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ABSTRACT 
Real-world data are commonly known to contain missing values, and consequently 
affect the performance of most machine learning algorithms adversely when employed 
on such datasets. Precisely, missing values are among the various challenges occurring 
in real-world data. Since the accuracy and efficiency of machine learning models 
depend on the quality of the data used, there is a need for data analysts and researchers 
working with data, to seek out some relevant techniques that can be used to handle these 
inescapable missing values. This paper reviews some state-of-art practices obtained in 
the literature for handling missing data problems for machine learning. It lists some 
evaluation metrics used in measuring the performance of these techniques. This study 
tries to put these techniques and evaluation metrics in clear terms, followed by some 
mathematical equations. Furthermore, some recommendations to consider when dealing 
with missing data handling techniques were provided. 
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1. INTRODUCTION 
In general terms, missing values, also referred to as missing data, are the values not 
stored or captured for some variables of interest [1]. In using machine learning (ML) 
algorithms for predictive models, it is common to find some missing values in the 
dataset given or obtained. The missing values considered in this paper do not include a 
scenario where the number of observed cases of a feature(s) is significantly lower than 
the number of observed cases in other features in the dataset. This type of scenario is 
referred to as an imbalanced class or data. The category of data considered in this study 
is a balanced dataset with missing values in some features of the data. These missing 
values are also referred to as item non-response in survey data [2, 3]. Figure 1 is an 
example of such type of missing data which contains a dataset for employees with 1000 
cases and 6 features [4]. 

It is to be noted that, among missing data handling methods, deletion methods (either 
listwise or pairwise deletion) are not the only option, and sometimes not the best option. 
This is because they can introduce bias in the estimates if the missing values are not 
missing completely at random (MCAR) and can reduce statistical power [1, 5]. 
Additionally, since missing values carry relevant information for the prediction task, it 
is good to impute the missing values rather than deleting them. Furthermore, some 
decision tree methods such as random forests have a built-in method of handling 
missing values, treating the missing values as an attribute (see Section 3 for that). 

In one way or the other, these missing values must be handled to help the ML 
algorithms perform optimally. It should be noted that the missing data handling 
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considered in this study is within the scope of supervised learning methods. Handling 
missing values is one of the processes in data preparation in ML. Data preparation or 
pre-processing takes a considerable amount of time in modeling and prediction process 
because real-world data could contain missing values, outliers, conflicting data or noise. 
Hence, the need for data pre-processing to resolve these data issues to ensure that the 
data used for modeling, and predictions are of good quality. The accuracy and 
efficiency of ML models depend on the quality of data used for the analysis. 

Some of the factors responsible for these missing values could be due to the way the 
data is captured or some malfunctions in the equipment. It could also be because of 
changes in experimental design during the process of collecting data, or the method 
used in merging of several datasets. Refusal of the respondents to respond to certain 
questions, or some variables not being measured due to some damages in the specimen 
used could also be a factor. The need to handle these missing values becomes highly 
important in ML models when the variables containing them contribute substantially to 
the performance of the ML algorithms. Hence, the demand to find a way of handling 
such missing values. 

The rest of this paper is organized as follows: Section 2 focuses on the three types of 
missing data mechanism. Section 3 is on the explanation of some techniques for 
handling missing data. Section 4 reviews some evaluation metrics for measuring the 
performance of the missing data techniques. Section 5, outlines some discussions and 
recommendations observed while writing the paper. 
 
2. MISSING DATA MECHANISM 
Data missingness is generally categorized into three types [6], which are missing 
completely at random (MCAR), missing at random (MAR) and not missing at random 
(NMAR), which is also called missing not at random (MNAR). Let 𝑋 be the data matrix 
(e.g., Figure 1) that contains both the observed and missing values, 𝑋"#$ be the set of 
observed values, 𝑋%&$$ be the set of missing values, R is the indicator matrix for the 
missing values, with 
 

𝑅&( = *
1, 𝑖𝑓	𝑋&(	𝑖𝑠	𝑚𝑖𝑠𝑠𝑖𝑛𝑔
0, 𝑖𝑓		𝑋&(	𝑖𝑠	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

																																																																																								(1) 

 
where𝑖 represents the 𝑖=> case and 𝑗 represents the 𝑗=> feature, and 𝜑 is a vector of some 
unknown parameters of the missing data model that relates the data matrix,  𝑋, to the 
indicator matrix,𝑅. Brief explanation of these three categories is given below 
concerning these defined variables. 
 
2.1 MCAR 

In missing completely at random (MCAR), the probability of the missing data in a case 

does not depend on the observed or known values nor on the missing values of that 
case. That is, 

 
𝑃𝑟𝑜𝑏(𝑅 = 1|𝑋, 𝜑) = 𝑃𝑟𝑜𝑏(𝑅 = 1|𝜑)		𝑓𝑜𝑟			𝑎𝑙𝑙				𝑋, 𝜑																																																			(2) 

 
Missingness obtained when data are missing by design, equipment failure, or when 

samples are lost in transit is classified as MCAR. 
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For example: if a missing value for an individual in the salary variable of the dataset, 
in Figure 1, does not depend on whether the person is a male or female, nor on the team 
the person belongs to, nor on whether the person is categorized as senior management 
or not, nor on the bonus percentage of the person, nor his/her first name, nor on the fact 
that information is missing from the person’s record in any of the variables in the 
dataset but it depends on other parameters that are not captured in the dataset.  
 

                       Figure 1. Example of a Dataset with Missing Values [4]. 

2.2 MAR 
Data that are missing at random (MAR) when the probability of the missing data in a 
case does depend on the observed values but not on the missing data of that case. That 
is, 
 

𝑃𝑟𝑜𝑏(𝑅 = 1|𝑋, 𝜑) = 𝑃𝑟𝑜𝑏(𝑅 = 1|𝑋"#$, 𝜑)					𝑓𝑜𝑟𝑎𝑙𝑙𝑋%&$$, 𝜑																																		(3) 
 

It should be noted that both MAR and MCAR are said to be ignorable missing data 
mechanisms [6, 7], due to the randomness contained in their missing data. MAR is a 
weaker assumption than MCAR. That is, MAR is more general, and a more realistic 
case of MCAR. For example: if a missing value for an individual in the salary variable 
of the dataset, in Figure 1, depends on the fact that the person is a female, because of 
some permissions of leave given to the female employees in the company which the 
male counterparts are not entitled to. 
 
2.3 NMAR 
These are missing data that are neither MCAR nor MAR. That is, the probability of 
missingness in a case depends on either the missing values or on both the missing and 
observed values for that case.  That is, 
 

𝑃𝑟𝑜𝑏(𝑅 = 1|𝑋, 𝜑) = 𝑃𝑟𝑜𝑏(𝑅 = 1|𝑋%&$$, 𝜑)			𝑓𝑜𝑟		𝑎𝑙𝑙			𝑋%&$$, 𝜑																														(4) 
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or  
 

𝑃𝑟𝑜𝑏(𝑅 = 1|𝑋, 𝜑) = 𝑃𝑟𝑜𝑏(𝑅 = 1|𝑋"#$, 𝑋"#$, 𝜑)				𝑓𝑜𝑟			𝑎𝑙𝑙					𝑋, 𝜑																													(5) 
 

The case of missing data in NMAR seems more problematic, and an unbiased 
estimation of these missing data can only be obtained by modeling of these missing 
data. NMAR is also known as a non-ignorable missing data mechanism [6, 7], that is 
the missingness is not random. For example: if a missing value for an individual in the 
team variable of the dataset, in Figure 1, depends on the fact that such person’s first 
name is missing from the dataset or that both the first name is missing, and the person is 
a female who probably has gone on maternity leave.  

3. TECHNIQUES FOR HANDLING MISSING DATA 
This section explains the various techniques that have been used in handling missing 
data in ML algorithms as well as relevant literature in which they have been used. The 
list (see Figure 2) is not exhaustive, and this field of missing data handling is still 
evolving. Generally, there are two notable methods of handling missing values in ML 
algorithms: by deletion or imputations. However, as mentioned in the introduction of 
this paper, some decision tree methods have a built-in method of treating the missing 
values as an attribute. In the deletion techniques, the data scientist either delete the 
missing values by listwise or pairwise deletion. The other way is by using imputation 
techniques, where the missing values are replaced with some other values according to 
the various methods that are used. These imputation methods could be classified into 
single, multiple, model-based, machine learning, or optimization algorithm imputations 
(see Figure 2). It is good to note that some of the model-based imputation methods are 
also single-imputation, such as regression, K-Nearest Neighbor and hot-deck 
imputations. LOCF, in Figure 2, means last observation carried forward and NOCB 
means next observation carried backward. 

Let 𝑋 denote a dataset with several observations as given below 
 

                            
 

The value 𝑖 is the number of cases and 𝑗 is the number of independent attributes. 
Hence, 𝑋&( is the value of the 𝑖=> case with the 𝑗=> feature. This can also be represented 
in terms of row and column. So, 𝑋&( is the value at the 𝑖=> row and 𝑗=>column. 
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                            Figure 2. Types of Techniques for Handling Missing Data 
 

3.1 Listwise Deletion 
This is the removal of all cases with missing values in at least one of the independent 
features. It is also called complete-case analysis method [1, 5, 8]. For example, if 𝑋IJ is 
a missing value in the 1st case and 𝑘=> feature, then all the data in the 1st case, 
𝑋II, . . . , 𝑋I( will be removed from the dataset. An advantage of the listwise deletion is its 
convenience. For data that are MCAR, this method produces unbiased estimates of 
means and variances [9], otherwise the estimates are biased [5]. However, the 
disadvantage of listwise deletion is reduction in the effective sample size which, in turn 
causes a reduction in statistical power. 

3.2 Pairwise Deletion 
Pairwise deletion [1], also known as available case method [6, 10], removes all cases 
containing missing values in the independent features as the need arises. For example, if 
𝑋IJ is a missing value in the 1st case and 𝑘=>  feature, then 1st case will be removed from 
the dataset when conducting analysis that involve the 𝑘=> feature. Unlike the listwise 
deletion that removes all the cases containing the missing values before the analysis, 
pairwise deletion removes the cases containing the missing values only when the 
affected features are to be used in analyses [11]. Pairwise deletion allows you to use 
more of your data than the listwise deletion. One disadvantage of using pairwise 
deletion is that the correlation matrix may not be positive definite [1]. It could produce a 
situation where one or more variables are linear combination of some other variables in 
the dataset. Another disadvantage is the lack of consistency in its analyses because each 
analysis will make use of different subsets of the dataset which will give different data 
sample sizes. 
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3.3 Mean Imputation 
The mean imputation method [5] calculates the average values of all the non-missing 
values of each independent feature and imputes it for each feature’s missing values [9]. 
Let 𝑋>J be the missing value for the ℎ=> case, where ℎ ≤ 𝑖 , and in the 𝑘=> feature, then 
the mean value to be imputed will be  

 

𝑋>J =
∑ 𝑋>PP∈RS

𝑛J
,																																																																																																																(7) 

 
where the value, 𝐼J, is the set of the independent feature indices that are not missing 

and 𝑛J is the total number of cases in which the 𝑘=> value is not missing. Although this 
method is easy and simple to implement, it works only if the feature considered is not 
nominal and the missingness assumption is MCAR [7]. Some disadvantages of the 
mean imputation are overestimation of the sample size, underestimation of the variance, 
and correlation could be negatively biased [5, 12]. Despite these disadvantages, the 
mean imputation still performed better than other imputation techniques in some cases. 
For example, in [13], the following univariate imputation methods: Mean, Median, Last 
Observation Carried Forward, Kalman Filter, Random, and Markov imputations were 
used to handle missing data in short-term monitoring (less than 24hours) of air 
pollutants. And the study found out that the mean imputation with two others - Random 
and Markov’s methods outperformed the remaining univariate imputation methods 
recording the lowest error and highest 𝑅V (coefficient of determination) values for all 
the four periods of missingness considered. 

