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Abstract
This work has three important purposes: first it is the study of Markov Chains, the second is to show that
Markov chains have different applications and finally it is to model a process of this behaves. Throughout
this work we will describe what a Markov chain is, what these processes are for and how these chains are
classified. We will describe a Markov Chain, that is, analyze what are the primary elements that make up a
Markov chain, among others.
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Resumen
Este trabajo tiene tres propósitos importantes: primero es el estudio de las Cadenas de Markov, el segundo
es mostrar que las cadenas de Markov tienen diferentes aplicaciones y por último es modelar como se
comporta un proceso de este tipo. A lo o largo de este trabajo describiremos que es una cadena de Markov,
para que sirven estos procesos y como se clasifican dichas cadenas. Veremos además como se conforman
estos procesos, es decir, analizar cuales son los elementos primordiales que conforman una cadena de
Markov, entre otras.

Palabras clave. Cadena de Markov, proceso de Poisson, cadenas de Markov de tiempo continuo.

1. Introduction. The basic concepts of Markov chains were introduced by Andrew A. Markov [15],
from Markov’s work is when the development of stochastic processes formally begins. N. Wiener [22] was
the first to rigorously treat the continuous case of the Markov chain and it was A. N. Kolmogorov during
the 1930’s who developed the general theory of stochastic processes [13]. From this moment on, a large
number of mathematicians got involved giving it a great boom. The importance of studying chains as a
study of random variables is that a large number of applications have the Markov property, this led to a
large amount of research in the theory of stochastic processes [13, 6]. Markov chains are useful in certain
branches of Physics such as Thermodynamics, Quantum Mechanics, in Meteorology it helps to have more
accurate predictions in the change of time from one day to another, in Biological Sciences Epidemiological
models are explained, in Game theory, Finance, or Social Sciences, Statistics and Mathematics [6][9]. The
concept of the Markov Chain was undoubtedly one of Andrew A. Markov’s greatest contributions, and it
has been recognized over time.

This work will be structured as follows:
In Section 2 we give a brief review of Probability theory, going through conditional probability and

using Bayes’ formula.
Throughout section 3 we will define what a Markov Chain is, the states, their classification and we

will see what happens with these processes in the long term. For this, an important result known as the
Convergence Theorem will be demonstrated and we will apply this result. It is worth mentioning that we
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will analyze a simple way to see a string by using matrices (Transition Matrix). As Markov chains are
sequences of random variables with a certain structure, they can be continuous or discrete, for our purposes
we will only analyze discrete random variables.

In section 4, we will study Markovian processes. To do this, we analyze a population as a set whose
elements have a common characteristic. The number of elements in a given population at time t is denoted
by N (t). The states of a growth process are the different ones that N (t) can take; these are generally non-
negative integers. is denoted by pn (t) to the probability that N (t) takes a non-negative integer value n. In
addition, a solution will be given to the Markovian process of birth-death with the help of the Kolmogorov
equations.

In section 5 we will analyze some interesting applications; first the well-known board game Monopoly.
This can be modeled using a Markov chain and we will study the long-term behavior with the Transition
Matrix. We will analytically investigate whether the stationary distribution exists and simulate the chain to
estimate its limit distribution using Python. In the second application we use Excel to solve the problem
of how the weather changes from one day to the next. In particular we will use logical conditions and
generate random numbers that will be the distribution of the random variable (time) and we will compare
these values with the transition probabilities of the different states.

Finally, the conclusions of the work are presented.

2. Probability Review. The degree of randomness can be quantified with the concept of probability.
The mathematical theory of probability has a history that goes back to the 17th century, and different
definitions of probability have been developed. The definition of probability will be used in terms of set
theory as formulated in 1933 by Kolmogorov [13]. When considering a set S called the sample space
consisting of a certain number of elements, each subset A of S is assigned a real number P (A) defined by
the following three axioms:

1. For every subset A ⊂ S, P (A) ≥ 0.
2. The probability assigned to the sample space is 1, P (S) = 1.
3. If two subsets A and B they are disjoint (i.e., mutually exclusive, A∩B = Ø), then P (A ∪B) =
P (A) + P (B) .

Suppose we have a space S of the sample that contains the subsetsA yB. Provided P (B) 6= 0, one defines
the conditional probability P (A|B) (P of A given B) as

P (A|B) =
P (A ∩B)

P (B)
. (2.1)

Two subsets A y B are said to be independent if

P (A ∩B) = P (A)P (B) . (2.2)

For A y B independient, it follows from the definition of conditional probability that P (A|B) = P (A)
and P (B|A) = P (B). From equation (2.1) we have the probability of B given A (assuming P (A) 6= 0)

P (B|A) =
P (B ∩A)

P (A)
. (2.3)

Since A ∩B is the same as B ∩A, by combining equations (2.1) and (2.2) one has

P (B ∩A) = P (B|A)P (B) = P (A|B)P (A) (2.4)

or

P (A|B) =
P (B|A)P (A)

P (B)
. (2.5)

Equation (2.5), which relates the conditional probabilities P (A|B) and P (B|A), is called Bayes’ theorem
[18].

