language+Condition Condition
Name RMSE Pearson Spearman RMSE Pearson Spearman RMSE Pearson Spearman

Baseline 0.829 0.043 0.035 0.778 0.106 0.090 0.705 0.151 0.123
Order 0.829 -.0326 -0.033 0.779 -0.029 -0.035 0.706 -0.039 -0.033
Lang 0.790 0.303 0.295 0.734 0.333 0.321 0.707 -0.050 -0.023

LangRater 0.785 0.321 0.319 0.729 0.362 0.351 0.704 0.105 0.136
NSIM 0.684 0.568 0.551 0.562 0.717 0.700 0.431 0.858 0.856

NSIMMOS 0.681 0.570 0.554 0.560 0.712 0.699 0.427 0.858 0.856
LangNSIMMOS 0.613 0.674 0.664 0.457 0.821 0.812 0.404 0.850 0.840

LangNSIM 0.612 0.670 0.659 0.464 0.822 0.813 0.415 0.851 0.843
RaterNSIM 0.603 0.687 0.678 0.446 0.840 0.839 0.407 0.861 0.853

LangRaterNSIMTrunc 0.603 0.686 0.677 0.444 0.839 0.836 0.405 0.858 0.859
LangRaterNSIM 0.601 0.689 0.679 0.446 0.839 0.837 0.409 0.859 0.852

ViSQOL Exponential 0.740 0.498 0.488 0.652 0.685 0.676 0.562 0.838 0.836
PESQ NB 0.494 0.806 0.786 0.422 0.842 0.822 0.256 0.935 0.922

POLQA SWB 0.524 0.783 0.756 0.430 0.837 0.808 0.182 0.970 0.972
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Figure 4.5: The baseline model is able to model the distribution of scores in the
posterior samples (a). The individual predictions have no specific information, so
although individual predictions span the full score range, the MOS of any individ-
ual utterance converges on the global MOS as shown in the joint plot (b).

4.4.4 Model validation and comparison

Model design, validation, and comparison of Bayesian models goes beyond look-

ing at error and correlation. It involves an interactive process that is facilitated

with prior predictive checks, posterior predictive checks, and verification that

the posterior samples are useful. For example, inspecting the posterior samples

against the observed appears to be reasonable at the global outcome level in fig-

ure 4.8a. These posterior samples can also be used to create a measure of un-

certainty if the models are reasonably calibrated by confirming that for a certain

quantile, approximately that many samples are underestimates (e.g. the median

quantile should have half of the posterior estimates above the observed median.)

The estimates at the global and language level appear to be reasonably calibrated,

but this is not so for all individual raters, so the uncertainty should only be useful

when aggregating over utterances, as is the practice with MOS.
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(a) LangRater
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(c) LangRaterNSIM

Figure 4.6: Joint plots of per-utterance mean opinion scores for select ordered
logistic models. Because the LangRater model has no signal predictor, it can
only estimate language and rater means. The NSIM model has only a signal-level
predictor and is not able to capture the differences in languages. LangRaterNSIM
with signal, language and rater predictors improve on the NSIM model differing
modes of each lab, showing the marginal improvement over NSIM.

Bayesian models are typically fit on the entire dataset, unlike deep learning models
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Figure 4.7: Joint plots of per-language-and-condition mean opinion scores for
select ordered logistic models. Aggregating over conditions, which are a larger
group than utterances, reduces the error and increases the correlation. The effect
of language and rater can still be seen in the marginal distributions as in figure 4.6.

that split the data into a train and a test set. There are several reasons for this.

Bayesian models are always probabilistic models, and other metrics that rely on

this property can be used to check that the model is not invalid and that it is able

to predict out of sample data, such LPPD, PSIS, WAIC, r̂, and visual inspection

of the chains and the posterior predictive distribution. It is common to compute

80



Tokyo Denki University Chinen, Probabilistic Models of Speech Quality

0 1 2 3 4 5
score

Posterior predictive
Observed
Posterior predictive mean

(a) All

0 1 2 3 4 5
score

Posterior predictive
Observed
Posterior predictive mean

(b) All Japanese Raters

0 1 2 3 4 5
score

Posterior predictive
Observed
Posterior predictive mean

(c) Individual Japanese Rater A

0 1 2 3 4 5
score

Posterior predictive
Observed
Posterior predictive mean

(d) Individual Japanese Rater B

Figure 4.8: Posterior samples from the LangRaterNSIM ordered logistic model
compared to the observed scores for the overall data and different subgroups. The
posterior overlaps well for the global (a) and language group (b), and reasonably
for (c). The individual rater B (d) is an imperfect fit, presumably because the
model uses shared cutpoints for all raters and is not able to increase the mean
without increasing the likelihood of the ’5’ score.