 
3.4 Median Imputation 

This method [13] substitutes the middle value of the non-missing independent features 
for each feature’s missing values. The median imputation is preferred over the mean 
when outliers are present in the dataset [14]. Let 𝑋>J be the missing value for the ℎ=> 
case, where ℎ ≤ 𝑖, and in the 𝑘=> feature. To find the median imputation, first, the non-
missing values,  𝑋I(, 𝑋V(, . . . 𝑋&( in the feature which contains the missing value (but 
excluding the missing value) will have to be ordered from the lowest to the highest, and 
the middle value will be selected. The imputed value after sorting the data in the 
specific feature containing the missing value in ascending order will be 

 
	𝑋>J = WXSYI

V
Z
=>
𝑣𝑎𝑙𝑢𝑒		                                  																																																																		(8) 

 
for odd numbers, and 

 

𝑋>J =
]W^S_ Z

`a
bcdefYW^S_ YIZ

`a
bcdefg

V
	                         																																																												(9) 

 
for even numbers. 𝑛J is the total number of cases in which the 𝑘=> value is not 

missing. However, for a feature containing integer values, Equation (5) must be rounded 
up or down depending on the resulted value from the calculations. In [14], the author 
compared four imputation methods namely mean, median, linear regression, standard 
deviation, for handling missing data with different percentages of missingness and 
found out that the median imputation outperformed the remaining three methods. 
3.5 Mode Imputation 
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In this method [8], the missing values of a feature are replaced by the most frequent 
non-missing value of that feature. Let 𝑋>J be a missing value for the ℎ=> case, where 
ℎ ≤ 𝑖 and in the 𝑘=> feature. Then, the most frequently occurring value among the non-
missing values of that feature, 𝑋IJ, 𝑋VJ, . . . 𝑋&J, is used to replace all the missing values of 
that feature. The mode imputation is common for categorical features, though it can also 
be used for numeric features. Although this method is easy and fast to use but it could 
change the statistical nature of the data [15]. It is highly biased when applied to 
numerical data. Another challenge in using this method is when this mode value is not 
unique. In this case, the researcher must decide whether to use the first occurring mode 
value or the others. In [8], the author compared the performance of different ML 
classification algorithms based on some methods used in handling the missing data. 
Although the study focusses on the performance of the various ML classification 
algorithms used, but the result shown in the paper gives insight into the performance of 
the techniques used in dealing the missing data. Out of six methods used to handle the 
numeric data, mode imputation is one of the two that outperformed the remaining four 
methods. While for categorical data, only two methods were used to handle the missing 
value: listwise deletion and mode imputation. The later performed better than the 
former. 

3.6 Last Observation Carried Forward 
This method [1, 13, 16], Last Observation Carried Forward (LOCF), replaces the 
missing values in a feature with the last observed value of that feature. This is a 
common imputation method for a longitudinal or time-series dataset, in which variables 
are repeatedly measured over a series of time-points [16]. Let 𝑋>J be the missing value 
for the ℎ=> case, where ℎ ≤ 𝑖, and in the 𝑘=> feature. Then, the 𝑋>J will be replaced by 
𝑋>JiI, if it exists. However, if 𝑋>JiI does not exist, that is, it is also a missing value, 
then 𝑋>JiV will be used to replace the missing values - 𝑋>JiI and 𝑋>J. This forms the 
pattern of LOCF method. Although this method is easy to understand and apply but it 
produces a biased estimation and underestimates the variability of the estimated result 
[16]. The following studies have criticized the use of LOCF method for handling 
missing values [16, 17]. 

3.7 Multiple Imputation 

The multiple imputation (MI) method [18, 19, 20, 21, 22] produces a range of m 
possible values, 𝑚 > 1, called the imputed data, from the existing data, which is then 
analysed using some standard statistical methods to obtain the most suitable set of 
values for the missing data. The MI method contains three (3) steps namely: 

• The Imputation step: This is where 𝑚,𝑚 > 1, copies of the missing data are 
created or produced using appropriate model that incorporates a random 
variation and fits the distribution assumptions of the data. One of the popular 
methods is to use linear regression imputation using 
 
    𝑋%&$$ = 𝑏k + 𝑏I𝑋I + 𝑏V𝑋V + 𝑏m𝑋m + 𝑠𝐸																																																																								(10) 
 
where 𝑋I, 𝑋V, 𝑋mare fully observed variables, 𝑋%&$$, contains the missing data, 𝐸 
is a random value drawn from a standard normal distribution with a mean and 
standard deviation of 0 and 1, respectively, and 𝑠 is the error term estimates of 
the standard deviation. 
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• The analysis step: In this step, some statistical analyses are carried out on the 𝑚 
imputed dataset produced in the imputation step.                      
 

• The pooling step: This step combines the 𝑚 sets of estimation results into a 
single set of results. This is done using Rubin’s rule [6]. The variance for the 
pooling can be calculated as: 
 

           For within-imputation variance               
                                

𝑉𝑎𝑟p&=> =
1
𝑚
q𝑠&V
%

&rI

																																																																																																										(11) 

 
and for between-imputation variance 

                     

𝑉𝑎𝑟#=p =
1

𝑚 − 1
qt𝛽& − 𝛽v

V
%

&rI

.																																																																																					(12) 

 
The total variance could be calculated as  
 
            
     𝑉𝑎𝑟="=cd = 𝑉𝑎𝑟p&=> + 𝑉𝑎𝑟#=p +

wcxy`z
%

																																																																									(13)   
 
which gives the following formula 
                   

𝑉𝑎𝑟="=cd =
1
𝑚
q𝑠&V
%

&rI

+ ]1 +
1
𝑚g ]

1
𝑚 − 1g

qt𝛽& − 𝛽v
V

%

&rI

																																												(14) 

               
and the estimated standard errors will be 
                   

𝑆𝑡𝑑fxx"x = }
1
𝑚
q𝑠&V
%

&rI

+ ]1 +
1
𝑚g]

1
𝑚 − 1g

qt𝛽& − 𝛽v
V

%

&rI

																																								(15) 

 
where 𝑠&  is the standard error in the 𝑖=> dataset, 𝛽& is the estimated parameter for 𝑖=> 

dataset of 𝑚 samples, and 𝛽  is the mean of  𝛽&.               
The MI method helps to restore the natural variability of the missing values, 

produces valid statistical inference, and generates appropriate results in the presence of 
a high volume of missing values [18, 19, 22]. It is flexible and can be used for MCAR, 
MAR and MNAR data missing mechanism. In [19], the author described the context 
and situations for which MI method is appropriate. The author emphasized that the goal 
of MI is to provide statistically valid inference in a situation where the end-users and 
database constructors are distinct entities [20] and where the missing data could not be 
traced to any admissible reason. In [18], the author provided the theory and the 
implementation of the MI method using Alzheimer’s disease as a case study. The study 
also discussed the increasing use of MI methods in commercial and free software. Some 
of these software packages [18] that support and implement MI methods are, the list is 
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just a few: STATA [23], S-PLUS [24], AMELIA [25], IVEware [26], SPSS [27, 28], 
and SAS [29]. 

There are two most popular implementations of the MI method in the literature: (1) 
Multivariate imputation by chained equation (MICE) [30-34] for fully conditional 
specification (FCS) approach to MI and (2) AMELIA [25, 35, 36] for the joint modeling 
(JM) approach to MI method. In the FCS approach, the MI method imputes the missing 
data on a variable-by-variable basis [10, 37, 38]. In contrast, in the JM approach, the MI 
method imputes the missing variables based on the assumptions of multivariate 
normality and linearity [39, 21, 40]. These adopted assumptions in the JM approach are 
relaxed in the FCS approach which consequently gives the FCS approach a great deal of 
flexibility, appropriate coverage, popularity, and yields estimates that are generally 
unbiased [30, 38, 41-43]. In [44], the author compared the accuracy of four techniques 
for handling missing data in mental measurement questionnaires. The methods were 
direct deletion, mode, Hot-deck, and multiple imputation by absolute deviation 
imputations. The study found that the multiple imputation method performed best than 
other methods because the biases obtained in it are the smallest in all the proportion of 
missingness considered. 

3.8 Regression Imputation 

This is also called conditional mean imputation [7] or predictive mean imputation [9]. 
In this technique, missing values are replaced by predicted values a using regression 
model on non-missing values of the other features [7, 9]. Each missing value is taken as 
a target variable and the other attributes taken as independent features. Let 𝑋>J be the a 
missing value for the 𝑖=> case, where ℎ ≤ 𝑖, and in the 𝑘=> feature, then the regression 
imputed value will be 

 
𝑋>J = 𝛽k + 𝛽I𝑋&I + 𝛽V𝑋&V+. . . +𝛽m𝑋&m																																																																												(16) 

 
These methods are based on the assumptions that there is a linear relationship 

between the features. However, if the assumption does not hold true, that is, if the 
relationship is non-linear, this method will introduce biases into the dataset. In [45], one 
of the four methods used in handling missing data on crop yield dataset from the 
National Agricultural Statistical Survey (NASS) barley crop yield in 1997, United State 
of America, was regression imputation. Kernel smoothing, universal kriging, and 
multiple imputation methods were the other three. The result of the study showed that 
regression imputation and multiple imputation methods outperformed the remaining two 
methods. 
 
3.9 Hot-Deck Imputation 

This method uses values from among the most similar cases of non-missing data to 
replace the missing values [9, 46, 47]. Let 𝑋>J be a missing value for the 𝑖=> case, where 
ℎ ≤ 𝑖, and in the 𝑘=> feature, then the Hot-Deck imputation is calculated using the 
following  

                   𝑋>J 	= 	𝑋�J, 
where 	

𝑝 = 	𝑎𝑟𝑔min
d � q 𝜎J	(	𝑋>J −	𝑋dJ	)V

J	∈	R(^�^������^�)

																																																		(17)	 

The value,𝜎J, is the standard deviation of the 𝑘=> non-missing feature. Although this 
method preserves the sample distribution [12] for the substituted missing data, it might 



A Review of Missing Data Handling Techniques for Machine Learning 

 

980 
 

alter the relationship between the features. Hot-deck imputation is suitable for handling 
missing values where listwise deletion, mean, or median imputation will not work well 
[5]. Generally, this method is divided into the random hot-deck and the sequential hot-
deck methods [47, 44]. Unlike regression imputation, hot-deck imputation does not 
depend on model fitting to impute the feature, hence it is likely not affected by model 
misspecification [47]. 
 
