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ABSTRACT 

Small Cell Lung Cancer (SCLC) is a devastating disease characterized by a very low two-year 
survival rate and almost universal acquisition of chemoresistance. Nearly all patients have 
tumors driven by functional inactivation of the tumor suppressors Rb and p53, but despite the 
uniform origins of this tumor, not all patients are genetically or phenotypically identical. SCLC 
can be subtyped into four unique molecular subtypes, determined by the expression of ASCL1, 
NEUROD1, POU2F3, or YAP1. These subtypes are plastic, and subtype switching after 
chemotherapy has been documented. Without the understanding of how tumor heterogeneity 
arises, we cannot solve the challenge of chemoresistance in SCLC. In recent years, a powerful 
new tool in studying tumor heterogeneity has emerged. Genetic barcoding allows for the 
identification and tracking of individual tumor populations by inserting a small genetic sequence 
(“barcode”) into the genome of tumor cells. As the cells divide, the barcode is passed on and a 
high-resolution lineage map is constructed. Here, genetic barcoding is used for the first time in 
SCLC, combined with single-cell RNA sequencing in a genetically engineered mouse model and 
a xenograft model of SCLC. 

In the mouse model of SCLC, tumors were sequenced at early, middle, and late stages of tumor 
development, as well as chemoresistant tumors. While no barcodes were detected by scRNA-seq, 
valuable information about the process of tumor development in SCLC is observed. I identify 
two cellular populations (“early” and “late”) that arise during tumor development. A notable 
difference in the two populations is the expression of genes corresponding to members of the 
AP-1 network. The AP-1 network was validated to be critical for tumorigenesis in SCLC. 

Barcoded SCLC xenografts and chemoresistant xenografts belonging to two SCLC subtypes 
were generated. scRNA-seq revealed increased transcriptomic plasticity following chemotherapy 
treatment in SCLC-A xenografts but not SCLC-N xenografts. The Cancer Testis Antigens 
PAGE5 and GAGE2A were identified and validated as mediators of chemoresistance in SCLC. 
This work represents the first application of genetic barcoding in SCLC and identifies actionable 
drug targets for future development. 
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Chapter 1: Introduction 

Small cell lung cancer (SCLC) is a devastating disease characterized by a 5-year survival rate of 

only 6%1. The majority of patients (75%) present with extensive stage disease at diagnosis, and 

survival for these patients is generally under 1 year2,3. Given the usually extensive stage disease 

at diagnosis, surgical resection is rare, and the majority of patients are treated with first-line 

platinum agents such as cisplatin or carboplatin and etoposide, a topoisomerase, as well as PD-

L1 inhibitor, regardless of PD-L1 status4,5. The recent addition of a PD-L1 inhibitor improved 

survival about two months in clinical trials6, however advances in therapeutics are critically 

needed. Patients who present with brain metastasis may receive cranial radiotherapy. While 

initial response to chemotherapy generally seems promising, the majority of patients will rapidly 

acquire resistance and relapse within months (Figure 1A)3. After relapse, several options exist 

for secondary treatment, however, few patients see a benefit after a few months, and the majority 

then receive palliative support5. The therapeutic options for SCLC are rarely targeted or curative 

and the grim outlook for patients with SCLC has remained largely unchanged in the last 60 

years2,3. 

SCLC is surprisingly uniform in genetic alterations driving the disease. Nearly all patients have 

functional inactivation of the tumor suppressors RB1 (93%) and TP53 (100%) (Figure 1C)7. 

Both critical tumor suppressors, RB is a canonical cell cycle regulator, and transcriptionally 

regulates the transition between G1 and S phase. The loss of RB in cancer often leads to 

dysregulation of the cell cycle8. RB has also been found to act as a transcriptional regulator of 

oncogenic pathways. RB deactivates pluripotency genes SOX2 and OCT4, so when RB is lost in 

cancer, pluripotency networks are de-repressed and lead to a plastic, stem cell like state (Figure 

1B)9. 
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Figure 1: Clinical and genomic presentation of SCLC. 
A: Radiograph of a patient with SCLC at diagnosis with a lesion circled in red. At a responding stage, 
the lesion is not present. At the relapsed stage, disseminated metastasis can be observed. From 
Stewart et al., 2020. B: RB binds to and activates pluripotency genes. ChIP data showing RB (blue) 
binding sites on the Sox2, Oct4, and Mcm7 genes. From Kareta et al., 2015.C: Variant allele 
frequency of commonly altered genes in SCLC. Gene names are indicated in rows and individual 
patients in columns. A colored rectangle indicates a mutation in that gene. P53 and Rb on the first and 
second rows, respectively, are mutated in almost 100% of patients. Other commonly altered genes 
indicated are NOTCH family members. D: Copy number alterations frequently observed in SCLC. 
Blue variants represent deletions in genes such as Rb and P53, and red indicates gene amplifications. 
Commonly amplified in this data set are MYC family genes. From George et al., 2016. 
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The expression of SOX2 has been implicated in SCLC, where it acts as a transcription factor, and 

acts in an oncogenic fashion by regulating key SCLC pathways10-12. In addition to the de-

repression of SOX2 driven by loss of RB, SOX2 has also been found to be amplified in around 

30% of patients, and is required for tumorigenesis (Figure 2A, B, C)10,11,13. TP53 is implicated in 

the majority of human cancers. It is a transcription factor that acts in response to cellular 

stressors such as DNA damage, when it works to determine the cell’s response. Loss of P53 in 

cancer can lead to an accumulation of DNA and cellular damage and mutations14. Also common 

are alterations in MYC. Patients frequently have amplification of MYC, MYCL1, or MYCN7. The 

expression of MYC genes in SCLC are mutually exclusive, and have a role in mediating SCLC 

subtype and chemoresistance7,11,13,15-18. NOTCH family members are frequently implicated in 

SCLC pathogenesis. Around 25% of patients have genomic alterations in NOTCH 7. In SCLC, 

NOTCH expression is downregulated, which allows for neuroendocrine differentiation. NOTCH1 

is epigenetically suppressed in the SCLC-A type, which allows for the activation of ASCL119,20. 

Additionally, the NOTCH ligand DLL3 is highly expressed in SCLC, and is correlated with 

ASCL1 expression and subtype, with highest expression in the SCLC-A type21,22. Alterations in 

NOTCH signaling may also play a role in the plasticity between SCLC subtypes11,16,18. A 2017 

report found that in neuroendocrine SCLC, NOTCH signaling acted as a pro-tumorigenic factor, 

while in non-neuroendocrine SCLC, NOTCH signaling acted as a tumor suppressive factor20. In 

MYC-driven SCLC, MYC activates NOTCH signaling, which drives the SCLC-A 

(neuroendocrine) to SCLC-N (non-neuroendocrine) subtype transition16. 

3 



  

 

  

    
        

        
       

 
                 

    
     

Figure 2: Sox2 is frequently amplified in SCLC and is required for tumorigenesis 
A: Genetic amplification and deletions in SCLC. SOX2 (red, boxed) is frequently amplified. B: 
Expression of Sox2 in normal and SCLC tissues. C: FISH analysis of Sox2 copy number. Red is the 
Sox2 probe and green is the centromeric probe. From Rudin et al., 2013 D: SOX2 is critical for tumor 
formation in a mouse model of SCLC. The gray bar indicates tumors from mice with biallelic deletion 
of SOX2, which form significantly fewer tumors than mice with at least one copy of SOX2. Mice with 
deletion of SOX2 survive significantly longer than mice with expression of SOX2. From Voigt, 
Wallenberg et al., 2021. 
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Historically, SCLC has been thought of as being subtyped as either “classic” or “variant”. 

Classic SCLC generally has more neuroendocrine features than variant, and they behave 

differently in cell culture, with the neuroendocrine-high SCLC-A lines growing more as 

organized spheres, and the SCLC-N subtypes growing as less organized clusters, or occasionally, 

adherent cell lines23. As genomics techniques have progressed, SCLC has been able to be 

subtyped based on the genomics of the tumor. Tumors can be subtyped based on expression of 

ASCL1, NEUROD1, POU2F3, and YAP1 (Figure 3A, B, C)24. The subtypes differ in their 

molecular, histological, and phenotypic characteristics, both in culture and in the clinic. 

Historically called “classic” SCLC, the majority of patients with SCLC have ASCL1-driven 

disease (or SCLC-A). SCLC-A tumors generally arise from pulmonary neuroendocrine cells and 

display neuroendocrine features and gene expression, and are high in MYCL, SOX2, and 

DLL311,22,24. NEUROD1-driven tumors (SCLC-N) are also neuroendocrine, although to a lower 

degree than SCLC-A. They have lower expression of SOX2, and express MYC instead of MYCL, 

and were historically classified as “variant” due to their distinct histology11,22,24. The YAP1-

driven tumors (SCLC-Y) are more rare and seem to exist in the same lineage as SCLC-A and 

SCLC-N, as indicated by some tumors showing plasticity between the three16. SCLC-Y is non-

neuroendocrine and occasionally has wild-type expression of RB24. Tumors that are SCLC-Y 

may have histological features that contain the more “variant” or combined cell morphology22. 

The final subtype, SCLC-P (POU2F3 driven) is much more rare than the other three. These 

tumors are generally non-neuroendocrine and express more of the markers of tuft cells, 

suggesting SCLC-P tumors arise from a separate lineage than SCLC-A, SCLC-N, or SCLC-Y, 

which primarily have pulmonary neuroendocrine cells as their cell of origin16,24. There is ample 

evidence that these subtypes are not static in nature.  Patient histology often demonstrates 
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separate areas of SCLC-N and SCLC-A within the same patient sample22,24. Additionally, cell 

culture and mouse models have demonstrated subtype switching of tumors (Figure 3D, 

E)11,16,18,25. 
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Figure 3: SCLC can be subtyped in to four plastic molecular subtypes 
A: Transcriptomic data of SCLC samples and cell lines showing clustering by the expression of one 
of four factors: ASCL1, NEUROD1, POU2F3, and YAP1. Subytpes also stratify by neuroendocrine or 
non-neuroendocrine status. B: Proportion of patient samples belonging to each subtype. Most patients 
have tumors that are SCLC-A, followed by SCLC-N. C: Expression of SCLC associated genes MYC, 
BCL2, and DLL3. Expression level of these genes is dependent on subtype, indicating a distinct 
phenotype for each subtype. D: Pseudotime trajectory based on scRNA-seq of Myc driven SCLC 
demonstrates transition from SCLC-A to SCLC-N, and SCLC-Y. This coincides with a switch in Myc 
expression and upregulation of Notch family members. From Ireland et al., Cancer Cell 2020. E: Myc 
expression drives plasticity in SCLC subtypes from SCLC-A to SCLC-N. Notch pathways are also 
upregulated in this switch, and a change in neuronal pathways is observed as the subtype switches. 
From Patel et al., Science Advances, 2021. 
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Despite the almost uniform loss of RB and P53, there still may be other genetic drivers of SCLC. 

In order to better understand the genetic drivers of SCLC, Peifer et al (2012) did SNP array 

analysis, exome sequencing, and genome sequencing of tumors and cell lines. They confirmed 

common loss of RB, gain of SOX2, FGFR1, MYCL, and MYCN. The MYC family member 

amplifications were mutually exclusive. Additionally, they identified a set of likely driver genes 

for SCLC (TP53, RB1, PTEN, CREBBP, EP300, SLIT2, MLL, COBL, and EPHA7)26. To 

investigate the mechanism of tumor progression and identify somatic drivers of SCLC, 

McFadden et al (2014) performed whole exome sequencing on matched tumors and metastases 

from SCLC mouse models. They found frequent copy number variants (CNVs), many of which 

have an impact on MycL and the Notch pathway. Chromosome 4 genomic rearrangements were 

common, which may lead to MycL and Nfib amplification. These rearrangements are similar to 

ones seen in the human homologues in human cases of SCLC. Mutations in Pten and members 

of the Pten pathway were very common in their analysis. Alterations in Pten signaling may be a 

mechanism of tumor promotion, and loss of Pten signaling promotes tumor progression. To 

understand heterogeneity, they compared DNA rearrangements and point mutations in primary 

tumors and metastasis from individual mice, and showed that metastases had a greater number of 

mutations with a high allelic fraction, indicating that metastasis is a bottleneck event. In clonal 

analysis, most tumors had 2-5 individual tumor subclones, and in some cases, multiple 

metastases from different tumor subclones were seeded to the site of metastasis27. Using 

proteomic profiling, Tripathi et al sought to understand chemoresistance in SCLC Patient 

Derived Xenografts (PDX) and cell lines. In a chemoresistant cell line, they found significant 

increase in the cell surface proteome, indicated by an abundance of proteins associated with 

cytoskeletal reorganization and cell adhesion. They focused the analysis on the five most 
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differentially expressed proteins: EGFR, JAG1, ITGB1, EPHA2, and MCAM. In PDX, MCAM 

was increased in the chemoresistant tumors, and these tumors had higher EMT markers. 

Knockdown of MCAM in culture did not impact EMT markers but did decrease cell proliferation 

and colony formation. Cells with a knockdown of MCAM were also more sensitive to 

chemotherapy and had an increase in pro-apoptotic proteins. MCAM overexpression in cell 

culture led to an increase in cell survival after chemotherapy. This is due to SOX2-dependent 

regulation of the PI3K/AKT pathway, which is upregulated in chemoresistant calls and acts as a 

regulator of MCAM. Chemoresistant cells also had a lower metabolic rate, which indicates a 

shift towards glycolysis in these cells28. 

Cells in a single tumor are often phenotypically different from one another and contribute 

differentially to the tumor dynamics, a phenomenon known as intratumoral heterogeneity 

(ITH)29. ITH is perhaps best demonstrated by the classic example of cancer stem cells (CSC), 

which generally make up a minority of the bulk of a tumor, yet they are the cells most directly 

responsible for tumor growth and maintenance30. ITH has an impact on response to therapy, 

particularly in SCLC, as demonstrated by patients’ almost full response to chemotherapy, only to 

have extensive disease re-occur rapidly3,31. Clearly, there exists a population of cells are either 

inherently resistant to therapy, or have the plasticity to adapt and become resistant when faced 

with therapy3. Understanding ITH is critical to developing new, effective therapeutics for SCLC. 

Armed with the knowledge of which populations contribute to tumor dynamics, we can design 

intelligent therapeutics to address the most aggressive cellular populations. Understanding ITH is 

critical to developing and targeting new therapeutics, and ITH has been studied in many tumor 

types, but because of the lack of SCLC samples in the TCGA, SCLC has been excluded from 

large-scale analyses of ITH32. 
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Tumor heterogeneity has been observed in SCLC, and in recent years, there have been several 

groups that have worked to understand the origins, evolution, and functional impact of 

heterogeneity in SCLC using genomics, transcriptomics, and proteomics. Yang et al (2018) 

sought to understand the origins of tumor heterogeneity depending on cell type of origin in 

mouse models of SCLC. They used the Rblox/lox, p53lox/lox, p130lox/lox (RPR2) mouse and initiated 

tumors using a general Cre adenovirus (CMV-Cre) and a CGRP-Cre adenovirus, which initiates 

tumors in just the neuroendocrine cells. The tumors from the CMV-Cre mice were generally high 

in Nfib, and were metastatic. Tumors from the CGRP-Cre mice required a higher concentration 

of virus to initiate, and to form metastatic tumors, and metastatic events were not reliant on Nfib. 

The ability to form metastases with and without the expression of Nfib indicates multiple 

metastatic pathways that the tumors could take. They used a multi-color reporter mouse bred 

with the RPR2 model to investigate the mechanisms of metastasis in their mouse models. The 

majority of metastases came from a single primary tumor and were clonal, indicating not all cells 

in a tumor have an equal likelihood of metastasis. In the transition from primary to metastatic 

lesion in the CMV-Cre mice, there were widespread changes in gene expression in genes related 

to neuronal differentiation and cell cycle. In the CGRP-Cre mice, there were few gene expression 

changes between primary and metastatic tumors. The CGRP-Cre tumors had higher expression 

of neuroendocrine genes, and the CMV-Cre tumors higher expression of epithelial cell markers. 

Overall, different cells of origin in the CGRP-Cre initiated tumors and the CMV-Cre initiated 

tumors led to heterogeneity in genomic profile, metastasis mechanism, and histology33. To 

understand the impact of Myc and Nfib on tumor heterogeneity and chemoresistance, Bottger et 

al (2019) used three common mouse models of SCLC – loss of Rb and p53 (RP); loss of Rb, p53, 

with MycL amplification (RPM); and loss of Rb and p53 with an Nfib overexpression (RPF). 
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They found heterogeneity in the histologic features of each of these three tumor models and the 

percentage of lesions that were bronchiolar or alveolar. MycL promoted lesions that were 

neuroendocrine and high in Ascl1. Regions in all models that were sensitive to chemotherapy 

were high in CDH1, and after chemotherapy, there was an increase in CDH1-low lesions, 

underlying cisplatin resistance. The proportion of the tumors that were CDH1-high and sensitive 

to chemotherapy differed by mouse genotype. After cisplatin treatment, there was a shift to a 

more epithelial signature, and changes in metabolism indicating a decrease in proliferation in 

response to cisplatin treatment25. Further investigating the link between Myc and tumor 

heterogeneity, Ireland et al (2020) used both the RPR2 model and a Myc overexpression mouse 

model (Rblox/lox, p53lox/lox, LSL-MycT58A; RPM) combined with multiple timepoint scRNA-seq to 

evaluate Myc signaling in lineage fate determination. Early lesions from both models are ASCL1 

high with classic neuroendocrine markers. In later lesions, the RPR2 model (generally high in 

MycL) maintained the ASCL1, high neuroendocrine subtype, and the RPM model showed a 

decrease in neuroendocrine markers. Pseudotime analysis reconstructed a lineage showing that 

cMyc can convert early ASCL1-high lesions to the SCLC-N or SCLC-Y subtype (Figure 3D). 

They validated this in primary culture of early tumor lesions from the RPM model, which start 

off as SCLC-A and transition to SCLC-N with high expression of non-neuroendocrine markers 

like NOTCH. Conversely, cells from the MycL high RPR2 tumors remain as SCLC-A in culture. 

Overexpression of cMyc in SCLC-A cells in culture converted cells to neuroendocrine-low 

SCLC-N and later to SCLC-Y. NOTCH signaling plays a role in the transition from SCLC-A to 

SCLC-N, and they showed that cMyc is directly responsible for the change in NOTCH signaling. 

Interestingly, if a Cre specific to AT2 or club cells was used to initiate tumors, the resulting 

tumors are SCLC-P, which is rarely the case in tumors resulting from neuroendocrine cells. 
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Therefore, the SCLC-P subtype arises from a different cell of origin than the other subtypes, and 

is driven by cMyc16. To study the mechanistic link of cMyc or MycL expression in determining 

SCLC subtype, Patel et al (2021) used transcriptomic data to associate networks with MycL or 

cMyc expression (Figure 3E). They found distinct transcriptomic profiles associated with either 

MycL or cMyc. In representative cell lines, ATAC-seq found MycL and cMyc had different DNA 

binding profiles, which suggests differential regulation of transcriptomes. All SCLC-N lines 

were associated with c-MYC accessibility at NEUROD1 and all SCLC-A lines were associated 

with MYCL accessibility at ASCL1. Intriguingly, c-Myc or MYCL had no association with the 

expression of YAP1 or POU2F3. Overexpression of MYCL in an SCLC-N cell line did not 

convert the line to SCLC-A, but led to an increase in neuronal genes. Depletion of cMYC in 

SCLC-N did lead to downregulation of NEUROD1. Conversely, overexpression of cMYC in an 

SCLC-A line led to a decrease in neuroendocrine markers of SCLC and more “variant” 

histology, and trans-differentiated an SCLC-A line to an SCLC-N lineage. Bulk RNA-seq of 

these cells showed an increase in epithelial genes and cMYC associated pathways. They also 

found upregulation of the Notch pathway, which has been shown to negatively regulate ASCL1 

expression18. Taken together, cMYC and MYCL are lineage determining factors that play a direct 

role in activating transcriptomic networks including NOTCH and epithelial pathways that 

characterize the SCLC-N or SCLC-A subtypes. 

Given the importance of cMyc and MycL in SCLC, Grunblatt et al (2020) wanted to evaluate the 

role of Mycn in SCLC. They developed a mouse model with deletion of Rb and p53, and 

overexpression of Mycn (RPMYCN). RPMYCN mice developed tumors faster and had a much 

lower median survival than the Rb and p53- loss driven mice (RP, MycL high). The majority of 

the tumors from the RPMYCN mice were of the “classical” type by histology and had ASCL1 
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expression by immunohistochemistry, although scattered regions of NEUROD1 and YAP1 

positive cells existed. When Mycn is turned off in the tumors that formed in RPMYCN mice, 

tumors regressed, indicating that tumors that start from a Mycn high population are reliant on 

Mycn to continue to proliferate at as high of a rate, although they do eventually return. Both 

RPMYCN mice and MYCN-driven patient derived xenografts (PDX) were more resistant to 

cisplatin and etoposide treatment. To evaluate the regulation of MYCN on tumor dynamics, they 

used RNA-seq and found a number of MYC target genes to be differentially expressed including 

immune signaling pathways. This matches the phenotype seen in the RPMYCN mouse model, as 

immune cells from the MYCN tumor model had a significant decrease in CD3 T-cells and 

monocytes, as compared to cells from non-MYCN driven tumor models. Finally, using CRISPR-

Cas9 sgRNA inactivation screens, they found that USP7 is responsible for maintaining MYCN 

stability, and when USP7 is inhibited, there were decreased levels of MYCN. USP7 inhibition 

also sensitized MYCN-driven PDX to cisplatin and etoposide15. 

To investigate tumor heterogeneity before and after chemoresistance, Stewart et al (2021) used 

circulating tumor cells (CTC)-derived xenografts isolated from tumor cells circulating in the 

blood of patients who were both chemo-naïve and chemoresistant, combined with scRNA-seq. 

The majority of the tumors were neuroendocrine, and most were high in ASCL1, even from 

chemoresistant patients. Both MYC and MYCL were activated, and some tumors had mixed 

expression of MYC and MYCL within a single tumor. Using the transcriptomic data, they 

calculated an intratumoral heterogeneity (ITH) score for each tumor and found increased ITH 

and an increased number of transcriptional clusters in PDX from patients who had 

chemoresistance. Multiple resistance pathways were upregulated within single tumors, indicating 

it is likely that multiple resistance pathways arise at one time. After treatment with cisplatin in 
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PDX, EMT score increased and ASCL1 decreased, but they did not see an increase in 

NEUROD1 expressing cells. This data indicates an increase in ITH after therapy and the ability 

for tumors to arise multiple resistance pathways within a short period of time31. To understand 

the spatial component to ITH, Rovira-Clave et al (2021) used epitope combinatorial tags 

combined with multiplex ion beam imaging (EpicMIBI), which allows for tracking of barcodes 

within the tissue in SCLC xenografts from an SCLC-N cell line (H82). EpicMIBI allows for the 

identification and tracking of clonal populations of cells in their spatial position combined with 

single-cell proteomic data. They observed heterogeneity in neuroendocrine and non-

neuroendocrine states, as well as differences in epigenetic markers and vimentin expression 

within a single xenograft. Non-neuroendocrine cells all cluster together, and based on clonal 

analysis, have different growth patterns than the neuroendocrine cells. They saw that the rare 

cells cluster near each other, indicating that heterogeneity is not equally distributed throughout 

the tumor, and is instead located in subclonal “patches”. A minority of patches had loss of 

PTEN, and these influenced the growth of their neighbor patches that still had wild-type PTEN. 

Xenografts grown from cell lines do indeed form heterogeneous tumors, and the clonal patches 

within the tumor have the ability to influence the behavior of nearby patches34. Given the very 

limited access to human specimens, Chen et al. (2021) used autopsy samples and whole-exome 

and transcriptome sequencing of patient samples to understand heterogeneity in human samples, 

particularly metastatic and immune signatures. They found a high mutational burden and high 

copy number variants (CNVs) present in all patients. They had access to both primary and 

metastatic sites for the patients, so they were able to reconstruct a clonal lineage using CNV 

analysis. Clonal heterogeneity was different depending on the patients but there were some 
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signatures in common. In general anti-tumor immune markers were elevated in advanced tumors, 

and stratified based on tumor subtype13. 

Past work has shown that tumor heterogeneity does exist in SCLC, is plastic, and has a 

functional impact on tumor growth and response to chemotherapy. However, there are a number 

of remaining questions for SCLC tumor evolution. We have yet to investigate the very early 

stages of tumor formation in SCLC, to understand what the source and drivers of tumor diversity 

are (Figure 4). The understanding of how ITH arises are critical to designing therapeutics and 

targeting the most aggressive populations (Figure 4). Furthermore, the tumor evolution studies 

that have been done in SCLC, while incredibly useful, work on a pseudotime or retrospective 

perspective, which is not temporally resolved. 
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Figure 4: Theories of the development of ITH. 
Understanding the origins and evolution of ITH is critical to uncovering targetable populations. This 
figure presents three models for the development of ITH. The cancer stem cell model (A) in which 
one self-renewing population can differentiate in to multiple clonal populations. The Clonal evolution 
model (B), has a core differentiated population and one cancer stem cell that self-maintains. C 
presents the plasticity model, in which there are multiple populations with self-renewal capacity. 
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Historically, tumors have been sequenced using bulk RNA sequencing methods, however, this 

masks the true contribution of individual populations and aggregates the signal from the entire 

sample13,27. Single-cell RNA sequencing (scRNA-seq) has radically transformed our 

understanding of ITH. The scRNA-seq studies that have been performed on SCLC tumors and 

xenografts16,31,35 and other genetic profiling that have been used to generate pseudotime maps of 

ITH in response to growth and chemotherapy13,16,18,25,27,31,34, while incredibly useful, do not 

allow for the pinpointing of the populations critical for these tumor dynamics. Instead, it is 

inferred from the populations identified in the screening. In recent years, genetic barcode lineage 

tracing has emerged as a novel tool to trace individual clonal populations over time36-38. Genetic 

barcode lineage tracing allows for the identification of individual cellular clones by inserting a 

unique piece of DNA to serve as a “barcode” in to the genome of a cell using a retrovirus or 

CRISPR sgRNA library39,40. As the cells divide, the barcode will be passed to the progeny, 

allowing for a high-resolution tracing of individual clonal populations (Figure 5). Originally used 

for tracing populations in hematopoiesis36,41, the barcodes integrated are stable over time in 

vivo36 and are able to be detected with scRNA-seq41,42. Barcoding serves as a technological 

advance on other lineage tracing methods such as fluorescence labeling30. Fluorescence labeling 

is limited in the number of potential fluorophores, and the tracking of mutation rates does not 

allow for a temporal component, since lineages must be reconstructed after heterogeneity has 

already developed32,33,43. 
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Lentivirus barcoding 
of progenitors in vitro 

Clonal expansion in vivo 

Isolation of progeny, 

lineage dynamics 

Figure 5: Overview of the barcoding system. 
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The use of genetic barcode lineage tracing to understand tumor heterogeneity has exploded in the 

last few years. It has now been used to understand cellular lineages and heterogeneity in a 

number of cancer types including glioblastoma, breast, non-small cell lung cancer, leukemia, and 

melanoma37,40,44-50. Often, integration of barcodes is lentiviral, often done along with a 

fluorescent marker like a GFP37,44,45,48. In glioblastoma, genetic barcoding has been used in a 

xenograft model to understand the cancer stem cell pool and chemoresistance. Lan et al (2017) 

first barcoded primary cultured glioblastoma cells and performed serial xenografts to identify the 

stem cell pool that is capable of tumor formation37. Neftel (2019) and Eyler (2020) both used 

lentiviral barcoding to understand tumor heterogeneity in glioblastoma after chemotherapy. 