Suppose the sample space S can be broken into disjoint subsets Ai; i. e., S = ∪iAi with Ai ∩Aj = Ø
for i 6= j. . Assume further that P (Ai) 6= 0 for all i. Then, an arbitrary subset B can be expressed as
B = B ∩ S = B ∩ (∪iAi) = ∪i (B ∩Ai). Since the subsets B ∩ Ai are disjoint, their probabilities add,
giving

P (B) = P (∪i (B ∩Ai)) =
∑
i

P (B ∩Ai) =
∑
i

P (B|Ai)P (Ai) . (2.6)
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Figure 2.1: Relationship between the sets A,B and S in the definition of conditional probability.

The last line comes from the equation (2.3) for the case A = Ai. Equation (2.5) is called the law of total
probability. it is useful, for example, if one can break the sample space into subsets Ai for which the
probabilities are easy to calculate. It is often combined with Bayes’ theorem (2.5) to give

P (A|B) =
P (B|A)P (A)∑
i P (B|Ai)P (Ai)

. (2.7)

Of the possible ways to interpret a probability, the one most commonly found in the physical sciences
is as a limiting frequency. That is, we interpret the elements of the sample space as possible outcomes of a
measurement, and we take a P (A) to mean the fraction of times that the outcome is in the subset A in the
limit where we repeat the measurement an infinite number of times under “identical” conditions:

P (A) = lim
n→∞

times outcomes is in A
n

. (2.8)

Use of probability in this way leads to what is called the frequentist approach to statistics [?]. To define
what is called subjective probability one interprets the elements of the set S as hypotheses, i.e., statements
that are either true or false, and one defines

P (A) = degree of believe that A is true. (2.9)

Use of subjective probability leads to what is called Bayesian statistics, owing to its important use of
Bayes’ theorem described below.

In Bayesian (as opposed to frequentist) statistics, one uses subjective probability to describe one’s
degree of belief in a given theory or hypothesis. The denominator in Eq. (2.7) can be regarded as a constant
of proportionality and therefore Bayes’ theorem can be written as

P (theory|data) ∝ P (data|theory)P (theory) , (2.10)

where “theory” represents some hypothesis and “data” is the outcome of the experiment. Here P (teorı́a)
is the prior probability for the theory, which reflects the experimenter’s degree of belief before carrying out
the measurement, and P (datos|teorı́a) is the probability to have gotten the data actually obtained, given the
theory, which is also called the likelihood.

Bayesian statistics [7][10][14][11] provides no fundamental rule for obtaining the prior probability; in
general this is subjective and may depend on previous measurements, theoretical prejudices, etc. Once this
has been specified, however, Eq. (2.10) tells how the probability for the theory must be modified in the light
of the new data to give the posterior probability, P (theory|data). As Eq. (2.10) is stated as a proportionality,
the probability must be normalized by summing (or integrating) over all possible hypotheses.

3. Markov chains . Markov chains form a very important part of stochastic processes and probability
theory, since they have a wide theory and a number of applications. There are different types of Markov
chains and we will focus on the study of homogeneous chains, where they do not depend on time, having
said this, we will begin by analyzing the formal definition of Markov chain as well as its different compo-
nents. Taking into account that for the study of this theory a probability space (Ω, J,P) is necessary, where
Ω is the sample space, J is the family of all subsets of Ω and P is a probability function.

3.1. Definition and Markov property. There are different processes that can be modeled using a
Markov chain and thanks to these we can see how our model changes as time progresses. Some classic
examples of this type of model are: the ruin of the player [4], the Wright-Fisher model [5], the chain of
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Ehrenfest [8], the time of a certain city, although it is not modeled in a very exact way we can approximate
its behavior through this concept [6], there are a number of applications of this type of model, first we will
define what a state is, as well as a space of states and later we will give the formal definition of a Markov
chain [16][3].

Definition 3.1.
Let be X a random variable and S a set of numbers, let i ∈ S say that i is a state, if the random

variable X takes the value of i, that is, P (X = i) > 0, and the set S is known as the state space.
From definition 3.1 we can deduce that a state is the possible value that a random variable takes. A

state space is the set of all possible states that a random variable can pass through. For practical purposes
we will consider our state space to be finite or countable, furthermore we will take sets of integers, so that
our random variables are discrete. In this way we will analyze the fundamental idea of this work, this is the
formal definition of a Markov chain.