.

estimates of ’leave one out’ cross-validation (LOOCV) to check for out of sample

predictive accuracy without dividing the dataset into train and test splits. PSIS

and WAIC are popular estimates for this purpose. These metrics also measure

predictive power, i.e. how accurately it will predict an out of sample observation.

Since some of the models in this experiment have different outcomes (i.e. MOS
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models versus individual score models), not all models are suitable for relative

comparisons of WAIC and PSIS. For select models where the comparison is sen-

sible, table 4.3 shows the values for WAIC and PSIS, which converge on the same

values within a decimal point. Here, higher values indicate more accurate out of

sample predictions. The ranking matches the original models RMSE rankings. If

the two models have the same predictive power the model with a language predic-

tor is preferable to allow for predicting language effects.

The statistical significance of these results should be discussed. ITU-T Rec. P.

1401 [78] provides statistical tests for comparing the significance of model dif-

ferences in RMSE. Under these tests, the RMSE difference is significant between

’Baseline’ and ’Lang’ (p = .0395), between ’Lang’ and ’NSIM’(p = 8.01e-8), and

between ’NSIM’ and ’LangNSIM’(p = 2.58e-5), but not between ’LangNSIM’,

and ’LangRaterNSIM’ (p = 0.254). This is more evidence in favor of language

being a useful predictor on top of a signal predictor like NSIM, and that rater

information may be useful, but not significant under this test. However, the sig-

nificance of predictive power can also be looked at on the outcome scale of indi-

vidual rater scores instead of aggregating the raters into a single value. For this

purpose, the PSIS/WAIC analysis also provides the function of a statistical test

for the significance of the out of sample predictive performance. It is also impor-

tant to point out the relatively small standard errors in table 4.3 due to the large

amount of data. This shows that most of the models do not overlap within three

standard errors, and that there is a real benefit to predictive power from including

each of the features in this order. The exception is the overlapping LangRaterN-

SIM and LangRaterNSIM, which is expected due to the rater data fully containing

the language data.

Another difference from deep learning is that in Bayesian models, there are fewer

parameters which make overfitting less of a risk, and models that have too many
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Table 4.3: Predictive power and significance

Name WAIC/PSIS(LOO-CV) Standard Error
Baseline -48109 74.30

Lang -47217 82.29
NSIM -45085 90.51

LangNSIM -43717 97.56
RaterNSIM -40487 110.07

LangRaterNSIM -40485 110.49

parameters are often non-identifiable (which would fail the r̂ test, or would be

so specific as to not be useful (e.g. a separate model for each observation). The

hyperparameters of a Bayesian model are the distribution parameters of the root

level priors, and these are typically set at model creation time, or interactively,

by looking at the prior predictive distribution (which does not involve the data).

Some of the more accurate models in this experiment have very few parameters

(LangNSIM only has 10 parameters: 4 for the cutpoints, 4 for the language offsets,

and 2 for NSIM slope and intercept).

The models were fitted using Hamiltonian Monte Carlo (HMC) which efficiently

samples the posterior distribution with a No-U-Turn sampler [79] using the Ten-

sorFlow Probability framework [80]. Multiple chains are used in HMC, and the

typical check of involves visual inspection of the chains as well as verifying that r̂

values are reasonable (i.e. near 1.0) to check that the chains converge and do not

get stuck on some values, which would indicate that the posterior was not well-

explored. For the models studied in this experiment these checks have passed,

and the posterior distributions of the parameters and their chains appear healthy

as shown for the LangRaterNSIM model in figure 4.9.
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Figure 4.9: Traceplot of parameters for LangRaterNSIM model. The smoothed
posterior samples form distributions for each indexed parameter, shown on the left
in different colors (e.g. each language/laboratory is a different color) with each
line-style (e.g. dashed, solid) representing the chain index. The Gaussian noise-
like patterns on the right indicate the posterior for each chain and index is being
explored in a healthy manner. The overlapping chains of the same color show that
the model is identifiable.

