
Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

PARADIGMS OF MUSIC SOFTWARE DEVELOPMENT

Andreas Möllenkamp
University of Rostock, Germany

Correspondence should be addressed to: andreas.moellenkamp@uni-rostock.de

Abstract: On the way to a more comprehensive and integrative
historiography of music software, this paper proposes a survey of the
main paradigms of music software development from the 1950s to the
present. Concentrating on applications for music composition,
production and performance, the analysis focusses on the concept and
design of the human-computer-interaction as well as the implicit user.

1. INTRODUCTION
The development of music software is one of the most dynamic
fields in the history of musical instruments and music technology.
Since the 1950s, music software did not only embrace more and
more aspects of music creation and performance, it also spread
socially as well as spatially. While music software companies and
open source software projects started to work and distribute their
applications globally, these applications not only facilitated the
democratisation of the means of musical production, they also
enabled and constrained new ways of creating and performing
music. In this interdisciplinary field of research, it is necessary to
understand how music software applications work and which
ideas of music making they incorporate. This paper aims to
describe the change and integration of the main paradigms of
music software development drawing on journal articles, manuals
and tutorials, the analysis of the respective interface design and on
interviews with developers. In this paper I will concentrate on
software for musicians, primarily designed for music composition,
production or performance, including software allowing for
interactive works and installations. Besides these applications a
wide range of other software exists for education, analysis,
theatres, broadcasting and other purposes. Although they share
many functionalities and approaches they were not taken into
account for this paper and remain to be explored more closely in
future research. What are the main lines of development in the
history of music software?

2. HISTORIOGRAPHY OF MUSIC SOFTWARE
How to write the history of music software is an interesting but
complex question. A cultural history of technology doesn’t only
trace the change of technical specifications, but is interested in the
design, production, distribution and use of technology in the
context of a specific (music) culture. The effects of digital media
technologies on the way music is produced and appropriated
depend on the experiences musicians as well as listeners make
with these technologies. That’s why it is important to relate the
production of music software with the way musicians work and
the music that is made.
Although musical experiments on computers date back to the
1950s, scholars like Michael Harenberg [1] argue that we still are
in an early phase of the exploration of the computer as a musical
instrument and tool for music making. I will not go deeply into the
discussion about aesthetic developments in relation to digital
media here, but only argue that there are good reasons to work on
a history of music software now as hardware generations and
software versions are rapidly changing. They don’t remain easily
available for users or researchers but have to be collected and
conserved to become object of a media archaeological inquiry.
Individual configurations and production modes rarely are
documented to become a source for historians. Music and the way
it is made always relates to the media-technological dispositive of
its time. While in the 18th and 19th century the spheres of music
and technology gained autonomy and underwent processes of
professionalization, these divisions are increasingly blurred.
Working with digital media in the music scene as well as in other

cultural fields has become a daily routine, often a necessity. To
see musical developments in the context of the media technical
constellation thus is an important extension to formal and aesthetic
analyses of music.
So far, historical accounts of music software development only
concentrated on the history of particular applications, companies
or communities. This may not surprise the practitioners in this
field as writing histories was and still is part of demarcations and
identity constructions as well as marketing strategies that led to
the creation and positioning of this field in the first place.
Furthermore, musicians differ in the way they conduct the
documentation and historiography of themselves. Alan Fabian [2]
critically remarks that in the field of computer music, it is often
composers and musicians themselves instead of independent
scholars or journalists that write their own history and use it for
their interests and careers. Not surprisingly the same is valid for
historical publications of companies in the field of music
technology. Mostly published in the context of anniversaries,
these publications are part of an overall communication and
marketing strategy [3]. Histories like these therefore may be
criticised for telling heroic stories of their mostly Western, male,
white inventors [4].
Looking for a more comprehensive and integrative history of
music software is not only relevant in musicology and the history
of technology, but also for musicians. On the internet, commercial
as well as open source applications are only a few clicks away, but
can differ fundamentally in design and functionality. Therefore, I
propose to ask for the main paradigms of music software
development. In this sense, what is and what constitutes a
paradigm?

