MaineHealth

MaineHealth Knowledge Connection

Costas T. Lambrew Research Retreat 2021

Costas T. Lambrew Research Retreat

2021

Would Surgeons Opt for Polypropylene Mesh if They Hypothetically Had Stress Urinary Incontinence or Pelvic Organ Prolapse?

William J. Devan Maine Medical Center

Sanchita Bose Maine Medical Center

Dayron Rodriguez Maine Medical Center

Ricardo Munarriz Maine Medical Center

Linda Ng Maine Medical Center

Follow this and additional works at: https://knowledgeconnection.mainehealth.org/lambrew-retreat-2021

Part of the Surgery Commons

Recommended Citation

Devan, William J.; Bose, Sanchita; Rodriguez, Dayron; Munarriz, Ricardo; and Ng, Linda, "Would Surgeons Opt for Polypropylene Mesh if They Hypothetically Had Stress Urinary Incontinence or Pelvic Organ Prolapse?" (2021). Costas T. Lambrew Research Retreat 2021. 51.

https://knowledgeconnection.mainehealth.org/lambrew-retreat-2021/51

This Book is brought to you for free and open access by the Costas T. Lambrew Research Retreat at MaineHealth Knowledge Connection. It has been accepted for inclusion in Costas T. Lambrew Research Retreat 2021 by an authorized administrator of MaineHealth Knowledge Connection.

Would Surgeons Opt for Polypropylene Mesh if They Hypothetically Had Stress Urinary Incontinence or Pelvic Organ Prolapse?

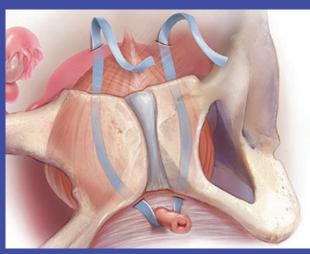
William J Devan MD, Sanchita Bose MD, Dayron Rodriguez MD MPH, Ricardo Munarriz MD, Linda Ng MD

Introduction

- Controversy surrounding vaginal mesh kits
- Many patients have negative connotations regarding mesh
- If patients were shown that their surgeons would opt for mesh – maybe this would help lessen the negativity?

Methods

- Survey was sent to American Urogynecologic Society (AUGS) and SUFU members
- 2. Basic demographic info
- Society members were asked what treatment they would elect if they hypothetically had SUI or POP


Results

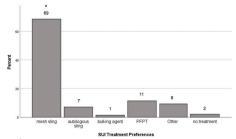
- 141 of 689 members completed the survey
- A significantly greater portion of members would prefer mid urethral slings (MUS) vs other treatment modalities (96/140, 69%, p < 0.001)
- For SUI: High volume providers (>10 procedures a month) were more likely to prefer MUS.
 - Univariate: OR 3.21 p = 0.003
 - Multivariate: OR: 3.67 p = 0.003
- For POP: Academic providers were less likely prefer transvaginal mesh (loses significance in multivariate)
 - Univariate: OR 0.29 p = 0.039
 - Multivariate: OR: 0.27 p = 0.056

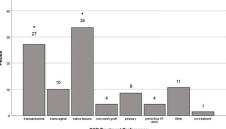
Discussion

- Majority of society members would prefer MUS for SUI
- Preferences regarding POP treatments were more varied

Surgeons would prefer mesh slings if they hypothetically had stress urinary incontinence.

Ringel N, Richter LA, Mid-urethral sling. Using slings for the surgical management of urinary incontinence: A safe, effective, evidence-based approach. MDedge. Published Oct 31 2019. Accessed April 25 2021. https://www.mdedge.com/obgyn/article/209304/pelvic-floor-dysfunction/using-slings-surgical-management-urinary-incontinence





Take a picture to download the full poster

Overall Tx Preferences

Subgroup Analyses

	female (N=74) N (%)	male (N=64) N (%)	p-value
Preferred SUI Treatment?			
mesh sling	48 (64.9)	47 (73.4)	0.28
autologous sling	1 (1.4)	8 (12.5)	.008
bulking agent	2 (2.7)	0 (0)	0.19
PFPT	11 (14.9)	5 (7.8)	0.2
other	10 (13.5)	3 (4.7)	0.08
no treatment	2 (2.7)	1 (1.6)	0.65
Preferred POP Treatment?			
transabdominal	21 (28.4)	16 (25)	0.66
transvaginal mesh	4 (5.4)	10 (15.6)	.047
native tissues	22 (29.7)	25 (39.1)	0.25
non-mesh graft	2 (2.7)	4 (6.3)	0.31
pessary	10 (13.5)	2 (3.1)	.031
PFPT	4 (5.4)	1 (1.6)	0.23
other	9 (12.2)	6 (9.4)	0.6
no treatment	2 (2.7)	0 (0)	0.19

	Practice Type			
	Academic (N=77)	Private (N=61)		
	N (%)	N (%)	p-value	
Preferred SUI Treatment?				
mesh sling	47 (61)	47 (77)	0.045*	
autologous sling	8 (10.4)	2 (3.3)	0.11	
bulking agent	0 (0)	2 (3.3)	0.11	
PFPT	11 (14.3)	5 (8.2)	0.27	
other	8 (10.4)	5 (8.2)	0.66	
no treatment	3 (3.9)	0 (0)	0.12	
Preferred POP Treatment?				
transabdominal	19 (24.7)	18 (29.5)	0.52	
transvaginal mesh	4 (5.2)	10 (16.4)	0.03*	
native tissues	31 (40.3)	16 (26.2)	0.08	
non-mesh graft	1 (1.3)	5 (8.2)	0.048*	
pessary	8 (10.4)	4 (6.6)	0.43	
PFPT	5 (6.5)	1 (1.6)	0.17	
other	7 (9.1)	7 (11.5)	0.64	
no treatment	2 (2.6)	0 (0)	0.21	

	Monthly case volume		
	1-10 cases (N=90)	>10 case (N=48)	
	N (%)	N (%)	p-value
referred SUI Treatment			
mesh sling	57 (63.3)	39 (81.3)	.029*
autologous sling	6 (6.7)	4 (8.3)	0.72
bulking agent	2 (2.2)	0 (0)	0.3
PFPT	13 (14.4)	1 (2.1)	.022*
other	9 (10)	4 (8.3)	0.75
no treatment	3 (3.3)	0 (0)	0.2
referred POP Treatment			
transabdominal	23 (25.6)	15 (31.3)	0.48
transvaginal mesh	11 (12.2)	3 (6.3)	0.27
native tissues	30 (33.3)	17 (35.4)	0.81
non-mesh graft	5 (5.6)	1 (2.1)	0.34
pessary	6 (6.7)	5 (10.4)	0.44
PFPT	4 (4.4)	2 (4.2)	0.94
other	9 (10)	5 (10.4)	0.94
no treatment	2 (2.2)	0 (0)	0.3