3.10 K-Nearest Neighbor Imputation 

This is also known as distance-function matching [12]. This method [48] makes a 
random selection of values from its 𝑘 nearest or closest similar cases and the one with 
the smallest distance is taken and used in replacing the missing value [5, 48, 49]. Let 
𝑋>J be a missing value for the ℎ=> case, where ℎ ≤ 𝑖, and in the 𝑖=> feature, using a 
simple distance function, the missing value can be obtained as follows: 

         	
𝑋>J 	= 	𝑋PJ,						𝑞 = 	min	�

	𝑑(	𝑋>J, 𝑋�J	)																																																																									(18) 
                     
and 𝑑t𝑋>J, 𝑋�Jv could be    
                   	

𝑑t	𝑋>J, 𝑋�J	v = 	 q |	𝑋>J −	𝑋&J	|
&	∈	���(�)

																																																																							(19) 

or 
                 	

𝑑t	𝑋>J, 𝑋�J	v = � q 	(	𝑋>J −	𝑋&J	)V
&	∈		���	(�)

																																																																(20) 

 
where K-NN (𝑋>J) is the index of the 𝑘=> closest cases of 𝑋&( from the non-missing 
features. This method is different from others in that an actual value is imputed and not 
a constructed value as in regression imputation. When there is no prior knowledge about 
the data distribution, K-nearest neighbor imputation is the appropriate choice to go for. 
KNN imputation method is a function of the choice of distance measure used. The 
literature contains many different distance metrics [50] that can be used. Some KNN 
extensions are sequential KNN [51], interactive KNN [52, 53], and the combination of 
KNN and local-least square model [54-56]. 

In [49], the author compared some imputation methods for handling missing scores 
(data) in biometric fusion. The study focused on multibiometric systems, which is the 
fusion of multiple biometric information sources. This is because multibiometric 
systems perform better in recognition than uni-modal systems. The imputation 
techniques used for this study were K-nearest neighbor (KNN), the maximum 
likelihood-based, Bayesian-based, and multiple imputation (MI) methods. The 
experiments performed by the authors for the imputation of missing scores at a different 
rate of missingness showed that the KNN-based imputation method outperformed 
others. Also, in [57], the author compared the following imputation methods - mean, 
median, predictive mean matching, KNN, Bayesian linear regression, non-Bayesian 
linear, and random sample imputations - for handling missing numeric data. The study 
found that KNN imputation method performed the best. 
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3.11 Maximum Likelihood 

This method employs all available cases of a given data to construct some parameters 
that would maximize the probability of those values that have been observed [7, 49]. 
This is accomplished by making use of a formula that gives the probability of the data 
as a function of both the data and the parameters to be estimated. Let 𝑋 be the complete 
data as shown in the matrix above, with the associated probability density 𝑓(𝜃 ∨ 𝑋), 
where 𝜃 is the unknown parameter. If 𝑋"#$ and 𝑋%&$$ represent the observed and missed 
data respectively, then 𝑋 = (𝑋"#$, 𝑋%&$$). Hence, the objective of this method is to 
maximize the likelihood 

 	
𝑔(𝜃|	𝑋"#$) = 	� 𝑓(	𝜃|𝑋"#$, 𝑋%&$$	)

�����

	𝑑𝑋%&$$ 																																																												(21) 

 
if 𝑋 is continuous.  And if 𝑋 is discrete, the equation becomes 

                         	
𝑔(𝜃|	𝑋"#$) = 	 q 𝑓(	𝜃|𝑋"#$, 𝑋%&$$	)

�����

																																																																												(22) 

To get the overall likelihood, the products of the likelihoods of all cases is taken. If 
there are 𝑚 cases with complete data and 𝑛 −𝑚 cases with missing data, then the 
likelihood function to be maximized, to get the maximum likelihood of 𝜃, for the whole 
dataset is 
                       	

𝐿(𝜃|𝑋"#$) = 	�𝑓(𝜃|𝑋)	�𝑔(𝜃|𝑋"#$)
X

%YI

%

&rI

																																																																					(23) 

 
where ∏ is a repeated multiplication. For parameter under the missingness mechanism 
of MAR and MCAR, this method gives unbiased estimates and standard errors [7]. The 
maximum likelihood imputation performs better in larger datasets than in smaller 
samples [6] and it is sensitive to the choice of initial starting values [7]. 
 
3.12 Expectation-Maximization 

This method generalises the maximum likelihood estimation to the incomplete dataset 
[1, 7]. It attempts to find the unknown parameters 𝜃 that maximizes the log probability 
density 𝑔(𝜃 ∨ 𝑋"#$) of the observed data. It predicts the missing data using some 
assumed values from the parameters [7]. Then, it updates the parameters using the 
predictions. The process is repeated until the sequence of parameters converges to the 
maximum likelihood estimates. Basically, Expectation-Maximization (EM) method has 
two steps [1, 7], the E-step (predicting the missing values) and the M-step (estimating 
the parameters). The EM algorithm is as seen in Algorithm 1. 
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EM assumes MAR data missing mechanism and its convergence to a local maximum 
of the likelihood function is said to be guaranteed. However, its convergence rate 
depends on the fractions of missing data. Low missingness produces fast convergence, 
while high missingness produces slow convergence.  

In [58], the author employed six imputation methods for handling the missing data in 
air quality, Malaysia. The imputation methods are mean, median, EM, singular value 
decomposition (SVD), KNN, and sequential K-nearest neighbor (SKNN) imputation 
methods. Using the correlation coefficient, the index of agreement and the mean 
absolute error as evaluation metrics, the study found out that EM is one of the three best 
methods for all the eight monitoring stations considered, the other two were KNN and 
SKNN. 
 
3.13 Artificial Neural Network 

Artificial Neural Networks (ANN) refers to a computing system inspired by how 
biological neural network systems, such as brain, process information [59]. ANN is also 
known as neural nets or neural networks or artificial neural systems. Just as the human 
or biological neural network contains many interconnected neurons, the ANN also 
consists of multiple layers of simple processing elements called artificial neurons that 
are interconnected to perform the function of collecting inputs and generating output 
[59, 60]. With the great potential of ANNs to process information with high speed in a 
massive parallel implementation, the use of ANN in several discipline and applications 
has increased over the years [61]. Particularly, in the imputation of missing values for 
machine learning. 

In [62], the author proposed a mechanism for processing missing data by neural 
networks. Neuron’s response in the first hidden layer was replaced by its expected 
value. The study noted that, this method does not require complete data for its training. 
That is, it trained neural network on datasets with only incomplete samples. The method 
was compared with other imputation methods for incomplete data in the literature, using 
7 different datasets, and it gave better results than them. In [63], the author proposed an 
imputation method that uses an auto-encoder neural network. The auto-encoder was 
trained using the training data, without the missing values, to be better equipped to 
predict the missing values. Afterwards, the trained autoencoder was used to predict 
missing values, using the training data with missing values, with the idea that a good 
choice for replacing each missing value will be the one that can reconstruct itself by 
means of the auto-encoder. The method was compared with eight other imputation 
methods using fourteen different datasets and eight classification techniques. The results 
[63] showed that the performance of the proposed method is noticeably better than other 
methods for higher missing rates. 
 
3.14 Deep Learning 

Deep Learning (DL) [64, 65] is a subset of machine learning that has several layers 
(excluding the input and output layers) of ANNs that carry out the machine learning 
process. DL, also called deep neural network or deep nets, is an ANN with multiple 
hidden layers. With the multiple layers in DL, there is an advantage of performing 
complex tasks that often require extensive feature engineering and better self-learning 
capabilities. This also goes for its ability to handle missing values [66-71] in datasets.  

In [66], the author used a DL method, with 15 hidden layers using Rectified Linear 
Unit as the activation function, for the imputation of missing data in attention-
deficit/hyperactivity disorder (ADHD). The imputed datasets were used to distinguish 
youths with ADHD from those without it. A dataset of 1220 youths recruited in 
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Northern Taiwan was employed for the study with 799 youths having ADHD and 421 
without ADHD. The performance of the DL method used was evaluated using support 
vector machine classifier, and the study found out that the result of the classifier on the 
imputed dataset (which is 89% accuracy) is the same as the result of the classifier on the 
original dataset (without missing values). This shows that the DL imputation method 
does not introduce any bias toward the data when imputing the missing values.  

In [67], the author proposed an imputation method based on DL for imputing missing 
traffic data. Specifically, the authors used denoising stacked autoencoder (DSAE) for 
the DL architecture which consist of a denoising autoencoder (DAE) and stacked 
autoencoder (SAE). The study treated the traffic data (including both the observed and 
missing values) as a single data and conducted the complete data restoration using this 
method. Data from Caltrans Performance Measurement System (PeMS) was used and 
the results from the study showed that, at different missing rate, the errors were kept at a 
stable level. 

In [68], the authors proposed the generative adversarial multiple imputation network 
(GAMIN) for highly missing data. That is, for 80% and above missing data. The 
generative adversarial network (GAN) [69] is a popular DL approach for missing data 
imputations for large datasets. However, among other changes done in GAMIN, the 
authors incorporated the unconditional generator directly into the imputation process, 
used a different confidence prediction method, a new loss function was used to train 
GAMIN and the mask of missing data itself was utilized instead of the mask generation. 
The results of the study, for both modified National Institute of Standards and 
Technology (MNIST) and CelebFaces Attributes (CelebA) Datasets, demonstrated the 
better performance of the proposed method as compared to the method used in [72, 73]. 
 
3.15 Genetic Algorithm 

Genetic Algorithm (GA) is a population-based optimization algorithm, inspired by the 
biological evolution process [74, 75]. GA, proposed by J.H. Holland [76, 77], has the 
following basic elements, namely, chromosome representation, fitness selection, and 
biological-inspired operators (which are selection, mutation, and crossover). In form of 
strings, the collection of chromosomes is called a population which will be initially 
created randomly. This represents different points in the search space with their 
associated objective and fitness functions. A few of the "fittest" strings are selected into 
the mating pool, and the biologically inspired operators are applied on these strings to 
produce a new generation of strings [74, 78, 79]. This process is repeated until a 
satisfactory termination condition is reached, or a desired number of generations is 
obtained. GA imputation method has been used to address the three types (MCAR, 
MAR NMAR) of missing values mechanism and different types of variables in the 
literature [80-85]. 