2.1. Paradigms in Historiography
The concept of paradigms was developed by Thomas S. Kuhn to
describe change in the history of the natural sciences [5]. A
paradigm in this sense is a basic way of thinking and practical
approach shared by a group of actors, a community or even a
whole field. As a complex of assumptions and methods, it
stabilises and directs the practice for a certain period of time into a
specific direction. In the narrow sense, a paradigm refers to an
exemplar, a concrete problem solution or application that provides
a model for subsequent development. Building on this concept, it
is possible to describe paradigm shifts as well as the accumulation
or integration of functions that often can be found in the history of
(technical) media.
The history of music software is very diverse and manifold.
Looking at the period of the 1950s to the present, developments
can only be accounted for as a paradigm if it was accepted as an
innovation. In the field of open source software, this means that an
application or project was taken up, used and maintained by a
group or community of users and developers. Institutional support,
availability and maintenance of a communication infrastructure
and meetings of users or developers may be seen as indicators for
a stabilisation of a paradigm. The ability to provide an application
for many operating systems, compatibility and support of other
applications, protocols and interfaces are further factors that make
applications more accessible. In the field of commercial music
software, one might speak of a paradigmatic innovation if a
company has successfully established a product or product range
and gained enough customers to continue its development.
Especially if other software companies licence or copy this
functionality, this can be interpreted as a successful innovation. To

Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

describe and characterise a paradigm, let’s think about how music
software and human-computer interaction is designed.

3. MUSICAL HUMAN-COMPUTER INTERACTION DESIGN
Making music with a computer is a specific kind of human-
computer interaction (HCI). What are the specific characteristics
of this interaction? Departing from the point that all HCI happens
with interfaces or controllers, the design of these interfaces is
crucial for the interaction. Understanding music software as an
environment designed to enable musicians to make music or work
on music-related tasks, programmers and designers of music
software necessarily have specific ways of music making in mind.
These models or metaphors serve to transfer ideas of musical
interaction into code. Music software thus may be seen as
inscriptions of musical ideas, theories and interactions into an
application. Similar to an implicit reader of a text, I will speak of
an implicit user of the software. To characterise the design of the
HCI and the implicit user, I try to deconstruct the central
underlying ideas of the software. In this sense, music software
may be seen to translate and transport visions and ideals of music
making, to allow or at least promise musicians to take a role they
probably would not be able to play otherwise. What are the central
ideas incorporated in music software?

4. PARADIGMS OF MUSIC SOFTWARE DEVELOPMENT

4.1. The Score Paradigm
The early experiments with music software in the 1950s and
1960s were conducted on mainframe computers of companies,
universities and broadcasting studios in Northern America,
Australia and Europe. In this context only a limited number of
experts, composers and technicians had access and the
qualification to this relatively expensive technology.

Figure 1: Cover of the BYTE Book of Computer Music (1979)

MUSIC, the first programme that allowed digital synthesis, was
developed by Max Mathews at Bell Laboratories and presented
1957 in New York with a 17 seconds long piece [6]. Since only
“serious composers” were addressed, the workflow was explicitly
orientated at the notation of a score: “Once the composer has
supplied specifications for the orchestra, he must prepare a score
giving the parameters of the notes he wishes played” [7]. Other
applications of that time like MUSICOMP, developed at the
University of Illinois, or the stochastic music program by Iannis
Xenakis also followed the guiding principle of a score. The idea
and ideal of the computer musician as composer and conductor
may be illustrated by the cover of the BYTE Book of Computer
Music [8]. He enters the stage as a composer and conductor with
his score and a baton. His orchestra consists of a computer and a
set of loudspeakers (Fig. 1). In the field of computer music
programming systems, the development was carried on in the
following versions of MUSIC and its descendants Csound, CMix
and Real-time Cmix, CMusic as well as in the Structured Audio
Orchestra Language (SAOL) [9]. The score paradigm most
obviously was continued in many notation applications and
scorewriters like Finale, Capella, Sibelius and MuseScore to name
just a few.

4.2. The Patching Paradigm
Music software applications of the patching paradigm follow the
idea of working with modular synthesizers or studio equipment.
To produce a desired sound or effect, musicians used patch cables
to connect separate modules or outboard equipment. A patch
therefore referred to a specific setting of a synthesizer. Similarly
artists using a patching software are able to setup their own
musical production environment. The most prominent examples of
this kind of software applications are Max, Pure Data and Reaktor.
Miller Puckette and David Zicarelli argue that the relative
openness and flexibility is one of the main advantages of the
patching approach. “The Max paradigm can be described as a way
of combining pre-designed building blocks into configurations
useful for real-time computer music performance. This includes a
protocol for scheduling control- and audio-rate computations, an
approach to modularization and component intercommunication,
and a graphical representation and editor for patches” [10].
Especially in the fields of interactive works and installations as
well as (live) audio-visual pieces, these applications found a wider
distribution.

Figure 2: Patch created in Pure Data

4.3. Tracker
Just like the personal computer can be seen as a convergence
between the development of the mainframe computers and a
technical hobbyist culture, music software development also has a
root in the experiments of amateurs and in the context of (arcade)
video games of the 1980s. Trackers like The Ultimate
Soundtracker, published 1987 for Commodore Amiga allowed to
program songs to be played by the sound chip of the computer.
Creating chiptunes or chip music was increasingly taken up by the
demoscene, a computer art subculture that produced a variety of
audio-visual presentations [11]. In trackers, the time elapsed

Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

typically is displayed vertically as a list of musical events within a
fixed grid. A music tracker's interface was primarily numeric:
Notes and parameter changes, effects and other commands were
entered with the keyboard as letters and numbers. Claudio
Matsuoka’s Tracker History Graphing Project that collects and
visualises the release dates and dependencies of music trackers
gives a good overview of the developments in the field [12].