Neftel identified for the first time the cellular states that simultaneously exist within a tumor, and 

characterized the plasticity in cell states in glioblastoma45. Using barcoded tumor spheres, Eyler 

focused on identifying lineages that were responsible for surviving targeted therapy. They were 

able to identify the acquisition of copy number gains in direct response to receptor tyrosine 

kinase inhibitor treatment in the clones that survived therapy44. Also using lentiviral barcoding, 

Emert et al (2021) combined the barcode with RNA fluorescence in situ hybridization (FISH) in 

melanoma cells in culture to identify cell states that lead to therapy resistance. They created two 

populations with identical barcodes, one that got sequenced to profile the barcodes in a treatment 

resistant population, and another that was molecularly profiled after using RNA FISH to isolate 

populations corresponding to the barcodes of the surviving clones that were sequenced. They 

identified multiple resistance pathways in response to therapy48. PRISM technology is a unique 

application of barcoding, which allows for the multiplexing of lenivirally barcoded cell lines 

from the cancer cell line encyclopedia (CCLE), can be used to assay several cell lines at once, 

which can then be de-multiplexed after molecular profiling. It has been used to measure 
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therapeutic vulnerabilities and metabolic changes in hundreds of cell lines at once, which would 

be a tedious and near-impossible task without the ability to barcode the individual cell lines for 

later identification51,52. 

Another popular barcoding technique utilizes a CRISPR-Cas9-based barcode. In lung 

adenocarcinoma, Guernet et al (2016) used CRISPR-Cas9 to edit their gene of interest, while 

inserting a series of extra point mutations to serve as a heritable barcode. In this case, their 

barcode was detectable by qPCR, which made understanding clonal dynamics more cost-

effective, but did not easily pair barcodes with large transcriptomic data40. Adaptable CRISPR 

barcodes have the ability to not only label clonal populations, but also evolve over the course of 

the disease to reconstruct a phylogenetic tree with higher resolution, and has been used in lung 

adenocarcinoma xenografts and mouse models to understand tumor evolution and metastasis46,53. 

Using a CRISPR-Cas9 approach, Rogers et al (2018) barcoded individual tumors in a mouse 

model of lung adenocarcinoma by barcoding founder cells during tumor initiation to understand 

the driver genes of tumor formation, but not necessarily subclonal lineages54. Recently, there has 

been some interest in isolating clones in real time, after identifying the barcodes of the 

populations of interest. ClonMapper combines barcodes and transcriptomic data that allows for 

the identification and recovery of populations of interest. It has been used in melanoma cells in 

culture, and has shown to be a powerful tool for understanding clonal dynamics in vitro47. 

In SCLC, genetic barcoding has been performed twice, but has not been used in combination 

with transcriptomic data, in a time-dependent manner, or to understand response to 

chemotherapy. Spatial epitope barcoding has been used in a xenograft model using one SCLC-N 

cell line to understand tumor architecture during tumor development34. Recently, a pre-print has 

described the use of barcoding in a mouse model of SCLC to understand tumor initiation. Cells 
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were barcoded at the point of tumor initiation, which will allow for the identification of the 

alterations present in the cells able to form tumors using TUBA-seq, but does not allow for the 

understanding of tumor evolution55. To date, genetic barcoding has not been used to understand 

tumor evolution in a temporal manner, and has never been combined with a model of 

chemoresistance. 

We know that ITH is key to SCLC growth and metastasis, and that SCLC tumors are highly 

plastic, and are able to adapt and overcome when faced with chemotherapeutic treatment. 

Without an in-depth understanding of ITH, we are not able to develop the most effective 

therapeutics for SCLC. The use of genetic barcoding and scRNA-seq in this work will allow us 

to view the early origins of ITH in SCLC for the first time, and identify new cellular populations 

and therapeutic targets to treat this disease. 
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Chapter 2: Methods 

2.1: Ethics statement 

Mice were maintained according to the guidelines set forth by the NIH and were housed in the 

Sanford Research Animal Research Center, accredited by AAALAC using protocols reviewed 

and approved by our local IACUC. 

2.2: Generation and validation of barcoding libraries 

2.2.1: Cloning of the barcoding libraries 

To clone the retroviral barcoding library, a CAG-GFP retroviral plasmid was used as a backbone 

(gift from Fred Gage, Addgene plasmid # 16664 ; http://n2t.net/addgene:16664 ; 

RRID:Addgene_16664)56. A poly-A sequence was subcloned from TetO-FUW-sox2, a gift from 

Rudolf Jaenisch (Addgene plasmid # 20326 ; http://n2t.net/addgene:20326 ; 

RRID:Addgene_20326 )57, to the 3’ end of the GFP at the PmeI site using InFusion Cloning 

(TaKaRa) and screened with PCR and restriction digests. DNA oligos containing the barcode 

sequence were ordered from Eurofins and annealed by heating to 95 degrees C for five minutes 

and allowed to cool to room temperature over the course of several hours. The CMV-GFP-polyA 

plasmid was digested at PmeI and HindIII (added in the polyA cloning step), and the annealed 

barcode was inserted by InFusion cloning (TaKaRa) at the 3’ end of the polyA and 5’ end of the 

GFP sequence. 40 of the initial colonies were screened for presence of the barcode via PCR, and 

four of those were further validated to contain the barcode using Sanger sequencing. All 40 

colonies screened by PCR contained the barcode, and all four colonies screened by Sanger 

sequencing contained unique barcodes. Once presence of the barcode was confirmed in a number 

of colonies, the cloning product was transformed and plated to grow on five 15-cm plates of LB 

agar. Following overnight growth, all colonies were collected and pooled by flushing the plates 
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with pre-warmed LB broth. Plasmid libraries were maxiprepped and the product was pooled and 

purified. Gamma-Retrovirus was produced by co-transfection of 293Ts with the barcoding 

retrovirus and retroviral packaging plasmid pCL-Amph. Retroviral supernatant was collected 48 

and 72 hours after transfection and concentrated using the TaKaRa Retro-X concentrator. 

To clone the AAV9-r26-GFP-BC CRISPR plasmid, a sgRNA targeted to Rosa26 was subcloned 

from pU6-sgRosa26-1_CBh-Cas9-T2A-BFP, a gift from Ralf Kuehn (Addgene plasmid # 64216 

; http://n2t.net/addgene:64216 ; RRID:Addgene_64216)58,59 and inserted in to the AAV-KPL 

backbone (AAV:ITR-U6-sgRNA(Kras)-U6-sgRNA(p53)-U6-sgRNA(Lkb1)-pEFS-Rluc-2A-

Cre-shortPA-KrasG12D_HDRdonor-ITR (AAV-KPL), a gift from Feng Zhang (Addgene 

plasmid # 60224 ; http://n2t.net/addgene:60224 ; RRID:Addgene_60224))60 at SacI and MulI 

using InFusion cloning (TaKaRa), and screened for presence of the insert using PCR and Sanger 

sequencing. Left and right homology arms to Rosa26, as well as a polyA signal were subcloned 

from pR26 CAG/GFP Dest, a gift from Ralf Kuehn (Addgene plasmid # 74281 ; 

http://n2t.net/addgene:74281 ; RRID:Addgene_74281)58,59 in to the AAV9-r26 plasmid at PmlI. 

The barcode library, attached to a GFP was ordered from ThermoFisher’s GeneArt program, and 

was inserted in to the AAV9-r26 plasmid at PmlI and BamHI via InFusion cloning. After the 

first 30 colonies were screened for insertion of the barcode by restriction digest, PCR, and 

Sanger sequencing, chemically competent cells were transformed with the plasmid pool and 

plated on ten 10-cm LB plates. After overnight growth, all plates were washed with pre-warmed 

LB and the pooled colonies were maxiprepped. The AAV9-r26-GFP-BC plasmid was made in to 

AAV9 at the University of Michigan Viral Vector Core. 
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2.3: Validation of barcode diversity in barcoded cells 

To profile the diversity in the barcode pools, targeted amplicon sequencing was performed on the 

barcode region. PCR was used to amplify the barcode and add partial adaptors for Illumina 

sequencing. The minimal number of cycles needed to amplify the barcode region was used to 

minimize the risk of introducing variants, or over-saturate the sample with a limited number of 

barcodes that had been disproportionately amplified. Samples were sequenced on an Illumina 

platform at Genewiz. The targeted amplicon sequencing of the barcodes was trimmed and QC 

performed via CutAdapt. GREP was used to identify barcodes and export them to R Studio for 

analysis. In R studio, the true number of barcodes was determined by using the number of PCR 

cycles to backtrack diversity, combined with the PCR error rate, determined by the number of 

PCR errors in the constant region of the barcode. Chao2 modeling was used to estimate the 

number of barcodes in the pool. 

2.3.1: Doubling time assays to determine fractional overlap of barcodes 

In order to ensure sufficient overlap in barcodes between the “pre-growth” sample and 

xenografts, I sought to determine the optimal number of doublings before sufficient overlap in 

two independent samples was observed. 1,600,000 cells were seeded and barcoded using the 

CAG-GFP-BC retrovirus and a spinfection at 940xg for 2 hours. At each doubling for five 

doublings following spinfection, one well of cells was harvested and split in to two. The barcode 

region was amplified off of the cDNA, and partial adapters for Illumina-based sequencing was 

added. Amplicon sequencing was performed at Genewiz (South Plainfield, NJ) using an 

Illuminia miSeq platform. The barcodes were analyzed using a custom R script after trimming 

and QC via CutAdapt. To verify the results of the barcode sequencing, computational modeling 

was used. I simulated the same doubling time experiment 1,000 times using a custom R package. 

24 



  

  

 

 

  

  

    

    

 

 

 

 

 

 

 

   

 

 

 

 

Based on the results of the sequencing, modeling, and previously published work 41, three 

doublings after barcoding gives sufficient overlap between two independent samples and will be 

used to generate the barcoded xenografts. 

2.4: Mouse protocols 

2.4.1: In vivo model 

The well-characterized Rblox/lox, p53lox/lox, p130lox/lox SCLC mouse model 61 was bread to the 

H11lox-stop-lox-Cas9 mouse62 model (Jax #026816) to generate the RPR-Cas9 mouse used in this 

work. Tumors were initiated by intratracheal injection with Ad-CMV-Cre (Baylor Viral Vector 

Core) to delete the Rb, p53, and p130 loci, and induce expression of Cas9. At one month 

intervals for five months after tumor initiation, the AAV9-r26-GFP-BC virus was delivered to 

separate cohorts of mice via intratracheal injection to barcode the forming tumors at the Rosa26 

locus using the CRISPR-Cas9 system. Mice were euthanized at one month intervals after their 

Ad-CMV-Cre injection, up to six months, or when they became moribund according to 

institutional IACUC guidelines. Two mice received chemotherapy at 5 mg/kg cisplatin and 10 

mg/kg etoposide on day one, and 10 mg/kg etoposide on days two and three, repeated for three 

weeks, and were allowed to progress until they were moribund15. 

2.4.2: Xenografting of barcoded tumors 

H209 and H82 SCLC cell lines were barcoded with the rCMV-GFP-BC retrovirus by spinfection 

at 940xg for 2 hours. Each barcoded line was allowed to double three times, to ensure overlap in 

barcodes in the cells sampled and cells used for xenografting. Immediately prior to xenografting, 

a portion of the cells were removed to generate the single-cell RNA sequencing library (“pre-

growth” sample). To make the xenografts, 2500 cells were mixed in a 1:1 ratio with matrigel 

(Corning Life Sciences) and injected into the hind flank of NOD-SCID mice. Xenografts were 
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measured daily after the tumors were palpable by hand in the hind flank. After xenografts 

reached 3 cm3 total volume, mice were euthanized and the xenografts harvested. Tumors were 

dissected, dissociated, and a portion of the cells were used for single-cell RNA sequencing (“pre-

chemotherapy” sample). The remainder of cells were mixed in a 1:1 ratio with matrigel and 

injected in to a new NOD-SCID mouse. The mice that received these serial xenografts received 

chemotherapy at 5 mg/kg cisplatin and 10 mg/kg etoposide on day one, and 10 mg/kg etoposide 

on days two and three, repeated for three weeks after tumors were palpable to generate 

chemoresistant xenografts 15. When these mice reached a total tumor burden of 3 cm3, they were 

euthanized, and the tumors were dissociated and used to generate single-cell RNA sequencing 

libraries (“post-chemotherapy” sample). 

2.5: Tumor profiling using single cell RNA sequencing 

2.5.1: Tissue processing and library preparation 

The “pre-growth” samples from the xenograft model were prepared for scRNA-seq according to 

the 10X Genomics protocols. After xenografts reached a cumulative volume of 3 cm3, mice were 

euthanized and tumors dissected. The MACS (Miltenyi Biotec) human tumor dissociation kit 

was used to digest the tumors, and cells were prepared for scRNA-seq using the 10X Genomics 

protocols. 

After the RPR-Cas9 reached their endpoint, they were euthanized via cervical dislocation and 

lungs and livers were harvested. Tissues were prepared for flow cytometry according to the 10X 

Genomics protocols, using the MACS mouse tumor dissociation kit. After dissection, the lungs 

and livers were sorted for GFP+ cells, which are the barcoded population, and cells were 

prepared for scRNA-seq according to the 10X Genomics protocol. Tumors were microdissected 

from three mice by cutting out one tumor lesion, which was sequenced without undergoing 
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FACS to capture the stromal and microenvironment cells. A 10X Genomics Chromium 

Controller was used for the library preparation of all tumors. 

2.6: Tumor Histology 

One lobe of the lung and one lobe of the liver from each of the RPR-Cas9 mice were taken for 

histology to verify the presence of tumors in this sample. Samples were fixed in 4% 

paraformaldehyde for 15 minutes and transferred to 30% sucrose for 24-48 hours. The samples 

were then embedded and cryosectioned before staining. Tumors were stained for GFP and Cas9 

to confirm that the barcoding system was successfully induced by the Adenovirus induction of 

Cas9 expression and AAV9 induction of GFP expression. 

2.7: Informatics approach 

The scRNA-seq data was initially filtered, trimmed and aligned via 10X Genomics CellRanger 

program. CutAdapt was used to extract the barcode sequences. Low quality cells were filtered 

out using Seurat, and clustering and psdudotime analysis was also performed in Seurat. The final 

data was visualized with Loupe. 

2.8: Validation of candidates identified via scRNA-seq 

2.8.1: Expression of PAGE5 and GAGE2A in chemotherapy treated cells 

An alamar blue assay was used to determine the IC50 value of cisplatin and etoposide in H82 

and H209 cell lines. Cells were seeded in 96 well plates and treated with either drug, with 

concentrations spanning three orders of magnitude. Cellular viability was assessed daily via 

Alamar Blue. The IC50 for Cisplatin was determined to be 2.876 uM. The IC50 for etoposide 

was determined to be 0.110 uM. These values were used for the resulting experiments. SCLC-N 

lines H29 and H82, and SCLC-A lines H1836 and H209 were treated with cisplatin and 

etoposide at the IC50 values for three days at cycles resembling the in vivo chemotherapy 
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treatment (Cisplatin and etoposide day 1, etoposide only days 2 and 3). Cells were harvested ono 

days two and three and RNA was extracted following the Trizol (Ambion Biosciences) protocol, 

and RNA was converted to cDNA using the NEB ProtoScript Reverse Transcriptase Kit. 

Expression levels of PAGE5 and GAGE2A were quantified via qPCR. 

2.8.2: Knockdown of PAGE5 and GAGE2A and response to chemotherapy 

shRNAs targeting PAGE5 and GAGE2A (Table 1) were designed using pSicoligoMaker3 

(Ventura lab, https://bitbucket.org/theclipper/psicoligomaker3/src/master/). shRNA oligos were 

cloned in to the lentiviral backbone pSicoR, a gift from Tyler Jacks (Addgene plasmid # 11579 ; 

http://n2t.net/addgene:11579 ; RRID:Addgene_11579) 63. The pSicoR-shPAGE5 and pSicoR-

shGAGE2A were made in to a second-generation lentivirus using pMD2.G and psPAX2 as 

packaging plasmids, and concentrated overnight using the TaKaRa Retro-X retroviral 

concentrator. SCLC-N lines H29 and H82, and SCLC-A lines H209 and H1836 were infected 

with pSicoR-shPAGE5 or pSicoR-shGAGE2A and sorted by GFP expression using the BD 

FACS Jazz. Knockdown of PAGE5 and GAGE2A expression was validated in the sorted cells 

with qPCR. To generate a double-knockdown, the sorted cells were infected with the reciprocal 

virus and expression of both PAGE5 and GAGE2A was assessed via qPCR. The single- and 

double- knockdown cells were used to generate xenografts to investigate the dependence of the 

chemoresistance phenotype on PAGE5 or GAGE2A expression. 150,000 cells were mixed in a 

1:1 ratio with GelTrex (Gibco) and injected in to the hindflank of NOD-SCID mice. Due to 

supply chain disruptions, a switch from Matrigel to GelTrex was necessary, however they both 

function the same way in providing some extracellular matrix to aid in xenograft injection. 

Tumors were allowed to grow until a cumulative volume of 3 mm3 was reached, at which point 

mice were euthanized and the tumors kept for histology to validate the knockdown of PAGE5 
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and GAGE2A. Half of the mice were treated with chemotherapy at 5 mg/kg cisplatin and 10 

mg/kg etoposide on day one, and 10 mg/kg etoposide on days two and three, repeated for three 

weeks after tumors were palpable. In culture, the shPAGE5, shGAGE2A, and double knockdown 

cells were treated with the IC50 value of cisplatin and viability was assessed via Annexin V and 

propidium iodide staining by flow cytometry (Biolegend APC Annexin V Apoptosis Detection 

Kit). 

2.8.3: Overexpression of PAGE5 and GAGE2A 

GAGE2A and PAGE5 overexpression retroviruses were generated by amplifying the transgenes 

from SCLC cell lines and cloning them in to the CAG-GFP retroviral backbone. H29, H82, 

H1836, and H209 cells were transfected with either the rCAG-PAGE5-GFP or rCAG-GAGE2A-

GFP vectors by spinfection with concentrated virus at 940xg for two hours. Transduced cells 

were treated with the IC50 value of cisplatin, etoposide, or cisplatin and etoposide assessed for 

response to chemotherapy by Annexin V and propodium iodide staining, and efficiency of 

overexpression assessed by qPCR. 

2.8.4: Knockdown of the AP-1 pathway via overexpression of dominant-negative Jun 

To inhibit the AP-1 complex, cJun was knocked down by transfection with a dominant-negative 

cJun construct. This is a common method for inhibiting the formation of the Jun/Fos AP-1 

complex 64,65. pMIEG3-JunDN was a kind gift from Alexander Dent (Addgene plasmid # 40350 

; http://n2t.net/addgene:40350 ; RRID:Addgene_40350) 64. H82, H29, H1836, and H209 SCLC 

cell lines were transfected with pMIEG3-JunDN using Lipofectamine 3000. Upon visual GFP 

detection, cells were sorted using FACS for GFP expressing cells. Cells were seeded in to 6 well 

plates for a soft agar colony formation assay. Briefly, 0.8% Seaplaque agar (Lonza) was used as 

a bottom layer and 10,000 cells per well were seeded in 1.2% agar in the top layer. Plates were 
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fed with full RPMI as needed to prevent drying out. 10 days after seeding, colonies were 

observed by eye and the plates were stained with 0.001% crystal violet for one hour, and plates 

were photographed. The number of crystal violet colonies stained was quantified with a custom 

CellProfilier script. 

2.9: Analysis of PAGE5 and GAGE2A expression in human SCLC biopsies 

2.9.1: Ethics statement 

The staining and scoring, and well as storage of the data for all human specimens was approved 

by the Sanford Health Institutional Review Board. 

2.9.2: Staining of human biopsies 

Human SCLC biopsies were obtained from the Sanford Health Biobank. Slides were stained with 

anti-PAGE5 (Invitrogen PA5-50470) or anti-GAGE2A (Aviva Systems ARP64957-P050). 

Stained slides were scanned using an Apereo AT2 slide scanner. Three independent researchers 

viewed and scored the scanned slides based on positivity, distribution, and intensity of staining. 

Positivity was a binary score, with the sample earning a positive score from any singular positive 

cell. Distribution was scored on a 0-3 scale: 0 for 0-5% of the sample staining positively, 1 was 

assigned to samples 6-30% positive, 2 for samples 31-60%, and 3 for samples more than 60% 

positive for PAGE5 or GAGE2A. For staining intensity, a score 0-3 was assigned. 0 for samples 

with no PAGE5 or GAGE2A staining, 1 for samples with light staining, 2 for samples with 

moderate staining, and 3 for samples with intense staining. 
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Name Forward Reverse 
Retroviral_PolyA tgtacaagtaagtttaaacAAGCTTctgtgccttctagttgccagc gaggttgattggtttccatagagcccaccgcatc 

Retrivral_Barcode_Oligo tgtacaagtaagtttaaacaagtttGTACAAGTAANNATCNNGAT 
SSAAANNGGTNNAACNNTGTAAA 

gaaggcacagAAGCTTTTTACANNGTTNNACCNNTTTSS 
ATCNNGATNNTTACTTGTACaa 

AAV9_R26_gRNA cggccgcacgcgcatgtgagggcc ttctctgtggtgacaaaaaagcacc 

AAV9_R26_LHDR ttctcaggtaaccacgcggcaggccctcc ccgctcggtccgcacgtgctagaaagactggagttgcagatcac 

AAV9_R26_RHDR cagtctttctagcacgtgggggatccactagttctagagc ccgctcggtccgcacagggcatcagatcccattacaga 

AAV9_BC_amp cagtctttctagcacgtgGTGATGGTGAGCAAGGGCG tagaactagtggatcGTACGACTTGGATCCCTCACTGG 

Retroviral_miSeq ACACTCTTTCCCTACACGACGCTCTTCCGATCTgagctg 
tacaagtaagtttaaacaagtttGTACAAG 

GACTGGAGTTCAGACGTGTGCTCTTCCGATCTaccttcca 
gggtcaaggaagg 

AAV9_miSeq ACACTCTTTCCCTACACGACGCTCTTCCGATCTgcatgg 
acgagctgtacaagg 

GACTGGAGTTCAGACGTGTGCTCTTCCGATCTaggctgat 
cggccgc 

GAGE2A_OE_Cloning ATTCGCTAGCGGATCGCCACCATGAGTTGGCGAGGAA 
GATCG 

CGAGGCGGCCGGATCTTAACACTGTGATTGCTTTTCA 
CCTTCTTCAGGC 

PAGE5_OE_Cloning ATTCGCTAGCGGATCGCCACCATGAGTGAGCATGTAA 
CAAGATCCCA 

CGAGCCGGCCGGATCCTATAGTTGCCCTTCACCTGCTT 

GAGE2A_qPCR TGAGTTGGCGAGGAAGATCG TCCCCTTCTTCAGGTGTTGC 

PAGE5_qPCR TGATGTCAGGGAGGGGACTC TTGGGGTCTGAACTACCTTCAA 

shPAGE5_Oligo_1 ggagaaaagccttgttTGGAACCACCAACTGATAATTTCAA 
GAGAATTATCAGTTGGTGGTTCCTTTTTTC 

ggatcctagtactcgaGAAAAAAGGAACCACCAACTGATA 
ATTCTCTTGAAATTATCAGTTGGTGGTTCCA 

shGAGE2A_Oligo_1 ggagaaaagccttgttTGCAGTTCAGTGATGAAGTTTCAAG 
AGAACTTCATCACTGAACTGCTTTTTTC 

ggatcctagtactcgaGAAAAAAGCAGTTCAGTGATGAAGT 
TCTCTTGAAACTTCATCACTGAACTGCA 

AAV9_BC_Oligo GTGATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACG 
GCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCA 
CCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTA 
CCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTT 
CTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCG 
AGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCA 
CAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAG 
GACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGAC 
AACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGA 
GTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGGTACAAGTAAnnATCnnGATssAAAnn 

GGTnnAACnnTGTAAAACGACGGCCAGTGAGGGATCCAAGTCGTAC 

Table 1: List of primers and oligos used. 
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Chapter 3: Generation and Validation of Barcoded Tumors in situ 

3.1: Validation of the barcoding AAV 

The AAV9 construct was designed to deliver all components of the CRISPR-Cas9 homology 

directed repair (HDR) function, with the exception of Cas9, as it is already expressed in the 

mouse lungs upon induction with Cre adenovirus. AAV9 has adequate tropism to the lung, which 

is why it was selected for this aim. The AAV9 contains a guide RNA (gRNA) targeted to the 

Rosa26 mouse locus, and delivers the barcode sequence and GFP between Rosa26 homology 

arms (Figure 6A). The gRNA will guide Cas9 to the Rosa26 locus, where Cas9 will make a 

double-stranded DNA cut. As the cell works to repair the cut, the Rosa26 homology arms 

supplied by the AAV9 will be used in the homology directed repair, and the GFP-Barcode 

cassette will be inserted in to the genome as the repair is complete. As indicated in the methods, 

prior to being made in to virus, a number of colonies were screened to ensure unique barcodes in 

a few colonies. The plasmid was sent to the University of Michigan Viral Vector Core to be 

made in to AAV9. 