In [80], the author proposed a method for imputing missing data based on GA and 
Information Gain (IG). While GA was used to generate optimal sets of missing values 
in the dataset, IG was used to measure the performance of each solution. The authors 
indicated that the imputation method is suitable for large dimensional search spaces 
with a higher rate of missing values. Comparing this proposed method with some 
existing single and multiple imputation techniques, using 5 different datasets, the study 
reported that the proposed method outperformed others. In [81], the authors proposed a 
combination of GA and Asexual Reproduction Optimization (ARO) algorithm. The 
combined algorithm was used to evaluated on Pima and Mammographic mass datasets, 
The performance was compared with other imputation techniques namely Mean, KNN, 
support vector machine (SVM) and it was found that it outperformed them. The 
combined proposed algorithm took less computational time than the basic GA. 
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3.16 Particle Swarm Optimization 

Particle swarm optimization (PSO) algorithm is an evolutionary optimization algorithm 
proposed by [86]. The algorithm simulates the social behaviour of animals, such as 
insects, birds, and fishes, in their search pattern for food. This pattern keeps changing 
and updating according to the learning experiences of each member of the swarms [86, 
87]. PSO has been employed in the imputation of missing data by different authors. In 
[88], the author proposed a missing data imputation method based on the PSO algorithm 
to minimize the error function obtained from the covariance matrix of the complete 
record (excluding the missing data) and the covariance matrix of the total records 
(which include the imputed data). The PSO algorithm was also used to minimize the 
error function derived from the determinant of these covariance matrices. The algorithm 
[88] stops when these two errors become acceptably small across to consecutive 
iterations. Similarly, in [89], the authors used the PSO to minimize these two mentioned 
error functions. However, the two imputation methods proposed by this study [89] 
involved PSO, evolving clustering method (ECM) and a modified version of 
autoassociative extreme learning method (MAAELM). The proposed imputation 
methods were tested on twelve different datasets and were compared with other hybrid 
imputation algorithms. One of the proposed methods, PSO + ECM, performed better 
than other existing algorithms in six out of the twelve datasets were used while the 
second one, PSO + ECM + MAAELM, performed better than other algorithms in nine 
out of twelve datasets used. 

In [90], the missing values in the heart disease dataset were handled by an imputation 
method based on Fuzzy C-Means and Particle Swarm Optimization (FCMPSO). The 
study showed that the performance of the Decision tree, which is the classification 
method used, was increased after the application of FCMSPO for missing data 
imputation. 
 
3.17 Matrix Completion 

The matrix completion method, proposed by [91], operates with some assumptions on 
the data matrix to create a well-posed problem. The assumption could be that the data 
matrix has a maximal determinant, positive definite or low rank [92]. If it is assumed 
that the data matrix is low rank, the entries are correlated. Hence, the missing entries 
could be recovered in a convex optimization context if there is sufficient observed 
entries [91, 93]. The formula for this recovery method is given as [94]: 

                           	
                     𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒			𝑟𝑎𝑛𝑘(𝑀)   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜				𝑃Ω(𝑀) = 	𝑃Ω(𝑋),																																																																																									(24) 
 

where 𝑀 is the optimization variable, 𝑋 is the matrix to be estimated, 𝛺 is the set that 
contains the positions of the available observations in the matrix 𝑋, and 𝑃� is the 
orthogonal projector into the subspace of matrices that vanish outside of 𝛺. However, 
for entries on 𝛺 that are sampled uniformly at random [91], the solution for equation 
(24) is obtained by solving the convex relaxation equation [94] 

 
                   𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒			‖𝑀‖∗ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜				𝑃Ω(𝑀) = 	𝑃Ω(𝑋),																																																																																								(25) 
 
‖𝑀‖∗ denotes the nuclear norm of the matrix 𝑀. The following literature [95-99] are 

existing theory on matrix completion with different assumptions. 
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3.18 Decision Tree Method 

Decision Tree [100-104], such as Random Forest [105], is a popular supervised learning 
algorithm that is used to build both classification and regression models. The method 
splits the given dataset into subsets (called decision nodes) based on the level of the 
significance of the attributes. The most significant predictor is known as the root node. 
The nodes which cannot be split further are called terminal or leaf nodes. The splits 
follow a set of if-else conditions, and the classification is done according to these 
conditions. Some attribute selective measure used in decision trees are Entropy, 
Information gain, Gini index, Gain Ratio, Reduction in Variance and Chi-Square. Aside 
from the fact that decision trees are easy to read and interpret, it also has a good way of 
handling missing values and outliers [101-103]. Hence, the presence of missing data 
and outliers have little influence on decision tree’s data. Decision trees algorithms have 
an advantage of performing well in handling the MCAR, MAR values, and to some 
appreciable level in NMAR values [105]. The method performs the missing values 
estimation task by building a tree-like structure for each feature containing the missing 
value entries, and the missing values of each feature are filled by using its 
corresponding tree [101]. 

4. EVALUATION METRIC FOR MISSING DATA HANDLING 
TECHNIQUES 

A vital step to take after employing the techniques for dealing with missing values, 
mentioned in Section 3, is the evaluation of the imputation methods used. There are two 
dimensional aspects to evaluating these missing data imputation techniques: (1) 
evaluation of imputation quality; and (2) evaluation using downstream prediction tasks. 
The two dimensions are discussed in the sub-sections below. The list is not intended to 
be exclusive. 
 
4.1 Imputation Quality 

The purpose of using imputation quality metrics is to compare the predicted values with 
the actual values to know how close the prediction is to the actual. In this section, some 
imputation quality metrics are selected and explained. More of these evaluation metrics 
can be seen in the following literature [106-109]. 
 
4.1.1 Root Mean Square Error 

Most studies [13, 110, 111, 112] employed the root mean square error (RMSE) to 
measure the imputed and observed data difference. The RMSE represents the standard 
deviation of the difference, and it given as 

                     	

𝑅𝑀𝑆𝐸 = 	}
1
𝑛
	q(𝑋&"#$ −	𝑋&

&%�e=f�)V
X

&rI

																																																																													(26) 

 
RMSE represents the quadratic mean of the imputed and observed data differences. 

The value of RMSE is always non-negative and a lower value is better than a higher 
value. One major disadvantage of RMSE is that it is sensitive to outliers. 
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4.1.2 Root Mean Squared Percentage Error 

The root mean squared percentage error (RMSPE) is the RMSE expressed as a 
percentage. It is given as 

                     	

𝑅𝑀𝑆𝑃𝐸 = 	}
100
𝑛
	q�

�𝑋&"#$ 	−	𝑋&
&%�e=f��

�𝑋&"#$�
 
VX

&rI

																																																																(27) 

 
One prominent advantage of RMSPE is the scale-independent property [113], hence 

it can be used to compare forecast performance across different datasets. Smaller values 
of RMSPE indicates better performance of the imputation methods used. 
 
4.1.3 Mean Squared Error 

Mean Square Error (MSE) is the average squared difference between the imputed and 
observed values. It is given as 

                    	

𝑀𝑆𝐸 = 	
1
𝑛
	q(𝑋&"#$ −	𝑋&

&%�e=f�)V
X

&rI

																																																																																	(28) 

 
The value of MSE is always non-negative and the values closer to zero are much 

preferable. MSE has a higher unit order than the error unit, this is due to the square of 
the error. MSE has low reliability [109], it might give different results for a different 
fraction of the dataset. 
 
4.1.4 Mean Absolute Error 

The average or mean of all absolute errors. It is denoted by MAE, and it is one of the 
top three evaluation metrics popularly used in literature [114]. It is given as 

                    	

𝑀𝐴𝐸 = 	
1
𝑛
	q�𝑋&"#$ −	𝑋&

&%�e=f��
X

&rI

																																																																																				(29) 

 
The MAE seems to be the most intuitive evaluation metric because it takes the 

absolute difference between the actual and the predicted or imputed data. Also, due to 
the use of absolute value, there is no indication of over-performance or under-
performance of the model in MAE [115]. It is robust to outliers. 
 
4.1.5 Mean Absolute Percentage Error 

The mean absolute percentage error (MAPE) is the MAE expressed as a percentage. 
MAPE also has an intuitive interpretation, like MAE, since percentages are easy to 
understand. It is one of the top three evaluation metrics popularly used in the literature 
[114]. It is given as 
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𝑀𝐴𝑃𝐸 = 	
100
𝑛
	q

�𝑋&"#$ 	−	𝑋&
&%�e=f��

�𝑋&"#$�

X

&rI

																																																																														(30) 

 
Like MAE, MAPE has the advantage of the absolute value used in the formula. It is 

robust to outliers. However, unlike the MAE, MAPE could be undefined if the actual 
value is zero, grow unexpectedly large if the actual value is minimal, and it is biased if 
the predicted value is less than the actual value [115]. 

 
 
4.1.6 Mean Absolute Scaled Error 

The mean absolute scaled error, MASE, is the mean absolute error of the imputed or 
predicted values divided by the mean absolute error of the naive prediction. MASE was 
proposed by [113] to be the standard evaluation measure for comparing forecast 
accuracy. It is given as 

                     	

𝑀𝐴𝑆𝐸 = 	
	1𝑛	∑ �𝑋&"#$ −	𝑋&

&%�e=f��X
&rI

	 1
𝑛 − 1	∑ �𝑋&"#$ −	𝑋&iI"#$�X

&rV

																																																																												(31) 

 
The limitation associated with MAPE does not affect MASE. Some of the favourable 

properties of MASE are scale invariance, predictable behaviour as the actual value tends 
to 0, easy interpretation, and the ability to penalize both negative and positive predicted 
values as well as large and small predicted values equally [113]. MASE is robust to 
outliers. 
 
4.1.7 Mean Relative Absolute Error 

The mean relative absolute error (MRAE) is the mean absolute error divided by the total 
absolute error of the simple predictor. The MRAE expresses how large the MAE is 
compared to the total size of the observed data. The formula is given by 

                      	

𝑀𝑅𝐴𝐸 = 	
1
𝑛
	q

�𝑋&"#$ 	−	𝑋&
&%�e=f��

�𝑋&"#$ − 𝑋¢�

X

&rI

																																																																																(32) 

 
where 𝑋 is the mean of the data. The MRAE is fairly robust to outliers but sensitive 

to values that are zero or almost zero. It could be undefined if the predicted value is 
equal to the actual value [109, 113]. 
 
4.1.8 Coefficient of Determination (R2) 

The coefficient of determination, denoted by CoD or 𝑅V, is the square of the correlation 
(that is, how strong a linear relationship of two variables is) between predicted values 
and the actual values [13]. It is also known as the "goodness of fit". The formula is 
given as 

	

𝐶𝑜𝐷 = 1 −	
∑ t𝑋&"#$ −	𝑋&

&%�e=f�v
VX

&rI

∑ t𝑋&
"#$ −	𝑋¢v

VX
&rI

																																																																											(33) 
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where 𝑋 is the mean of the data. The values range from 0 to 1. And a higher 𝑅V is an 
indicator of a better performance than a lower R2. The coefficient of determination 
metric is a widely used evaluation, but it is limited to size differences between the 
imputed and observed data [116].  