4.4. The Recording Studio Paradigm
The probably most widespread paradigm of music software is the
recording studio paradigm. It offers a virtual studio environment
to the musician and enables him to record, edit and mix his songs.
Although primarily a protocol and interface, MIDI was a very
influential innovation in the development of musical instruments
and music software and an important step for companies like
Steinberg, Emagic, MOTU, Cakewalk and others to develop
multitrack sequencers. The Musical Instrument Digital Interface
(MIDI) was published in 1983 by a panel of music industry
representatives, and is maintained by the MIDI Manufacturers
Association. While programs like Cubase, Logic or Digital
Performer started with MIDI functionality, others like ProTools,
published 1991 by Digidesign, started as Digital Audio
Workstations. In the 1990s, MIDI and digital audio were
increasingly integrated in music software applications.

Figure 3: Screenshot of Logic

Furthermore, the recording studio paradigm was successfully
expanded by the introduction and establishment of plugins and
their respective interfaces. The Virtual Studio Technology (VST)
promised to increasingly integrate the outboard equipment into the
computer and became a successful standard for plugins.
Companies like Native Instruments and others began to offer
software synthesizers both as standalone and plugin versions that
could be played in real-time.

4.5. The Live Paradigm
Whereas the recording studio paradigm puts the user into a studio,
the live paradigm puts him on the stage. The most prominent
examples of this kind of software applications are Ableton Live
(Fig. 4) and Bitwig Studio. One basic innovation in this field was
the ability to edit digital audio in real-time. This allowed the
workflow to change from a recording studio setting to a session
orientated setting. Programs like Auto-Tune and Melodyne as well
extended the possibilities to analyse and edit digital audio in great
detail. Mainly used for intonation correction, these applications
made it possible to edit notes even in polyphonic audio material.

4.6. Mobile Apps
The most recent development in the field of music software are
apps for smartphones and tablets. Equipped with microphones,
cameras, GPS and other sensors, they might as well be used

Figure 4: Interface design of Ableton Live

musically in innovative ways. Especially the possibilities for
location and situation based applications like RjDj (Reality
Jockey), personalisation and interaction with others are to be
explored further.

4. CONCLUSION
From the score paradigm of the early computer music
programming systems to the contemporary interactive
performance systems and mobile apps, music software appears as
a dynamic field of knowledge formation, conflicting interests and
the result of diverse processes of translation, appropriation and
(re-)invention. This survey of the main paradigms of music
software interaction design doesn’t claim to be exhaustive, but
offers an overview of approaches musicians meet when working
with a computer. As in the history of other (technical) media,
these innovations were and continue to be taken up by companies
and open source projects to be integrated into their applications.

REFERENCES
[1] M. Harenberg: Virtuelle Instrumente im akustischen
Cyberspace. Zur musikalischen Ästhetik des digitalen Zeitalters.
Transkript, Bielefeld, 2012.
[2] A. Fabian: Eine Archäologie der Computermusik. Wissen über
Musik und zum Computer im angehenden Informationszeitalter,
page 19. Kulturverlag Kadmos, Berlin, 2013.
[3] To give one example: Native Instruments: The Future of
Sound. 15 Years of Native Instruments. Berlin, 2011.
[4] Cf. M. Hård and A. Jamison: Hubris and Hybrids. A Cultural
History of Technology and Science. Routledge, New York, NY,
2005.
[5] T. Kuhn: The Structure of Scientific Revolutions. University of
Chicago Press, Chicago, 1996.
[6] M. V. Mathews: The Digital Computer as a Musical
Instrument. In Science, volume 142(3592): 553–557, 1963.
[7] ibid. p. 555.
[8] C. P. Morgan (ed.): The Byte Book of Computer Music. Byte
Books, Peterborough, N.H., 1979.
[9] Cf. V. Lazzarini: The Development of Computer Music
Programming Systems. In Journal of New Music Research,
volume 42(1): 97–110, 2013.
[10] M. Puckette: Max at Seventeen. In Computer Music Journal
26(4): 2002.
[11] D. Botz: Kunst, Code und Maschine. Die Ästhetik der
Computer-Demoszene. Transcript, Bielefeld, 2011.
[12] C. Matsuoka: Tracker History Graphing Project.
http://helllabs.org/tracker-history/, 2007.

