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Abstract
The objective of this article is to develop some results on conformable fractional derivatives, specifically
the one known as Khalil’s conformable fractional derivative. Its origin, properties, comparisons with other
fractional derivatives and some applications on population grow and Newton law of cooling models are
studied.
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Resumen
El objetivo de este artı́culo es desarrollar algunos resultados sobre derivadas fraccionarias conformes,
especı́ficamente la conocida como derivada fraccionaria conforme de Khalil. Se estudia su origen, propie-
dades, comparaciones con otras derivadas fraccionarias y algunas aplicaciones en modelos de crecimiento
poblacionales y la ley de enfriamiento de Newton.

Palabras clave. Derivadas fraccionarias, derivada fraccionaria de Khalil, ecuaciones diferenciales fraccionarias.

1. Introduction. Historically it is known that the origin of the Fractional Calculus begins with corre-
spondences between Leibniz and L’Hôpital [10], the first answering the question of whether it was possible
that the order of the derivative was of fractional type in the expression

dny

dxn
.

Clearly, this question is paradoxical, understanding that the order of the derivative indicates the number
of times in which the differential operator is applied, that is, it counts the repetition of the differentiation
process in its entirety.

After this origin, outstanding mathematicians added contributions, among them, Euler, Lacroix, Laplace
and others. One of the most interesting, extensive and well-founded works is the one by Riemman-Liouville
[12]; the corresponding fractional model of it starts with two forms of fractional differential operators

Dα
a+f(x) =

1

Γ(n− α)

dn

dtn

∫ x

a

f(t)

(x− t)α+1−n dt, n− 1 < α < n ∈ N, (1.1)

Dα
b−f(x) =

1

Γ(n− α)

dn

dtn

∫ b

x

f(t)

(x− t)α+1−n dt, n− 1 < α < n ∈ N, (1.2)
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where α > 0, x > a, α, a, b, x ∈ R, and in the case α = n ∈ N then

Dn
a+f(x) =

dnf(x)

dxn
and Dn

b−f(x) = (−1)n
dnf(x)

dxn
.

Over time, other researchers such as Weyl [19] and Riesz [13] proposed models which differ from the
previous one in the kernel used in the integrand

(Iα±f)(x) =
1

2π

∫ 2π

0

( ∞∑
k=−∞

eik(x−y)

(±ik)α

)
f(y)dy (Weyl),

(Iαf)(x) =
1

2Γ(α) cos(απ/2)

∫ ∞
−∞

f(y)

|x− y|1−α
dy (Riesz).

From the beginning of the 20th century, the Fractional Calculus has been developed extensively with
multiple publications in which new definitions are proposed, among them, that of Michelle Caputo:

(CDα
a+f)(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α−n+1
dt,

(CDα
b−f)(x) =

(−1)n

Γ(n− α)

∫ b

x

f (n)(t)

(t− x)α−n+1
dt.

In this definition the considered functions are absolutely continuous, α can be complex with a real part
greater than or equal to zero. Completing this Caputo definition states that

(CDα
a+f)(x) = f (n)(x) y (CDα

b−f)(x) = (−1)nf (n)(x).

Interested readers in knowing more about the historical development of the Fractional Calculus can consult
the article by B. Ross [14].

These fractional derivatives have limitations and strengths. In the case of the Riemman-Liouville frac-
tional derivative, it is not necessary for the considered function to be differentiable and it could even be
non-continuous at the origin or at the starting point a or at the terminal b; in the case of the Caputo frac-
tional derivative, it is known that it allows the use of initial or boundary conditions in differential equation
models. On the other hand, as constraints, the Riemman-Liouville derivative of a constant is not zero and
the Caputo derivative requires strong differentiability conditions and therefore both of continuity for the
considered function.

New definitions of fractional derivatives have emerged in the second half of the last century and have
been studied from a theoretical point of view and their corresponding applications. These are called ”con-
formable”. Among these are the conformable fractional derivative of Khalil [8] and Atangana [2]. Several
investigations have been carried out by other authors in this direction [16]. Other investigations have di-
rected their goals towards fractional derivatives with kernels involving special functions [5, 6, 17, 18].

The objective of this paper is to expose the definition of the Khalil conformable derivative, develop
the basic properties that it fulfills and give some examples of applications in population growth and body
cooling models.