A properties’ summary of the evaluation metrics presented above can be seen in 
Table 1. In [117], five distance measures were used to evaluate the performance of the 
missing data handling techniques. In [13], five evaluation metrics namely Root Mean 
Square Error (RMSE), Absolute Bias, Percent Absolute Error in Means, 𝑅V (coefficient 
of determination), and Mean Absolute Error were used to evaluate the performance of 
the missing data handling techniques. The metric used for evaluation in [45] was the 
mean absolute prediction error only. While in [110], the evaluation metrics used were 
RMSE, unsupervised classification error (UCE), supervised classification error (SCE) 
and execution time. However, in [8], the author employed some classification 
algorithms to evaluate the performance of the techniques used in handling the missing 
data. 
                 Table 1: A Summary of the Evaluation Metrics 
 

S/N Evaluation 
Metrics 

Performance Value Sensitivity to 
Outliers 

Scale 
Dependency 

1 RMSE Small value indicates 
better performance 

 Yes No 

2 RMSPE Small value indicates 
better performance 

 Yes  No 

3 MSE Small value indicates 
better performance 

 Yes  No 

4 MAE Small value indicates 
better performance 

 No  No 

5 MAPE Small value indicates 
better performance 

 No  Yes 

6 MASE Small value indicates 
better performance 

 No  No 

7 MRAE Small value indicates 
better performance 

 No  Yes 

8 CoD Value near 1 indicates 
better performance 

 No  No 

 
                
4.2 Imputation Evaluation Using Downstream Prediction Tasks 

The purpose of using downstream prediction tasks is to evaluate the accuracy of the 
imputed data after the missing data imputation process. Some downstream prediction 
metrics are selected and explained in this sub-section. 

 
4.2.1 Confusion Matrix 

A confusion matrix [118] (see Figure 3), also called an error matrix, is a table used to 
describe the performance of a classification model on the imputed data after the 
imputation process. The matrix is divided into four parts namely True Positive (TP), 
False Positive (FP), False Negative (FN), and True Negative (TN). TP values are 
obtained when the classification model, after the imputations, predicts an observation 
belongs to a class and it does belong to that class. FP values are obtained when the 
model, after the imputations process, predicts an observation belongs to a class while it 
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does not belong to that class. FN values are obtained when the model, after the 
imputations, predicts an observation does not belong to a class while it belongs to that 
class. TN values are obtained when the model, after the imputations, predicts an 
observation does not belong to a class and, in truth, it does not belong to that class. 

                         Figure 3: Confusion Matrix for Prediction on the Imputed Data 

The errors incur when the classification model predicts positive based on the imputed 
data whereas the actual situation is negative are called type-1 errors. While the errors 
incur when the classification model predicts negative based on the imputed data 
whereas the actual situation is positive are called type-2 errors. Depending on the 
problem at hand, type-1 errors could be more of a concern than type-2 errors or vice 
versa [118]. 
 
4.2.2 Recall, Precision and Accuracy 

From the confusion matrix, the following terms namely recall, precision, and accuracy 
can be identified and used to evaluate the performance of the imputation methods used. 

 
Recall, also called sensitivity or True positive rate, is the percentage of the total relevant 
outcome correctly predicted or classified by the algorithm based on the imputed data 
after the imputation process. Recall should be employed when the costs of FN is high. 
The formula for recall is given in Equation (34). 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑜𝑡𝑎𝑙𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

																																																													(34) 
 
Precision, which is also called Positive Predictive Value (PPV), is the fraction of 
positive predictions that are correct based on the imputed data after the imputation 
process. Precision should be employed when the costs of FP is high. The formula is 
given in Equation (35). 
     	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

																																																							(35) 
 
Accuracy is the fraction of the total number of predictions that were correctly predicted 
based on the imputed data after the imputation process. The formula for accuracy is 
given in Equation (36). 
   	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
=
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

																																								(36) 
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4.2.3 F1-score 

F1-score is the harmonic mean of recall and precision. For a balance between precision 
and recall, F1-score is needed. This is essential for a problem seeking to achieve a good 
recall and precision. Obtaining a high recall means you have low precision and vice 
versa. Hence, the F1-score shows the predictive power of the classification model on the 
imputed data, after imputations on the dataset. The formula for F1-score is shown in 
Equation (37).  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

																																																																								(37) 
 
4.2.4 Receiver Operating Characteristic 

The Receiver Operating Characteristic (ROC) curve shows the performance of the 
classification model on the imputed data at all different thresholds. It is graph plotted 
between the TP rate ( ©ª

©ªY«�
) at the y-axis and FP rate ( «ª

«ªY©�
) at the x-axis. The ROC 

curve is better calculated using the Area under the curve (AUC) plot. This AUC ROC 
plot is most popular because it checks the curve of different machine learning models 
using different thresholds. It is scaled variant and focuses on the quality of the model’s 
prediction. 

5. CASE STUDIES OF THE MISSING DATA HANDLING 
TECHNIQUES 

The techniques discussed in Section 3 have been applied in different fields of study. 
Table 2 shows some case studies where these missing data handling techniques have 
been used and the different metrics employed in evaluating the performances of the 
imputation techniques/methods. The best imputation method reported by each of the 
studies is also mentioned. 

                   Table 2:  A Summary of the Missing Data Handling Techniques 
S/N Citation Case Study Metrics 

Used 
Number of 
Imputation 

Methods 
Used 

Best 
Imputation 

Method 

1 Malarvizhi and 
Thanamani [14] 

UK Census  
Report in 2021 

Accuracy 4 Median 
and 
Standard 
deviation 

2 Jadhav et. al. 
[57] 

Wine Dataset, 
Glass 
Identification, 
Concrete 
Comprehensive 
Strength, Indian 
Liver Patient 
Dataset, Seeds 
Dataset  

NRMSE 7 KNN 

3 Ding and Ross 
[49] 

Biometric Fusion ROC 7 GMM-
KNN 

4 Le et. al. [119] Healthcare  RMSE, Exe- 4 EM 



Luke Oluwaseye Joel, Wesley Doorsamy, Babu Sena Paul 

 

991 
 

Dataset cution time 
5 Cihan et. al. 

[120] 
Veterinary Da-
taset 

RMSE, Exe-
cution time, 
SCE, Accu-
racy, Recall, 
Precision, 
Kappa 

5 missForest 

6 Hadeed et. al. 
[13] 

Air Pollutants Da-
taset 

Absolute Bi-
as, PAEM, 
R2, RMSE, 
MAE 

7 Markov, 
Random, 
and Mean 

7 Xu et. al. [44] Mental  
Measurement 

AD, RMSE, 
ARE 

4 MI 

8 Krishna and 
Ravi [88] 

Boston Housing, 
Forest Fire, Auto 
mpg, Body Fat, 
Pima Indians, Iris, 
Spectf, Wine, 
Banking 
Bankruptcy 
Datasets.  

MAPE 2 PSO 

9 Salleh and 
Samat [90] 

Heart Disease 
Classification 

Accuracy, 
Precision, 
ROC 

4 FCMPSO 

10 Gautam and 
Ravi [89] 

Boston Housing, 
Forest Fire, Auto 
mpg, Body Fat, 
Pima Indians, Iris, 
Spectf, Wine, and 
Banking 
Bankruptcy 
Datasets. 

MAPE 14 PSO + 
ECM 
+ 
MAAELM 

11 Shahzad et. al. 
[80] 

Labor, Echocardi-
ogram, Cylinder 
Bands, Mammo-
graphic Mass, and 
Colic-Horse Da-
tasets  

Accuracy, 
Precision, 
Recall, f-
measure, 
ROC 

6 GA 

12 Priya and 
Sivaraj [83] 

Microarray 
Classification 

RMSE 4 DRAGEL 

13 Priya et. al. [82] Engineering 
Students Weight, 
Housing and 
Adult Datasets 

Accuracy 6 GA 

14 Noei and 
Abadeh [81] 

Pima Indians and 
Mammographic 
Mass Datasets 

Accuracy, 
ROC 

5 ARO 

15 Duan et. al. [67] Traffic Data RMSE, 
MAE, MRE 

2 DSAE 

16 Xu et. al. [121] Adult Datasets Accuracy 6 MIAEC 
17 Sefidian and 

Daneshpour 
[122] 

Iris, Wine, Glass, 
Haberman, 
Wholesale Cus-
tomers, Chess, 

RMSE, 
MAE, R2 

6 GFCMI 
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and Adult Da-
tasets. 

 
The following is the list of abbreviations used in Table 2 that were not in the paper 

before. Normalized RMSE (NRMSE); KNN imputation via Gaussian mixture model 
(GMM-KNN); supervised classification error (SCE); Percent Absolute Error in Means 
(PAEM); Absolute deviation (AD); Average relative error (ARE); Fuzzy C-Means and 
Particle Swarm Optimization (FCMPSO); evolving clustering method (ECM); modified 
auto-associative extreme learning machine (MAAELM); dynamic Bayesian genetic 
algorithm (DBAGEL); genetic and Asexual Reproduction Optimization (ARO); mean 
relative error (MRE); denoising stacked autoencoder (DSAE); missing value imputation 
algorithm based on the evidence chain (MIAEC); Grey based Fuzzy c-Means and 
Mutual Information (GFCMI). 

6. DISCUSSION 
In this section, some discussions and recommendations are outlined. First, it should be 
noted that the choice of the techniques to employ in dealing with any missing data, in 
each problem, depends on the nature of the missing data. Whether the missingness 
mechanism is either MCAR, MAR or MNAR. The listwise deletion method is unbiased 
for MCAR missing mechanism but gives inefficient results for all the missing data 
mechanism. All the techniques examined so far generate biased results for MNAR 
missing mechanism, and this can only be addressed by considering some additional 
information.  

Second, it is advisable to use all the available data when performing missing data 
analyses. That is, the use of listwise or pairwise deletion should be highly discouraged. 
This is because all data provided are usable, none should be discarded, and each carries 
some information that could contribute meaningfully to the analysis. However, the 
deletion method might be used in a special situation when the data size is huge and the 
missing data is very small (say, less than or equal 1%). For example, listwise deletion, 
as mentioned before, reduces sample size and statistical power greatly, thereby 
increasing standard and type II error. Similarly, the use of single imputation methods 
should be discouraged. This is because most of the single imputation methods are 
biased under MCAR mechanism, and they fail to produce correct standard errors for 
hypothesis testing. 

Third, a good and clear understanding of the different evaluation metrics’ statistical 
properties is needed to select the appropriate measures for the performance of the 
different imputation methods that might be used in handling the missing data. This is 
important because each metric has some disadvantages that could lead to inaccurate 
performance measurements. Table 3 shows some advantages and disadvantages of each 
of the missing data handling techniques. 
 
    Table 3: Advantages and Disadvantages of Missing Data Handling Techniques 

S/N Imputation 
Method 

Advantages Disadvantages 

1 Listwise 
Deletion 

-  It is easy to implement.  

- Appropriate for a small number 
of missing values and large 
dataset. 

- May cause bias in the 
estimates. 

- It requires a large data sam-
ple to be used.  
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- Not appropriate for a large 
number of missing values. 

- It reduces statistical power. 

2 Pairwise 
Deletion 

-  It is easy to implement.  

- Appropriate for a small number 
of missing values and large 
dataset. 

- May cause bias in the 
estimates 

- It requires a large data sam-
ple to be used.  

- Not appropriate for a large 
number of missing values. 

- It reduces statistical power 

3 Mean -  It is easy to implement.  

- Appropriate for a small number 
of missing values. 