3.2: Profiling of the barcoding AAV 

To understand the diversity in barcodes, I used next-generation targeted amplicon sequencing of 

just the barcode region. In order to avoid introducing errors in the PCR steps of the library 

preparation for the amplicon sequencing, I worked to amplify the barcode insert with the lowest 

number of PCR cycles possible (Figure 6B). The barcodes from the plasmid pool and the AAV9 

pool were sequenced via targeted amplicon sequencing at Genewiz. To ensure the most accurate 

representation of the true number of barcodes in the population, the number of PCR cycles 

determined in Figure 7B, along with an estimation of PCR error based on the error rate in the 

constant regions of the barcode was used to group together barcodes that may have seemed 
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unique but were actually a result of PCR error. By using the PCR backtracking, combined with 

Chao2 modeling of diversity using the plasmid pool and viral pool as two unique samples, an 

overall diversity of around 1,300 barcodes was determined (Figure 6C). 
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Figure 6: Validation of the AAV9 barcoding construct 
A: The construct contains homology arms to the Rosa26 locus flanking a GFP, the barcode 
sequence (inset), and a polyA sequence. This will insert the entire GFP barcoding cassette during 
HDR after Cas9-directed cutting at Rosa26. The plasmid also contains a gRNA directed to 
Rosa26 to guide the Cas9 to the appropriate site to make the cut. B: Determination of the optimal 
number of PCR cycles prior to targeted amplicon sequencing. The barcode sequence was 
amplified from the AAV plasmid, and a small amount of sample was removed at each PCR cycle 
and run on an agarose gel to determine the cycle number at which a band corresponding to the 
size of the barcode amplicon appears. As indicated by the arrows, a band corresponding to the size 
of the barcode begins to appear at 29 PCR cycles, and DNA sufficient for sequencing is able to be 
extracted. C: Diversity of the barcoding vector was determined with miSeq and Chao2 modeling.  
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3.3: Generation and validation of the TKO-Cas9 mouse model 

Our SCLC mouse model is driven by Cre-based deletion of the tumor suppressors Rb, p53, and 

p130 (RPR model). The RPR mouse model has been used many times and is a reliable model of 

SCLC11,61. I bred it with an H11lox-stop-lox-Cas9 mouse to generate the RPR-Cas9 (Rblox/lox, p53lox/lox, 

p130lox/lox, H11lox-stop-lox-Cas9) model. The mice rapidly develop tumors after intratracheal injection 

with an Ad-CMV-Cre adenovirus. To determine the optimal concentration of adenovirus, I 

injected mice with varying concentrations of the Ad-CMV-Cre virus and stained their lungs with 

antibodies against both Cre (to determine viral uptake) and Cas9 (to determine functional output 

of Cre recombination). Antibodies against Cas9 were not very good, so I used Cre 

immunostaining as the threshold by which to select the concentration of Ad-CMV-Cre (Figure 

7). 
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Figure 7: Lung histology to titer the Ad-CMV-Cre virus 
Varying concentrations of Ad-CMV-Cre were injected intratracheally in to mouse lungs, and 
histology was performed to to evaluate staining for Cre (left), and the functional output Cas9 
(right). 10 ul of virus is sufficient to initiate expression of Cas9 in the lungs. 
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Tumors generally start from a single cell and clonal diversity then develops over the course of 

the tumor growth. If tumors are barcoded too early, they could be barcoded at the single cell 

stage, and clonal diversity would be lost, as all cells within the tumor will share the same 

barcode. Conversely, if tumors are barcoded too late, the heterogeneity will have already formed, 

and clonal dynamics will not be able to be understood, as clones likely sharing the same lineage 

will receive different barcodes. Since the ideal timing for barcoding is unknown, I designed a 

matrix system for barcoding and analysis of tumors (Figure 8A). This matrix will allow us to 

barcode and analyze tumors from early tumor formation stages through endpoint-stage disease. 

By barcoding and harvesting tumors in the matrix schedule, all combinations of barcoding and 

harvesting are captured and I will capture the ideal timeline for tumor heterogeneity. 

To validate the barcoding AAV9-r26-GFP-BC virus, mice were given Ad-CMV-Cre, followed 

by AAV9-r26-GFP-BC two days later, and were euthanized after another two days. Lungs were 

stained for GFP. After tumor initiation and barcoding, mice were allowed to progress to their 

scheduled endpoint, or until moribund, whichever came first. Two mice were given 

chemotherapy at five months post-tumor initiation, and these mice were allowed to progress to 

moribund (Figure 8A). All RPR-Cas9 mice that were euthanized at five months have extensive 

tumor burden, so this timepoint was selected for chemotherapy treatment initiation to mimic the 

general clinical progression, as the majority of patients present with extensive-stage disease. At 

their endpoint, lungs and livers were harvested from all mice, and flow cytometry was performed 

to isolate the GFP+ barcoded tumor cells before scRNA-seq (Figure 8B, C, D). 
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Figure 8: Validation of barcoded tumors 
A: Timeline for tumor barcoding and isolation. Tumors were barcoded at one month intervals 
following tumor initiation, and tissues were harvested at one month intervals following barcoding. A 
subset of the mice received chemotherapy. B: Example FACS plots from a lung and liver sorted for 
GFP+ barcoded tumor cells. C: Example histology showing cells stained with an antibody against 
GFP in four tumors barcoded and harvested at various times. D: Repressive images of a lobe of the 
lung showing GFP+ tumor lesions under a dissecting microscope. 
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Chapter 4: Single-cell RNA Sequencing of SCLC Tumors Barcoded 

in situ Identifies Genetic Signatures for Tumorigenesis 

4.1: Two distinct transcriptomic signatures arise during tumorigenesis 

After tumors were harvested, flow cytometry was performed to isolate GFP+ cells, and they were 

used for scRNA-seq. Data was trimmed and aligned to the mouse genome using CellRanger. The 

resulting data was then used in Seurat to filter out low-quality cells, attempt to extract barcode 

data, and correct for cell cycle genes. Clustering was performed in Seurat to identify unique 

cellular populations.The scRNA-seq analysis is shown in Figures 9-14. 

Upon analysis of the scRNA-seq data, no barcodes were detectable in the tumors barcoded in 

situ. Despite having tumors that are immuno-reactive to antibodies against GFP (Figure 8C), and 

the detection of GFP+ cells via flow cytometry (Figure 8D), the depth of scRNA-seq in this case 

was not sufficient to pick up reads from the GFP and barcode. Although barcodes were not 

detected in these samples, due to the timewise design of the animal studies, information on tumor 

evolution can still be gained. We observe the majority of cells sequenced are indeed SCLC cells, 

characterized by classic SCLC neuroendocrine markers. Other cell types that can be identified 

are myeloid, club, alveolar, ciliated cells, and T and B immune cells (Figure 15B). When 

evaluating the cell cycle composition of the cells within the tumor populations, the proportion of 

cells in G1 decreases with each subsequent month that tumors are allowed to form, and the 

percentage of cells in G2 or metaphase increases significantly after five months of tumor 

development (Figure 15C) We observe an “early” tumor signature that arises in the tumors 

isolated after two months of development, and a population of cells maintains the early signature 

through later tumor development, up to 5.5 months after tumor initiation. In the later months of 

tumor development, a “late” signature emerges, which eventually is responsible for the majority 
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of the tumor in the longest developed tumors (Figure 15D, E). The gene signatures that 

characterize the early and late tumor populations differ at several gene “modules” but 

particularly module five (Figure 15F). Module five is notably comprised of the known SCLC 

regulators Myc and Hes, and also members of the AP-1 network. 
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Figure 9: Pre-trimming scRNA-seq, in situ 
A: Number of genes detected per sample, for all samples including lung (Lu), liver (Li) and lymph 
node (Ly). B: Percentage of reads corresponding to mitochondrial genes in all in situ samples. C: 
Percentage of reads corresponding to ribosomal genes. D: Correlation between percent 
mitochondrial reads and number of genes (left), or number of genes and number of features (right). 
Cells with a high percentage mitochondrial genes and low number of genes were filtered out as dead 
cells. Using the features vs reads plot, doublets were filtered. 
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Figure 10: Post-trimming scRNA-seq, in situ 
A: Number of genes sequenced per cell after trimming. B: Number of genes sequenced per cell 
after sequencing for only the lung samples. C: Number of genes sequenced by cell stratified by 
whether or not the animal received chemotherapy treatment. “No” indicates no chemotherapy 
treatment, and “yes” indicates chemotherapy treatment. D: Number of genes sequenced per cell 
stratified by the month of tumor harvest. The early timepoints (months 2 and 3) are lower in reads 
than the later timepoints. E: Post-trimming percentage of reads that correspond to mitochondrial 
genes. 
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Figure 11: Cell cycle correction, in situ 
A: Cell cycle marker genes pre-set by Seurat show the distribution of cells corresponding to each 
stage of the cell cycle. B: Amount of KI-67 expressed in each sample, indicating these cells are 
cycling. C: UMAP showing the distribution of lung samples (left), and the cells that are in each phase 
of the cell cycle (right). D: Cell cycle state plotted by principal component. Left – PC plot showing 
the distribution of the lung samples. Right – PC plot indicating which cells are in each phase of the 
cell cycle. 
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Figure 12: Stratification of cells based on two principal components, in situ 
A: Top ten genes identified with Seurat analysis. B: DEG identified by PC-1 (left) and PC-2 (left). 
Top differentiated genes include Ascl1, Egr1, and members of the AP-1 network. C: Distribution of 
cells when split on two principal components. 
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Figure 13: Increasing dimensionality leads to decreased standard deviation 
A: Heatmaps of increasing dimensions. B: Elbow plot indicating the decrease of standard deviation 
with each increased dimension. 
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Figure 14: UMAP and clustering to generate a pseudotime trajectory, in situ samples 
A: Left – UMAP of all lung samples. Left – clustering used for downstream analysis. B: UMAP with 
the distribution of cells color-coded with the time of tumor harvest in months. C: Pseudotime 
trajectory showing multiple, divergent routes of tumor evolution. 
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Figure 15: Single cell RNA sequencing of in situ tumors reveals two distinct tumor populations 
A: Schematic overview of the in situ barcoding approach. Tumors are initiated with Ad-CMV-Cre, 
and are barcoded with the AAV9-R26-GFP-BC virus at one month intervals post-initiation. At one-
month intervals following barcoding, tumors were harvested and underwent scRNA-seq. B: scRNA-
seq detected many cell types in the lung, including SCLC tumor cells. C: At each month post-tumor 
initiation, the proportion of cells in G1 significantly decreases and the proportion of cells in G2/M 
significantly increases. D: Tumor cells stratify in to two populations – “early” and “late” (left). The 
early population is predominant in the tumors collected at two and three months post-initiation, while 
the late population arises in the tumors harvested later. E: Proportion of cells at each tumor harvest 
timepoint that correspond to the early or late clusters. Over time, the majority of the tumor is 
comprised of the late population. F: Gene modules differentiate the early and late tumor clusters. 
Eight gene modules can describe the transcriptomic differences between the early and late tumor 
clusters. Particularly of note is module 4, which contains Myc and Hes, as well as members of the AP-
1 network. 
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4.2: The role of the AP-1 network in mediating tumorigenesis 

The AP-1 network was frequently identified in the scRNA-seq data from early, middle, and late 

tumors, and cells high in the AP-1 network signatures were frequently found in both the “early” 

and “late” tumor clusters, but at particularly high levels in the late cluster (Figure 16A, B). The 

AP-1 network has been found to be responsible for a number of tumor hallmarks including 

growth, resistance to therapy, and angiogenesis, and expression has been implicated in many 

tumor types65-76. Given the strong links to tumorigenesis in other cancer types, I sought to 

understand the implications of AP-1 network activation in SCLC. cJun is one of the most 

common components of the AP-1 network, and the majority of network functions can be 

inhibited via knockdown of cJun using a dominant-negative Jun construct (JUNDN)64,65,68. Jun 

was found to be highly expressed in this study, particularly in the late tumor cluster (Figure 

16B). I transfected the four SCLC lines (H29, H82, H209, H1836) with the JUNDN construct 

pMIEG3-JunDN, and did FACS to isolate the GFP+ cells that had been successfully transfected. 

Due to poor expression in the H209 and H1836 cell lines, only the H29 and H82 cell lines were 

successfully transduced and will be used for downstream crystal violet analysis. 

The resulting cells were used for a soft agar colony forming assay to assess the capability of cells 

with disruption of AP-1 to form colonies from a single cell suspension. JunDN cells formed 

significantly fewer colonies than wild-type cells did (Figure 16C, D). Disruption of the AP-1 

complex by knockdown of cJun inhibits colony formation, indicating that the AP-1 complex is 

important in tumor formation in SCLC. Validating these results in SCLC-A cell lines, which are 

notoriously difficult to transfect, would be a beneficial route of follow-up. The cells from the 

tumors treated with chemotherapy cluster predominately with the late cell cluster and are high in 

AP-1 network signatures (Figure 16E). 
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Figure 16: The AP-1 network is required for tumorigenesis. 
A: Relative expression of genes belonging to the AP-1 network that are highly expressed in both the 
early and late tumor clusters, but to a higher degree in the late tumor cluster. B: UMAPs showing 
expression of Fos (left) and Jun (right), two critical members of the AP-1 complex. The expression of 
Fos and Jun is high in the sequenced tumor cells, and is particularly high in the cluster corresponding 
to the late population. C: Representative images of crystal violet staining after AP-1 inhibition due to 
Jun knockdown in SCLC cell lines that were used for a soft agar colony forming assay. The cells with 
AP-1 disruption formed significantly fewer colonies than the wild-type cells. D: Quantification of the 
soft agar colony forming assay shows significantly fewer colonies in the AP-1 disrupted cells. E: 
UMAP of all sequenced tumor cells, including those that received chemotherapy. The majority of the 
cells from the chemotherapy treated tumors cluster with the late tumor cluster. 
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Chapter 5: Generation and Validation of Barcoded SCLC 

Xenografts 

5.1: Synthesis and profiling of the barcoding retrovirus 

The retrovirus barcoding construct was designed to contain a CAG promoter to ensure 

expression regardless of the site of viral insertion, followed by a GFP, the barcode sequence, and 

finally a polyA sequence to give the highest chance of sequencing the barcode with the 10X 

Genomics 3’ capture technology (Figure 17A). After cloning, the rGFP-BC plasmid was profiled 

for diversity of barcodes using targeted amplicon sequencing. To avoid erroneously introducing 

errors in the barcodes, the minimal number of PCR cycles needed to amplify the barcode was 

determined by removing a portion of the sample after each PCR cycle and running a gel to 

screen for the lowest number of cycles required to get a band that produces sufficient quantity of 

DNA for sequencing (Figure 17B). After determining the optimal number of PCR cycles, the 

plasmid pool and viral pool were sequenced to determine barcode diversity via targeted amplicon 

sequencing. After targeted amplicon sequencing, the same PCR error rate correction and Chao2 

modeling was performed as with the AAV barcoding vector, and the estimated diversity of 

barcodes is roughly 6,000 unique barcodes (Figure 17C). 

50 



  

 

  
      

               
 

 
     

       
        

  

Figure 17: Generation and validation of the barcoding retrovirus 
A: The retroviral barcoding constructs contains a CAG promoter, GFP, and the barcode sequence with 
a 3’ polyA tail. B: Determination of the optimal number of PCR cycles to amplify the barcode 
sequence for targeted amplicon sequencing. The barcode sequence was amplified via PCR, and a 
subset of the sample was removed each cycle and run on a gel to identify at which PCR cycle a band 
corresponding to size of the barcode amplicon would appear. As indicated by red arrows, a band is 
faintly visible at 11 PCR cycles, and 16 PCR cycles is sufficient to obtain DNA for sequencing. C: 
Diversity of the barcoding retrovirus was determined via miSeq and Chao2 modeling, and was 
determined to be around 6000 unique barcodes. 

51 



  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

 

5.2: Profiling of barcode diversity across doubling times in cells 

Before generating xenografts, a subset of the cells are collected to serve as a “pre-injection” 

sample, however, since each cell should receive a unique barcode, I want to ensure that the 

barcodes captured in the “pre-injection” sample match the barcodes that are in the xenografted 

cells, so that they are able to be traced back to their starting population using the barcode 

sequence. In order to ensure the barcodes captured in the pre-injection sample and the xenograft 

have sufficient overlap, I set up a doubling time experiment, in which cells would be barcoded, 

and at each doubling, the cells harvested and split in two. The barcodes of the two independent 

samples are then be profiled with targeted amplicon sequencing, and the overlap in barcodes in 

the two halves of the same initial sample quantified. In this experiment, the two halves of the 

initial barcoded cell pool represent the pre-injected sample and the injected xenograft. By 

assessing the barcode overlap over four doublings, the optimal number of doublings for 

sufficient overlap will be identified. For the four SCLC lines, H29, H82, H209, and H1836, the 

normal doubling time is not known, so I seeded a known number of cells and every 24 hours 

counted the number of cells in the sample to calculate the doubling time for these four lines 

(Figure 18A). Since only the H82 (SCLC-N) and H209 (SCLC-A) cell lines are being used to 

make xenografts, these are the lines that were used for the barcode overlap experiment. Cells 

were barcoded in culture and at each doubling, as determined in Figure 19A, one well was 

harvested, split in half (Figure 18B). After harvesting and splitting the cells, the RNA was 

extracted and the barcodes were amplified using the minimal number of PCR cycles to amplify 

just the barcode region, as in Figure 18B, and the barcode region was sequenced with Illumina 

miSeq (Figure 18C). An R script was generated to determine the percent overlap in barcodes and 

to model the percent overlap if the experiment was repeated 1000 times (Figure 18D). As 

52 



  

 

 

  

   

 

  

  

   

 

  

  

determined by both the sequencing and the modeling, the percent overlap between two halves 

starts relitivley high at about 60% and increases over time before plateauing. Additionally, 

because one cell population will be used to make four xenografts, an R script was used to 

determine the percent overlap in barcodes if one sample was split in half (pre-injection sample), 

and the other half was split in to four (four xenografts). The overlap between two individual 

xenografts (Figure 18E) and the overlap between the pre-injection sample and individual 

xenografts (Figure 18F) was determined. From the sequencing and modeling of the barcode 

overlap, three doublings appears to be the most optimal to maximize barcode overlap between 

the pre-injection sample and the xenografts, and to minimize the barcode overlap between 

xenografts, so that they may serve as biological replicates. To further assure that three doublings 

is sufficient to observe overlap, I validated the simulated experiment by performing it using 

SCLC cells in culture. Cells were barcoded in culture and after three doublings, 15,500 cells 

were used as the “pre-injection sample” and four samples of 2,500 cells each served as a 

xenograft, since 15,500 cells will be sequenced pre-injection and 2,500 cells are used to make 

each xenograft (Figure 18B). Based on the overlap in barcodes observed in the targeted amplicon 

sequencing, it is clear that three doublings is sufficient to achieve overlap in barcodes between 

the pre-injection sample and injected xenografts (Figure 18G). 
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Figure 18: Sequencing and modeling of barcodes in cells infected with the barcoding 
retrovirus. 
A: Doubling time of two SCLC cell lines, H82 (SCLC-N) and H209 (SCLC-A). Cells were seeded 
at a known concentration and counted daily. The doubling time is determined as 2-3 days. B: 
Schematic of the doubling time experiment. Cells in culture are barcoded and at each doubling, a 
well is harvested, split in half, and barcodes sequenced. If one of the halves is split in to four 
independent samples, they are indicated as subsamples. C: Overlap in barcode sequences in two 
halves at each doubling. D: Modeled overlap in the barcode sequences over doubling times. The 
modeling was simulated 1,000 times. E: Modeled overlap between two subsamples over five 
doublings. F: Modeled overlap between one subsample and the remaining half of the well. G: 
Overlap in barcodes at three doublings in the amount of cells actually used for xenografting 
(“subsample”) and pre-injection scRNA-seq (“half”). 
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5.3: Generation of xenografts and chemoresistant xenografts 

After validating and profiling the barcodes, xenografts were generated by barcoding H209 

(SCLC-A) or H82 (SCLC-N) cells in culture, allowing them to double three times, and injecting 

2,500 cells per xenograft in 1:1 matrigel in to the hind flank of immunocompromised mice. After 

palpable, the tumors were measured daily (Figure 19A, B). As expected, the SCLC-N H82 

xenografts (Figure 19B) grew much more rapidly than the SCLC-A H209 xenografts (Figure 

19A). Clinically, patients that have SCLC-N tumors do more poorly, and SCLC-N subtype is 

most often associated with chemoresistance, so more aggressive growth behavior from the 

SCLC-N xenografts is logical. After the chemo-naïve tumors had reached their endpoint, they 

were dissected and 15,500 cells were used for scRNA-seq, while the rest were injected in to the 

hind flank of a new mouse as a serial xenograft, which received cisplatin and etoposide. Again, 

the SCLC-N xenografts grew more aggressively under chemotherapeutic pressure than the 

SCLC-A xenografts (Figure 19C). There was a response to chemotherapy in a subset of the 

SCLC-A xenografts, but all tumors ultimately regrew as chemoresistant tumors. All 

chemoresistant tumors were dissected and subject to scRNA-seq. Upon dissection the tumors are 

GFP+ under a fluorescent dissecting microscope, indicating that they are indeed barcoded, since 

the barcode is fused to a GFP (Figure 19D). 
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Figure 19: Generation and growth of barcoded and chemoresistant xenografts. 
A: Four xenografts were generated from barcoded SCLC-A cells and were allowed to grow until the 
size threshold was reached. B: Growth curves from the four barcoded SCLC-N Xenografts. 
Xenografts were generated and allowed to grow until the size threshold. C: Xenograft growth under 
chemotherapy. Barcoded xenografts were serially injected in to new mice, which received three 
weeks of chemotherapy treatment. SCLC-A tumors (top) were somewhat responsive to 
chemotherapy, but eventually re-grew. SCLC-N tumors (bottom) were generally resistant to 
chemotherapy. D: Images of dissected barcoded tumors. Tumors displaying visible GFP expression 
were dissected, indicating some degree of barcoding in these samples. 
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Chapter 6: scRNA-seq of Barcoded Xenografts Reveals Increased 

Transcriptomic Plasticity in SCLC-A Tumors 

6.1: SCLC-A tumors exhibit transcriptomic changes after chemoresistance 

All xenografts, as well as the pre-injection sample underwent scRNA-seq to profile their 

transcriptomes on a single cell scale. scRNA-seq data was trimmed, QC performed, and mapping 

to the genome was performed via CellRanger. Given that the xenografts were not flow-sorted, 

there may have been contaminating mouse cells in the data. A mapping statistic was assigned to 

each cell, and it was determined that very few of the cells belong to the mouse genome (Figure 

21D, Figure 27D). These cells were excluded from the resulting analysis. The data was then used 

in Seurat, where cells with poor quality reads were filtered out, the barcoding data was extracted, 

and cell cycle correction was performed. Loupe was used to visualize the final, processed data. 

Data analysis is shown in Figures 20-35. 
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Figure 20: SCLC-A scRNA-seq samples before trimming 
A: Overview of the lineages that exist in these samples. B: Number of genes detected per sample. 
Sample R_1420_P has very few genes detected and is of low quality, and should be filtered out. C: 
Percentage of reads corresponding to mitochondrial genes. D: Percentage of reads corresponding to 
ribosomal genes. E: Correlation between percent mitochondrial reads and number of genes (left). 
Cells with a high percentage mitochondrial genes and low total number of genes were filtered out as 
dead cells. Correlation between number of features and number of genes detected (right). Doublets are 
filtered out.  

58 



  

  

  
           

       
             

           
         

      
   
          

Figure 21: SCLC-A post-trimming scRNA-seq. 
A: Number of genes sequenced per cell after trimming the dead cells and doublets. B: 
Percentage of reads corresponding to mitochondrial genes. C: Percentage of reads 
belonging to ribosomal genes. D: Number of cells that match either the mouse or human 
genome. The xenografts are human cells, but were injected in to mice, so it is possible that 
a few of the cells that were sequenced were stromal mouse cells. Very few of the reads 
correspond to the mouse genome, but some were still captured. E: Post-trimming 
correlation of percentage of mitochondrial reads and number of sequenced genes (left) and59
correlation of number of features and number of genes (right). 



  

  

  
     

     
       
      

       

Figure 22: Cell cycle analysis of the SCLC-A scRNA-seq samples 
A: Cell cycle marker genes pre-set by Seurat show the distribution of cells corresponding to each 
stage of the cell cycle. B: Amount of KI-67 expressed in each sample, indicating these cells are 
cycling, with the degree dependent on the sample. C: UMAP showing the distribution of the SCLC-A 
samples (left), and the cells that are in each phase of the cell cycle (right). D: Top 10 genes as 
determined by Seurat. This analysis averages all samples. 
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Figure 23: Stratification of the SCLC-A samples based on two principal components 
A: DEG identified by PC-1 (left) and PC-2 (left). B: Distribution of cells when split on two principal 
components. 
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Figure 24: Increasing dimensionality leads to decreased standard deviations in the SCLC-A 
samples 
A: Heatmaps of increasing dimensions. B: Elbow plot indicating the decrease of standard deviation 
with each increased dimension. 
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Figure 25: UMAP and clustering used to generate a pseudotime trajectory of the SCLC-A 
samples 
A: Left – UMAP of all SCLC-A samples. Left – clustering used for downstream analysis. B: Seurat 
analysis automatically clustered the cells in to two clusters, blue (no chemotherapy) and red 
(chemoresistant cells). C: Trajectory analysis based on the clustering from B. D: Pseudotime 
trajectory using the clustering from A and accounting for the time-based resolution. The lineage starts 
in the cell line and continues through the chemo-naïve cells, in to the chemoresistant ones. 
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Figure 26: SCLC-N scRNA-seq results before trimming 
A: Overview of the lineages that exist in these samples. B: Number of genes detected per sample. C: 
Percentage of reads corresponding to mitochondrial genes. D: Percentage of reads corresponding to 
ribosomal genes. E: Correlation between percent mitochondrial reads and number of genes (left). 
Cells with a high percentage mitochondrial genes and low total number of genes were filtered out as 
dead cells. Correlation between number of features and number of genes detected (right). Doublets are 
filtered out. 
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Figure 27: scRNA-seq data post-trimming for the SCLC-N samples 
A: Number of genes sequenced per cell after trimming the dead cells and doublets. B: Percentage of 
reads corresponding to mitochondrial genes. C: Percentage of reads belonging to ribosomal genes. D: 
Number of cells that match either the mouse or human genome. The xenografts are human cells, but 
were injected in to mice, so it is possible that a few of the cells that were sequenced were stromal 
mouse cells. The vast majority of cells corresponded to the human genome, but a few mouse cells 
were captured. E: Post-trimming correlation of percentage of mitochondrial reads and number of 
sequenced genes (left) and correlation of number of features and number of genes (right). 
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Figure 28: Cell cycle analysis of the SCLC-N scRNA-seq analysis 
A: Cell cycle marker genes pre-set by Seurat show the distribution of cells corresponding to each 
stage of the cell cycle. B: Amount of KI-67 expressed in each sample, indicating these cells are 
cycling. C: UMAP showing the distribution of the SCLC-N samples (left), and the cells that are in 
each phase of the cell cycle (right). D: Top 10 genes as determined by Seurat. This analysis averages 
all samples. 
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Figure 29: Stratification of the SCLC-N xenograft samples based on two principal components 
A: DEG identified by PC-1 (left) and PC-2 (left). B: Distribution of cells when split on two principal 
components. 
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Figure 30: Increasing dimensionality leads to decreased standard deviations in the SCLC-N 
samples 
A: Heatmaps of increasing dimensions. B: Elbow plot indicating the decrease of standard deviation 
with each increased dimension. 
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Figure 31: SCLC-N samples UMAP and clustering to generate a pseudotime trajectory. 
A: Left – UMAP of all SCLC-N samples. Left – clustering used for downstream analysis. B: 
Pseudotime trajectory accounting for a time-based resolution. Left – clustering used to generate the 
pseudotime trajectory. Right – SCLC-N pseudotime projection. The lineage is very branched, with 
two main projections arising from the initial cellular population and diversifying as the xenografts 
grow and acquire enhanced chemoresistance. 
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Figure 32: All xenograft scRNA-seq combined together, post-trimming. 
A: Number of genes sequenced per cell for both the SCLC-A and SCLC-N cohorts. B: Percentage of 
reads corresponding to mitochondrial genes. C: Due to some tumors being collected at different 
timepoints, there is a batch effect that must be accounted for. C shows the UMAP for all samples prior 
to batch correction. H209 – SCLC-A cell line, H209X – SCLC-A xenograft, H209XCR – SCLC-A 
xenograft treated with chemotherapy, H82 – SCLC-N cell line, H82X – SCLC-N xenograft, H82 
XCR – SCLC-N xenograft treated with chemotherapy. D: All xenograft samples UMAP after batch 
correction. E: Top 10 genes expressed as determined by Seurat. 
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Figure 33: Distribution of all xenograft samples based on two principal components 
A: Top differentially expressed genes from one (left) or two (right) principal components. B: 
Distribution of cells when two principal components are used. 
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Figure 34: Increasing the number of principal components in all xenograft samples decreases 
standard deviation and variance. 
A: Heatmaps showing DEGs when the data is stratified with increasing components. B: Elbow plot 
demonstrating the relationship between standard deviation and number of principal components. C: 
Variance in the data explained fully by components decreases with each additional component added. 
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Figure 35: Clustering of all xenograft samples reveals similarities between chemoresistant 
SCLC-A tumors and SCLC-N tumors 
A: UMAP of all xenograft samples coded by their sample type. H209 – SCLC-A cell line, H209X – 
SCLC-A xenograft, H209XCR – SCLC-A xenograft with chemotherapy, H82 – SCLC-N cell line, 
H82X – SCLC-N xenograft, H82XCR – SCLC-N xenograft treated with chemotherapy. B: UMAP of 
all xenograft samples color coded based on their sample number. C: Clustering used for lineage 
trajectory set by Seurat. D: Lineage trajectory of all SCLC-A and SCLC-N tumors. E: Pseudotime 
reconstruction for all SCLC-A and SCLC-N tumors combined. 