2. Preliminaries. From Differential Calculus we know that the derivative of a function f at a given
point x = a of its domain is defined by the following limit

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

if it limits exists, and we say that f is differentiable function on x = a, using the notation f ′(a).
It is known that if f is differentiable at this point then it is also continuous at the same point.
In [8] we find a simpler and more efficient answer to the question: is it possible to define a fractional

derivative, that is, of order , by means of a limit? The authors define the following model for such a
response.

Definition 2.1. Given a function f : [0,∞) → R then the conformable fractional derivative of order
α ∈ (0, 1] is defined by

(Tαf)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
, (2.1)

for all t > 0. We will use the notation f (α) instead of Tαf . If the limit exist for some x = t > 0 then
it is said that f is α−differentiable in that point, similarly, is said to be α−differentiable on an interval
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[a, b] ⊂ [0,∞) if it is α−differentiable in each point of [a, b], and it is said that f is α−differentiable if
its α−derivative exists in each point of its domain. In particular, if f is α−differentiable on some interval
(0, a) with a > 0 and limt→0+ f

(α)(t) then

f (α)(0) = lim
t→0+

f (α)(t).

Note that if h = εt1−α then h→ 0 when ε→ 0, so we have that

f (α)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
= t1−α lim

h→0

f(t+ h)− f(t)

h
= t1−αf ′(t), (2.2)

if f is differentiable. With Definition 2.1 and remark (2.2) we will show below some results of interest for
this fractional derivative. We start with the well-known property that the differentiability of a function at a
point implies its continuity in the neighborhood from said point.

Theorem 2.1. Let f : [0,∞)→ R be a α−differentiable function in a point t = a > 0 and α ∈ (0, 1] ,
then f is continuous in t = a.

Proof: Let the difference f(a+ εa1−α)− f(a); multiplying and dividing by ε > 0, then we have

f(a+ εa1−α)− f(a) =
f(a+ εa1−α)− f(a)

ε
· ε.

It follows that

lim
ε→0

f(a+ εa1−α)− f(a) = lim
ε→0

f(a+ εa1−α)− f(a)

ε
· lim
ε→0

ε

= f (α)(a) · lim
ε→0

ε.

If we make then change h = εa1−α, the we can observe that h→ 0 when ε→ 0, so we have

lim
h→0

f(a+ h)− f(a) = f (α)(a) · 0 = 0,

i.e., f is continuous in t = a. �
The following results show the conformable derivatives of a constant function and the potential func-

tion.
Theorem 2.2. Let f : [0,∞)→ R be a function such that f(t) = k ∈ R where k is arbitrary an fixed,

and α ∈ (0, 1]. Then f (α)(t) = 0 for all t > 0.
Proof: From the definition of the function we have

f(t+ εt1−α) = k y f(t) = k,

for all t > 0. Using definition 2.1 we obtain that

f (α)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
= lim
ε→0

0

ε
= 0,

which is the desired result. �
Theorem 2.3. Let f : [0,∞) → R be a function defined by f(t) = tp, p ∈ R, y α ∈ (0, 1]. Then

f (α)(t) = ptp−α for all t > 0.
Proof: Using the remark (2.2) we have

f (α)(t) = t1−αf ′(t) = t1−αptp−1 = ptp−α.

The proof is complete. �
The following result shows that the conformable fractional derivative of a linear combination of func-

tions is the same linear combination of the conformable fractional derivatives of the considered functions
(if they exist).

Theorem 2.4. Let f, g : [0,∞) → R be α−diferenciable functions in a given point t = a, α ∈ (0, 1]
and θ, β ∈ R. Then the following equality holds

(θf + βg)
(α)

(t) = θf (α)(t) + βg(α)(t).
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Proof: First we proof that for any α−diferenciable function f in an arbitrary point t = a > 0, and any
real constant θ we have

(θf)
(α)

(a) = θf (α)(a).

Indeed, let h(t) = θf(t), then

h(α)(a) = lim
ε→0

h(a+ εa1−α)− h(a)

ε

= lim
ε→0

(θf) (a+ εa1−α)− (θf) (a)

ε

= lim
ε→0

θf(a+ εa1−α)− θf(a)

ε

= θ lim
ε→0

f(a+ εa1−α)− f(a)

ε
= θf (α)(a).