4.5 Discussion

4.5.1 Effect of language and raters on opinion scores

In table 4.2 it can be seen that adding language predictors improved RMSE over

a baseline model with no predictors (from 0.829 to 0.790) and correlation (from

0.043 to 0.303). Adding rater information improves it further. Furthermore, the
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improvement when adding language and rater information is still significant on

models that have signal level predictors (from 0.684 to 0.601 RMSE, 0.568 to

0.689 Pearson), which indicates that coarse signal predictors (of the type used in

typical MOS estimation tools) cannot tell the full story about opinion scores. This

is consistent with the observed opinion scores grouped by language in the data

that compare the same degradations in figure 4.3.

The findings of this study show that a correlation between language and score

exists, which agrees with previous work, but also shows the increase in modeling

power when including language as a predictor. It has not been concluded whether

the differences in scores between languages are cultural responses or related to

perceptual quality. The causes behind the bias are related to general item response

theory and psychology, and require more complicated experiments such as cross

language studies with bilingual listeners to resolve, as well as studies that consider

ratings that are completely unrelated to speech quality (e.g. restaurant ratings).

For example, the finding of a lower bias in Japanese scores does not reveal whether

the ’true’ quality of Japanese speech is lower, or that Japanese raters tend to rate

a given quality lower than other raters. That question remains unanswerable with

the current study. It is plausible that the distribution of phonemes in the language

influences the score, just as it is plausible that there is a culture to rate things lower.

In other words, the subjective test only measures the categorical ratings from 1 to

5, and how a different quality level is mapped to these numbers is unobserved.

However, leaving the elusive unobserved ’quality’ aside, it is possible to infer

equivalencies between scores for different languages and signals. For example,

for a certain kind of degradation, the expected Italian score is X, and for Canadians

it is Y.

This does suggest that opinion scores should not be compared absolutely be-
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tween different languages. The ITU-T specifications for P.800 listening tests [1]

also gives strict recommendations for comparing MOS that excludes the cross-

language case. It should be noted that while the model that was fit in this study

has the ability to answer cross-language counterfactual questions such as ’what

score would an Italian rater assign to this English utterance?’. However, there are

zero occurrences of cross-language ratings in the particular dataset used in our

experiments, so it should only be used with the due amount of apprehension.

Both individual rater models and MOS models can be made language aware, as

has been done in the experiment. The findings with improved accuracy for lan-

guage based models suggest that language predictors should be added to a scoring

model, unless there is only a single language present in the data, and the model

will never be used to predict scores for other languages. Since language is being

used here as a proxy for culture, it may be useful to include other cultural co-

variates such as region and year if there is variation within languages in the data.

To test the hypotheses of this experiment it was sufficient to use one laboratory

per language at a single point in time. This also means that the resultant models

may not generalize to other populations within the same language. As mentioned

previously, the purpose of this work is not to obtain the most generally useful and

most accurate model, but to answer the questions about the effect of language and

raters in opinion score data.

The RaterNSIM model performed similarly to the LangRaterNSIM, which has

additional parameters for language. This is consistent with the causal model DAG

given in figure 4.1, because the individual rater blocks the path between language

and score, so score and language are conditionally independent given the rater

information. However, the advantage of the model with language parameters is

that it is straightforward to simulate or answer counterfactual questions about new

raters in the same language or to ’translate’ raters into other languages.
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4.5.2 Individual score versus MOS models

For the purposes of this work, we are only concerned with identifying the distri-

bution of each rater’s scores with a model that is given information about each

rater, by also fitting a distribution of raters. Having fit such a model, it is then

possible to predict the behavior of each rater with a higher accuracy. Two types

of individual rater models were considered: the ordered logistic model and the

truncated normal model. The truncated normal model achieved a lower error, pre-

sumably because in the truncated normal, the variance and mean are modeled as

parameters for each rater, but in the ordered logistic model this is not the case

because of the cutpoint formulation (only a logit offset, or ’location’ parameter

is modeled at the individual level). The ordered logistic distribution may still be

useful, depending on the application. For example, unlike the truncated normal

distribution, the ordered logistic distribution captures the discrete nature of cate-

gorical opinion scores, which may be desirable if the goal is to generate simulated

data for individual raters.