73 



  

 

  

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

There is a large transcriptomic shift between chemo-naïve tumors and chemotherapy treated 

tumors in SCLC-A xenografts (Figure 37A). In contrast, the SCLC-N tumors do not display a 

large shift after chemotherapy (Figure 37A). It is known that SCLC-N tumors can be more 

chemoresistant, so it makes sense that there would not be much of a transcriptomic difference 

between tumors treated with chemotherapy and tumors without. In contrast, SCLC-A tumors are 

often chemo-sensitive and a shift in gene expression is seen after chemoresistance is acquired. 

This is what has been observed here. The tumors that start as SCLC-A take on more of the 

NEUDOD1-high SCLC-N profile after chemotherapy (Figure 37B). In the SCLC-A pre-injection 

sample, the transcriptomes of these cells cluster mostly separately from the tumors they form, 

indicating either a bottleneck event, or transcriptomic shift during the event of tumor formation 

(Figure 36B). By utilizing the barcodes, we are able to match transcriptomes to lineage barcodes 

and are able to ascertain which phenomenon occurred. There are however a few cells that belong 

to the pre-injection sample that cluster more closely with the formed tumors. These could 

potentially be the tumor initiating cells that survived the bottleneck event to form the eventual 

tumor. Similarly, there are a handful of cells from the chemo-naïve tumors that cluster more 

closely with the chemoresistant tumors in the SCLC-A xenografts (Figure 36D). These could 

potentially be cells that are inherently chemoresistant that have the ability to give rise to a 

chemoresistant tumor after selection by chemotherapy. With the barcodes, we are able to track 

the chemoresistant cells back to the initial tumor populations to make that determination. The 

SCLC-N xenografts display a much lower degree of transcriptomic shift between the pre-

injection sample, the chemo-naïve xenografts, and the chemoresistant xenografts (Figure 36A, C, 

F). Due to the known propensity for SCLC-N tumors to be chemoresistant, it is understandable 

that little to no transcriptomic shift after chemoresistance would occur. Still, these cells are 
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barcoded, and we have the ability to identify the populations of cells that were able to form 

tumors and re-grow the tumors after chemotherapy treatment. 
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Figure 36: Transcriptomic plasticity is observed in SCLC xenografts. 
A: UMAP of the SCLC-N xenograft samples. There is no striking difference in the chemotherapy 
treated and chemo-naïve populations. B: UMAP of all the SCLC-A samples. A robust transcriptomic 
shift is observed post-chemotherapy. C: UMAP of only the SCLC-N samples that did not get 
chemotherapy, and the pre-injection sample. D: UMAP of the SCLC-A samples with the samples that 
received chemotherapy removed. A few cells that correspond to the chemo-naïve cells cluster where 
the chemoresistant cells do. These could potentially be the cells with inherent chemoresistance that 
are responsible for seeding the chemoresistant tumor after chemotherapy. E Heat map showing top 
DEG in the SCLC-A samples. The transcriptomic difference between the chemo-naïve and 
chemoresistant samples is apparent. F: Heatmap of the top DEG for the SCLC-N xenografts. Much 
more transcriptomic homogeneity is observed in these samples. 
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Figure 37: Expression of SCLC subtype genes show a conversion from SCLC-A to SCLC-N in 
chemotherapy treated tumors. 
A: UMAPs of the SCLC-N (left) and SCLC-A (right) tumors color-coded by sample. The SCLC-N 
tumors do not show a transcriptional shift after chemoresistance, while the SCLC-A tumors 
demonstrate robust transcriptional changes, indicated by the leftward shift in the chemoresistant 
samples. B: UMAPs highlighting expression of SCLC subtype genes ASCL1 and NEUROD1 in 
SCLC-N (left) and SCLC-A (right) tumors. The SCLC-N tumors are low in ASCL1 and high in 
NEUROD1 regardless of treatment status, while the SCLC-A tumors shift from ASCL1 high to 
NEUROD1 high after chemotherapy. This corresponds with a shift from MYCL expression to MYC 
expression, which has been previously documented as part of this subtype switch. 
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Chapter 7: Cancer Testis Antigens are Mediators of 

Chemoresistance in SCLC 

7.1: Cancer Testis Antigens PAGE5 and GAGE2A are expressed in chemoresistant 
populations 

Cancer/Testis Antigens (CTA) are a large class of proteins almost exclusively expressed in the 

male germ cells and tumors. CTAs have shown promise as potentially targetable, unique cancer 

antigens. For this reason, they make excellent candidates for immunotherapy such as CAR-T 

therapy and cancer vaccines77-83. In addition to their role as potential cancer antigens, CT 

antigens also have oncogenic effects on proliferation, genomic stability, invasion, colony 

formation, and resistance to apoptosis78,79,81. In the scRNAseq, CTAs were significantly 

upregulated (Figure 38A, B). In particular, PAGE5 and GAGE2A were significantly upregulated 

after chemotherapy in SCLC-A xenografts. In the inherently chemoresistant SCLC-N xenografts, 

PAGE5 and GAGE2A were highly expressed in all populations. PAGE5 has been identified to 

be expressed in some cancers, and in melanoma was elevated as an anti-apoptotic gene in 

response to platinum-based chemotherapy. Expression of PAGE5 was shown to be pro-survival, 

and upregulated genes related to melanoma cell survival84. GAGE2A is another anti-apoptotic 

CT antigen, that seems to be related to treatment resistance in medulloblastoma85. I therefore 

sought to investigate the role of PAGE5 and GAGE2A in mediating chemoresistance in SCLC. 

To evaluate the effect of chemotherapy treatment on expression of PAGE5 and GAGE2A, H29, 

H82, H209, and H1836 SCLC cell lines were treated with chemotherapy in culture. The IC50 

value for cisplatin and etoposide treatment of cells was first determined by treating H82 or H209 

cells with varying concentrations of cisplatin or etoposide, and proliferation was assessed via 

alamar blue assay (Figure 39A). The resulting IC50 concentration was used for the remainder of 
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the in vitro chemotherapy response experiments. All four cell lines were treated with the IC50 

dose of cisplatin or etoposide, and two or three days later, cells were harvested for RNA and 

expression of PAGE5 or GAGE2A was assessed with qPCR. Cells treated with cisplatin or 

etoposide demonstrate higher expression of PAGE5 and GAGE2A than cells not treated with 

chemotherapy (Figure 38C), indicating cells increase the expression of CTAs in response to 

chemotherapy treatment in culture. In order to understand how chemotherapy treatment impacts 

CTA expression, xenografts using the four SCLC lines were generated in NSG mice. After 

tumors were palpable, some mice were treated with chemotherapy. When the mice had reached 

their endpoint, tumors were dissected and stained for expression of PAGE5 and GAGE2A. 

Tumors generated from SCLC-N cell lines (H29 and H82) stained positively for expression of 

PAGE5 and GAGE2A (Figure 38D). Tumors from mice that received SCLC-A tumors (H209 

and H1836 cell lines had almost no expression of PAGE5 or GAGE2A until after chemotherapy 

treatment (Figure 38D). SCLC-A cells express CTAs at a very low level prior to chemotherapy 

treatment, while SCLC-N cells and tumors express CTAs at a moderate level, which is increased 

upon treatment with chemotherapy. Universally, chemotherapy treatment of SCLC cells in 

culture leads to an upregulation of PAGE5 and GAGE2A expression, and treatment of 

xenografts with chemotherapy also increases the expression of PAGE5 and GAGE2A (Figure 

38). The association between chemotherapy treatment and CTA expression suggests a role of 

CTAs in mediating response to chemotherapy in SCLC. 
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Figure 38: Cancer testis antigen expression is increased after chemotherapy in SCLC. 
A: UMAP of the SCLC-N xenografts demonstrating robust GAGE2A (top) and PAGE5 (bottom) 
expression in all sequenced cells. B: SCLC-A UMAP showing increased GAGE2A (top) and PAGE5 
(bottom) expression only after chemotherapy treatment. C: GAGE2A (left) and PAGE5 (right) 
expression increase after treatment with chemotherapy in culture. SCLC cell lines were treated with 
cisplatin, etoposide, or combination therapy, and the level of GAGE2A or PAGE5 expression was 
assessed via qPCR. A marked increase in expression is observed. D: SCLC xenografts treated with 
chemotherapy show increased immunostaining of GAGE2A and PAGE5. SCLC-N xenografts (left) 
have existing expression of these CTAs, but the SCLC-A xenografts have immunoreactivity only after 
chemotherapy treatment. 
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7.2: Overexpression of CTAs drives chemoresistance in culture 

To investigate the effect of PAGE5 and GAGE2A expression on the response to chemotherapy, 

PAGE5 or GAGE2A cDNA was overexpressed via retroviral expression in H29, H82, H209, or 

H1836 cell lines (Figure 39B). The cells were treated with the IC50 doses of cisplatin or 

etoposide alone or in combination for two days, and cell death was assessed using an Annexin V 

and Propidium Iodide flow cytometry assay. Cells with an overexpression of PAGE5 or 

GAGE2A were significantly more resistant to cell death caused by cisplatin or etoposide 

treatment (Figure 39C). An increase in expression of CTAs in SCLC can confer resistance to 

chemotherapy. 

81 



  

  

  
 

           
            

     
  

             
   

      
             

 

Figure 39: Overexpression of PAGE5 and GAGE2A leads to chemoresistance in SCLC cells in 
culture 
A: The IC50 value of cisplatin and etoposide was determined via Alamar Blue assay. B: PAGE5 or 
GAGE2A were overexpressed via retroviral transduction and the overexpression of PAGE5 (left), or 
GAGE2A (center, right) was validated via qPCR. C: Cells with PAGE5 (blue) or GAGE2A (green) 
overexpression were treated with chemotherapy in culture and the percentage live cells was assessed 
with Annexin V and Propidium Iodide staining. Overexpression of either PAGE5 or GAGE2A lead to 
chemoresistance in these cell lines. Paired t-tests were used to determine statistical differences in 
percentage live cells between the wild-type and the overexpression groups. N=5 for H29, n=6 for 
H82, n=7 for H1836, and n=9 for H209. ns = p>0.05, * = p≤0.05, ** = p≤0.01, *** = p≤0.001, **** 
= p≤0.0001. 
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7.3: Knockdown of CTAs sensitizes SCLC cells to chemotherapy in culture and xenografts 

In order to further investigate the role of CTA expression in mediating chemoresistance, PAGE5 

and GAGE2A were knocked down by retroviral expression of shRNAs in four H29, H82, H209, 

and H1836 cell lines. To ensure a pure population of cells with PAGE5 or GAGE2A knocked 

down, FACS was performed to isolate the populations containing the knockdown construct. The 

expression of PAGE5 or GAGE2A was assessed with qPCR (Figure 40A). These single 

knockdown cells were treated with cisplatin, etoposide, or combination therapy for two days in 

culture and the percentage of dead cells was assessed with Annexin V and Propidium Iodide 

flow cytometry assay (Figure 40B). Interestingly, knockdown of PAGE5 or GAGE2A alone was 

not sufficient to broadly confer resistance to chemotherapy in culture. Given that both PAGE5 

and GAGE2A have been shown to be involved in resistance to cisplatin in the literature84,86, I 

investigated the impact of a dual PAGE5 and GAGE2A knockdown on response to cisplatin. I 

used the single knockdown shPAGE5 or shGAGE2A SCLC cell lines and added the reciprocal 

shGAGE2A or shPAGE5 lentivirus in saturating concentrations. Since both the shPAGE5 and 

shGAGE2A lentiviruses use GFP as a reporter, FACS could not be performed after the second 

viral infection, so the sorted, pure population received the second virus in a high dose to 

maximize the number of cells that get infected with the second virus. After two days in culture, 

RNA was harvested and expression of PAGE5 and GAGE2A was assessed via qPCR (Figure 

40C). The qPCR data shows that knocking down PAGE5 or GAGE2A reciprocally was 

successful and the resulting cell lines had decreased expression of both PAGE5 and GAGE2A. 

These double knockdown cell lines were treated with the IC50 dose of cisplatin for two days, 

and proportion of dead cells was assessed with the Annexin V and Propidium Iodide flow 

cytometry assay (Figure 40D). Cells with both PAGE5 and GAGE2A knocked down were more 
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sensitive to cell death caused by cisplatin (Figure 40D). Without cisplatin treatment, there was no 

difference in the amount of dead cells in the double knockdown cells, indicating a role of CTAs 

in resisting cell death only following treatment with chemotherapy, but the expression of PAGE5 

or GAGE2A is not required for cell survival in the absence of chemotherapy. Given that both 

PAGE5 and GAGE2A had to be knocked down to sensitize cells to chemotherapy treatment, but 

only one had to be overexpressed, the expression of only one of these two CTAs is sufficient to 

drive chemoresistance in SCLC cells in culture. 

To investigate the impact of PAGE5 and GAGE2A knockdown in vivo, the double knockdown 

cell lines were injected as xenografts in to the hind flank of immunocompromised mice. When 

tumors were measurable, cisplatin and etoposide were given. The growth of tumors was tracked 

over time, and all tumors were collected for histology when they reached euthanasia criteria. 

These animal studies are ongoing, as the final growth curves are still being generated. 

Preliminarily, animals that received tumors with shGAGE2A and shPAGE5 were much more 

responsive to chemotherapy. Some of the mice demonstrated complete response to 

chemotherapy, where xenografts were not palpable anymore. This lasted as long as six weeks in 

one animal, and there are currently three with complete responses. 
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Figure 40: Knockdown of PAGE5 and GAGE2A confer sensitivity to chemotherapy in SCLC 
cells in culture. 
A: FACS plots during the isolation of GFP+ cells containing the shPAGE5, shGAGE2A, or 
shControl constructs. B: qPCR to validate the knockdown of PAGE5 (top) or GAGE2A (bottom). 
C: Annexin V and Propidium iodide assay after chemotherapy treatment of the shPAGE5 (blue), 
shGAGE2A (green), or shControl (red). Cells that are dead stain positively for both Annexin V and 
propidium iodide. In general, a single knockdown of PAGE5 or GAGE2A is not sufficient to confer 
chemo-sensitivity. A paired t-test was used to compare the death of the knockdown cells versus the 
wild-type cells. N = 7 for all cell types. D: The reciprocal construct was added to the single 
knockdown cells and qPCR was used to confirm knockdown of both PAGE and GAGE2A. E: 
Annexin V and propidium iodide assay of the double knockdown cells treated with cisplatin show 
that knockdown of both PAGE5 and GAGE2A in SCLC-N cells does sensitize cells to death 
induced by cisplatin. Unpaired t-tests were used to compare the wild-type to the double knockdown 
cells. N = 5 for all double knockdown cells, and n = 7 for all wild-type cells. ns = p>0.05, * = 
p≤0.05, ** = p≤0.01, *** = p≤0.001, **** = p≤0.0001. 
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7.4: CTAs are signatures of chemoresistance in patient samples 

To understand the clinical implications of PAGE5 and GAGE2A expression, I obtained 29 

human SCLC biopsies from the Sanford Health BioBank. The tumor sections were stained with 

antibodies against PAGE5 or GAGE2A, and slides were scanned with an Apero Slide Scanner. 

The samples were quantified based on a binary of any staining, and the overall intensity and 

distribution were scored on 0-3 scale. Two additional researchers quantified the staining. The 

decision to score by human and not by software was made for a number of reasons. First, many 

of the sections had patches of blood, which could be confused by software as being the same 

color as the DAB staining. Secondly, given that these are patient biopsies, not all areas of the 

tissue are tumor, as areas of surrounding healthy lung are often captured in the biopsy. I wanted 

to ensure the scoring only evaluated the tumor areas, and not healthy lung, which is more 

straightforward to train a human than a computer on. Additionally, these antibodies produce 

variable levels of background staining, depending on tissue processing, which is difficult to 

account for via software programs. All researchers that scored tumors were trained in the same 

way and were provided a scoring guide with representative images. All scorers also used the 

same computer with identical screen settings to further decrease the chance for variability. 

Representative images are shown in Figure 41A. The majority of the samples (almost 90%, 

Figure 41B) had some positivity towards PAGE5. Around 40% of tumors (Figure 41B) 

demonstrated positivity towards GAGE2A. There was some degree of heterogeneity in the 

scores of the tumors (Figure 41C), indicating perhaps a role of tumor subtype or treatment status. 

We were not able to obtain meta data about patient treatment or response, but pairing that data to 

the histology would be an exciting avenue of follow-up. 
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Figure 41: Staining and quantification of CTA expression in human SCLC samples 
A: Representative images of the human SCLC biopsies stained with antibodies against PAGE5 (left) 
or GAGE2A (right). The stain appears as a rust-color DAB staining. B: Fraction of tumor samples 
that had any positive staining for PAGE5 or GAGE2A. C: Quantification of the distribution and 
intensity of the PAGE5 and GAGE2A staining. Scores range from 0 (no staining) to 3 (very 
widespread or strong). 
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Chapter 8: Discussion 

In this work, I have developed the in situ barcoding model in SCLC. The tumors were 

successfully edited, and GFP+ cells were able to be isolated via FACS. Upon analysis of the 

scRNA-seq data, no barcodes were detectable. The scRNA-seq sequencing depth was not 

sufficient to detect the barcodes via scRNA-seq. Previous work has generally detected barcodes 

via DNA sequencing, which is then used to complement the information gained from scRNA-

seq40,46. Future work in the in situ genetic barcoding field would benefit from insertion of the 

barcode at a more highly expressed gene than Rosa26, or by insertion of a strong promoter to 

drive expression of the barcode at a rate high enough to be detected with scRNA-seq. 

Alternately, an endogenous “barcode” such as the V(D)J region could be used to tag cells, and 

the 10X Genomics feature capture technology could be used to readily detect the barcodes. 

Despite the absence of the barcode in this model, there are still many insights that can be 

gathered from this data. Since tumors were sequenced at one month intervals from early after 

tumor initiation until very late stage tumor burden, we are able to evaluate the transcriptomic 

makeup of the tumors throughout the course of the disease and reconstruct a lineage hierarchy. 

The in situ tumors largely display markers of the ASCL1-high SCLC-A subtype, which is 

expected from the RPR mouse model. At the onset of tumor development, the majority of the 

tumor cells share a common “early tumor” transcriptomic profile that is higher in stem-like and 

neuroendocrine markers. As the tumors progress, the proportion of tumor cells that belong to the 

early group decreases, and in its place are cells that belong to a second population of “late 

tumor” cells. These are characterized by having less cancer stem cell characteristics and more 

highly express members of the AP-1 family. The late tumor population is maintained as the 

primary cellular population through the latest tumor time-point. The identification of the early 
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tumor population sheds light on the populations responsible for the earliest stages of neoplastic 

transformation. The late tumor population identifies the cells that maintain the tumor population 

over long periods of time. 

One of the most highly expressed networks in the in situ dataset, particularly in the late tumor 

cluster, was the AP-1 family. The AP-1 (Activator Protein 1) complex is a powerful 

transcriptional controller comprised of members of the FOS, JUN and ATF families (Figure 

42A)64. In development and differentiation in iPSCs, it plays a role in chromatin accessibility and 

helps to select enhancers to activate cell-specific networks in fibroblast differentiation87,88. It has 

been implicated in many tumor types and is responsible for tumor hallmarks like growth, 

metastasis, resistance to therapy, angiogenesis, activation of senescence pathways, cell cycle 

dysregulation, and inflammation, but the mechanisms by which the AP-1 network impacts tumor 

growth are often tumor type specific (Figure 42B)65-76. While the AP-1 network generally acts in 

an oncogenic fashion, sometimes family members can act as tumor suppressors. This is 

somewhat cell type or cancer type dependent and depends on which Jun protein is expressed 

most highly. cJun is most commonly associated with tumor progression and cell cycle 

dysregulation, while JunB is generally anti-proliferative, and can even drive expression of tumor 

suppressors72, and JunD can act as either oncogenic or suppressive, depending on tumor 

type67,73. KRAS driven lung-adenocarcinoma further illustrates the duality of JunD and cJun, 

where JunD acts as a pro-tumorigenic factor in response to loss of cJun73. Also in lung 

adenocarcinoma, pharmacologic inhibition of AP-1 reduced metastatic formation but not 

tumorigenesis of an ex vivo metastasis model89. In lung adenocarcinoma xenografts, 

pharmacologic inhibition of an upstream activator of AP-1 signaling reduced both tumor 

proliferation and metastasis90. In melanoma, the AP-1 network has a role in the maintenance of 
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cellular plasticity and heterogeneity by mediating cell state91,92. AP-1 family members can confer 

resistance to both MAPK inhibitors and BRAF inhibitors via activation of c-Jun91,93. Jun family 

members have differential roles in melanoma. Knockdown of c-Jun leads to cell cycle arrest and 

apoptosis, while knockdown of JunB leads to an increase in proliferation and tumorigenesis, due 

to an increase in cJun expression. The combination knockdown leads to apoptosis, indicating that 

JunB only acts as a tumor promoter in melanoma when c-Jun is knocked out94. cJun has also 

been implicated in liver cancer, where it acts independently of p53 to maintain cell survival in 

tumor initiation95. Similarly, in breast cancer, Levels of AP-1 family members were found to be 

significantly higher in cancer than in adjacent non-tumor tissues, and patients with high levels of 

cJun had a worse outcome96,97. In breast cancer cell culture and xenografts, knockdown of the 

AP-1 network by a dominant-negative cJun (DNJun) led to a decrease in proliferation overall 

and an inhibition of proliferation in response to growth factors65,98. In this context, the AP-1 

network acts as a regulator of the cell cycle by regulating the expression of cyclins and CDKs, 

and drives progression by activation of pro-inflammatory cytokines68,97. In Prostate cancer 

expression of Fos and JunB are protective against advanced disease, but they are often lost as the 

tumor progresses, allowing for the upregulation of cJun, which then drives tumor progression in 

late stage99. Despite the links to tumorigenesis and resistance to therapy in other tumors, the role 

of the AP-1 network has yet to be evaluated in SCLC. 
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Figure 42: AP-1 complex members 
A: The AP-1 complex is comprised of members of the FOS, ATF, JUN, or MAF families that 
complex together to activate transcriptional networks. Modified from Garces de Los Fayos Alonso et 
al., 2018. B: Target genes of the AP-1 complex and their role in cancer hallmarks. A number of gene 
targets of AP-1 (“gene product”) are regulated by members of AP-1 (“main regulator”). The target 
genes have been found to play a role in a myriad of cancer hallmarks, but these seem to be tumor 
type-specific. Modified from Eferl and Wagner, 2003. 
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In this work, scRNA-seq identified members of the AP-1 network as playing a role in 

tumorigenesis of SCLC. Inhibition of the AP-1 network by transfection with a dominant-

negative cJun construct significantly inhibited colony formation of SCLC cells in a clonogeneic 

assay. The AP-1 network is required for tumor maintenance in SCLC, and future work should 

warrant investigation in vivo of the impact of AP-1 inhibition in SCLC. The bioinformatics 

analysis also identified AP-1 as a potential mediator of chemoresistance in SCLC. This is also an 

important avenue for future follow-up. 

A retroviral barcoding system has been generated to understand tumor dynamics and 

heterogeneity over time and under chemotherapeutic pressure in SCLC xenografts. Prior to the 

generation of the xenografts, extensive validation of the barcoding system was performed. The 

true diversity of barcodes was modeled based on data from targeted amplicon sequencing. The 

modeling is a significant advance on current barcoding reports, as estimating the true diversity is 

more informative than sequencing alone. Additional validation prior to xenografting revealed 

three doublings is optimal to ensure overlap in barcode populations between the pre-injection 

sample and the injected xenografts, and three doubling lowers the amount of overlap between 

two individual xenografts. Minimal overlap in barcodes between two xenografts is relevant 

because they may then serve as biological replicates. If the same population of cells is detected 

in two xenografts and they share a barcode, it may be that those cells shared a common lineage 

in the cells barcoded in culture and were simply injected in to the xenografts as clones. However, 

if the same population of cells is detected in two separate xenografts that have unique barcodes, 

there can be some confidence that that lineage arose independently in those two unique 

xenografts and it may represent a tumor-relevant biologic phenomenon. Understanding the 
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overlap in barcodes by first performing the doubling time experiment led to confidence that the 

barcoding system was truly in place prior to xenografting.  

