The Effects of Congenital Muscular Torticollis on Postural Control Among Four to Six - Year - Old Children

Josh Henderson, SPT
University of South Dakota

Alyssa Matson SPT
University of South Dakota
Nicci McGuire SPT
University of South Dakota
Brett Steffen SPT
University of South Dakota

Follow this and additional works at: https://red.library.usd.edu/pt-studentprojects
Part of the Physical Therapy Commons

Recommended Citation

Henderson,, Josh SPT; Matson, Alyssa SPT; McGuire, Nicci SPT; and Steffen, Brett SPT, "The Effects of Congenital Muscular Torticollis on Postural Control Among Four to Six - Year - Old Children" (2021). Physical Therapy Student Research Projects. 6.
https://red.library.usd.edu/pt-studentprojects/6

This Poster is brought to you for free and open access by the Physical Therapy Research at USD RED. It has been accepted for inclusion in Physical Therapy Student Research Projects by an authorized administrator of USD RED. For more information, please contact dloftus@usd.edu.

THE EFFECTS OF CONGENITAL MUSCULAR TORTICOLLIS ON POSTURAL CONTROL AMONG FOUR TO

 SIX-YEAR-OLD CHILDRENJosh Henderson, SPT¹; Alyssa Matson, SPT¹; Nicci McGuire, SPT¹; Brett Steffen, SPT¹; Patti Berg-Poppe, PT, PhD ${ }^{1,2}$; Nicole Koskovich, PT, DPT²; Shawn Frewaldt, PT² ${ }^{1}$ University of South Dakota, Department of Physical Therapy, Vermillion South Dakota, USA; ${ }^{2}$ LifeScape Rehabilitation Services Department, Sioux Falls, South Dakota, USA

INTRODUCTION

Congenital Muscular Torticollis (CMT), is a rare musculoskeletal disorder characterized by unilatera stimated at 0.3% to 2% in newboid (SCM) muscle located in the neck. ${ }^{1}$ The rate of incidence is the cause of CMT, but the exact cause is unknown. CMT may be more likely to occur in difficult of complicated births, such as a breech delivery. ${ }^{3}$ Other etiologies for CMT are inutero crowding, neurogenic myopathy, mesenchymal precursor cells, and birth trauma. ${ }^{1,2}$ Those with CMT generally
fall into one of three groups, including those with SCM tumor, those with muscular torticollis, and those with postural torticollis without mass or tightness located in the SCM. ${ }^{1}$

Contributors to Postural Control:
Vision ${ }^{4,5}$: In CMT, visual input is limited, which can lead to maladaptive development of multiple systems that require input from the visual system. Vision is needed for proper head control in space. Without vision, development of balance areas of the cerebral cortex are delayed, whic will lengthen the period of instability for the child. Vision provides feedback for integration with Vestibular, 6 . The vestibular system, which consists of internal ear organs, angular accelerations by sensing the position of the head in space. Through these mechanisms, the vestibular system is able to determine the body's center of gravity. The vestibular system assists the visual system with gaze stabilization during head movements. When the head position is off center (such as in CMT) the internal ear organs are not providing accurate information about the center of gravity to the vestibular system, thus compromising balance
Somatosensory ${ }^{\text {8,9 }}$: The somatosensory system informs the central nervous system about body incorporating input from all parts of the body, and provides the primary influence balance by control when the surface is stable.
Motor Control ${ }^{10,11}$: The development of motor control during infancy is key to the acquisition of developmental milestones. Infants with a diagnosis of CMT scored significantly lower than control group on the Alberta Infant Movement Scale (AIMS) at two and six months of ag showing infants diagnosed with CMT are at a higher risk of delay in early motor milestones

Purpose:
The purpose of this study was to understand the overall impact of CMT treated during infancy on postural control in children between the ages of four to six years old.

METHODS

PARTICIPANT CRITERIA:

- Inclusion:
- English Speaking

Four- to Six-Year-Olds previously treated for CMT in infancy in a Midwestern clinic

- Exclusion:
- Children with developmental or neuromuscular disorder that may cause balance or
coordination deficits
Those with upper or lower extremity amputatio

TESTS \& MEASURES:

Functional performance: used to assess postural control
Orthopedic measures:

- Passive/Active ROM: shoulder flexion, extension, abduction, and internal and external
rotation; cervical flexion, extension, rotation, and lateral flexion
- Torticollis Severity Scale: determines severity at admission for treatment

RESULTS

- SUBJECTS ($\mathrm{N}=12$):
- Males ($n=7$); females $(n=5)$
- Mean Age: $5.8, \mathrm{SD}=0.84$ years
- Severity Classification (Tables $1 \& 2$ 2
- Mild Severity ($n=10$); Early Severe ($n=1$); Late Mild ($n=1$) Sidedness: right
NALYSIS (SPSS v.25):
- Balance Scores and CMT at infancy vs. typically developing children (Critical z analysis; Figure 1) - No statistically perceivable differences
- Critical z analysis: - 166
- Infant Classification Score and Childhood Balance Scores (Pearson Correlation; Figure 2) No statistically significant relationship - $P=.505 ; r=.214$
- Infant AROM and Childhood Balance Scores (Pearson Correlation)

No statistically significant relationship
igure 1. Critical z-Score Bell Curve

Figure 2. Relationship between BOT-2 Balance Subtest z-scores and Active/Passive Severity Grades

Table 1. Torticollis Severity Scale for PROM ${ }^{13}$

Grade	Classification	Age of Onset	ROM Measurement
Grade 1	Early Mild	0-6 months	PROM greater than 95°
Grade 2	Early Moderate	0-6 months	PROM 80-95 ${ }^{\circ}$
Grade 3	Early Severe	0-6 months	PROM less than 80°
Grade 4	Late Mild	7-9 months	PROM greater than 95°
Grade 5	Late Moderate	10-12 months	PROM greater than 95°
Grade 6	Late Severe	7-12 months	PROM greater than 80-95
Grade 7	Late Extreme	After 7 months with SCM mass After 12 months with muscle tightness	PROM less than 80°

Table 2. Torticollis Severity Scale for AROM

\section*{| Grade | ROM Measurement |
| :--- | :--- |}

Grade 1 Chin past shoulder of involved side (~ 100 degrees AROM)
Grade 2
Grade 3
Chin at shoulder of involved side (~ 90 degrees AROM)

Grade 4 Chin to nipple of involved side (~ 40 degrees AROM)

CONCLUSIONS

The data indicated that no statistically significant relationship between torticollis severity at infancy and balance scores at preschool age were identified. Lack of significance could have resulted from a limited sample size. Further research is needed to understand the relationship between balance in early childhood and increased severity of CMT at infancy.

IMPLICATIONS

Early identification and management of CMT are essential to the maturation of typical motor developmental skills. While the results of the study suggest that pre-school age children with a history of treatment for CMT do not show differences in balance, the risk of developmental delays is documented in the literature. The small sample size and generally low severity should be taken in consideration when interpreting results of this study and the impact of CMT on balance in early

REFERENCES