- May cause bias in the 
estimates 

- Leads to an underestimate 
of the errors 

- May cause changes in the 
co-variance and variance. 

- Not appropriate for a large 
number of missing values. 

4 Median -  It is easy to implement.  

- Appropriate for a small number 
of missing values. 

-  May cause changes in the 
co-variance and variance. 

- May cause bias in the 
estimates. 

5 Mode -  It is easy to implement  

- Suitable for categorical data. 

- Appropriate for a small number 
of missing values. 

- It favors most frequent 
value. 

-  May cause changes in the 
co-variance and variance. 

- May cause bias in the 
estimates. 

6 LOCF - It is easy to understand and 
implement. 

- Appropriate for time-series data. 

- Appropriate for a small number 
of missing values. 

- May cause bias in the 
estimates. 

- It underestimates the 
variability of the results. 

 

7 MI - It restores the natural variability 
of the missing values. 

- It incorporates the uncertainty 
nature of the missing data. 

- It produces a valid statistical 
inference. 

- It produces unbiased estimates 

- It is difficult to implement. 

- It requires 

large sample size to produce 
stable estimates 

- It gives slightly different 
estimates each time. 
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of all parameters. 

- It is robust. 

- It is suitable for small sample 
size or a high number of missing 
data. 

8 Regression - It maintains the sample size of 
the data. 

- It reduces the standard error. 

- It requires large sample size 
to produce stable estimates. 

9 Hot-Deck - It better approximates the 
standard deviation of the imputed 
values. 

- It preserves the population 
distribution. 

- May not work when there 
exists no correlation among 
the features. 

- It is difficult to implement. 

- It requires large sample size 
to produce stable estimates. 

10 KNN - Smaller bias for linear 
relationship between the 
variables. 

- It preserves the population 
distribution. 

- It can handle any types of 
missing data. 

-  It is easy to implement 

- It could be computationally 
expensive with more 
variables. 

- It requires large sample size 
to produce stable estimates. 

 

11 Maximum 
Likelihood 

- It produces unbiased parameter 
estimates and standard errors. 

- It is robust. 

- It is suitable for a high number 
of missing data. 

- It is difficult to implement. 

- The covariance matrix may 
be indefinite. 

- It requires large sample size 
to produce stable estimates. 

12 EM - It is guaranteed to converge to a 
local maximum. 

- It generally outperforms popular 
single imputation methods. 

- It produces unbiased parameter 
estimates and standard errors. 

- It is robust. 

- It is suitable for a high number 
of missing data. 

- Might take a long time to 
converge. 

- It is difficult to implement. 

- It requires large sample size 
to produce stable estimates. 

- It is model specific. 

13 ANN - It is suitable for a high number 
of missing data. 

- It is adaptive to interactions and 

- It is difficult to implement. 

- It requires large sample size 
to produce stable estimates. 
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nonlinearity. 

- It produces unbiased parameter 
estimates and standard errors. 

- It can handle any types of 
missing data. 

- It is robust. 

- It needs little domain knowledge 
to impute the missing data. 

-  It is guaranteed to perform well 
in most problems. 

14 DL - It is suitable for a high number 
of missing data. 

- It is adaptive to interactions and 
nonlinearity. 

-  It produces unbiased parameter 
estimates and standard errors. 

- It can handle any types of 
missing data. 

- It is robust. 

- It needs little domain knowledge 
to impute the missing data. 

-  It is guaranteed to perform well 
in most problems. 

- It is difficult to implement. 

- It requires large sample size 
to produce stable estimates. 

 

15 GA - It is suitable for a high number 
of missing data. 

- It is adaptive to interactions and 
nonlinearity. 

- It produces unbiased parameter 
estimates and standard errors. 

- It is robust. 

-  It is guaranteed to perform well 
in most problems. 

- It can handle any types of 
missing data. 

- It is difficult to implement. 

- It requires large sample size 
to produce stable estimates. 

 

16 PSO - It is suitable for a high number 
of missing data. 

- It is adaptive to interactions and 
nonlinearity. 

- It produces unbiased parameter 
estimates and standard errors. 

- It is difficult to implement. 

- It requires large sample size 
to produce stable estimates. 
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Fourth, some practical steps in deciding which missing data handling techniques to 

use are as follows: (i) Check the percentages of the missing values in each dataset 
variable and determine the level of importance of the variables containing the missing 
values. This can be done by looking into the correlation between the independent and 
target variables. (ii) If a variable(s) is not important to the analysis and it contains some 
missing values, then it can be deleted (that is, pairwise deletion). However, if a 
variable(s) is important and contains missing values, then the consideration on which 
imputation techniques to use is needed. (iii) Select at least any three imputation 
techniques of interest to test on the dataset and the one which best satisfies the 
following criteria - unbiased estimates, retains the sample size and reduces standard 
errors - should be taken. While some of the imputation techniques mentioned above 
readily meet these criteria, others could also meet these criteria in specific situations. 

Sixth, recent research is coming up with some state-of-art methods, such as artificial 
intelligence (like neural networks) or optimization algorithms (like GA and PSO) or the 
combination of both, for the approximation of missing data [81, 123-125]. These 
methods are increasingly being used to handle missing data because they perform 
appreciably well in highly non-linear scenarios. 

Seventh, in Table 4, a summary of the missing data handling techniques, mentioned 
in Section 3, based on their suitability of the data types and missing data mechanism 
they can handle, is given. 
 
 
 

- It is robust. 

-  It is guaranteed to perform well 
in most problems. 

- It can handle any types of 
missing data. 

17 Matrix 
Completion 

- It is suitable for a high number 
of missing data. 

- It is adaptive to interactions and 
nonlinearity. 

-  It produces unbiased parameter 
estimates and standard errors. 

- It is difficult to implement. 

- It requires large sample size 
to produce stable estimates. 

18 Decision 
Tree 

- It can handle any types of 
missing data. 

- It is adaptive to interactions and 
nonlinearity. 

- It is suitable for a high number 
of missing data. 

- It produces unbiased parameter 
estimates and standard errors. 

-  It is guaranteed to perform well 
in most problems. 

- It is difficult to implement. 

- It requires large sample size 
to produce stable estimates 
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                Table 4: A Summary of the Missing Data Handling Techniques 
S/N Imputation Method Suitable Data Types Suitable Missing 

Mechanism 
1 Listwise Deletion Numerical/Categorical MCAR 
2 Pairwise Deletion Numerical/Categorical MCAR 
3 Mean Numerical MAR 
4 Median Numerical MAR 
5 Mode Numerical/Categorical MAR 
6 LOCF Numerical (Time series) MAR 
7 MI Numerical MAR, NMAR 
8 Regression Numerical MAR 
9 Hot-Deck Numerical MAR 
10 KNN Numerical MAR 
11 Maximum Likelihood Numerical MAR, NMAR 
12 EM Numerical MAR, NMAR 
13 ANN Numerical/Categorical MAR, NMAR 
14 DL Numerical/Categorical MAR, NMAR 
15 GA Numerical/Categorical MAR, NMAR 
16 PSO Numerical/Categorical MAR, NMAR 
17 Matrix Completion Numerical/Categorical MAR, NMAR 
18 Decision Tree Numerical/Categorical MAR, NMAR 

 

7. CONCLUSION 
This study reviews some techniques employed in handling missing data in Machine 
learning projects. It has been established that missing data handling techniques, 
specifically the imputation methods, are useful and relevant in all fields – engineering, 
healthcare, e-commerce, finance etc. It is good to note that there is no single best way to 
handle missing data. Experimentation of different techniques is necessary to decide 
which technique is best for a particular missing data problem based on the evaluation 
metrics employed.  

However, since each of these missing data handling techniques discussed above have 
assumed some statistical properties or the other, it should be noted that some model-
based, artificial intelligence or optimization algorithm imputations are less biased and 
produced less errors than most other methods. The lack of use of these high performing 
imputation methods may be due to poor familiarity and some misconceptions of 
researchers about them. It could also be due to their computational complexity and lack 
of programming tools or packages to implement the algorithms compared to other 
missing data handling techniques. 

ACKNOWLEDGMENT 
The authors would like to thank the University of Johannesburg, South Africa for 
supporting this research project.  

CONFLICT OF INTERESTS 
The authors would like to confirm that there is no conflict of interests associated with 
this publication and there is no financial fund for this work that can affect the research 
outcomes. 



A Review of Missing Data Handling Techniques for Machine Learning 

 

998 
 

REFERENCES 
[1]  Kang H. The prevention and handling of the missing data. Korean journal of 

anesthesiology, 2013; 64(5); 402-406. 
[2]                        Yan  T.  and  Curtin  R.  The  relation  between  unit  nonresponse  and  item  non-

response:  A  response  continuum  perspective.  International  Journal  of Public 
Opinion Research, 2010; 22(4); 535-551. 

[3]   De Leeuw E.D., Hox J.J. and Huisman M. Prevention and treatment of item 
nonresponse. Journal of Official Statistics, 2003; 19; 153-176. 

[4]     Chaitanya Baweja. Employees.csv. Available at: 
https://github.com/ChaitanyaBaweja/Programming-
Tutorials/blob/master/Missing-Data-Pandas/employees.csv,  Accessed     on    21 
December 2020. 

[5]          Ochieng’Odhiambo F. Comparative study of various methods of handling missing 
data. Mathematical Modelling and Applications, 2020; 5(2); 87-93. 

[6]       Little R.J.A. and Rubin D.B. (2002) Statistical Analysis with Missing Data. John 
Wiley & Sons, Inc., USA. 

[7]  Song Q. and Shepperd M. Missing data imputation techniques. International 
journal of business intelligence and data mining, 2(3); 261-291; 2007. 

[8]        Makaba T. and Dogo E. A comparison of strategies for missing values in data on 
machine learning classification algorithms. In 2019 International 
Multidisciplinary Information Technology and Engineering Conference 
(IMITEC), 2019, pp. 1-7. 

[9]  Sim J., Lee J.S. and Kwon O. Missing values and optimal selection of an 
imputation method and classification algorithm to improve the accuracy of 
ubiquitous computing applications. Mathematical problems in engineering, 2015; 
2015; 1-14. 

[10]   Stef Van Buuren. (2018) Flexible imputation of missing data. CRC press, USA. 
[11]  IBM Support. (2020) Pairwise vs. listwise deletion: What are they and when 

should I use them? Available at: https://www.ibm.com/support/pages/pairwise-vs-
listwise-deletion-what-are-they-and-when-should-i-use-them Accessed on 21 
December 2020. 

[12]  Houari R., Bounceur A., Tari A.K. and Kecha M.T. Handling missing data 
problems with sampling methods. In 2014 International Conference on Advanced 
Networking Distributed Systems and Applications, 2014, pp. 99-104. 

[13] Hadeed S.J, O’Rourke M.K., Burgess J.L, Harris R.B. and Canales R.A. 
Imputation methods for addressing missing data in short-term monitoring of air 
pollutants. Science of The Total Environment, 2020; 730; 139140. 