Barcoded xenografts were generated and serially injected as barcoded xenografts that received 

chemoresistance. All tumors, as well as the initial cellular population were profiled with scRNA-

seq, and barcodes were detected in all samples, although not in every cell. The reason barcodes 

were detectable from the xenografted tumors, but not the in situ barcoded tumors is likely due to 

the strong CAG promoter inserted with the GFP and barcode in to the cells used for 

xenografting. Additionally, the barcode sequence for the xenografts was inserted by use of a 

retrovirus, instead of CRISPR-Cas9. The efficiency of vial insertion is much higher than that of 

CRISPR-Cas9, leading to the increased insertion of barcodes in to the cells, and thereby 

increasing the likelihood of detecting barcodes by scRNA-seq. After chemotherapy, there is a 

broad transcriptomic shift in the SCLC-A xenografts. The SCLC-A barcoded xenografts begin as 

tumors that are very high in the expression of ASCL1, the marker for the SCLC-A subtype. As 

expected, the SCLC-N xenografts are very high in expression of NEUROD1. As the 

chemoresistant tumors develop, the SCLC-A tumors shift from high expression of ASCL1 to 

NEUROD1, and the SCLC-N tumors remain consistently high in NEUROD1. SCLC-N tumors 

are often more chemoresistant, so the increased expression of NEUROD1 in chemoresistant 

tumors is logical. SCLC tumors have been documented to have changes in molecular subtypes, 

particularly a shift from SCLC-A to SCLC-N, coinciding with a change in MYC signaling, 

which has been documented to play a role in the transition of SCLC subtypes16,18. In these 

tumors, a change in MYC signaling was indeed observed in the post-chemotherapeutic shift from 

SCLC-A to SCLC-N. Despite the broad transcriptomic shift observed pre-and post-

chemotherapy in the SCLC-A tumors, there are a handful of cells from the pre-chemotherapy 
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tumors that cluster more closely with the chemoresistant tumors. It is not known in SCLC if 

chemoresistant is inherent or induced. Inherent chemoresistance would result from a subset of 

tumor cells that already exist as cells with the inherent ability to be resistant to chemotherapy, 

which are then selected for upon treatment. Induced chemoresistance is a result of a subset of 

transcriptomically plastic cells that after chemotherapeutic pressure upregulate networks 

responsible for chemoresistance and develop a chemoresistant tumor. Without the barcoding 

system, it would be difficult to ascertain the mechanism leading to chemoresistance in SCLC. By 

utilizing the barcode system, the barcodes from the cells that form chemoresistant tumors can be 

tracked to cells in the pre-chemotherapy tumors, and their transcriptomes can be evaluated for 

changes that may have led to the development of chemoresistant tumors. If the transcriptomes 

from cells with matching barcodes are the same in the pre- and post-chemotherapy samples, that 

would indicate inherent chemoresistance in SCLC. If the transcriptomes of populations with 

matching barcodes change after chemotherapy, there would be evidence of induced 

chemoresistance after chemotherapy. In the SCLC-N chemoresistant tumors, there is a much 

more subtle transcriptomic change from pre- to post-chemotherapy. This is consistent with 

reports of SCLC-N tumors being more chemoresistant16. By pairing cellular populations that 

share the same barcodes pre- and post-chemotherapy in the SCLC-N tumors as well, we can 

ascertain whether the chemoresistance in SCLC-N tumors is inherent, or if there are subtle 

changes that lead to induced chemoresistance. 

Similarly, there is a transcriptomic shift between the pre-injection samples and the resulting 

tumor, particularly in the SCLC-A tumors, indicating a bottleneck event that allowed for a subset 

of cells to form the resultant tumor. By matching cells that contain the same barcode in the pre-

injection and pre-chemotherapy samples, we can evaluate the requirements for cells that are able 
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to generate tumors. In the SCLC-N tumors, there is a smaller transcriptomic shift between the 

pre-injection sample and the formed tumor, which may indicate increased propensity for these 

cells to form tumors. 

One of the most commonly upregulated families in the chemoresistant tumors was the cancer 

testis antigen (CTA) family. Cancer/Testis Antigens (CTA) are a large class of proteins almost 

exclusively expressed in the male germ cells and tumors. CTAs have shown promise as 

potentially targetable, unique cancer antigens. For this reason, they make excellent candidates for 

immunotherapy such as CAR-T therapy and cancer vaccines77-83,100. CTAs have also been shown 

to be diagnostic and prognostic in many cancers, although the particular CTA with prognostic or 

diagnostic value seems to be cancer-type specific83,101. In addition to their role as potential 

cancer antigens, CT antigens also have oncogenic effects on proliferation, genomic stability, 

invasion, colony formation, and resistance to apoptosis, and are associated with cancer stem cells 

(Figure 42A)78,79,81,100,102-104. In melanoma and synovial cell carcinoma, a CAR-T targeted to the 

CTA NY-ESO-1 led to complete response in a subset of patients, and is an ongoing avenue for 

investigation of new therapeutics (Figure 42B)80,105. Another study found the expression of 

CTAs to be drivers of breast cancer by increasing the HIF, WNT, and TGFbeta pathways100. In 

blood samples from patients with non-small cell lung cancer, the concentration of CTAs were 

significantly higher than in patients without cancer, and a panel of CTAs may serve as a blood-

based diagnostic or screening test101. Very little work has investigated CTAs in SCLC. NY-ESO-

1 has been found to be decreased in the blood of patients with SCLC, and would serve as an 

independent diagnostic indicator106. Another CTA, NOLA4, has been found to be significantly 

expressed in SCLC cell lines and serum from patients with SCLC, although the functional 

impact has not been evaluated107. A clinical trial used cell lysate from a large cell lung cancer 
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cell line that is high in expression of CTAs as a cancer vaccine in patients with lung cancers or 

thoracic metastasis. Two of the 24 patients in this study had SCLC. Patients developed 

antibodies against the CTAs NY-ESO-1, GAGE7, and MAGE-C2. They also observed a 

decrease in the number of regulatory T cells and a decrease in the expression of PD-L1 on 

tumor-infiltrating immune cells in patients who got the cell lysate vaccine. A follow-up clinical 

trial of this study is ongoing to evaluate the utility of a cell lysate vaccine in patients with lung 

cancer108. PAGE5 (CT16) has been identified to be expressed in some cancers, and in melanoma 

was elevated as an anti-apoptotic gene in response to platinum-based chemotherapy. Expression 

of PAGE5 was shown to be pro-survival, and upregulated genes related to melanoma cell 

survival in response to chemotherapy84. GAGE2A is another anti-apoptotic CTA, that seems to 

be related to treatment resistance in medulloblastoma85,86. CTAs have been identified just once in 

SCLC, but have not been investigated109. While the study of CTAs in SCLC has been very 

limited, they have shown progress as prognostic, diagnostic, and therapeutic targets in other 

cancers, and are a promising avenue of exploration in SCLC.  
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Figure 43: Cancer Testis Antigens have oncogenic functions. 
A: Multiple CTAs can impact tumorigenesis, and the affect is CTA and cancer type-dependent. From 
Gjerstorff et al., Oncotarget, 2015. B: CT scan of a patient with lung metastases (arrowheads) from 
synovial cell carcinoma treated with NY-ESO-1-targeted T cells. At 14 months after treatment, a 
dramatic response to therapy can be observed by noting the absence of lung metastases. From Robbins 
et al., Journal of Clinical Oncology, 2011. 
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The CTAs PAGE5 and GAGE2A were highly expressed in the SCLC-A chemoresistant tumors, 

and were highly expressed in all of the SCLC-N tumors. I investigated the role of PAGE5 and 

GAGE2A in mediating resistance to chemotherapy in SCLC. Treatment of SCLC-A and SCLC-

N cell lines in culture leads to robust upregulation of PAGE5 and GAGE2A in just a couple of 

days, which indicates that they may play a role in mediating cellular response to chemotherapy. 

Overexpression of PAGE5 or GAGE2A in SCLC cell lines leads to a decrease in chemotherapy-

induced cell death. Expression of PAGE5 or GAGE2A in SCLC cell lines is sufficient to confer 

chemoresistance in culture. I knocked down PAGE5 or GAGE2A with an shRNA construct and 

found that knockdown of either PAGE5 or GAGE2A does not have any impact on response to 

chemotherapy. However, when both PAGE5 and GAGE2A are knocked down via shRNA, cells 

are significantly more sensitive to chemotherapy-induced cell death. PAGE5 and GAGE2A in 

SCLC act as mediators of chemoresistance, where expression of only one is sufficient to confer 

resistance to chemotherapy, but inhibition of both is required to sensitize cells to chemotherapy. 

To test the impact of PAGE5 and GAGE2A in conferring chemoresistance in vivo, xenografts 

using the shRNA knocked-down cell lines were generated. Many CTAs, including PAGE5 and 

GAGE2A, do not have a homologue in mice, so transgenic mouse models are not able to be used 

to investigate them, and it may be a reason that CTAs have not been identified in previous SCLC 

studies. Xenografts generated from cells with PAGE5 and GAGE2A knockdown seem to have a 

durable response to chemotherapy, indicating a role for PAGE5 and GAGE2A in vivo as well. 

Human SCLC biopsies stain positive for PAGE5 and GAGE2A, which further solidifies the 

association of CTAs with 

In this dissertation, I have developed the genetic barcode lineage tracing system in SCLC. For 

the first time, we have a glimpse in to the events that lead to tumor initiation, clonal diversity, 
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and chemoresistance in SCLC. The bioinformatics pipeline developed in this work represents a 

significant advance for the analysis of genetic barcode lineage tracing studies not only for uses in 

cancer, but also in other situations where clonal analysis is critical, such as developmental 

biology. I have described two distinct populations of cells that arise during tumor formation in 

situ that are maintained throughout the life of the tumor, while the relative proportion of cells in 

each cluster change during tumor progression. The AP-1 family was significantly upregulated in 

the late cluster, and has been validated as being critical for tumor initiation in SCLC. In 

xenograft studies, the clonal diversity of two subtypes of SCLC, SCLC-A and SCLC-N. The 

SCLC-A tumors exhibit more plasticity and transcriptomic shifts after chemotherapy than the 

SCLC-N. I have identified and validated the cancer testis antigens PAGE5 and GAGE2A as 

being mediators of chemoresistance in SCLC. Given the clinical success of other CTA-targeted 

therapies, this represents a promising avenue towards a new therapy for SCLC. 

SCLC is a devastating disease, and very little progress has been made in generating truly targeted 

therapeutics. The expansion of the barcoding technology in this dissertation has allowed us to 

examine ITH in SCLC with unprecedented resolution for the first time. Identifying the AP-1 

network as being responsible for tumorigenesis has provided knowledge of the critical early days 

of tumor formation in SCLC. Two targetable antigens, PAGE5 and GAGE2A have been 

identified in SCLC for the first time. Their role in mediating chemoresistance could be mitigated 

in the future with therapeutic antibodies, CAR-T cells, or even cancer vaccines. This work has 

contributed to both the basic and translational science and represents a significant advance 

towards a cure for this terrible disease. 
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* Equal Contribution 

Embryonic stem cells possess the ability to differentiate into all cell types of the body. 

This pliable developmental state is achieved by the function of a series of pluripotency factors, 

classically identified as OCT4, SOX2, and NANOG. These pluripotency factors are responsible 

for activating the larger pluripotency networks and the self-renewal programs which give ES 

cells their unique characteristics. However, during differentiation pluripotency networks become 

downregulated as cells achieve greater lineage specification and exit the cell cycle. Typically the 

repression of pluripotency is viewed as a positive factor to ensure the fidelity of cellular identity 

by restricting cellular pliancy. Consistent with this view, the expression of pluripotency factors is 

greatly restricted in somatic cells. However, there are examples whereby cells either maintain or 

reactivate pluripotency factors to preserve the increased potential for the healing of wounds or 

tissue homeostasis. Additionally there are many examples where these pluripotency factors 

become reactivated in a variety of human pathologies, particularly cancer. In this review, we will 

summarize the somatic repression of pluripotency factors, their role in tissue homeostasis and 

wound repair, and the human diseases that are associated with pluripotency factor misregulation 

with an emphasis on their role in the etiology of multiple cancers. 

THE CORE PLURIPOTENCY NETWORK 

Pluripotency factors regulate a host of biological processes essential to establishing the 

embryonic state. Of these, three factors, SOX2, OCT4, and NANOG, have been identified as the 

three core factors regulating cellular pluripotency1-3. Beginning in the early embryo, SOX2, 

OCT4, and NANOG are expressed in the inner cell mass (ICM) of the developing blastocyst and 

are required for the maintenance of pluripotency, and upon embryonic differentiation these 
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factors are downregulated4-8. These core factors are so vital for the maintenance of a pluripotent 

state that they have now become part of the standard reprogramming cocktail for the generation 

of induced pluripotent stem (iPS) cells9. OCT4 and SOX2, along with c-MYC and KLF4, are 

crucial for the generation of iPS cells, and the gene expression profile of these iPS cells is nearly 

identical to that of embryonic stem (ES) cells, illustrating their importance for maintaining the 

stem cell phenotype10. Indeed the ability of these reprogramming factors has in part given them 

the designation of master regulators, where they can activate target genes even when 

epigenetically repressed11,12. Therefore, due to the powerful transcriptional effects of these 

pluripotency genes, they must be subject to rigorous regulation throughout development to 

restrict their activation and allow for proper development. 

SILENCING OF PLURIPOTENCY IN THE SOMA 

Given that pluripotency is restricted to the ICM of the blastocyst a mechanism of silencing in 

somatic tissues should exist. It has been found that in ES cells the core pluripotency genes are 

marked by the activating histone modification histone H3 lysine 4 trimethylation (H3K4me3), 

and then during differentiation this mark is replaced by the silencing histone 3 lysine 27 

trimethylation (H3K27me3) mark13,14. Concurrent with this regulation of histone methylation, 

there is a clear correlation of DNA methylation on the epigenetic regulation of the core 

pluripotency genes. The DNA at the promoters of the core genes are typically unmethylated in 

the embryonic state, however, they become rapidly methylated during differentiation, although 

there are some cases where Sox2 evades DNA methylation14,15. This regulation is mediated in 

part by the activity of both DNMT activity in ES cells and the DNA demethylases such as TET1. 

Oct4 specifically is methylated both at enhancer and promoter regions during the differentiation 
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process and is dependent on DNMT3a and DNMT1 for this methylation16. When Tet1 is 

downregulated, the Nanog promoter becomes methylated and it is subsequently silenced17. TET 

proteins including TET1 and TET2, and the DNMT3 family are crucial for methylating DNA 

during differentiation and silencing of pluripotent genes. In a study evaluating the epigenome of 

differentiated and ES cells, the DNA cytosine methylation in ES cells was mostly in a non-CpG 

context. These marks were associated with gene bodies and were greatly depleted as cells 

differentiated. The reduced non-CpG methylation was associated with lower transcriptional 

activity of developmentally relevant genes in differentiated cells, indicating that non-CpG DNA 

cytosine methylation might be key for the regulation of developmental genes18. Pluripotency 

genes may also be regulated by miRNAs. It was found that let-7 miRNAs suppress self-renewal 

in ES cells and their downregulation was able to de-differentiate somatic cells to iPS cells. Let-7 

miRNAs are able to directly downregulate Oct4, Sox2, and Nanog and likely contribute to the 

stability of the differentiated state19. 

TISSUE HOMEOSTASIS AND WOUND HEALING 

Pluripotency networks are not only crucial for the differentiation and organogenesis of 

embryonic tissues, but there is increasing evidence that tissue homeostasis and regeneration 

could involve the temporary acquisition of pluripotent gene networks. To maintain these tissues 

rare populations of adult stem cells actively dividing and differentiating20,21. In particular, Sox2, 

Oct4, and Nanog are involved in maintaining the plasticity of these adult stem cells. 

Sox2 in Homeostasis and Wound Healing 
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Sox2 remains expressed in many adult tissues including the sperm cells, cervix, gut, esophagus, 

trachea, bronchiolar epithelium, the brain and sensory cells like the retina and taste buds22,23. 

These Sox2+ cells originate from Sox2+ progenitors and are essential for the maintenance of these 

tissues22. Sox2+ cells have also been found in the adult brain in sites such as the white matter, 

cerebellum, and the hippocampus24-26. In the hippocampus, Sox2 is required for the maintenance 

of neural stem cells during adulthood26. Beyond maintenance of the adult brain, Sox2 expression 

has been shown to be upregulated in response to invasive brain injuries by activation of Notch 

and Sonic hedgehog signaling 27,28. Sox2 is also required for the maintenance of many types of 

neuroendocrine cells throughout the body29-31. 

Similarly, Sox2 expressing cells are present in other non-neural or neuroendocrine tissues in the 

adult as well. A population of Sox2 expressing cells is found in the adult pituitary and help it 

regenerate in response to injury32-35. There are similar mechanisms throughout the body 

including the trachea and the intestinal crypts where Sox2 expressing cells maintain and repair 

these tissues36,37. Furthermore, Sox2 is required for osteoblast function and self-renewal38. 

Therefore there is a significant role for SOX2 in the development and maintenance of many 

tissues outside of the embryonic state. 

Oct4 and Nanog in Homeostasis and Wound Healing 

Mainly Oct4, sometimes in combination with Nanog, has been shown to be expressed in a 

variety of adult tissues, most commonly seen in hematopoietic and mesenchymal progenitors 

found in the bone marrow39-43. Oct4 is also found in a wide variety of other progenitors in 

different body tissues, yet Oct4 expression is not required for tissue homeostasis in the same way 

as Sox244. The one exception is the need for Oct4 expression for the viability of adult germ 

cells45,46. 
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Although Oct4 itself may not be required for tissue regeneration like Sox2, small populations of 

cells in the body that exhibit stem-ness population have been seen. A population of cells called 

very small embryonic-like cells (VSELs) has been discovered in many adult tissues that do 

express Oct4 and Nanog and are able to differentiate into all the germ layers but not self-

renew47,48. It is unknown if these VSELs play a role in tissue homeostasis in contrast to other 

Oct4+ progenitor cells in the adult48. 

ABERRANT PLURIPOTENCY FACTOR EXPRESSION IN DEVELOPMENTAL 

DISEASE 

Due to the importance of the core pluripotency factors in the establishment of ES and iPS cells, it 

is no surprise that mutations in these factors can cause developmental diseases. As Sox2 remains 

expressed past the blastocyst stage and into organogenesis, mutations in the gene can cause a 

multitude of developmental defects (Table 1)23,49. In contrast, Oct4 and Nanog are largely not 

expressed after the early stages of development, but they do contribute to the viability of germ 

cells50-53. In the past two decades, scientists have attributed many developmental problems to 

misregulation of these core factors, predominantly SOX2. 

The Role of Sox2 in Early Development 

The transcription factor Sox2 is necessary for development from the earliest stages after 

conception. It has been shown that most Sox2-/- zygotes arrest as morulas, although a few can 

survive to become blastocysts where they fail at implantation7,54. In the blastocyst stage, Sox2 is 

expressed as the earliest marker of the inner cell mass, and the trophectoderm54,55 Sox2 continues 

to be expressed in the extraembryonic endoderm as well as the primitive ectoderm 7. As the germ 
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layers are formed, Sox2 is upregulated in cells that choose the neural ectoderm fate and 

suppresses the formation of mesoderm 56. 

Sox2 in Neural/Sensory System Development and Disease 

Sox2 is present in the neuroectoderm from early stages, and remains expressed in neural stem 

cells to promote survival in the central and peripheral nervous system57,58. In early development, 

the brain forms normally without Sox2 and no defects are seen at midgestation in the mouse59. 

However, mutations in Sox2 do cause defects in postnatal mouse development in the 

telencephalon, particularly in the hippocampus dentate gyrus through misregulation of sonic 

hedgehog signaling26,60. In later fetal development, Sox2 is strongly expressed in the thalamus 

and hypothalamus60,61. It is no surprise that mutations in Sox2 have been known to affect the 

formation of the hypothalamus-pituitary system, by causing hypoplasia of the anterior pituitary 

and gonadotrophin deficiency, resulting in fertility deficiencies60,62. Mutations in Sox2 have also 

been shown to affect eye development, causing anophthalmia or microthalmia63-65. These defects 

are caused by misregulation of differentiation in the optic cup by disruption of Notch1 signaling 

and Pax6 function which are both orchestrated by Sox2 function63,64,66. Other sensory systems are 

affected as well including the development of the cochlea and regulation of WNT signaling to 

form taste buds65,67,68. Sox2 mutations can result in these defects occurring together: coloboma, 

heart malformation, atresia of the choanae, retarded growth and development, and genital and ear 

abnormalities or (CHARGE) syndrome as a result65. 

Sox2 in Gut, Lung, Kidney System Development and Disease 

Sox2 is involved in the development of other organs, such as the gut where it is essential for 

anterior and posterior patterning and guides the tissue towards a gastric fate over an intestinal 
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identity69-71. In the development of the foregut, Sox2 is expressed to form the trachea, esophagus, 

and the esophageal epithelium70,72. If Sox2 is mutated, this can sometimes result in 

anophthalmia,-esophageal-genital syndrome (AEG) where the formation of the esophagus and 

trachea is abnormal and these structures fail to separate63,73. Once the lungs have formed, Sox2 is 

essential for normal lung branching and the maintenance of lung progenitor cells29,74. Sox2 

mutations have also been implicated in chronic kidney disease65,75. 

Oct4 in Early Development 

Oct4 is present throughout the morula, expressed highly in the inner cell mass, and promotes 

differentiation into primitive endoderm76-78. As the blastocyst differentiates into the germ layers, 

Oct4 specifies mesoderm while suppressing neural ectoderm56,79,80. 

Oct4 in System Development and Disease 

Although Oct4 plays an important role in early development, it is silenced in embryonic stem 

cells, and not expressed in the development of the organs with the exception of the primordial 

germ cells44,52,81. Oct4 is necessary for the switch from the pluripotent stem cells to the germ 

cells, thus problems with this mechanism can lead to infertility51-53. Although mutations in Oct4 

itself do not cause any developmental diseases directly, the misregulation of many of Oct4’s 

binding partners is associated with diseases82. 

The Role of Nanog in Development and Developmental Disease 

Nanog appears in the late morula, the blastocyst and is expressed in the inner cell mass83. Nanog-

/- blastocysts cannot survive, although after implantation Nanog becomes downregulated83,84. 

Nanog is commonly expressed temporally and spatially with Oct483,85,86. Similarly to Oct4, 
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Nanog is not expressed in the tissues after early development except for the primordial germ 

cells where it necessary for the PGCs to mature on the germ ridge50. 

ABERRANT PLURIPOTENCY FACTOR EXPRESSION IN CANCER 

The role of Sox2 in Cancer 

In recent years, much work has begun to elucidate the role and association of Sox2 in cancer in a 

vast array of human and mouse tumor types (Table 2). In a chemically-induced model of mouse 

squamous cell carcinoma, Sox2 enriched cells were the tumor propagating cells, and conditional 

deletion of Sox2 decreased tumor formation and led to regression in existing tumors87. Sox2 

expression was required for tumorigenicity of mouse osteosarcoma and knockout of Sox2 

decreases the cancer stem cell-like phenotype seen in Sox2+ osteosarcoma cells88. In both human 

and mouse bladder cancer, Sox2 is overexpressed in pre-neoplastic and neoplastic tumors, where 

the knockout of Sox2 decreased tumor invasiveness89. Given that Sox2 is a pluripotency gene, it 

is unsurprising that expression of Sox2 in human glioblastoma multiforme (GBM) cells was able 

to direct differentiation in to a stem-like state capable of tumor propagation90. Also in human 

glioma and glioblastomas, Sox2 expression had a positive correlation with tumor grade. In this 

cohort, Sox2 expression was highest in hypercellular areas with highly proliferative cells91. A 

separate study verifies these results by showing that Sox2 is decreased in more differentiated 

GBM samples, and overexpression of Sox2 in cell culture leads to increased proliferation and 

stemness92. GBM cells in culture are dependent on Sox2 to proliferate and form colonies and 

knockout of Sox2 reduced these phenomena93. Human ER-positive breast cancer cells in culture 

that were resistant to tamoxifen therapy had high levels of Sox2. In fact, in a cohort of patients 

with ER-positive breast cancer, Sox2 was more highly expressed in those who were not 

responsive to treatment, compared to patients whose cancer was responsive to treatment. In a 
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larger patient set, Sox2 expression was found to be prognostic of poor overall and disease-free 

survival94. Despite the high expression of Sox2 seen in patients with ER-positive breast cancer in 

Piva et al., patients with sporadic, basal-like breast cancer in a separate cohort had an inverse 

relationship between Sox2 expression and ER expression95. In two cervical cancer lines, Sox2 

was overexpressed and marked a subset of stem-like cells96. Sox2 has also been found to be 

upregulated in liquid tumors such as ALD-positive large-cell lymphoma, in which Sox2 

expression imparts a more “plastic” phenotype97. Finally, Sox2 has been implicated in the switch 

to androgen resistance and involves the function of the tumor suppressors Rb1 and p5398. 

In addition to the studies linking Sox2 expression to cancer phenotypes, a number of studies have 

shown an association between expression of Sox2 and clinical outcome. In breast cancer, it was 

suggestive that Sox2 expression could be a biomarker of resistance to therapy, as well as poor 

overall and disease free survival94. Sox2 expression in head and neck squamous cell carcinoma 

was associated with tumor recurrence and poor prognosis99. In tongue squamous cell carcinoma, 

Sox2 expression is significantly associated with tumor stage, cell differentiation, and 

metastasis100. A large study of patients with gastric cancer who had undergone surgical resection 

of the tumor found that Sox2 positivity was correlated with invasion depth, lymph node 

metastasis or invasion, and that the prognosis of patients with Sox2 positive cancers was 

significantly worse than the prognosis of patients who had Sox2 negative cancers101. In a study of 

non small-cell lung cancer samples, Sox2 was significantly overexpressed in cancer cells, and not 

in preneoplastic or healthy tissues, although no correlation with histopathological data was seen 

in this study102. Interestingly, in synovial sarcoma, Sox2 was expressed at relatively low levels 

and had no correlation to clinicopathological data103. 
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Much work has shown that Sox2 is expressed in a wide array of cancers. However, the exact 

molecular mechanism of Sox2 activation in cancer is unknown, although there are several 

hypotheses for how Sox2 drives tumor dynamics. A 2014 study by Justilien et al found an 

overexpression of SOX2 by way of amplification of chromosome 3q26 in five human lung cancer 

cell lines. Mechanistically, it was found that PKCi, which is also amplified on chromosome 

3q26, phosphorylates SOX2, which regulates SOX2 binding to hedgehog acyl transferase 

(HHAT). HHAT is crucial for hedgehog ligand binding and activation by SOX2 binding leads to 

downstream hedgehog activation. In the lung cancer lines studied, the expression of Sox2, 

HHAT, and PKCi were all required for the formation of oncospheres and proliferation in 

culture104. Chromosomal amplification of SOX2 has also been implicated in small cell lung 

cancer (SCLC)105. The means of Sox2 upregulation may be varied and tissue-specific, however, 

as Sox2 can be directly repressed by RB1, loss of Rb1 function is often a driver mutation for 

many tumors associated with Sox2 upregulation 98,105-108. However, not all cases of Sox2 

upregulation are connected to Rb1 function. In contrast to small cell lung cancer, lung squamous 

cell carcinomas are not strongly associated with Rb1 mutation, yet Sox2 is clearly associated 

with their growth and maintenance109. In mouse and human skin squamous cell carcinoma 

overexpression of Sox2 is observed and was found to be associated with activating histone 

marks, when it should be associated with repressive marks in healthy tissue87. One study in 

human ALK-positive large-cell lymphoma cells found that Sox2 overexpression, along with 

doxorubicin-resistance and more aggressive growth, was triggered by oxidative stress caused by 

hydrogen peroxide97. In cervical cancer with upregulations of epidermal growth factor (EGF) 

receptor, knockdown of the EGF/PI3K pathway reduced expression of Sox2, suggesting that this 

pathway may play a role in the upregulation of Sox2 in cervical cancer. Also in this study, it was 
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found that expression of miR-181a-2-3p and let-7i-5p was able to downregulate Sox2 expression, 

alluding to a dual role of miRNA and EGF receptor in mediating Sox2 levels96. 