On the other hand, we prove that for any two α−differentiable functions f and g, in t = a we have

(f + g)
(α)

(a) = f (α)(a) + g(α)(a).

So, if h(t) = (f + g) (t) = f(t) + g(t) we have

h(α)(a) = lim
ε→0

h(a+ εa1−α)− h(a)

ε

= lim
ε→0

(f + g) (a+ εa1−α)− (f + g) (a)

ε

= lim
ε→0

f(a+ εa1−α) + g(a+ εa1−α)− f(a) + g(a)

ε

= lim
ε→0

f(a+ εa1−α)− f(a)

ε
+ lim
ε→0

g(a+ εa1−α)− g(a)

ε

= f (α)(a) + g(α)(a).

therefore, from the previous obtained results we attained the desired result. �
Obviously the previous result is valid for functions α−differentiable on some interval or on its entire

domain.
Now, we will see the rule for the product of functions.
Theorem 2.5. Let f, g : [0,∞)→ R be two α−differenciable functions in some point t = a > 0, and

α ∈ (0, 1]. Then

(f · g)
(α)

(a) = f (α)(a)g(a) + f(a)g(α)(a).

Proof: Let f and g be functions as in the statement. Then

(f · g)
(
a+ εa1−α

)
− (f · g) (a) = (f · g)

(
a+ εa1−α

)
− (f · g) (a)

+g
(
a+ εa1−α

)
f(a)− g

(
a+ εa1−α

)
f(a)

= f
(
a+ εa1−α

)
g
(
a+ εa1−α

)
− f (a) g (a)

+g
(
a+ εa1−α

)
f(a)− g

(
a+ εa1−α

)
f(a);

conveniently grouping we have

(f · g)
(
a+ εa1−α

)
− (f · g) (a) =

=
[
f
(
a+ εa1−α

)
− f (a)

]
g
(
a+ εa1−α

)
+ f(a)

[
g
(
a+ εa1−α

)
− g(a)

]
,

so, it follows

(f · g)
(α)

(a) = lim
ε→0

(f · g)
(
a+ εa1−α

)
− (f · g) (a)

ε

= lim
ε→0

[
f
(
a+ εa1−α

)
− f (a)

]
g
(
a+ εa1−α

)
+ f(a)

[
g
(
a+ εa1−α

)
− g(a)

]
ε

= lim
ε→0

f
(
a+ εa1−α

)
− f (a)

ε
· lim
ε→0

g
(
a+ εa1−α

)
+ f(a) lim

ε→0

g
(
a+ εa1−α

)
− g (a)

ε

= f (α)(a)g(a) + f(a)g(α)(a).
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The proof is complete. �
Now we will show the Khalil fractional derivative for the reciprocal multiplicative function.
Theorem 2.6. Let f : [0,∞) → R be a α−differenciable function in some point t = a > 0 such that

f(a) 6= 0, and α ∈ (0, 1] . Then

(
f−1

)(α)
(a) = −f

(α)(a)

f2(a)
.

Proof: Let f as in the statement. Then

f−1
(
a+ εa1−α

)
− f−1 (a) =

1

f (a+ εa1−α)
− 1

f(a)

=
f(a)− f

(
a+ εa1−α

)
f (a+ εa1−α) f(a)

= −
f
(
a+ εa1−α

)
− f(a)

f (a+ εa1−α) f(a)
,

so,

lim
ε→0

f−1
(
a+ εa1−α

)
− f−1 (a)

ε
= − lim

ε→0

f
(
a+ εa1−α

)
− f(a)

ε [f (a+ εa1−α) f(a)]

= − lim
ε→0

f
(
a+ εa1−α

)
− f(a)

ε
· lim
ε→0

1

f (a+ εa1−α) f(a)

= −f (α)(a) · 1

f2(a)
,

therefore (
f−1

)(α)
(a) = −f

(α)(a)

f2(a)
.

The proof is complete. �
With this last result and the multiplication rule for the conformable fractional derivative, we obtain the

proof for the quotient rule.
Theorem 2.7. Letn f, g : [0,∞)→ R be two α−diferenciable functions in some point t = a > 0 and

such that g(a) 6= 0, additionally α ∈ (0, 1]. Then(
f

g

)(α)

(a) =
f (α)(a)g(a)− f(a)g(α)(a)

g2(a)
.