[14]      Malarvizhi M.R. and Thanamani A.S. Comparison of imputation techniques after 
classifying the dataset using KNN classifier for the imputation of missing data. 
International Journal of Computational Engineering Research, 2013; 3(1); 101-
104. 

[15]  Zhang Z. Missing data imputation: focusing on single imputation. Annals of 
translational medicine, 2016; 4(1); 1-8. 



Luke Oluwaseye Joel, Wesley Doorsamy, Babu Sena Paul 

 

999 
 

[16]    Lachin J.M. Fallacies of last observation carried forward analyses. Clinical trials, 
2016; 13(2); 161-168. 

[17]   Kenward M.G. and Molenberghs G. Last observation carried forward: a crystal 
ball? Journal of biopharmaceutical statistics, 2009; 19(5); 872-888. 

[18]    Harel O. and Zhou X. Multiple imputation: review of theory, implementation, and 
software. Statistics in medicine, 2007; 26(16); 3057-3077. 

[19] Rubin D.B. Multiple imputation after 18+ years. Journal of the American 
statistical Association, 1996; 91(434); 473-489. 

[20]  Schafer J. Multiple imputation in multivariate problems when the imputation and 
analysis models differ. Statistica Neerlandica, 2002; 57; 19–35. 

[21]   Schafer J.L. (1997) Analysis of incomplete multivariate data. CRC press, USA. 
[22]   Rubin D.B. (2004) Multiple imputation for nonresponse in surveys. John Wiley & 

Sons, USA. 
[23]  Royston P. and White I.R. Multiple imputation by chained equations (mice): 

implementation in stata. J Stat Softw, 2011; 45(4); 1-20. 
[24]  Schafer J. L. Multiple imputation: a primer. Statistical methods in medical 

research, 1999; 8(1); 3-15. 
[25]   Honaker J., King G. and Blackwell M. Amelia II: A program for missing data. 

Journal of statistical software, 2011; 45(7); 1-47. 
[26]    Raghunathan T., Solenberger P., Berglund P. and Hoewyk J.V. (2016) Iveware: 

Imputation and variance estimation software (version 0.3). University of 
Michigan. 

[27]  Graham J. W. Multiple imputation and analysis with SPSS 17-20. (2012) In 
Missing Data. Springer, Germany. 

[28]  Ginkel J.R.V. and Ark L.A.V.D. Spss syntax for missing value imputation in test 
and questionnaire data. Applied Psychological Measurement, 2005; 29(2); 152-
153. 

[29]   Yuan Y. Multiple imputation using SAS software. J Stat Softw, 2011; 45(6); 1-25. 
[30]   Azur M.J., Stuart E.A., Frangakis C. and Leaf P.J. Multiple imputation by chained 

equations: what is it and how does it work? International journal of methods in 
psychiatric research, 2011; 20(1); 40-49. 

[31]  Wulff J.N. and Ejlskov L. Multiple imputation by chained equations in praxis: 
Guidelines and review. Electronic Journal of Business Research Methods, 2017; 
15(1); 41-55. 

[32]  Buuren S. V. and Groothuis-Oudshoorn K. Mice: Multivariate imputation by 
chained equations in R. Journal of statistical software, 2010; 45(3); 1-68. 

[33] White I.R., Royston P. and Wood A.M. Multiple imputation using chained 
equations: issues and guidance for practice. Statistics in medicine, 2011; 30(4); 
377-399. 

[34]   Bouhlila D.S. and Sellaouti F. Multiple imputation using chained equations for 
missing data in timss: a case study. Large-scale Assessments in Education, 2013; 
1(1); 1-33. 



A Review of Missing Data Handling Techniques for Machine Learning 

 

1000 
 

[35]   Liu X., Ma X., Meng X., Li X. and Xie G. IEEE ICHI data analytics challenge on 
missing data imputation by amelia II. In 2019 IEEE International Conference on 
Healthcare Informatics (ICHI), 2019, pp. 1-2. 

[36]    Pampaka M., Hutcheson G. and Williams J. Handling missing data: analysis of a 
challenging data set using multiple imputation. International Journal of Research 
& Method in Education, 2016; 39(1); 19-37. 

[37]   Buuren S.V., Brand J.P.L., Groothuis-Oudshoorn C.G.M. and Rubin D.B. Fully 
conditional specification in multivariate imputation. Journal of statistical 
computation and simulation, 2006; 76(12); 1049-1064. 

[38]   Lee K.J. and Carlin J.B. Multiple imputation for missing data: fully conditional 
specification versus multivariate normal imputation. American journal of 
epidemiology, 2010; 171(5); 624-632. 

[39]   Song J. and Belin T.R. Imputation for incomplete high-dimensional multivariate 
normal data using a common factor model. Statistics in medicine, 2004; 23(18); 
2827-2843. 

[40] Rubin D.B. and Schafer J.L. Efficiently creating multiple imputations for 
incomplete multivariate normal data. In Proceedings of the Statistical Computing 
Section of the American Statistical Association, 1990, pp. 83-88. 

[41]  Liu Y. and De A. Multiple  imputation  by  fully  conditional specification for 
dealing with missing data in a large epidemiologic study. International journal of 
statistics in medical research, 2015; 4(3); 287-295. 

[42]  Schafer J.L. and Graham J.W. Missing data: our view of the state of the art. 
Psychological methods, 2002; 7(2); 147-177. 

[43]  Horton N.J. and Kleinman K.P. Much ado  about  nothing: A  comparison  of 
missing data methods and software to fit incomplete data regression models. The 
American Statistician, 2007; 61(1); 79-90. 

[44]  Xu X., Xia L., Zhang Q., Wu S., Wu M. and Liu H. The ability of different 
imputation methods for missing values in mental measurement questionnaires. 
BMC Medical Research Methodology, 2020; 20(1); 1-9. 

[45]  Lokupitiya R.S., Lokupitiya E. and Paustian K. Comparison of missing value 
imputation methods for crop yield data. Environmetrics: The official journal of the 
International Environmetrics Society, 2006; 17(4); 339-349. 

[46]   Ford B.L. (1983) An overview of hot-deck procedures. Incomplete data in sample 
surveys, Academic Press, USA. 

[47]  Andridge R.R. and Little R.J.A. A review of hot deck imputation for survey non-
response. International statistical review, 2010; 78(1); 40-64. 

[48]   Liao S.G., Lin Y., Kang D.D., Chandra D., Bon J., Kaminski N., Sciurba F.C. and 
Tseng G.C. Missing value imputation in high-dimensional phenomic data: 
imputable or not, and how? BMC bioinformatics, 2014; 15(1); 1-12. 

[49]  Ding Y. and Ross A. A comparison of imputation methods for handling missing 
scores in biometric fusion. Pattern Recognition, 2012; 45(3); 919-933. 

[50]   Deza M.M. and Deza E. (2006) Dictionary of distances. Elsevier, Netherlands. 
[51]   Kim K.Y., Kim B.J. and Yi G.S. Reuse of imputed data in microarray analysis 

increases imputation efficiency. BMC bioinformatics, 2004; 5(1); 1-9. 



Luke Oluwaseye Joel, Wesley Doorsamy, Babu Sena Paul 

 

1001 
 

[52]    Caruana R. A non-parametric em-style algorithm for imputing missing values. In 
International Workshop on Artificial Intelligence and Statistics, 2001, pp. 35-40. 

[53]   Brás L.P. and Menezes J.C. Improving cluster-based missing value estimation of 
dna microarray data. Biomolecular engineering, 2007; 24(2); 273-282. 

[54]  Kim H., Golub G.H and Park H. Missing  value  estimation  for dna  microarray 
gene expression data: local least squares imputation. Bioinformatics, 2006; 
22(11); 1410-1411. 

[55]  Zhang X., Song X., Wang H. and Zhang H. Sequential local least squares 
imputation estimating missing value of microarray data. Computers in biology 
and medicine, 2008; 38(10); 1112-1120. 

[56]  Cai Z., Heydari M. and Lin G. Iteratedc local  least squares microarray missing 
value imputation. Journal of bioinformatics and computational biology, 2006; 
4(5); 935-957. 

[57]    Jadhav A., Pramod D. and Ramanathan K. Comparison of performance of data 
imputation methods for numeric dataset. Applied Artificial Intelligence, 2019; 
33(10); 913-933. 

[58]   Zainuri N.A., Jemain A.A. and Muda N. A comparison of various imputation 
methods for missing values in air quality data. Sains Malaysiana, 2015; 44(3); 
449-456. 

[59]   Dongare A.D., Kharde R.R. and Kachare A.D. Introduction to artificial neural 
network. International Journal of Engineering and Innovative Technology 
(IJEIT), 2012; 2(1); 189-194. 

[60]  Mishra M. and Srivastava M. A view of artificial neural network. In 2014 
International Conference on Advances in Engineering & Technology Research 
(ICAETR-2014), 2014, pp. 1-3. 

[61]  Abiodun O.I., Jantan A., Omolara A.E., Dada K.V., Mohamed N.A. and Arshad 
H. State-of-the-art in artificial neural network applications: A survey. Heliyon, 
2018; 4(11); e00938. 

[62]  Smieja M., Struski L., Tabor J., Zieliński B. and Spurek P. Processing of missing 
data by neural networks. 32nd Conference on Neural Information Processing 
Systems (NeurIPS 2018), 2018, pp. 1-11. 

[63]    Choudhury S.J. and Pal N.R. Imputation of missing data with neural networks for 
classification. Knowledge-Based Systems, 2019; 182; 104838. 

[64]  Goodfellow I., Bengio Y. and Courville A. (2016) Deep Learning. MIT Press, 
USA. 

[65]   Raaijmakers S. Deep Learning for Natural Language Processing. (2022) Leiden 
University, Netherlands. 

[66]  Cheng C.Y., Tseng W.L., Chang C.F., Chang C.H.  and  Gau S.S.F.  A  deep 
learning approach for missing data imputation of rating scales assessing attention-
deficit hyperactivity disorder. Frontiers in psychiatry, 2020; 11; 673. 

[67]   Duan Y., Lv Y., Kang W. and Zhao Y. A deep learning based approach for traffic 
data imputation. In 17th International IEEE conference on intelligent 
transportation systems (ITSC), 2014, pp. 912-917. 



A Review of Missing Data Handling Techniques for Machine Learning 

 

1002 
 

[68]  Yoon S. and Sull S. Gamin: generative adversarial multiple imputation network 
for highly missing data. In Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2020, pp. 8456-8464. 

[69]  Kim J., Tae D. and Seok J. A survey of missing data imputation using generative 
adversarial networks. In 2020 International Conference on Artificial Intelligence 
in Information and Communication (ICAIIC), 2020, pp. 454-456. 

[70]   Qiu Y.L., Zheng H. and Gevaert O. A deep learning framework for imputing 
missing values in genomic data. BioRxiv, 2018, p. 406066. 

[71]   Beaulieu-Jones B.K. and Jason H Moore J.H. Missing data imputation in the 
electronic health record using deeply learned autoencoders. In Pacific symposium 
on biocomputing, 2017, pp. 207-218. 