The downstream targets of Sox2 activity are also varied and likely tumor-specific. The Sox2 

target YAP, a member of the Hippo pathway, was found to be activated in a mouse osteosarcoma 

model and was a direct driver of initiation and proliferation of the cancer88. Another pathway 

implicated with Sox2 in cancer is Wnt/�-Catenin. In human breast cancer and ALK-positive 

large-cell lymphoma, higher levels of Sox2 expression led to higher Wnt signaling, which was 

associated with resistance to tamoxifen in breast cancer and doxorubicin in lymphoma and could 

propagate the cancer stem cell phenotype94,97. Overexpression of Myc was found to be associated 

with the same Sox2/Wnt/�-Catenin signaling axis in lymphoma97. A study in tongue squamous 

cell carcinoma also found Sox2-dependent overactivation of the Wnt/�-Catenin pathway, which 

was associated with epithelial-to-mesenchymal transition (EMT)100. In head and neck squamous 

cell carcinoma, Sox2 directly promoted cancer proliferation by upregulation of cyclin B1 and 

increase in SNAIL expression, which is associated with EMT, necessary for metastasis99. An 

alternate mechanism found in head and neck squamous cell carcinoma is through Sox2 mediated 

expression of AFF4, which is a core component of the super elongation complex. AFF4 levels 

changed in parallel with Sox2, and knockout of AFF4 led to decreased proliferation, migration, 

and invasion of cells, as well as decreased aldehyde dehydrogenase activity, important for tumor 

initiation110. Sox2 may not only exert its tumorigenic properties via upregulation of cancer 

progressing pathways, but it also appears to have a role in the downregulation of tumor 

suppressors. In GBM cells, Sox2 expression downregulates the tumor suppressors BEX1 and 

BEX2, however this effect is likely indirect as there are no SOX2 binding domains in either BEX 

protein93. 
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In addition to multiple signaling pathways, Sox2 could exhibit its oncogenic effects by regulation 

of microRNA expression. Sequencing of GBM cells, showed that that miR-145, miR-143, miR-

253-5p, and miR-462 expression levels were responsive to Sox2 levels. The implications of some 

miRNA expression in cancer has yet to be established but miR-145 is thought to target Sox2 to 

downregulate its expression, so overexpression of Sox2 combined with downregulation of miR-

145 could potentiate the tumorigenic effect of Sox293. In a separate study on breast cancer cell 

lines and patient samples resistant to Adriamycin therapy, low miR-129-5p expression was 

correlated with treatment resistance and a more aggressive phenotype in culture. Given that miR-

129-5p binds directly to Sox2, when levels of miR-129-5p were high, levels of Sox2 decreased 

and sensitized the cancer cells to treatment111. 

While it is clear that Sox2 is upregulated in a number of tumor types, and is likely correlated with 

clinical phenotype, more work is needed to determine how Sox2 affects cancer phenotypes. 

Given the variety of pathways and associations with Sox2 in cancer, it is possible that the exact 

mechanism will be tumor or tissue-of-origin specific. 

Oct4 in Cancer 

Given the reprogramming power of Oct4, it also warrants investigation in a cancer setting. When 

using Oct4 to reprogram fibroblasts to iPS cells, the methylation pattern in early reprogramming 

resembles that of cancer cells, and these cells were able to form teratomas with malignant 

characteristics in xenografts112. In somatic tissues of adult mice, expression of Oct4 was 

sufficient to drive epithelial growths, which are dependent on Oct4 for proliferation. In the 

intestines of these animals, Oct4 expression inhibits differentiation of progenitor cells and reverts 

them to an embryonic-like phenotype113. In lung adenocarcinoma cells, Oct4 is significantly 

elevated and is associated with expression of the stem cell marker CD133, as well as increased 
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drug resistance and a higher propensity for EMT114. In non-small cell lung cancer with an 

activating epidermal growth factor receptor (EGFR) mutation, Oct4 was also associated with 

treatment resistance and expression of CD133115. When using human tumor-derived cell cultures 

of lung adenocarcinoma and bronchioloalveolar carcinoma it was found that, when compared to 

healthy tissue, only lung adenocarcinoma expressed higher levels of Oct4116. In an analysis of 

human prostate cancer lines, Oct4 was highly expressed in a subset of cells that were highly 

clonogenic and resistant to treatment with both docetaxel and gamma-radiation. These cells were 

CD133+, exhibited a stem-like state in culture, and formed highly aggressive tumors in mice117. 

Laboratory based studies of Oct4 in cancer have clearly indicated it is an important factor, as 

have studies evaluating clinical correlates. Along with the expression of Nanog and the EMT 

marker Slug, Oct4 expression marks high-grade lung adenocarcinomas and is associated with a 

worse prognosis for patients114. Also in lung adenocarcinoma, Oct4 was upregulated and 

correlated with decreased differentiation, decreased survival, and increased tumor stage with 

worse clinical outcomes than Oct4-negative lung adenocarcinoma118. Oct4 was found to be 

highly expressed in EGFR-mutant non-small cell lung cancer and may be a marker for treatment 

resistance in these patients115. In a separate study of human non-small cell lung cancer, Oct4 

expression was associated with poor differentiation, and poor prognosis in patients who 

underwent surgical resection102 Oct4 was also overexpressed in ovarian cancer samples and was 

correlated with histological grade119. 

Oct4 has been shown to activate a number of downstream pathways when implicated in cancer. 

Oct4 overexpression in mice that resulted in epithelial growths showed increased �-catenin 

signaling in these cells113. In human ovarian cancer, follicle stimulating hormone (FSH) has 

previously been shown to inhibit apoptosis, and has found to be dependent on the presence of 
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Oct4. Oct4-mediated expression of FSH, leading to apoptotic inhibition also increased the 

expansion of ovarian stem-like cancer cells and upregulated the expression of other cancer-

relevant genes like Notch, Sox2, and Nanog120. Oct4 was also found to regulate the rate of 

apoptosis in breast cancer by a different mechanism. In breast cancer cell lines, Oct4 expression 

regulated the expression of p16INK4a, p14ARF, Bcl-2/Bax, and p53, which may collectively lead 

to Oct4-mediated cell cycle progression and decreased rates of apoptosis121. 

It is possible that Oct4 may also exert its effect through regulation of long non-coding RNAs 

(lncRNA). In a study of human lung cancer samples, multiple lncRNAs were found to be direct 

transcriptional targets of Oct4. The most relevant of these were nuclear paraspeckle assembly 

transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and 

urothelial carcinoma-associated 1 (UCA1). NEAT1 or MALAT1 overexpression led to cancer cell 

proliferation, migration, and invasion, and knocking down NEAT1 or MALAT1 decreased cancer 

cell growth and motility. These lncRNAs were so important to cancer progression that co-

expression of both, along with Oct4 was predictive of poor prognosis in lung cancer patients122. 

Ordinarily, Oct4 would be regulated by degradation by the ubiquitin proteasomal system (UPS), 

however, it is clear that in a cancer state, there is some level of misregulation that occurs. In 

healthy tissues this is mediated by OCT4 binding with CAV-1, a scaffolding protein, which 

allows for the degradation of OCT4 via UPS. In human lung cancer cells, nitric oxide (NO) 

facilitates the phosphorylation of CAV-1 by AKT, which subsequently does not allow OCT4 to 

complex with it, and therefore OCT4 does not get degraded via UPS. It is possible that the NO 

upregulation seen in many cancers is causal for increased levels of OCT4123. Another potential 

mechanism for regulation was shown in lung adenocarcinoma cells. Here, BEX4, was more 

highly expressed in cancer samples than in healthy tissue, and was shown to positively regulate 
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the expression of Oct4 and was required for proliferation of these cells. Interestingly, BEX4 

expression was regulated by mTOR activation and suggests a role for an mTOR/BEX4/Oct4 

cascade in lung adenocarcinoma124. 

Intriguingly, one study has uncovered a positive role for Oct4 overexpression in cancer. In a 

large study of gastric cancer patients who underwent surgical resection, tumors that were Oct4 

negative correlated with invasion depth and lymph node metastasis or invasion. In this study, 

Oct4 negative patients had significantly worse outcomes than patients whose tumors were Oct4 

positive. The authors suggested that Oct4 might suppress tumorigenesis, but in light of the strong 

links to Oct4 expression and poor outcomes, it is probable that the positive effect of Oct4 

expression observed in this study is specific to gastric cancer101. 

Nanog in cancer 

Unsurprisingly, the third pluripotency factor covered in the scope of this review, Nanog, has also 

been implicated in cancer. In a mouse model of mammary cancer, Nanog signaling accelerated 

tumor growth and caused tumors to be highly metastatic125. Nanog is overexpressed in human 

colorectal carcinoma cells, and it was found that these cells in culture have a high propensity 

towards a stem-like state. Human colorectal carcinoma cells readily form spheroids in culture 

and expression levels of Nanog increase greatly as the spheroids form. Inhibition of Nanog in 

this model decreased proliferation and G2-cell cycle related protein activation120. Studies with 

Nanog positive human hepatocellular carcinoma cells in culture demonstrated that Nanog 

positive cells readily differentiate into a wide variety of cancer cells, indicating the stemness of 

Nanog positive cells. These cells are highly invasive and metastatic, as well as resistant to 

chemotherapy126. In lung adenocarcinoma, Nanog was highly expressed and overexpression 

increased the CD133+ population in culture, as well as increasing drug resistance and EMT114. 
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Like Sox2 and Oct4, Nanog also has strong clinical correlates. In hepatocellular carcinoma, 

expression of Nanog was correlated with a worse clinical outcome126. In a study of human 

colorectal carcinoma cases, NANOG expression was associated with liver metastasis, which 

could make NANOG a marker of liver metastasis in colorectal carcinoma120,127. Also in colorectal 

cancer, NANOG was more highly expressed in CD133+ tumor cells than in CD133− tumor cells, 

and expression was related to tumor grade, lymph node metastasis, and tumor stage using the 

TNM (tumor extent, node invasion, presence of metastasis) staging system127. NANOG 

expression in human cervical cancer was associated with immune evasion and was found to be 

positively correlated with outcome and disease stage128. A study evaluating Nanog expression in 

lip squamous cell carcinoma, actinic cheilitis, and normal lip epithelium found that Nanog was 

more highly expressed in the pre-cancerous actinic chelitis, and in lip squamous cell carcinoma, 

when compared to normal epithelium. It is therefore possible that Nanog has a role in the switch 

from healthy to precancerous, to cancerous tissue129. Patients with gastric adenocarcinoma had a 

higher expression of NANOG in their excised tumors than in healthy tissue. Additionally, the 

expression of NANOG was correlated with tumor stage, lymph node status, extent of infiltration, 

differentiation, and poor prognosis130. A large meta-analysis of gastrointestinal luminal cancer 

found that NANOG expression was associated with patient gender, depth of infiltration 

differentiation, TNM stage, and poor overall and disease-free survival, which implicates NANOG 

as a potential biomarker for gastrointestinal luminal cancer131. Surprisingly, a tissue microarray 

of human esophageal squamous cell carcinoma samples showed that increased expression of 

NANOG was associated with favorable prognosis and response to cisplatin132. Given the above 

evidence, it is puzzling that NANOG was favorable in these cases. Nevertheless, it is possible 

that the effect of Nanog is tumor or tissue specific and warrants further research. 
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Nanog may exert its tumorigenic effects via a variety of downstream targets. In a transgenic 

mouse model of breast cancer, overexpression of Nanog alone is not sufficient to induce cancer. 

Instead, when in combination with an upregulation of Wnt-1, Nanog was able to promote the 

growth of highly metastatic tumors. In this model, Nanog was found to be associated with the 

expression of a number of tumor-relevant genes, including EMT markers and PDGFRa, which 

can also drive tumorigenesis, angiogenesis, and metastasis, corroborating Nanog’s effect in 

breast cancer125. In Nanog-positive hepatocellular carcinoma cells, insulin-like growth factor 2 

(IGF2) and insulin-like growth factor receptor (IGF1R) were upregulated, and their levels 

sensitive to changes in Nanog expression. Nanog expression levels decreased when IGF1R was 

knocked out, indicating the presence of some sort of feedback loop along this signaling axis126. 

In a study of a variety of human cancer types, NANOG in precancerous and cancerous cervical 

tissue was related to the expression of TCL1A and phosphorylated AKT, which have a role in 

promoting chemotherapy resistance and immune evasion128. Interestingly, in human colorectal 

carcinoma, NANOG knockdown decreased expression of SOX2 and OCT4, indicating that the 

probable feedback loop between these three factors is relevant in cancer as well119. 

How Nanog becomes expressed in cancers is still largely unknown, but some work has been 

done to elucidate a mechanism. In ovarian cancer, both NANOG and the androgen receptor (AR) 

are highly expressed. Given that the androgen 5a-dihydrostestosterone (DHT) activated NANOG 

transcription, it is possible that AR induces NANOG transcription. Cells given DHT had higher 

tumorigenesis, proliferation, migration, and colony and sphere formation, all phenotypes 

observed in NANOG-high cancers133. 

SUMMARY AND OUTSTANDING QUESTIONS 
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While a great body of work has elucidated the role of the pluripotency factors in ES and iPS cells 

and there still requires a larger analysis of the roles of the core pluripotency network outside of 

pluripotency. While some pluripotency factors have been studied outside of pluripotency, such as 

the role of Sox2 in neural stem cells, there still remains to be a rigorous comparison of 

downstream network activation in non-pluripotent tissues compared to pluripotent stem cells. 

The information gathered to date indicate that there are indeed different roles for pluripotent 

genes in postnatal cell types that are different from their roles ES cells. This brings forth an 

interesting question: if exogenous pluripotent gene expression (such as those expressed during 

iPS reprogramming) are able to reprogram a cell to an ES-like state, why is it that adult cells that 

express core pluripotency genes not also mimic ES cells? Is it truly the combination of 

recombination factors alone, or are there some cell type-specific effects that modulate the 

network of genes activated by these pluripotency genes in contrast to the standard definition of a 

master regulator134? Furthermore, what contribution could these cell type-specific effects have on 

the outcome of pluripotency factor expression in a cell, whether it be a normal response to injury 

or a pathological response such as the formation of a tumor? This requires a greater 

understanding of the upstream regulators of the pluripotency factors in somatic tissues to 

understand these seemingly diverse roles of regeneration or disease. 

The function of the core pluripotency genes, SOX2, OCT4, and NANOG, is of vast importance in 

understanding early development, embryonic stem cell function, and cellular reprogramming of 

iPS cells. However, their roles are not limited to early development. They are responsible for the 

maintenance of many adult tissues, and their regeneration after wounding. Importantly, they are 

key to understanding multiple pathologies, including cancer. An understanding of how these 
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genes work outside of a pluripotent context will be critical to guiding new therapies to the clinic 

to treat many pathologies and to perhaps enhance wound regeneration. 
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Table 1 – Developmental disorders linked to pluripotency factor misregulation 

Disorder Pluripotency 
Factors 

Gene Networks References 

Anothplamia,-
esophageal-genital 
syndrome 

Sox2 Notch, Pax6 63-65,73 

CHARGE syndrome Sox2 Chd7 65 

Cochlear malformation Sox2 Wnt 67 

Chronic kidney disease Sox2 65,75 

Dentate gyrus 
hypoplasia 

Sox2 Shh 26 

Hypogonadotropic 
hypogonadism 

Sox2 Wnt 60 

Taste sensory defects Sox2 Wnt 68 

Table 2 – Cancers linked to pluripotency factor misregulation 

Cancer Pluripotency 
Factors 

Roles Gene Networks References 

Bladder cancer SOX2 Tumor Invasiveness 89 

Breast cancer SOX2, 
OCT4, 
NANOG 

Tamoxifen resistance, poor 
survival, proliferation, 
metastasis 

Wnt/B-Catenin, 
miR-129-5p, 
p16INK4a, 
p14ARF, Bcl-
2/Bax, p53 

94,95,111,121,125 

Cervical cancer SOX2, 
NANOG 

Maintain CSCs, immune 
evasion 

EGF/PI3K, miR-
181a-2-3p, let-7i-
5p, AKT 

96,128 

Colorectal cancer NANOG Maintain CSCs, proliferation, 
drug resistance 

120,127 

Esophageal cancer SOX2 Differentiation 108 

Gastric cancer SOX2, 
OCT4, 
NANOG 

Tumor grade, metastasis, poor 
survival 

IGF2, IGF2R 101,130-132 
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Glioblastoma SOX2 Maintain CSCs, tumor 
propagation, proliferation, 
dedifferentiation 

BEX1 and BEX2, 
miR-145, miR-143, 
miR-253, miR-462 

90-93 

Hepatocellular 
carcinoma 

NANOG Maintain CSCs, metastasis, 126 

Lung cancer (non-small 
cell) 

SOX2, 
OCT4, 
NANOG 

Tumor progression, drug 
resistance, EMT, poor survival 

CD133, EGFR, 
NEAT1, MALAT1 

102,114-

116,118,122-124 

109 

Lung cancer (small cell) SOX2 Proliferation 105 

Lung cancer (squamous) SOX2 Proliferation Hedgehog 104 

Lymphoma SOX2 Dedifferentiation Wnt/B-Catenin, 
Myc 

97 

Osteosarcoma SOX2 Maintain CSCs, proliferation Hippo/YAP 88 

Ovarian cancer OCT4, 
NANOG 

Tumor progression, 
proliferation 

FSH, Notch, AR 119,133 

Prostate cancer SOX2, OCT4 Maintain CSCs, drug resistance AR, CD133 98,117 

Squamous cell 
carcinoma (head and 
neck) 

SOX2, 
NANOG 

Tumor reoccurrence, poor 
survival, metastasis 

Wnt/B-Catenin, 
Cyclin B, SNAIL, 
AFF4 

99,100,110,129 

Squamous cell 
carcinoma (skin) 

SOX2 Maintain CSCs, tumor 
propagation, proliferation, 
survival, adhesion, invasion 
and paraneoplastic syndrome 

Epigenetic 
regulation 

87 
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Sox2 is an oncogenic driver of small cell lung cancer and 
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Abstract 

Although many cancer prognoses have improved in the past fifty years due to advancements in 

treatments, there has been little improvement in therapies for small cell lung cancer (SCLC). One 

promising avenue to improve treatment for SCLC is to understand its underlying genetic 

alterations that drive its formation, growth, and cellular heterogeneity. RB-loss is one key driver 

of SCLC, and RB-loss has been associated with an increase in pluripotency factors such as 

SOX2. SOX2 is highly expressed and amplified in SCLC and has been associated with SCLC 

growth. Using a genetically engineered mouse model, we have shown that Sox2 is required for 

efficient SCLC formation. Furthermore, genome-scale binding assays have indicated that SOX2 
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can regulate key SCLC pathways such as NEUROD1, and MYC. This data suggests that SOX2 

can be associate with the switch of SCLC from an ASCL1 subtype to a NEUROD1 subtype. 

Understanding this genetic switch is key to understanding such processes as SCLC progression, 

cellular heterogeneity, and treatment resistance. 

Implication Statement 

Understanding the molecular mechanisms of SCLC initiation and development are key to 

opening new potential therapeutic options for this devastating disease. 

Introduction 

Small cell lung cancer (SCLC) is a devastating disease with markedly low survival rates, 

rapid metastasis, and almost invariable resistance to therapy. Patients who are stricken by this 

disease face a 6% two-year survival rate, while most will succumb less than a year after 

diagnosis (1, 2). Despite this alarming statistic, the standard of care for treating SCLC has 

remained essentially the same for the past 40 years and few innovations have been approved for 

this disease. First line treatments still rely primarily on platinum-based chemotherapy that often 

leads to treatment refractory tumors and poor patient outcomes (3-5). Recently immunotherapy 

options have been available for SCLC; however, while the results have been encouraging in 

select individuals, the patient responses have been generally poor (6). Therefore, in the pursuit of 

new therapies for SCLC, we have sought to understand the genetic factors underlying SCLC 

dynamics. 

On a genetic level, SCLC is both rather simple and complex. It is simple in that the genetic 

drivers of SCLC are relatively clear. Patients have an almost invariable loss of the tumor 
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suppressors p53 (TP53) and RB1 (RB) (7-9). Intriguingly, established SCLC can be genetically 

complex considering that, even with almost identical driver mutations, SCLC can be subdivided 

into four main subtypes defined by the function of key genetic regulators, ASCL1, NEUROD1, 

POU2F3, and YAP1 (10-13, reviewed in: 14). Critically linked to the regulatory networks of the 

ASCL1 (SCLC-A) and the NEUROD1 (SCLC-N) subtypes is the role of the MYC family of 

oncogenes. MYC (cMYC) is highly expressed and a determining factor for the SCLC-N subtype 

(15). MYCL (L-Myc) rather, is predominantly expressed in SCLC-A, and is key to SCLC-A 

growth (7, 11, 16, 17). While MYC family regulation is important to SCLC growth and 

development (18), how MYC family members are regulated in SCLC is currently unclear (19). 

The question of how a tumor with such homogenous driver mutations (RB1- and p53-loss) 

can lead to the diversity of genetic heterogeneity observed in SCLC remains unanswered. One 

clue to address this question can be found in the nature of the initiating mutations themselves. 

Beyond its role in regulating the G1/S checkpoint, RB also plays a multitude of roles in 

regulating gene expression (20-22). One of the genes regulated by RB is the transcription factor 

SOX2 (23). Known primarily as a pluripotency factor, SOX2 is also a key master regulator of 

neural and neuroendocrine cell types (24-28). As a master regulator, SOX2 influences cell 

identity early and widely in cell fate decisions. Indeed, SOX2 is commonly amplified in SCLC 

(7). Pulmonary neuroendocrine cells are the predominant cell of origin for SCLC (29), therefore 

it is possible that SOX2 upregulation in neuroendocrine cells following RB1-loss induces stem or 

progenitor genetic networks that help to drive oncogenesis. To that end, we generated a 

conditional knockout mouse in which we could perturb Sox2 activity in a well-characterized 

SCLC mouse model to assess the consequence of Sox2-loss on SCLC formation. Combined with 

a genome-wide investigation into SOX2 transcriptional regulation in SCLC, we observed that 
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SOX2 is indeed required for SCLC formation and regulates key genetic regulators of SCLC 

including NEUROD1 and members of the MYC family. 

Materials and Methods 

Ethics statement 

Mice were maintained according to the guidelines set forth by the NIH and were housed in the 

Sanford Research Animal Research Center, accredited by AAALAC using protocols reviewed 

and approved by our local IACUC. 

SCLC mouse tumor initiation 

, p53lox/lox, p130lox/lox We modeled SCLC in the Rb1lox/lox , Rosaluc (RPR2) mouse line (30), which 

readily develop SCLC after a few months, and added  Sox2 +/+,+/lox, or lox/lox alleles (Jackson 

Laboratories Stock #013093)(31). To study SCLC tumor initiation, we injected Cre-recombinase 

adenovirus (Ad5-CMV-Cre, Baylor Vector Development Lab, 0.91 �L of a 5x1012 pt/mL viral 

preparation used per mouse) into the mouse lungs by intratracheal intubation to excise the lox-

flanked genes (32). The mice were assigned to either a six-month cohort, a three-month cohort, 

or the survival curve. Mouse lungs, livers, and any other metastases were harvested for 

immunohistochemistry. Tumors were screened in a blinded manner by an independent 

pathologist. 

SCLC lung and liver immunohistochemistry 

The Sanford Research Histology & Imaging Core performed the immunohistochemistry for this 

study. The mouse lungs, livers and tumors were stained with H&E, for SOX2 (Abcam ab92494, 

1:100), calcitonin gene related peptide (CGRP, Sigma C8198, 1:2,000), anti-phospho-histone H3 

(pH3, EMD Millipore 06-570, 1:500), cleaved caspase 3 (CC3, Cell Signaling 9664, 1:100), ki67 

(Biocare CRM325, 1:100), ASCL1 (Abcam ab74065, 1:500), and MYC (c-MYC, Invitrogen 
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MA1-980, 1:100) (Supplemental Table S4). To computationally assess tumor burden and feature 

characteristics, we digitized each slide using an Aperio VERSA slide scanner. The five images 

from each sample (H&E and SOX2, CGRP, ki67, pH3, and CC3 IHC) were registered using the 

Register Virtual Stack Slices Plugin in FIJI/ImageJ (33). We then used CellProfiler (34) to count 

the tumors and features. The H&E staining was used to identify tumors, then the intensity of IHC 

staining for the markers SOX2, CGRP, ki67, pH3, and CC3 was determined for the 

corresponding tumor areas in the other virtual slide images. Registration and CellProfiler scripts 

are available on the Kareta Lab website (https://research.sanfordhealth.org/researchers-and-

labs/kareta-lab).  

SCLC cell lines 

We used the murine SCLC cell lines KP1 and KP3 (Rb1lox/lox; p53lox/lox) and the human SCLC 

lines NJH29 (H29), NCI-H82 (H82), NCI-H1836 (H1836), and NCI-H209 (H209) (30, 35). The 

cells were maintained in suspension and cultured in RPMI with 10% bovine growth serum and 

penicillin/streptomycin. All cell lines regularly tested negative for mycoplasma contamination. 

Lentiviral transduction and cell assays 

We made the lentivirus for the shRNA-mediated knockdown using the packaging plasmids 

VSVG, pMDL, and RSV in 293T cells, transfecting them with PEI with a nearly 90% 

transduction rate. Resulting lentivirus was concentrated using Lenti-X Concentrator (Takara Bio, 

Inc.) and titered for reproducible transductions. Controls consisted of an empty pSicoR vector or 

a pSicoR vector containing a shRNA to Luciferase (23). Transduced cells were selected for by 

culture with Puromycin for 5 days. We measured cellular viability after SOX2 knock down with 

an alamar blue assay, and the levels of apoptosis with Annexin V staining combined with flow 

cytometry. qPCR was used to confirm the knock down of Sox2 in the cells. Cas9-mediated 
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knockdown of SOX2 was achieved by cloning a SOX2 gRNA sequence 

(ATTATAAATACCGGCCCCGG) into the TLCV2 inducible lentiviral Cas9 vector (36), which 

was packaged in to lentivirus using the methods above. Transfection was achieved using 

Lipofectamine 3000 (ThermoFisher Scientific) according to the manufacturer’s protocol. To 

enhance transfection efficiency, after adding the transfection mix the cells were processed 

according to a modified spinfection protocol where they were centrifuged at 940 xg for 2 hours 

at room temperature. Mock controls were Lipofectamine-treated and spinfected cells that were 

processed the same but without the presence of the DNA vector. Due to high transfection 

efficiencies (typically greater than 70%), cells were neither selected nor sorted to minimize 

stress. 

Chromatin Immunoprecipitation (ChIP) and CUT&RUN Assays 

In preparation for HA-RB1�CDK chromatin immunoprecipitation, cells were transfected with 

pCMV-HA-hRb1-delta-CDK (Addgene, #58906) using Lipofectamine 3000 (ThermoFisher). 

ChIP for HA-RB1�CDK was performed as previously described (23) with several additional 

optimizations (37). The alternative swelling buffer was used for cell lysis. Chromatin was 

sonicated using a ME220 (Covaris, Inc.). ChIP-grade Protein AG magnetic beads (Pierce) were 

pre-blocked with BSA and salmon sperm DNA for 15 minutes on a rotating platform at 4oC. The 

chromatin was pre-cleared before being diluted and incubated with an anti-HA antibody (Sigma 

H6908, 4 �g) for immunoprecipitation. The antibody-chromatin complexes were incubated with 

blocked beads for 2 hours at 4oC on a rotating platform prior to washing two times each with 

low-salt, high-salt, and LiCl wash buffers. 