Proof: Let f and g as in the statement. It is clear that

f

g
= fg−1.

Appliying Theorem 2.5 we obtain(
fg−1

)(α)
(a) = f (α)(a)g−1(a) + f(a)

(
g−1

)(α)
(a),

and using theorem 2.6 we have

(
fg−1

)(α)
(a) =

f (α)(a)

g(a)
− f(a)g(α)(a)

g2(a)

=
f (α)(a)g(a)− f(a)g(α)(a)

g2(a)
.

The proof is complete. �
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3. Applications to Physics.

3.1. Population Grow. It is known that the population growth problem follows a differential model
given by

dy

dt
= ky(t), y(0) = M,

where k is a proportionality constant, y is de population function andM is the initial value of the population.
This problem has the following solution y(t) = Mekt.
Now, we write this problem in terms of the Khalil conformable derivative

y(α)(t) = ky(t), y(0) = M.

From (2.2) we have

t1−αy′(t) = ky(t),

so, we can pass to the following expression

y′(t) = ktα−1y(t) or
dy(t)

dt
= ktα−1y(t).

Applying separation of variables we obtain

dy(t)

y(t)
= ktα−1dt, (3.1)

now by integration we find

ln y(t) = k
tα

α
+ C,

applying the exponential function in both sides of the equality we get

y(t) = eCek
tα

α .

Using the initial condition we obtain

y(t) = Mek
tα

α . (3.2)

It is clearly observed that if α = 1 then we obtain the solution through ordinary derivatives.

Figure 3.1: Comparative solutions for several values of α.

The figure 3.1 shows the solutions obtained using the Khalil conformable derivative for values of α:
α = 0.5 (magenta), α = 0.75 (green) and α = 0.95 (blue), and the solution obtained using ordinary
derivatives
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We can observe in the graph how for values of α close to 1, the behavior of the solutions obtained
through Khalil’s fractional derivative is close to the solution obtained through ordinary derivatives.

3.2. Body cooling law. Newton’s law of cooling states that the rate of heat loss from a body is pro-
portional to the temperature difference between the body and its surroundings. Heat transfer is important in
physical processes because it is a type of energy that is in motion due to temperature change, for example,
is present in processes of condensation, vaporization, crystallization, climatic changes and others.

Specifically, Newton’s law of cooling states that the cooling of a body is directly proportional to the
difference between the initial temperature of a body T (t), t > 0, and that of the environment Ta, and follows
the following differential model

dT

dt
= −k (T (t)− Ta) , T (0) = T0.

where T0 is the initial temperature in t = 0. The solution shows how cooling of a body follows a law of
exponential decay of the form

T (t) = Ta + (T0 − Ta)e−kt.

The following figure 3.2 shows this solution

Figure 3.2: Graph of differential equations solutions with ordinary derivative.

Again, using (2.2) we obtain a fractional differential equation for this problem

dαT (t)

dtα
= −k (T (t)− Ta) ,

so,

t1−αT ′(t) = −k (T (t)− Ta)⇒ dT (t)

dt
= −tα−1k (T (t)− Ta)⇒ dT (t)

T (t)− Ta
= −tα−1k,

then we have

Ln(T (t)− Ta) =
−tαk
α

+ C,

and using the exponential function we get

T (t) = Ta + eCe−t
αk/α.

Applying the initial condition we obtain

T (t) = Ta + (T0 − Ta) e−t
αk/α.

The graphical representation of this solution for the values of α: α = 0.5 (magenta), α = 0.75
(green), α = 0.95 (blue) , and the solution obtained by ordinary derivatives is as follows:
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Figure 3.3: Comparative solutions for several values of α.

4. Conclusions. This informative article deals with Khalil’s conformable derivative, its definition,
basic properties as a conformable differential operator, and some applications to population growth prob-
lems and Newton’s Law of Cooling. The contributions of this article, in terms of its applications, are not
registered in any other publication. In addition, certain graphic representations are presented that show
how, for different values of the parameter α, the solutions of the presented fractional differential equations
approximate those obtained by means of ordinary derivatives.
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