[72]   Yoon J., James J. and Schaar M.V.D. Missing data imputation using generative 
adversarial nets. Proceedings of the 35th International Conference on Machine 
Learning, 2018, pp. 5689-5698.  

[73]   Li S.C.X., Jiang B. and Marlin B. Misgan: Learning from incomplete data with 
generative adversarial networks. Seventh International Conference on Learning 
Representations (ICLR 2019), 2019, pp. 1-20. 

[74]   Katoch S., Chauhan S.S. and Kumar V. A review on genetic algorithm: past, 
present, and future. Multimedia Tools and Applications, 2021; 80(5); 8091-8126. 

[75]   Sulejmani A. and Koça O. Development of Optimal Transmission Rate of the 
Kinematic Chain by using Genetic Algorithms Coded in Mathcad. International 
Journal of Innovative Technology and Interdisciplinary Sciences, 2021; 4(4); 792-
803. 

[76]    Holland J.H. (1992) Adaptation in natural and artificial systems: an introductory 
analysis with applications to biology, control, and artificial intelligence. MIT 
press, USA. 

[77]   Sampson J.R. (1976) Adaptation in natural and artificial systems University of 
Michigan Press, USA. 

[78]    Haldurai L., Madhubala T. and Rajalakshmi R. A study on genetic algorithm and 
its applications. International Journal of computer sciences and Engineering, 
2016; 4(10); 139-143. 

[79]    Maulik U. and Bandyopadhyay S. Genetic algorithm-based clustering technique. 
Pattern recognition, 2000; 33(9); 1455-1465. 

[80]    Shahzad W., Rehman Q. and Ahmed E. Missing data imputation using genetic 
algorithm for supervised learning. International Journal of Advanced Computer 
Science and Applications, 2017; 8(3); 438-445. 

[81]    Noei M. and Abadeh M.S. A genetic asexual reproduction optimization algorithm 
for imputing missing values. In 2019 9th International Conference on Computer 
and Knowledge Engineering (ICCKE), 2019, pp. 214-218. 

[82]   Priya R.D., Kuppuswami S. and Kumar S.M. A genetic algorithm approach for 
non-ignorable missing data. International Journal of Computer Applications, 
2011; 20(4); 37-41. 



Luke Oluwaseye Joel, Wesley Doorsamy, Babu Sena Paul 

 

1003 
 

[83]    Priya R.D. and Sivaraj R. Dynamic genetic algorithm-based feature selection and 
incomplete value imputation for microarray classification. Current Science, 2017; 
112(1); 126-131. 

[84]  Elzeki O.M., Alrahmawy M.F. and Elmougy S. A new hybrid genetic and 
information gain algorithm for imputing missing values in cancer genes datasets. 
International Journal of Intelligent Systems and Applications, 2019; 11(12); 20-
33. 

[85]     Lobato F., Sales C., Araujo I., Tadaiesky V., Dias L., Ramos L. and Santana A. 
Multi-objective genetic algorithm for missing data imputation. Pattern 
Recognition Letters, 2015; 68; 126-131. 

[86]   Eberhart R. and Kennedy J. A new optimizer using particle swarm theory. In 
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine 
and Human Science, 1995, pp. 39–43. 

[87]  Wang D., Tan D. and Liu L. Particle swarm optimization algorithm: an overview. 
Soft Computing, 2018; 22(2); 387-408. 

[88]   Krishna M. and Ravi V. Particle swarm optimization and covariance matrix based 
data imputation. In 2013 IEEE International Conference on Computational 
Intelligence and Computing Research, 2013, pp. 1-6. 

[89]     Gautam C. and Ravi V. Data imputation via evolutionary computation, clustering, 
and a neural network. Neurocomputing, 2015; 156; 134-142. 

[90]    Salleh M.N.M. and Samat N.A. Fcmpso: An imputation for missing data features 
in heart disease classification. In IOP Conference Series: Materials Science and 
Engineering, 2017; 226; 012102. 

[91]  Candès E.J. and Recht B. Exact matrix completion via convex optimization. 
Foundations of Computational mathematics, 2009; 9(6); 717-772. 

[92]  Johnson C.R. Matrix completion problems: a survey. In Matrix theory and 
applications, 1990; 40; 171-198. 

[93]   Candès E.J. and Tao T. The power of convex relaxation: Near-optimal matrix 
completion. IEEE Transactions on Information Theory, 2010; 56(5); 2053-2080. 

[94]    Genes C. (2018) Novel Matrix Completion  Methods for  Missing  Data  Recovery 
in Urban Systems. PhD thesis, University of Sheffield. 

[95]   Cai J.F., Candès E.J. and Shen Z. A singular value thresholding algorithm for 
matrix completion. SIAM Journal on optimization, 2010; 20(4); 1956-1982. 

[96]  Chatterjee S. Matrix estimation by universal singular value thresholding. The 
Annals of Statistics, 2015; 43(1); 177-214. 

[97] Schnabel T., Swaminathan A., Singh A., Chandak N. and Joachims T. 
Recommendations as treatments: Debiasing learning and evaluation. In 
international conference on machine learning, 2016, pp. 1670-1679. 

[98]   Zheng X., Wang M., Xu R., Li J. and Wang Y. Modeling dynamic missingness of 
implicit feedback for sequential recommendation. IEEE Transactions on 
Knowledge and Data Engineering, 2020; 34(1); 405-418. 

[99]  Ma W. and Chen G.H. Missing not at random in matrix completion: The 
effectiveness of estimating missingness probabilities under a low nuclear norm 
assumption. 33rd Conference on Neural Information Processing Systems 
(NeurIPS 2019), 2019, pp. 1-10. 



A Review of Missing Data Handling Techniques for Machine Learning 

 

1004 
 

[100] Gavankar S. and Sawarkar S. Decision tree: Review  of  techniques  for  missing 
values at training, testing and compatibility. In 2015 3rd international conference 
on artificial intelligence, modelling and simulation (AIMS), 2015, pp. 122-126. 

[101] Twala B. and Cartwright M. Ensemble missing data techniques for software effort 
prediction. Intelligent Data Analysis, 2010; 14(3); 299-331. 

[102] Twala B., Jones M.C. and Hand D.J. Good methods for coping with missing data 
in decision trees. Pattern Recognition Letters, 2008; 29(7); 950-956. 

[103] Song Y.Y. and Lu Y. Decision tree methods: applications for classification and 
prediction. Shanghai archives of psychiatry, 2015; 27(2); 130-135. 

[104] Durmuş B. and Güneri Ö. İ. Investigation of Factors Affecting Immunotherapy 
Treatment Results by Binary Logistic Regression and Classification 
Analysis. International Journal of Innovative Technology and Interdisciplinary 
Sciences, 2020; 3(3), 467-473. 

[105] Tang F. and Ishwaran H. Random  forest  missing  data  algorithms. Statistical    
Analysis and Data Mining: The ASA Data Science Journal, 2017; 10(6); 363-377. 

[106] Davydenko A. and Fildes R. (2016) Forecast  error  measures:  critical review and 
practical recommendations. Business Forecasting: Practical Problems and 
Solutions. Wiley, USA. 

[107] Chen C., Twycross J. and Garibaldi J.M. A  new  accuracy  measure  based  on 
bounded relative error for time series forecasting. PloS one, 2017; 12(3); 
e0174202. 

[108] Botchkarev A. Evaluating performance of regression  machine  learning  models 
using multiple error metrics in azure machine learning studio. SSRN, 2018;1-16. 

[109] Shcherbakov M.V., Brebels A., Shcherbakova N.L., Tyukov A.P., Janovsky T.A. 
and Kamaev V.A. A survey of forecast error measures. World Applied Sciences 
Journal, 2013; 24(24); 171-176. 

[110] Schmitt P., Mandel J. and Guedj M. A  comparison  of  six  methods  for  missing 
data imputation. Journal of Biometrics & Biostatistics, 2015; 6(1); 1-6. 

[111] Li Y., Li Z., and Li L. Missing traffic data: comparison of imputation methods. 
IET Intelligent Transport Systems, 2014; 8(1); 51-57. 

[112] Nur-E-Arefin M. A  Comparative  Study  of  Machine  Learning  Classifiers  for 
Credit Card Fraud Detection. International Journal of Innovative Technology and 
Interdisciplinary Sciences, 2020; 3(1), 395-406. 

[113] Hyndman R.J. and Koehler A.B. Another look at measures of forecast accuracy. 
International journal of forecasting, 2006; 22(4); 679-688. 

[114] Botchkarev A.  Performance  metrics  (error measures)  in  machine  learning 
regression, forecasting and prognostics: Properties and typology, Interdisciplinary 
Journal of Information, Knowledge, and Management, 2019; 14; 45-79. 

[115] Pascual C. Tutorial: Understanding regression error metrics in python. Available 
at: https://www.dataquest.io/blog/understanding-regression-error-metrics/, 
Accessed on 21 December 2021. 

[116] Junninen H., Niska H., Tuppurainen K., Ruuskanen J.  and  Kolehmainen M.  
Methods for imputation of missing values in air quality data sets. Atmospheric 
Environment, 2004; 38(18); 2895-2907. 



Luke Oluwaseye Joel, Wesley Doorsamy, Babu Sena Paul 

 

1005 
 

[117] Moepya S.O., Akhoury S.S., Nelwamondo F.V.  and  Twala B.  The  role  of 
imputation in detecting fraudulent financial reporting. International Journal of 
Innovative Computing, Information and Control, 2016; 12(1); 333-356. 

[118] Beauxis-Aussalet E. and Hardman L. Visualization of confusion matrix for non-
expert users. In IEEE Conference on Visual Analytics Science and Technology 
(VAST)-Poster Proceedings, 2014, pp. 1-2. 

[119] Le T.D., Beuran R. and Tan Y. Comparison of the most influential missing data 
imputation algorithms for healthcare. In 2018 10th International Conference on 
Knowledge and Systems Engineering (KSE), 2018, pp. 247-251. 

[120] Cihan P., Kalıpsız O. and Gökçe E. Effect of imputation methods in the classifier 
performance. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2019; 23(6); 
1225-1236. 

[121] Xu X., Chong W., Li S., Arabo A. and Xiao J. Miaec: Missing data imputation 
based on the evidence chain. IEEE Access, 2018; 6:12983-12992. 

[122] Sefidian A.M. and Daneshpour N. Missing value imputation using a novel grey 
based fuzzy c-means, mutual information based feature selection, and regression 
model. Expert Systems with Applications, 2019; 115; 68-94. 

[123] Abdella M. and Marwala T. Treatment of missing data using neural networks and 
genetic algorithms. In Proceedings. IEEE International Joint Conference on 
Neural Networks, 2005; 1; 598-603. 

[124] Leke C. and Marwala T. Missing data estimation in high-dimensional datasets: A 
swarm intelligence-deep neural network approach. In International Conference on 
Swarm Intelligence, 2016, pp. 259-270. 

[125] Leke C., Twala B.  and  Marwala T.  Modeling  of  missing  data  prediction: 
Computational intelligence and optimization algorithms. In 2014 IEEE 
International Conference on Systems, Man, and Cybernetics (SMC), 2014, pp. 
1400-1404. 

 