The experiment compared models fit to MOS data as well as individual rater data.

The experiments found that individual rater models are able to match and exceed

the accuracy of MOS models because of the extra information they have, although

the difference is not very large (.613 vs .601 utterance RMSE). The variance of

individual raters is an important piece of information that is discarded in most

MOS models, but is accounted for in individual rater models. Additionally, the

bias or expected rating for individual raters is discarded by MOS models. This

means that the MOS model will spuriously attribute individual rater bias to other

predictors, increasing the error, although for this experiment it was not signifi-

cant (the MOS models performed similarly to the individual rater models). For

example, suppose there are two utterances of equivalent quality, and a rater that
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consistently gives low scores. If the rater rates the first utterance, but does not rate

the other, it should be expected that the MOS for the first utterance will be lower

than the second. The MOS model, which does not have access to individual rater

information, will not be able to recognize that the first utterance’s lower score is

due to the pessimistic rater’s presence and will instead will attribute it to the signal

predictors, or produce a wider uncertainty on all utterances of this quality. In con-

trast, the individual score model will handle this case by attributing the difference

in scores to the pessimistic rater.

If a distribution of the individual rater is modeled, the model can answer questions

that a MOS model cannot, such as ’what would the median rater score this utter-

ance?’. Depending on the application, the median rater’s expected score may be

desirable over the MOS because the overall variance will be reduced. The indi-

vidual rater model can be used to post-screen outliers even after being fit on them

by sampling raters from a truncated distribution that excludes the extreme values

(e.g. raters within the 5 to 95 percentile).

The drawbacks of the individual score model must be considered. To compute

a mean score with an individual score model, multiple samples must be taken

and aggregated. This aggregation has computational cost, but the time it takes is

relatively quick compared to the time it takes to fit a model.

Lastly, this experiment was concerned with speech data, but the findings may be

relevant to non-speech audio as well. The causal DAG in figure 4.1 proposes that

culture and language of the rater, which is independent of the content of the audio

signal, affect scores. In this case the individual rater model has the potential to

become more valuable because a given test signal may be more readily listened

to by people from different languages and cultures, especially with online testing.

An experiment to verify this would be prudent.
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4.6 Summary

This chapter has shown that language-aware models provide a significant im-

provement over models that do not consider language, and that models of indi-

vidual scores are able to match and exceed MOS models (in all aspects other than

computational cost) while providing additional functionality. The experimental

results validate the theory for these arguments.

The findings were over a single dataset, ITU-T P. Supplement 23, which was

chosen because of the breadth of data it contains and the thorough process used to

create it. However, the dataset is over 20 years old, and enough time has passed

that subjective quality may have changed. Additionally, subjective tests are now

conducted in a wider variety of environments, such as crowd-sourced tests at home

conducted over the internet. It would be interesting future work to re-evaluate the

same data in new tests in the same regions, to see how raters have changed since

the creation of the P. Supp 23 data was created.

Real world subjective test data does not often have equally balanced experimen-

tal conditions over multiple languages as P. Supp. 23 does. However, one of the

strengths of individual score Bayesian models is that they are able to handle un-

balanced data (e.g. different numbers of listeners for each utterance). In this case,

since the utterance quality might be different between languages, score compar-

isons between the languages may not be useful to look at, but the improvement

in accuracy due to the language and rater metadata predictors can be measured.

Based on the current results, further studies and applications for this type of data

seem like a good next step.