CUT&RUN assays were carried out according to the protocol (Version 3) published by Janssens 

and Henikoff (38) which is based on the original protocol developed by Skene et al. (39), using 
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the CUTANATM pAG-MNase (EpiCypher), and concanavalin-A coated beads (BioMag Plus 

#86057). The optional high-calcium/low-salt conditions were included to prevent premature 

chromatin release after digestion. Both ChIP and CUT&RUN assays were performed using 

SOX2 antibodies from both EMD/Millipore (17-656) and R&D Systems (AF2018). ChIP and 

CUT&RUN libraries were analyzed on an Agilent Bioanalyzer System by the Sanford Research 

Functional Genomics & Biochemistry Core and sequenced at the Sanford Burnham Prebys 

Genomics Core. Both ChIP and CUT&RUN reads were aligned to the hg38 genome build using 

Bowtie 2 version 2.3.4.3 (40) and peaks called using MACS2 version 2.1.2 (41). As described by 

the authors of CUT&RUN, the top 99.5th percentile of peaks after sorting by q-values (including 

peaks with the same q-value at cutoff) were selected for further analysis (39). HOMER was used 

for heatmap generation and motif enrichment (42), Diffbind was used for differential peak 

identification and PCA visualization (43), and Ingenuity Pathway Analysis for network analysis 

(QIAGEN Inc.). Weighted gene co-expression network analysis was performed using the 

WGCNA package from Bioconductor (44). RNA-seq data was analyzed using DESeq2 (45). 

Results 

Sox2 is critical for SCLC tumor initiation 

To investigate if Sox2 is required for the formation of SCLC, we bred a mouse line containing a 

conditional Sox2 allele (Sox2lox/lox) to the RPR2 [Rb1lox/lox; p53lox/lox; Rbl2(p130)lox/lox] mouse 

model of SCLC (Fig. 1A) (29, 30, 46, 47). With the addition of the conditional Sox2 allele, we 

therefore named this line RPR2S. Tumors from RPR2 mice display all the common hallmarks of 

human SCLC, mainly the same histological characteristics as scored by an independent 

pathologist, rapid metastasis, and chemoresistance (30, 47, 48). To overcome the dramatic 

effects of global Rb1- and p53-loss in the mouse, we localized Cre-mediated recombination by 
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an intratracheal instillation of a Cre-expressing adenovirus (Adeno-CMV-Cre-GFP) to target 

recombination specifically to the lung epithelium (49). As expected, we observed early lesions 

around 3-months, with a robust tumor burden 6-months after Cre-recombination (30). 

By utilizing a breeding strategy that generates all three allelic combinations of Sox2: Sox2+/+, 

Sox2+/lox, and Sox2lox/lox (Supplemental Table S1), we were able to query if one or both alleles of 

Sox2 are involved in SCLC formation. Three and six months after Adeno-Cre tumor initiation, 

Rb1lox/lox; p53lox/lox; p130lox/lox mice showed a sizeable number of tumor foci displaying the 

histological characteristics of SCLC. However, the RPR2S mice had a nearly complete loss of 

SCLC foci observed at the same timepoint (Fig. 1B). To fully characterize these tumors and 

ensure complete Sox2 loss in the RPR2S mice, we optimized immunohistochemistry staining and 

an unbiased image analysis pipeline using ImageJ and CellProfiler (34) resulting in a thorough 

statistical analysis of the number and marker expression in the RPR2 tumors compared to the 

few RPR2S tumors (Figs. 1C and 1D, Supplemental Fig. S1). The RPR2 tumors showed typical 

SCLC histology including high Cgrp expression, indicative of a neuroendocrine tumor type, and 

highly proliferative cells as indicated by ki67 and phospho-Histone H3 (pH3) staining (50) 

(Supplemental Fig. S1). At 6 months, there were a handful of very small tumors observed in the 

Rb1lox/lox; p53lox/lox; p130lox/lox; Sox2 lox/lox mice (Fig. 1D and Supplemental Fig. S1), although a 

sizeable number of these showed immunoreactivity to SOX2 antibodies, indicating that they are 

the result of incomplete Cre function. However, a small minority of SCLC tumors can initiate 

without Sox2, indicating that Sox2 activity may not be absolutely necessary in some SCLC 

tumors or tumor subtypes. However, those tumors that grew even when Sox2 was deleted were 

markedly smaller in size than the Sox2+ tumors (Supplemental Fig. S1D).  Importantly, we 
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observed a significant lengthening of the lifespan of the Rb1lox/lox; p53lox/lox; p130lox/lox; Sox2lox/lox 

mice (Fig. 1E), compared to Sox2-expressing controls. 

SOX2 is required for the growth of established SCLC lines 

The results indicating Sox2 function in the initiation of SCLC tumors in mice led us to 

investigate if Sox2 is required in established tumors. We utilized shRNA-mediated knockdown to 

reduce SOX2 expression in both mouse and human SCLC cell lines. We were able to achieve a 

~60-90% knockdown of SOX2 by RT-qPCR (Supplemental Fig. S2A). We observed that 

knockdown of SOX2 in both mouse and human cell lines significantly reduces the growth of 

these cells in culture compared to mock-transduced cells (Fig. 2A), similar to a previously 

reported SOX2 knockdown in human SCLC cell lines (7). Concurrent with a loss of cellular 

viability, we observed an increase in the number of apoptotic cells upon SOX2 knockdown 

(Supplemental Fig. S2B). As RB1-loss is one of the primary genetic drivers of SCLC (7, 9, 47), 

and the RB protein can bind to and repress the Sox2 locus in fibroblasts (23), we set out to 

investigate if RB is capable of repressing SOX2 in SCLC to indicate if RB-loss in SCLC could 

be the driver of SOX2 upregulation. To this end, we overexpressed an RB1 transgene in human 

SCLC cell lines in which the CDK phosphorylation sites have been mutated (RB1�CDK) to 

render RB resistant to CDK inactivation (51). Overexpression of RB1�CDK greatly reduced the 

viability of human SCLC cell lines (Fig. 2B)(52). Furthermore, overexpression of RB1 resulted 

in the repression of Sox2 (Fig. 2C). By chromatin immunoprecipitation (ChIP) we tested if 

RB1�CDK binds to the promoter or the two known proximal SOX2 enhancers, SRR1 and SRR2 

(53). Indeed, we do observe significant enrichment of RB1�CDK-bound regions at the SOX2 

promoter and the downstream SRR2 enhancer (Fig. 2D). Finally, overexpression of SOX2-t2a-

GFP rescued the repression of RB1�CDK growth-inhibited SCLC cell lines (Fig. 2E, 
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Supplemental Fig S2C). Together these data confirm that SOX2 is required for SCLC tumor 

growth and that SOX2 expression is most likely a consequence of RB1-loss. 

SOX2 regulates key SCLC pathways 

To observe the genomic localization of SOX2 in human SCLC cell lines, we performed both 

ChIP and Cleavage Under Targets and Release Using Nuclease (CUT&RUN) (39) using the 

endogenous SOX2 from both H1836 and H29 cells. While SOX2 ChIP allowed for broad 

localization studies, we found that SOX2 CUT&RUN was much more sensitive for comparative 

genomic localization studies due to the lack of chemical crosslinking and the release of SOX2-

bound DNA due to SOX2 antibody:ProteinA/G:MNase complexes rather than sonication. We 

observed a very similar localization of SOX2 in both cell lines (Fig. 3A, Supplemental Fig. S3, 

Supplemental Table S3). Unbiased motif enrichment of the SOX2 peaks identified an HMG 

binding domain as the most highly enriched motif (Fig. 3B). The HMG domain is the DNA-

binding domain of the SOX family of proteins therefore, the presence of HMG motifs validates 

the specificity of the SOX2 localization (54). As expected for a neuroendocrine tumor, and with 

the known role of SOX2 in the regulation of neurogenesis (55, 56), the top ontology terms for the 

SOX2 adjacent genes were related to neural development and function (Fig. 3C). To assess if the 

binding topology of SOX2 in SCLC is similar to other SOX2-expressing cells, we compared the 

binding similarity by read counts for SOX2 datasets from human embryonic stem (ES) cells, 

induced pluripotent stem (iPS) cells, neural stem cells (NSCs), and glioblastoma (57-60). We 

observe that SOX2 binding in SCLC is distinct from both NSCs and pluripotent cells (ES and 

iPS cells). The closest binding profile to SCLC was glioblastoma therefore the function of SOX2 

in cancer may be distinct from its role in normal cellular development (Fig. 3D). 
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The genes that are bound by SOX2 appear to show a biphasic distribution of high- or low-

expression, indicating that they are either upregulated or repressed by SOX2 (Fig. 3E,F, 

Supplemental Fig. S4). Indeed, SOX2 can either repress or transactivate target genes based upon 

the cofactors recruited (54, 61, 62), and it appears these two roles of SOX2 are maintained in 

SCLC. To better describe the genetic networks that are regulated by SOX2 in SCLC we 

performed a weighted gene co-expression network analysis (WGCNA) to identify the gene 

networks co-expressed with SOX2 using the SCLC cell lines in the Cancer Cell Line 

Encyclopedia (63, 64). The WCGNA analysis identified multiple modules that are co-expressed 

with SOX2 (Supplemental Fig. S5, S6). The most highly upregulated module with SOX2 

contained ASCL1, a known regulator of classic SCLC (10, 11, 14)(Fig. 3G). The most 

downregulated module identified contained a MYC network, which is associated with the variant 

state of SCLC (15) (Fig. 3H). 

SOX2 regulates SCLC-subtype specific specification 

To further investigate the result that high levels of SOX2 favors ASCL1 gene modules and is anti-

correlated with MYC gene modules (Fig. 3G) we investigated if SOX2 expression favors the 

ASCL1 SCLC subtype. We performed unbiased clustering of CCLE SCLC cell lines based on 

their expression of ASCL1, NEUROD1, YAP1, POU2F3, MYC, and MYCL (Fig. 4A). The cell 

lines generally clustered by subtype and SOX2 specifically clustered with the ASCL1 subtype. As 

it is unclear if the ASCL1-SOX2 module (Fig. 3G) is due to direct SOX2 regulation of ASCL1 

or a correlation due to high SOX2 levels in the SCLC-A subtype cell lines (Supplemental Fig. 

S6), we set out to determine if the regulation of the SCLC subtype-specific factors ASCL1 and 

NEUROD1 is directly regulated by SOX2. Overexpression of SOX2-t2a-GFP in two SCLC-A 

(H1836 & H209) and two SCLC-N (H29 & H82) cell lines does not appear to perturb ASCL1 
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levels, but does result in significant downregulation of NEUROD1 (Fig. 4B, Supplemental Fig. 

S7). We observed similar changes at the protein level, although levels of NEUROD1 were 

marked lower in H1836 and H209 cells (Fig 4D). We then used an inducible Cas9-mediated 

knockdown of SOX2 rather than shRNA-mediated knockdown to observe the rapid effects of 

target gene expression after Cas9 induction, which results in significant SOX2 knockdown 

(Supplemental Fig. S8A).  In contrast to SOX2 overexpression, we observed a significant 

upregulation of NEUROD1 (Fig. 4C, Supplemental Fig. S8A). To test if regulation of 

NEUROD1 by SOX2 is direct we performed ChIP of SOX2. We observed significant binding of 

SOX2 at the NEUROD1 and MYC promoters (Fig. 4E, Supplemental Fig. S8B). Therefore, it 

appears that SOX2 does not directly regulate ASCL1; however, it is associated with the 

progression of SCLC tumors to the NEUROD1 state. 

SOX2 directly regulates MYC and MYCL in the ASCL1 and NEUROD1 SCLC Subtypes 

With the observation that SOX2 potentially regulates MYC networks in SCLC (Fig. 3H), we 

investigated if SOX2 directly regulates the MYC family in SCLC. We observed binding of 

SOX2 to both MYC and MYCL in SCLC from the CUT&RUN data (Figs. 3A and 5A). Both 

MYC and MYCL are expressed in SCLC, with MYCL predominantly expressed in the SCLC-A 

subtype and MYC expressed in the SCLC-N subtype (14-16). Interestingly, SOX2 appears bound 

at MYCL in H1836 cells, which are of the SCLC-A subtype and is bound at MYC in H29 cells, 

which are of the SCLC-N subtype (Supplemental Fig S7)(65). This is consistent with a role for 

SOX2 to activate these genes in their respective SCLC subtype. Overexpression of SOX2 in both 

SCLC-A and SCLC-N cells further supports a role for SOX2 in the regulation of MYC and 

MYCL. When SOX2-t2a-GFP is transfected into the SCLC-A cell lines H1836 and H209, we 

observed a downregulation of MYC at both the mRNA (Fig. 5B) and protein levels (Fig. 5C and 
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5D). Rather, in the SCLC-N lines H29 and H82, there is significant downregulation of MYCL 

upon SOX2 overexpression (Fig. 5B) and an apparent, but not significant increase in the protein 

levels of MYC (P=0.0724), perhaps not reaching significance due to the already elevated levels 

of MYC in these cell lines (Supplemental Fig S7). This indicates that overexpression of SOX2, in 

contrast to normal levels of expression (Fig. 5A), is repressive at either MYC or MYCL yet still 

favoring MYCL expression in the SCLC-A subtype and MYC expression in SCLC-N. We tested 

for either ASCL1, NEUROD1 or MYC expression in the tumors from the RPR2S mice, and 

observed that Sox2+ tumors display high ASCL1 and low NEUROD1/MYC staining, which is 

expected as the RPR2 mice predominantly form tumors of the SCLC-A subtype (15). However, 

the few Sox2lox/lox tumors showed reduced ASCL1 staining and increased NEUROD1/MYC 

immunoreactivity (Fig. 5E). ASCL1, NEUROD1, and MYC staining showed nuclear localization 

consistent with SCLC cells and not infiltrating cells (Supplemental Fig. S9). Blinded scoring of 

the tumors as either ASCL1+ NEUROD1+, or MYC+ showed a significant increase in the number 

of NEUROD1+/MYC+ tumors from the Sox2lox/lox mice (Fig. 5F, Supplemental Table S2). 

Therefore, it appears that SOX2 favors the formation of an SCLC-A subtype.  

Discussion 

There have been a few indications that SOX2 may be a key factor in SCLC, however its role 

in SCLC has so far been obscure. Rudin and colleagues showed that SOX2 is amplified in ~27% 

of SCLC patients and cell lines, and that knockdown of SOX2 can impair growth of SCLC cell 

lines (7). We have previously shown that RB1-loss, one of the two driver mutations required for 

SCLC initiation, can result in SOX2 upregulation (23). SOX2 has been observed to be 

misregulated in various cancers of the epithelium (66). As SCLC is a cancer that rises from the 

lung epithelium, predominantly from pulmonary neuroendocrine cells which themselves express 
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SOX2 during development, it seemed reasonable that SOX2 may indeed be a driver of SCLC (29, 

67). However, the role for SOX2 in SCLC initiation and its mechanism in SCLC was unclear.  

To that end, we generated a genetically engineered mouse model of SCLC based on the 

RPR2 [Rb1lox/lox; p53lox/lox; Rbl2(p130)lox/lox] line, where we introduced a conditional Sox2lox/lox 

allele (named the RPR2S line). We observed that deletion of Sox2 in these mice greatly hampers 

the formation of SCLC tumors. The requirement of SOX2 in SCLC formation was not 

completely penetrant, however, as there were a handful of small tumors that developed in the 

absence of Sox2. These tumors had properties similar to the SCLC-N subtype as they showed 

low levels of ASCL1 and high NEUROD1 and MYC. Therefore, SOX2 may be required 

primarily for SCLC-A type tumors, which are the primary subtype of the RPR2 line, and that any 

escapees were able to activate Neurod1 subtype networks to compensate and/or bypass the Ascl1 

state. 

To assess the function of SOX2, we assessed its genomic localization and observed that 

SOX2 primarily binds to genes involved in neurogenesis, where neural gene signatures are 

commonly found in SCLC (10, 11). Intriguingly, the genes bound by SOX2 did not strictly 

overlap with SOX2 binding profiles in either pluripotent cells (ES and iPS cells) or NSCs. Rather 

the SOX2 binding profile was most similar to glioblastoma multiforme, indicating that SOX2 

may share a more common function amongst cancer than its well-studied functions in 

development. This is perhaps unexpected as SOX2 has been described as a pioneer factor that is 

able to bind its target DNA sequences regardless of any regional heterochromatin, and therefore 

should be able to regulate target sequences in a wide assortment of donor cells (68). Rather we 

observe that the cellular context does impart some level of regulation on the broader SOX2 

network. This is particularly relevant considering that SCLC can arise from a few different cell 
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types on the lung epithelium and can influence the resulting SCLC subtype (18, 29, 69). It is 

possible that the few NEUROD1+/MYC+ lesions observed in the Sox2lox/lox mice are a result of 

tumors initiating from a non-neuroendocrine lineage. Finally, what cell-type specific factors may 

be constraining SOX2 function will be of particular importance towards understanding SOX2 

regulation in SCLC, and potentially provide novel avenues for therapeutic targeting SCLC, and 

perhaps other SOX2-driven cancers. 

We observed two regulator networks that correlate with SOX2 expression in SCLC. The first 

is ASCL1 that is required for SCLC formation in the RPR2 mouse model, and indeed is localized 

at SOX2 indicating a direct role in SOX2 regulation (11). Consistent with ASCL1 lying upstream 

of SOX2 in established SCLC cell lines, we observe that neither overexpression nor knockdown 

of SOX2 alters ASCL1 expression. This prompts the question of how ASCL1 can lie upstream of 

SOX2 if SOX2 upregulation is a direct consequence of RB1-loss, one of the two SCLC driver 

mutations. It could be that RB1-loss promotes the derepression of SOX2, but ASCL1 activity is 

required for full SOX2 transactivation and subsequent tumor development. Intriguingly, ASCL1 

and SOX2 have been found at similar enhancer regions (70), therefore the regulation of these 

two factors may not be strictly linear. Further investigation into the genetic networks at play in 

early SCLC tumors will be required to address these questions. 

With the potential link between SOX2 activity and ASCL1, we also investigated the other 

neuroendocrine SCLC subtype specific factor, NEUROD1. SOX2 has been found to regulate 

Neurod1 in neural progenitor cells, where it functions to maintain an epigenetically permissive 

state at the Neurod1 promoter (71). Conversely, in neural stem cells of the adult hippocampus, it 

was observed that SOX2 binds to the Neurod1 promoter and silences Neurod1 expression (72). 

In SCLC, we observe that SOX2 overexpression leads to NEUROD1 silencing, while basal 
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levels of SOX2 appear to be associated with activation or attenuation of the levels of activated 

NEUROD1. This regulation appears direct as we observe SOX2 bound at the NEUROD1 

promoter by ChIP, although binding at NEUROD1 was unclear in the CUT&RUN data. It is 

possible that these two techniques may recognize different SOX2 protein complexes due to their 

differing methods to assess DNA localization. As MYC is a target of NEUROD1 (11), SOX2 loss 

could then promote a maintenance of the SCLC-N subtype network. 

We also uncovered a role of SOX2 in the regulation of MYC and MYCL in SCLC. We 

observe that endogenous levels of SOX2 appear associated with activation as SOX2 was found at 

MYCL in SCLC-A subtype cell lines while it was bound at MYC in SCLC-N cell lines. Yet, in 

contrast we observe that overexpression of SOX2 enhanced repression of MYC and MYCL in 

SCLC-A and SCLC-N, respectively. As was shown for SOX2 in embryonic stem cells (61), we 

also observe that SOX2 can be associated with both gene activation and gene silencing. The 

alternating functions of SOX2 of both gene activation or repression most likely reflect differing 

SOX2 protein complexes that are assembled in a context-specific manner, with tight 

stoichiometric regulation of the endogenous activating complex so that overexpressed SOX2 

favors the formation of a more promiscuous repressive complex. Further investigation into the 

SOX2 protein interactome in SCLC and specifically in different SCLC subtypes will be required 

to delineate the mechanistic function of SOX2 on different gene targets. SOX2, while typically 

oncogenic in the lung (73, 74), can indeed act as a tumor suppressor when overexpressed in 

multiple cancer types (75) indicating cell-type specific roles. Consequently, SOX2 may possess 

differing functions, either favoring transcriptional activation or silencing in different cells within 

a single SCLC tumor, or tumors that arise from alternative cells of origin as SCLC is indeed a 

heterogeneous tumor comprised of multiple cell types responsible for tumor propagation and 
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treatment resistance (19, 76-79). Further investigation into the mechanism of SOX2 activity in 

these different cell types may shed additional light on the development of SCLC heterogeneity 

and treatment resistance. 

Together we have illustrated that SOX2 is strongly favorable to SCLC formation in the RPR2 

SCLC mouse model. SOX2 serves to regulate NEUROD1 expression and is associated with the 

switch from MYCL to MYC expression, although further investigation into its regulatory 

mechanisms of this switch are required. ASCL1 is the predominant network controlling SCLC 

activity in the early tumor; however, during tumor progression there is a switch to the 

NEUROD1 state, driven in part by MYC and is linked with poorer patient outcomes (18, 79). 

Our data indicates that SOX2 is associated with this process by the concurrent regulation of 

NEUROD1, MYC, and MYCL. Understanding the genetic networks that underlie this switch 

during SCLC tumor progression will add to the explanation of such processes as treatment 

resistance, and ultimately lead to improved therapies to treat this devastating disease. 
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Figure Legends 

Figure 1 Sox2 is required for SCLC formation. A, Genetically engineered mouse model for the 

study of Sox2 in SCLC. B, Representative H&E stained lung sections from Rb1lox/lox; p53lox/lox; 

p130lox/lox; Sox2+/+ (left), Rb1lox/lox; p53lox/lox; p130lox/lox; Sox2+/lox (middle), and Rb1lox/lox; 

p53lox/lox; p130lox/lox; Sox2lox/lox (right) mice, 6 months after Cre recombination. C, Number of 

tumors as indicated by H&E staining 3 months after Cre recombination. D, Number of tumors as 

indicated by H&E staining 6 months after Cre delivery. Numbers of mice used in C-D can be 

found in Supplemental Table S1. E, Kaplan-Meier survival curve of SOX2 WT mice (Sox2+/lox) 

compared to Sox2lox/lox mice. Violin plots show median (white dot), interquartile range (box) and 

the continuous distribution of the data; significance for all panels determined by a two-tailed t-

test where * = P<0.05, ** = P<0.01, *** = P<0.01. 

Figure 2 RB represses SOX2 and is required for SCLC. A, Using 3 hairpins designed to murine 

Sox2, (shSox2-1,2,&4) and one designed to human SOX2 (shSOX2-5) we tested the effect on 

cellular proliferation by an Alamar Blue assay in KP1, KP3, H29, and H82 cell lines. B, Alamar 

Blue assays of H29 and H1836 cells after transfection with RB1�CDK. C, Expression of Rb1 

and Sox2 measured by qPCR after transduction of Adeno-Rb1 virus in KP1 and KP3 cells. D, 

ChIP of HA-RB�CDK or mock transfected cells (H29 and H1836). Regions tested for ChIP 

enrichment by qPCR are the SOX2 proximal promoter (PP), the SRR1 and SRR2 enhancers of 

SOX2, MCM3 promoter as a positive control and ACTB promoter as a negative control. E, 

Alamar Blue assay on day 4 to determine the proliferation of H29, H82, H1836, and H209 cells 

after transfection with RB1�CDK, and or SOX2-t2a-GFP. Proliferation is plotted as the fold 
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change compared to a mock-transfected control. Individual values are notated by grey circles. 

Bar graphs show mean and SEM, significance for all panels determined by a two-tailed t-test 

where * = P<0.05, ** = P<0.01, *** = P<0.01. 

Figure 3 SOX2 regulates key SCLC pathways. A, SOX2 CUT&RUN heatmap from H1836 and 

H29 cell lines. Each row represents the normalized read counts at all peaks identified for SOX2 

binding. B, De novo motif identification discovers an HMG domain as the most prominent motif 

in the SOX2 peaks. C, Top ten GO terms enriched at the genes associated with the SOX2 peaks. 

D, PCA plot of other human SOX2 genome binding profiles. Studies include samples from 

induced pluripotent stem (iPS) cells, embryonic stem (ES) cells, neural stem cells (NSCs) and 

iPS-derived NSCs, and glioblastoma (GBM). Datasets include GSE69479, GSE81900, 

GSE49405, GSE23839 (57-60). E, Density plot of the log(fpkm) values of all genes associated 

with a SOX2 peak. F, Number of genes in (E) that are predicted to be part of the low- or high-

expression group after Gaussian mixed model clustering (Supplemental Fig. S4). G & H, 

WGCNA identified two networks that include ASCL1 and MYC. Color scale reflects the relative 

expression of each gene in the network from the expression profiles available in the CCLE. 

Figure 4 SOX2 partially regulates NEUROD1 A, Heatmap of the log transformed fpkm values 

from SCLC cell lines from CCLE. Cell lines are clustered independently from SOX2 expression. 

B, Transfection of H1836 and H209 (SCLC-A) and H29 and H82 (SCLC-N) with SOX-t2a-GFP. 

qPCR of ASCL1 and NEUROD1 are shown. C, qPCR of ASCL1 and NEUROD1 are shown upon 

Cas9-mediated knockdown of SOX2. D, Western blots for NEUROD1, SOX2, and TUBULIN 
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after SOX2 overexpression or a mock transfected as a control. E, Quantitation of NEUROD1 

protein levels as assessed by western blotting as in (E), n=3. F, ChIP of SOX2 or an IgG control 

assessed by qPCR at SOX2, NEUROD1, ASCL1, MYC, and ACTB as a negative control. Bar 

graphs show mean and SEM, significance for all panels determined by a two-tailed t-test where * 

= P<0.05, ** = P<0.01, *** = P<0.01. 

Figure 5 SOX2 is a regulator of MYC and MYCL in SCLC. A, Gene track showing SOX2 

CUT&RUN at the MYC and MYCL loci in H1836 and H29 cells. Blue/green track represents the 

normalized read maps across the loci, the black bars under the track represent regions where 

significant peaks were called. B, qPCR of MYC and MYCL in H1836 and H209 (SCLC-A) and 

H29 and H82 (SCLC-N) plotted as a log2 ratio of SOX2 overexpressed cells to the mock control. 

Values greater than one indicate higher expression upon SOX2 overexpression. Significance 

determined by a two-tailed t-test C, Quantitation of MYC protein levels as assessed by western 

blotting as in (D), n=3. D, Western blot of MYC, SOX2, and TUBULIN after SOX2 

overexpression or mock transfected cells as a control. E, Immunohistochemistry of ASCL1, 

NEUROD1, and MYC in murine SCLC tumors. Representative tumors shown. Scale bar = 100 

�m. F, Quantification of tumors scored as ASCL1+, NEUROD1+, or MYC+ expressing in (E). 

Number of tumors and their staining classifications are notated in Supplemental Table S2. 

Significance assessed by ANOVA. Bar graphs show mean and SEM, significance identified 

where * = P<0.05, ** = P<0.01, *** = P<0.01. 
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ABSTRACT 

The processes that underlie neuronal conversion ultimately involve a reorganization of 

transcriptional networks to establish a neuronal cell fate. As such, transcriptional profiling is a 

key component towards understanding this process. In this chapter, we will discuss methods of 

elucidating transcriptional networks during neuronal reprogramming, and considerations that 

should be incorporated in experimental design. 

KEY WORDS Neuronal conversion, Induced neurons, Transcriptional profiling, RNA-seq 

1 INTRODUCTION 
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Cellular reprogramming is a powerful process that harnesses the potential of the genome 

to alter a cell’s identity. Typically, the direct conversion process involves the transfer of 

cDNAs, mRNAs, or proteins that harbor master regulator activities, or small molecules that 

influence master regulator function to a differentiated cell type to drive the conversion of that 

cell to one of a different lineage, without going through a pluripotent intermediate. This 

approach utilizes the existing genetic material in a cell to lead to transcriptomic changes that 

drive cell fate conversion. One of the first and best-studied systems for understanding direct 

conversion is the formation of induced neuronal (iN) cells. Reported in 2010 from the lab of 

Marius Wernig, the first account of fully functional iN cells being induced from mouse 

fibroblasts used a three-factor reprogramming cocktail [1]. Since then, a number of groups 

have recapitulated this process, with slightly different combinations of factors and culture 

conditions using both human and mouse differentiated cells as source material [2-6,1,7-9]. 

Generally, reprogramming of iN cells is defined and characterized by a number of 

morphological, molecular, and functional parameters [7], however given that the factors 

supplied to drive reprogramming are often transcriptional regulators such as Ascl1, 

transcriptional profiling should serve as a powerful tool for the understanding of 

transcriptional states of these cells [10,11,5,6]. Transcriptomic profiling of reprogrammed 

cells allows for the understanding of the complex transcriptomic changes that occur during 

cell fate switching, aids in understanding lineage hierarchies, and identifies transcriptional 

targets of the reprogramming factors. 

A powerful player in the field of transcriptomic profiling, RNA sequencing served for 

many years as the foremost technique in understanding gene expression at a tissue level. In 

this method of bulk transcriptomics, the expression of all RNAs in the cellular population is 
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sequenced and used to generate an expression profile of the sample, allowing for the 

evaluation of transcriptional networks that are activated or repressed during the 

reprogramming process [12]. Bulk RNA sequencing at various timepoints throughout the 

reprogramming process has been used to uncover lineage pathways that emerge as these cells 

are reprogrammed [13]. The transcriptomic data gained from bulk RNA sequencing can be 

used to determine in an unbiased manner the fate of reprogrammed cells and illuminate the 

intermediate states that were traversed during reprogramming [10,14,15].   

While bulk RNA sequencing is an important tool for understanding the transcriptome of 

iN cells, it does not account for the heterogeneity of cellular populations that occurs in tissues 

or during the reprogramming process. Bulk approaches average the contribution of the 

transcriptome of all the cells, which can lead to the masking of rare populations within the 

sample. An emergent powerhouse in transcriptomic analysis, single cell RNA sequencing 

(scRNA-seq) instead evaluates the transcriptome of each individual cell in a population, and 

using complex bioinformatics tools, can stratify individual populations of cells within a 

sample to determine a more complete picture of the state of these cells. Using scRNA-seq, 

we have the ability to evaluate differential gene expression within a sample, draw lineage 

maps, and identify rare or novel populations [16-18]. scRNA-seq has been used in the field 

of iN differentiation, and has helped to identify the transcriptional networks that “prime” a 

cell for differentiation, and create a comprehensive profile of transcriptional reprogramming 

states [19]. Using scRNA-seq to uncover the lineage path and single-cell transcriptomes 

regulated at various timepoints throughout reprogramming has led to the comprehensive 

characterization of clonal populations and heterogeneity present during iN reprogramming 

[5]. While scRNA-sequencing is a powerful tool for transcriptional profiling, due to its high 
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sensitivity, special considerations must be taken to ensure analysis faithfully recapitulates the 

biological phenotypes [16,18,20]. 

This protocol will describe the general methods and considerations that should be 

considered in the transcriptomic analysis of iN transcriptome analysis. Due to the wide 

variety of methods to prepare samples for transcriptomic analysis, and since many of these 

involve the use of proprietary kits with established protocols, we will instead focus on the 

sample design considerations and downstream data analysis in regards to understanding the 

changes in the transcriptome during neuronal reprogramming.  

2 MATERIALS 

1. Basic RNA-extraction methods such as Trizol to isolate RNA for bulk RNA-seq or 

scRNA-seq library preparation platforms such as a 10X Chromium Controller (10X 

Genomics, Pleasanton, CA, USA) or a Fluidigm C1 system (Fluidigm, South San 

Francisco, CA, USA). 

2. Large computational resources that run on a UNIX environment for most command-line 

software. An installation of R is required for many computational tools and can be run in 

a Unix, Windows, or iOS environment [21]. 

3 METHODS 

3.1 Bulk RNA-seq of reprogrammed cells 

Study designs in cell reprogramming typically involve time course sampling to monitor changes 

in expression profile as cell differentiation progresses. A minimum of three replicate samples 
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from each time point is required for statistically reasonable results. For studies involving bulk 

RNAseq, differential gene expression analysis is typically followed by downstream pathway 

enrichment analysis. 

Bioinformatics analysis pipeline is depicted in Figure 1 and the details of the steps involved are 

provided below.  

a. Checking the quality of sequencing. Raw reads from sequencer are typically in the form 

of fastq format and come in general with adapter sequences clipped. Nevertheless, it is 

good practice to first do quality assessment of the reads and check for presence of adapter 

contamination. The most commonly used tool for quality is FASTQC [22] and for 

trimming Trimmomatic [23]. 

b. Alignment to reference genome. There are several widely used packages for alignment 

of reads to the reference genome, including Hisat2 [24], STAR [25]. 

c. Read counting. Reads mapping to genomic regions (genes) are counted using several 

commonly used packages like featurecounts in Rsubread package [26] and HTseq-count 

[27]. STAR aligner has “quantoMode” option in the mapping stage that counts reads. 

d. Differential gene expression. A full statistical model of expression in relation to 

condition and time points and their interaction (Expression ~ Condition + Time + 

Time*Condition) and a reduced model (Expression ~ Condition + Time) are run in 

DESeq2 [28]. Then a likelihood ratio test between the full and reduced models evaluates 

changes in expression between conditions at any time points beyond the first. This can be 

followed by clustering analysis to identify groups of genes that share a similar expression 

profile in time. Other packages that are frequently used and have capabilities for the 

above two mentioned tests are EdgeR [29] and limma [30]. An alternative approach is to 
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model expression as a continuous function of time to find genes that show significant 

difference in their pattern or to cluster genes based on their similarity of expression 

trajectory in time. The R packages maSigPro [31] and ImpulseDE2 [32] perform well for 

identifying significant changes in time and between conditions. The python package 

DPGP (Dirichlet process Gaussian process mixture model) can be used to identify groups 

of genes with similar temporal trajectory [33]. 

e. Gene set enrichment. Pathway analysis in RNAseq data is primarily done using the 

hypergeomeric test, evaluating overrepresentation of pathways given the differentially 

expressed genes. However, there is length bias in the probability of being differentially 

expressed (DE), which is inherent in RNAseq data. This combined with the difference in 

length distribution of genes within pathways leads to bias in enrichment analysis. The 

result is that pathways that are disproportionately composed of large genes will more 

likely be declared enriched in all conditions making the analysis lack specificity to the 

condition being investigated. By controlling for gene length the package GOseq [34] 

yields enrichment results that are more relevant to the study at hand. Commonly used and 

publicly available gene sets include the Gene Ontology Consortium [35,36], The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [37],  and a collection of gene sets at the 

Broad Institute [38].  

3.2 Single cell transcriptomic analysis of neuronal conversion 

Singe cell RNAseq data suffers from high technical variability that arises during sample 

processing. This can be minimized by ensuring that multiple biological replicates are mixed in 

each batch [39].  Cells within batches are later assigned to samples based on unique genotypes 
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for example using Demuxlet [40]. scRNAseq analysis pipeline is different from the bulk 

RNAseq in the preprocessing stages and in the statistical analysis of the expression data. 

scRNAseq data is typically multiplexed with unique identifiers provided for each cell and 

sometimes for individual transcripts. Preprocessing steps are thus required to assign reads to 

their respective unique cells. Subsequent steps are similar to bulk RNAseq analysis. Statistical 

analysis of  scRNA data initially is a classification problem with the objective being to find 

unique groupings of the cells based on their similar expressions. Once groupings are identified, 

differential expression tests between groups are used to find unique markers for each unique cell 

group. 

Bioinformatics analysis pipeline is depicted in Figure 2 and the details of the steps involved are 

provided below. 

a. Demultiplexing of reads. Many sequencers supply individual fastq files for each 

sample/cell. In some cases, one fastq file containing all cell barcodes and sample 

mapping is provided. In this this case, demultiplexing tools like Sabre [41], UmiTools 

[42], and zUmi [43] are used to allocate reads to their respective samples, strip the 

barcode and UMI from the reads, and create individual fastq files for each cell.  

b. Alignment to reference genome. Unlike bulk RNAseq, scRNAseq data set comprises 

thousands of cells. As result, the mapping step requires fast algorithms to get results in 

reasonable time. STAR and Kallisto are the two fast aligners that are routinely used in 

scRNAseq data analysis [25,44]. 

c. Quality control of cells. Indicators of poor quality cells include prevalence of large 

number of mitochondrial genes and very low or very large numbers of genes [45]. 

Prevalence of mitochondrial genes is an indicator that the cell was not viable. Very low 
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number of detected genes implies that the starting material is an empty droplet. While 

large number of genes implies multiple cells in a droplet. To retain good quality cells 

based on the above criteria, it is best practice to explore each dataset and find outlier cells 

to remove from the dataset. The R package Seurat [46] package has procedures to explore 

and visualize the distribution of the number of genes and percentage mitochondrial genes. 

These can be used to set cutoff points relevant to the data at hand. Good quality cells 

also tend to have higher mapping rate, lower number of duplicates and lower ERCC 

spike-in to exonic read counts ratio [45]. Since these metrics are likely to differ from 

study to study, a reasonable approach is to explore their distribution (e.g distribution of 

number of unique mappers) across all cells and remove cells that are outliers [e.g. see 

47]. 

d. Normalization. Choice of normalization along with the library preparation method has 

the biggest effect on the downstream analysis of differential expression in scRNAseq data 

[48]. Normalization methods developed for bulk RNAseq data are usually not appropriate 

for scRNAseq data [49]. Methods developed for scRNAseq include BASiCS [50], GRM 

[51], SCnorm [52], and Scran [53]. Using simulated data, Vallejos et al (2017) and Vieth 

et al (2019) evaluated bulk-based and scRNA-specific methods and found that Scran and 

SCnorm provided a better normalization with stable number of highly variable genes for 

clustering.  The widely used scRNA analysis package Seurat has built-in log-

normalization methods. For robust results, data is first normalized using methods specific 

to scRNA such as Scran or SCnorm. The normalized data can then be fed in to popular 

scRNA tools such as Seurat. 
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e. Clustering of cells. Unsupervised clustering methods and dimension reduction 

techniques are combined to partition cells in to distinct groups based on distance. Among 

the dimension reduction techniques typically used are Principal Components Analysis 

(PCA), tSNE, and UMAP. These also are critical in data visualizations on lower number 

of dimensions for assessing cell clusters. 

f. Marker gene identification and labeling. Once the unique cells are identified, tests are 

conducted to find marker genes that are differentially expressed in each group in contrast 

to the others. The AllMarkers function in Seurat (R package) conducts DE test and has 

options for different types of tests including Negative binomial as in DEseq2. To label 

the cell types, marker genes from each cell type are compared with markers from known 

cells. Where available, correlation analysis between the identified cell types and gene 

expression data from known cell types or from bulk RNAseq data from tissues enriched 

with cells of interest can be used as a strong indicator of cell identity. One can also 

conduct pathway enrichment analysis for each identified cell type to determine their 

putative functions. Confidence on the identity of the cell types can be strengthened if 

evidence from presence of markers, high correlation, and presence of cell specific 

pathways is combined. 

g. Ordering of cells based on expression trajectory. There is a large selection of methods 

for ordering of cells based on the progression of their expression [54]. Choice of which 

methods to use depends on the kind of trajectory one is looking for, i.e. linear, cyclic, or 

tree. In their extensive evaluation of 29 different methods, Saelens et al (2019), found 

that methods perform well in correctly detecting trajectories they were originally 

designed for. Based on their results, the authors provide a practical guideline for choosing 
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an appropriate tool. For example reCAT [55], outperforms other methods when the 

underlying trajectory is a cycle. While Monocle DDRTree [56-58], Slingshot [59] and 

TSCAN [60] perform well if the underlying trajectory is a more complex branching tree. 

Slingshot and TSCAN perform well when the underlying trajectory is a bifurcation. For 

discovering linear trajectories SCORPIOUS [61] performs better. Besides finding the 

trajectory some of these tools provide functions to find genes that cause bifurication 

(Slingshot) or show marked changes along the trajectory eg. Monocle DDrTree, 

Slingshot, and TSCAN. A recently developed tool tradSeq [62], can be used downstream 

of the above packages to detect differential expression of genes along a lineage or 

between lineages. Using general additive models, TradeSeq fits gene expression as a 

continuous function of psuedotime which affords flexibility in identifying marker genes 

at different points.  

h. Elucidating differentially regulated genetic networks. Pathways enrichment analysis 

in scRNA is conducted similarly as in bulk RNA-seq data using the package GOseq [34]. 

Pathway enrichment analysis on marker genes of each unique cell type can help highlight 

differences in function between cells. Similarly, pathways enriched in genes that cause 

bifurcation events or genes that show significant changes  along lineages can be 

identified. In these cases, these biological processes are the putative causes of the 

branching events or the differentiation of the cells.  

ACKNOWLEDGEMENT 

This work was supported by an Institutional Development Award (IDeA) from the National 

Institute of General Medical Sciences of the National Institutes of Health under grant number 

P20GM103620 (to MK and YT) and by the National Institutes of Health grant number 

174 



  

 

 

 

            
  

 

         
 

    

                 
       

  

       
         

    

               
            

  

         
             

    

               
      

               
        

  

              
        

  

         
     

                 
                  

 
      

           
   

R01CA233661 supported by the National Cancer Institute and the National Institute of 

General Medical Sciences (to MK). 

REFERENCES 

1. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of 
fibroblasts to functional neurons by defined factors. Nature 463 (7284):1035-1041. doi:nature08797 
[pii] 10.1038/nature08797 

2. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct 
reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem 
Cell 9 (2):113-118. doi:10.1016/j.stem.2011.07.002 

3. Marro S, Pang ZP, Yang N, Tsai MC, Qu K, Chang HY, Sudhof TC, Wernig M (2011) Direct lineage 
conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9 (4):374-
382. doi:10.1016/j.stem.2011.09.002 

4. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro 
S, Sudhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. 
Nature 476 (7359):220-223. doi:10.1038/nature10202 

5. Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig 
M, Quake SR (2016) Dissecting direct reprogramming from fibroblast to neuron using single-cell 
RNA-seq. Nature 534 (7607):391-395. doi:10.1038/nature18323 

6. Tsunemoto R, Lee S, Szucs A, Chubukov P, Sokolova I, Blanchard JW, Eade KT, Bruggemann J, Wu 
C, Torkamani A, Sanna PP, Baldwin KK (2018) Diverse reprogramming codes for neuronal identity. 
Nature 557 (7705):375-380. doi:10.1038/s41586-018-0103-5 

7. Yang N, Ng YH, Pang ZP, Sudhof TC, Wernig M (2011) Induced neuronal cells: how to make and 
define a neuron. Cell Stem Cell 9 (6):517-525. doi:10.1016/j.stem.2011.11.015 

8. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, 
Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476 
(7359):228-231. doi:10.1038/nature10323 

9. Chanda S, Ang CE, Davila J, Pak C, Mall M, Lee QY, Ahlenius H, Jung SW, Sudhof TC, Wernig M 
(2014) Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem cell 
reports 3 (2):282-296. doi:10.1016/j.stemcr.2014.05.020 

10. Lin M, Lachman HM, Zheng D (2016) Transcriptomics analysis of iPSC-derived neurons and 
modeling of neuropsychiatric disorders. Mol Cell Neurosci 73:32-42. doi:10.1016/j.mcn.2015.11.009 

11. Tekin H, Simmons S, Cummings B, Gao L, Adiconis X, Hession CC, Ghoshal A, Dionne D, 
Choudhury SR, Yesilyurt V, Sanjana NE, Shi X, Lu C, Heidenreich M, Pan JQ, Levin JZ, Zhang F 
(2018) Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. 
Nat Biomed Eng 2 (7):540-554. doi:10.1038/s41551-018-0219-9 

12. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev 
Genet 10 (1):57-63. doi:10.1038/nrg2484 

175 



  

                  
                 
    
   

           
   
      

               
        

  
  

            
    

 

          
  

         
    

             
  

     
 

             
            

    

            
 

           
 

           
    

          
  

     
 

 

         
       

 

        
   

  
 

13. Wapinski OL, Vierbuchen T, Qu K, Lee QY, Chanda S, Fuentes DR, Giresi PG, Ng YH, Marro S, 
Neff NF, Drechsel D, Martynoga B, Castro DS, Webb AE, Sudhof TC, Brunet A, Guillemot F, Chang 
HY, Wernig M (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. 
Cell 155 (3):621-635. doi:10.1016/j.cell.2013.09.028 

14. Hjelm BE, Salhia B, Kurdoglu A, Szelinger S, Reiman RA, Sue LI, Beach TG, Huentelman MJ, Craig 
DW (2013) In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue. 
Hum Mol Genet 22 (17):3534-3546. doi:10.1093/hmg/ddt208 

15. Stein JL, de la Torre-Ubieta L, Tian Y, Parikshak NN, Hernandez IA, Marchetto MC, Baker DK, Lu 
D, Hinman CR, Lowe JK, Wexler EM, Muotri AR, Gage FH, Kosik KS, Geschwind DH (2014) A 
quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron 83 
(1):69-86. doi:10.1016/j.neuron.2014.05.035 

16. Kulkarni A, Anderson AG, Merullo DP, Konopka G (2019) Beyond bulk: a review of single cell 
transcriptomics methodologies and applications. Curr Opin Biotechnol 58:129-136. 
doi:10.1016/j.copbio.2019.03.001 

17. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20 
(11):631-656. doi:10.1038/s41576-019-0150-2 

18. Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics 
pipelines. Exp Mol Med 50 (8):96. doi:10.1038/s12276-018-0071-8 

19. Nguyen QH, Lukowski SW, Chiu HS, Senabouth A, Bruxner TJC, Christ AN, Palpant NJ, Powell JE 
(2018) Single-cell RNA-seq of human induced pluripotent stem cells reveals cellular heterogeneity 
and cell state transitions between subpopulations. Genome Res 28 (7):1053-1066. 
doi:10.1101/gr.223925.117 

20. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, 
Hellmann I, Enard W (2017) Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol 
Cell 65 (4):631-643 e634. doi:10.1016/j.molcel.2017.01.023 

21. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria,. https://www.R-project.org/. 

22. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham 
Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 

23. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. 
Bioinformatics 30 (15):2114-2120. doi:10.1093/bioinformatics/btu170 

24. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory 
requirements. Nature methods 12 (4):357-360. doi:10.1038/nmeth.3317 

25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR 
(2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 (1):15-21. 
doi:10.1093/bioinformatics/bts635 

26. Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for 
alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47 (8):e47. 
doi:10.1093/nar/gkz114 

27. Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput 
sequencing data. Bioinformatics 31 (2):166-169. doi:10.1093/bioinformatics/btu638 

28. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-
seq data with DESeq2. Genome Biol 15 (12):550. doi:10.1186/s13059-014-0550-8 

176 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.R-project.org


  

             
 

 

          
      

 

        
    

            
 

       
    

   

        
     

               
                

                
        

  
    

         
  

         
        

          
   

               
   

       
                 

      
 

 
         

 

      
 

 

             
     

          
     

29. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26 (1):139-140. 
doi:10.1093/bioinformatics/btp616 

30. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential 
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43 (7):e47. 
doi:10.1093/nar/gkv007 

31. Nueda MJ, Tarazona S, Conesa A (2014) Next maSigPro: updating maSigPro bioconductor package 
for RNA-seq time series. Bioinformatics 30 (18):2598-2602. doi:10.1093/bioinformatics/btu333 

32. Fischer D (2019) ImpulseDE2: Differential expression analysis of longitudinal count data sets. R 
package version 1110 

33. McDowell IC, Manandhar D, Vockley CM, Schmid AK, Reddy TE, Engelhardt BE (2018) Clustering 
gene expression time series data using an infinite Gaussian process mixture model. PLoS 
computational biology 14 (1):e1005896. doi:10.1371/journal.pcbi.1005896 

34. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: 
accounting for selection bias. Genome Biol 11 (2):R14. doi:10.1186/gb-2010-11-2-r14 

35. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight 
SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, 
Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The 
Gene Ontology Consortium. Nat Genet 25 (1):25-29. doi:10.1038/75556 

36. Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. 
Nucleic Acids Research 32 (Supplemental 1):D258-D261 

37. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28 
(1):27-30. doi:10.1093/nar/28.1.27 

38. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy 
SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102 
(43):15545-15550. doi:0506580102 [pii] 10.1073/pnas.0506580102 

39. Hicks SC, Townes FW, Teng M, Irizarry RA (2018) Missing data and technical variability in single-
cell RNA-sequencing experiments. Biostatistics 19 (4):562-578. doi:10.1093/biostatistics/kxx053 

40. Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, Wan E, Wong S, Byrnes 
L, Lanata CM, Gate RE, Mostafavi S, Marson A, Zaitlen N, Criswell LA, Ye CJ (2018) Multiplexed 
droplet single-cell RNA-sequencing using natural genetic variation. Nat Biotechnol 36 (1):89-94. 
doi:10.1038/nbt.4042 

41. Nowosad J, Stepinski T (2018) Spatial association between regionalizations using the information-
theoretical V-measure. International Journal of Geographical Information Science 32 (12):2386-2401. 
doi:10.1080/13658816.2018.1511794 

42. Smith T, Heger A, Sudbery I (2017) UMI-tools: modeling sequencing errors in Unique Molecular 
Identifiers to improve quantification accuracy. Genome Res 27 (3):491-499. 
doi:10.1101/gr.209601.116 

43. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I (2018) zUMIs - A fast and flexible pipeline to 
process RNA sequencing data with UMIs. bioRxiv:153940. doi:10.1101/153940 

44. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq 
quantification. Nat Biotechnol 34 (5):525-527. doi:10.1038/nbt.3519 

177 

https://doi:10.1093/nar/28.1.27


  

              
      

 

                 
         

  

           
             

     

          
 

             
    

 

          
    

            
 

 

             
     

 

       
  

            
      

           
      

   

             
            

       

             
      

        
     

    
       

 

        
      

45. Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA (2016) 
Classification of low quality cells from single-cell RNA-seq data. Genome Biol 17:29. 
doi:10.1186/s13059-016-0888-1 

46. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, Hao Y, Stoeckius M, 
Smibert P, Satija R (2019) Comprehensive Integration of Single-Cell Data. Cell 177 (7):1888-1902 
e1821. doi:10.1016/j.cell.2019.05.031 

47. Kumar RM, Cahan P, Shalek AK, Satija R, DaleyKeyser A, Li H, Zhang J, Pardee K, Gennert D, 
Trombetta JJ, Ferrante TC, Regev A, Daley GQ, Collins JJ (2014) Deconstructing transcriptional 
heterogeneity in pluripotent stem cells. Nature 516 (7529):56-61. doi:10.1038/nature13920 

48. Vieth B, Parekh S, Ziegenhain C, Enard W, Hellmann I (2019) A systematic evaluation of single cell 
RNA-seq analysis pipelines. Nature communications 10 (1):4667. doi:10.1038/s41467-019-12266-7 

49. Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC (2017) Normalizing single-cell RNA 
sequencing data: challenges and opportunities. Nature methods 14 (6):565-571. 
doi:10.1038/nmeth.4292 

50. Vallejos CA, Marioni JC, Richardson S (2015) BASiCS: Bayesian Analysis of Single-Cell 
Sequencing Data. PLoS computational biology 11 (6):e1004333. doi:10.1371/journal.pcbi.1004333 

51. Ding B, Zheng L, Zhu Y, Li N, Jia H, Ai R, Wildberg A, Wang W (2015) Normalization and noise 
reduction for single cell RNA-seq experiments. Bioinformatics 31 (13):2225-2227. 
doi:10.1093/bioinformatics/btv122 

52. Bacher R, Chu LF, Leng N, Gasch AP, Thomson JA, Stewart RM, Newton M, Kendziorski C (2017) 
SCnorm: robust normalization of single-cell RNA-seq data. Nature methods 14 (6):584-586. 
doi:10.1038/nmeth.4263 

53. Lun AT, McCarthy DJ, Marioni JC (2016) A step-by-step workflow for low-level analysis of single-
cell RNA-seq data with Bioconductor. F1000Res 5:2122. doi:10.12688/f1000research.9501.2 

54. Saelens W, Cannoodt R, Todorov H, Saeys Y (2019) A comparison of single-cell trajectory inference 
methods. Nat Biotechnol 37 (5):547-554. doi:10.1038/s41587-019-0071-9 

55. Liu Z, Lou H, Xie K, Wang H, Chen N, Aparicio OM, Zhang MQ, Jiang R, Chen T (2017) 
Reconstructing cell cycle pseudo time-series via single-cell transcriptome data. Nature 
communications 8 (1):22. doi:10.1038/s41467-017-00039-z 

56. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen 
TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nat Biotechnol 32 (4):381-386. doi:10.1038/nbt.2859 

57. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C (2017) Single-cell mRNA quantification and 
differential analysis with Census. Nature methods 14 (3):309-315. doi:10.1038/nmeth.4150 

58. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C (2017) Reversed graph embedding 
resolves complex single-cell trajectories. Nature methods 14 (10):979-982. doi:10.1038/nmeth.4402 

59. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, Purdom E, Dudoit S (2018) Slingshot: cell 
lineage and pseudotime inference for single-cell transcriptomics. BMC genomics 19 (1):477. 
doi:10.1186/s12864-018-4772-0 

60. Ji Z, Ji H (2016) TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. 
Nucleic Acids Res 44 (13):e117. doi:10.1093/nar/gkw430 

178 



  

                
       

    

              
     

   

 

  

61. Cannoodt R, Saelens W, Sichien D, Tavernier S, Janssens S, Guilliams M, Lambrecht B, Preter KD, 
Saeys Y (2016) SCORPIUS improves trajectory inference and identifies novel modules in dendritic 
cell development. bioRxiv:079509. doi:10.1101/079509 

62. Van den Berge K, Roux de Bezieux H, Street K, Saelens W, Cannoodt R, Saeys Y, Dudoit S, Clement 
L (2020) Trajectory-based differential expression analysis for single-cell sequencing data. Nature 
communications 11 (1):1201. doi:10.1038/s41467-020-14766-3 

179 



  

       

 

 

 

  

Figure 1 Analysis pipeline for bulk RNA-seq 
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Figure 2 Analysis pipeline for scRNA-seq 
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