Lastly, the findings about language and individual scores imply a causal model

that should apply to non-Bayesian models. For example, deep learning models of
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speech quality could consider taking into account individual ratings and language

metadata in the feature set. Bayesian models are relatively difficult to fit as the

data or parameter size grows to very large sizes (because typically the probabil-

ities are computed over all the data), while deep learning can use mini-batches

to handle virtually unlimited amounts of data. Given the recent advances in deep

learning, it may be interesting to evaluate a model with many input features in-

cluding language and individual rater score.
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5 | Conclusion

This thesis has presented several aspects of speech quality and methods for im-

proving its estimation through objective means. First we described modifications

to ViSQOL, a public and free software tool that is used by many researchers and

engineers dealing with speech applications that provides an alternative to paid li-

cense. Second, we showed how monotonic speech constraints can be preserved

using a deep lattice model, which harnesses the power of deep learning while

allowing for some control on what each layer does. Lastly, we presented an ex-

periment on the effect that language and individual raters have on quality scores.

These experiments and methods are a part of the process in creating useful models

of quality.

ViSQOL is a continuously evolving quality estimator that integrates improve-

ments based on trending research and production use case requirements. It uses

traditional signal processing modules in combination with machine learning tech-

niques. The deep lattice network described in chapter 3 is an example of this,

which provided three important improvements. First, the quality of predictions

was improved over the previous model, reducing the MSE from 0.57 to 0.24. Sec-

ond, the DLN model obeys desirable monotonic constraints between similarity

and quality, which resolves issues when handling out-of-sample data that would

be problematic for support vector regression and naive DNN based models. Lastly,

as a quantile-based estimator that estimates a distribution of MOS, the model has

a more useful representation of uncertainty that can be conveyed to the user.

This thesis also investigated the role of language and the individual bias in sub-

jective testing. The effects of language and culture on ratings is known to be

non-negligible based on the literature. This thesis quantifies the marginal effect
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of language on top of ViSQOL’s 1-D signal level predictors, and still finds it to

be significant. The individual rater’s bias may also contribute some smaller but

significant effect. In the experiments, Language and rater show marginal improve-

ment over signal only predictors; RMSE was improved over the baseline NSIM

model from 0.684 to 0.612 with the addition of language predictors and to 0.603

with rater predictors. These findings were obtained using Bayesian models to

provide a more general analysis, as opposed to over-parameterized deep learning

models. Since the findings were significant, the next step would be to incorpo-

rate language and rater metadata into existing frameworks like ViSQOL or deep

learning models.

A growing trend is the use of probabilistic models of speech in synthesis or recog-

nition. Such a model can also be used for quality, as has been done for the models

in this thesis. The way speech is observed and rated is full of both uncertainty and

bias. While deterministic point estimate models provide a useful simplification of

the model that is acceptable for certain use cases, probabilistic models allow for a

more realistic mapping of human perception and quality ratings. The probabilistic

model for MOS also has the advantage of being able to estimate a distribution that

can be used to express the uncertainty of the estimation.

Speech quality is ever-changing, due to the natural developments in technology

and culture. For the last decade, machine learning has been the driving force of

change in speech related technologies. Another trend to watch is the development

of attention and transformers replacing RNNs [81]. Transformers may be well

fit to the intrusive speech quality problem due to their ability to handle sequence

alignment. As machine learning grows, having sufficiently diverse and useful

data will be important. Traditional machine learning methods typically require

quality ratings, which are expensive to obtain. As a result, there is a dearth of

data for this problem, as quality ratings are not organically created. However,
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novel techniques provide additional data through augmentation as well as semi-

supervised and unsupervised methods [72]. The data problem may hint at the

next frontier for quality modelling that leverages existing data and priors about

perception and quality to harness the power of machine learning.

Better models of quality are a reflection of the capability to understand the nature

of human perception, enabling others in turn to create better codecs, synthesis,

and analysis applications. The popularity of the limited one-dimensional MOS

is explained by the difficulty and ambiguity of the underlying problem of how to

measure quality. As models continue to improve for the MOS case, and as the

various quality factors are better understood and researched, it can be expected

that more interpretable, multidimensional models of quality are likely to become

more popular than MOS models. These powerful quality models can be used di-

rectly in the speech production models. In the ultimate case, if quality factors

are fully qualified by a quality model, quality and synthesis could become com-

pletely integrated. In the meantime, it will be useful to focus on improving the

model of quality to not only be more accurate, but to be more interpretable and

representative of human perception.
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