Definition 3.2.
Let {Xn, n ≥ 0} be a sequence of random variables, S is a states space, i0, i1, ..., in−1, i, j ∈ S, if

P (Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X0 = i0) = P (Xn = j|Xn−1 = i) . (3.1)

We say that the sequence {Xn, n ≥ 0}, is a Markov’s chain.
Equation (3.1) is known as the Markov property, it tells us that the probability of a future event only

depends on the immediate previous event and not on the evolution of the system, which implies that Markov
chains are processes without memory [8]. Now that we understand what a Markov chain is, we can focus
on certain chains that will be the object of our study, which leads us to the following definition:

Definition 3.3. Let {Xn, n ≥ 0} a Markov chain with state space S, we say that {Xn, n ≥ 0}, is a
homogeneous Markov chain, if

P (Xn = j|Xn−1 = i) = P (X1 = j|X0 = i) , ∀i, j ∈ S. (3.2)

In other words, definition 3.3 refers to the fact that if a Markov chain does not depend on time, that is,
it does not depend on n, it is considered a homogeneous chain [9], once we have already defined our object
of study, we will use a function to see how a string evolves or moves between different states. This is the
transition function, and it will allow us to see it more easily.

Definition 3.4.
Let {Xn, n ≥ 0} be a Markov chain with state space S. We define the function p (i, j) by

p (i, j) = P (X1 = j|X0 = i) . (3.3)

Where p (i, j) is the transition function from state i to state j, and has the following properties:
1. p (i, j) ≥ 0 ∀i, j ∈ S.
2.
∑
j p (i, j) = 1, since when Xn = i, Xn+1 goes somewhere j.

It is necessary to mention that p (i, j) is known as the one-step transition from state i to state j. In other
words, if we are at time i and we want to get to j in a single step, we denote it by p (i, j), from definition
3.4 it is clear to see that 1 is true since p (i, j) is a probability, while property 2 refers to the fact that the
sum of the probabilities of going from i to j is one.

3.2. Transition Matrix. Now that we know more about the transition function, which we will define
in a simple way, that is, see how we can go from one state to another, better said, how the states of the chain
interact with each other. That is why we will rely on some concepts of linear algebra to make it possible,
which leads us to the following definition.

Definition 3.5.
Since p (i, j) is the transition function of a Markov chain, we say that p (i, j) is the ij − th entry of the

matrix P , and we will say that this is the transition matrix of the chain. Since P is formed by each of the
transitions of the chain, we can affirm that P is a non-negative matrix, which implies that each of its entries
is positive, this is true for 1 of definition 3.4.

From the above it is easy to deduce that throughout this work we will use non-negative matrices. In
addition to being non-negative, each of the rows of these matrices adds up to 1 and we know that random
variables go through different states as they move, but what will happen if the chain reaches a specific state
and does not leave it [8], the state becomes an absorbing state, resulting in the following definition.

Definition 3.6.
Let k ∈ S be a state of the Markov chain, we say that k is an absorbing state if p (k, k) = 1.
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3.3. Transition of m steps. Because we have seen this part of the theory, we wonder, what other use
these Markov chains have? that is, now that we know a little about them, what more can we know about
them apart from the information that each one gives us? model, we will dedicate ourselves to answering a
simple question: What happens in the long term with these chains? [8], it is easy to deduce this since the
model is given in the form of a matrix, we will relate this to what happens in more than one step. Basically
analyze the power of the transition matrix [18]. Which brings us to the next definition.

Definition 3.7.
Let {Xn, n ≥ 0}, a Markov chain, p (i, j) = P (Xn+1 = i|Xn = i) the probability of going from i to

j in one step, we define the probability of going from i to j in m steps, with m > 1, by

pm (i, j) = P (Xn+m = j|Xn = i) . (3.4)

It is necessary to see that this property is valid, for this let us suppose that we want to calculate

p2 (i, j) = P (Xn+2 = j|Xn = i) .

We see that to arrive at Xn+2 = j but Xn+1 must go through some state k, that is,

p2 (i, j) = P (Xn+2 = j|Xn = i) ,

=
∑
k

P (Xn+2 = j,Xn+1 = k|Xn = i) ,

=
∑
k

P (Xn+2 = j,Xn+1 = k,Xn = i)

P (Xn = i)
,

=
∑
k

P (Xn+2 = j,Xn+1 = k,Xn = i)

P (Xn = i)
· P (Xn+1 = k,Xn = i)

P (Xn+1 = k,Xn = i)
,

=
∑
k

P (Xn+2 = j,Xn+1 = k,Xn = i)

P (Xn+1 = k,Xn = i)
· P (Xn+1 = k,Xn = i)

P (Xn = i)
,

=
∑
k

P (Xn+2 = j|Xn+1 = k,Xn = i) · P (Xn+1 = k,Xn = i) ,

p2 (i, j) =
∑
k

p (i, k) p (k, j) . (3.5)

We can notice that the last row is the (i, j) − th entry of the matrix P 2. If followed by mathematical
induction we can conclude this in the following.

Theorem 3.1.
The transition probability of m steps

pm (i, j) = P (Xn+m = j|Xn = i) , (3.6)

is the m-th power of the transition matrix P , that is, Pm = P · · · P .
Proof: This proof follows by induction, once established that to go from i to j in m steps it is

necessary to calculate the m − th power of the transition matrix, the importance of this is to be able to
prove the Chapman-Kolmogorov equation [8], the which is given in the following proposition. �

Lemma 3.1.
Let n,m ∈ Z+, then the probability of going from i to j in m + n steps we have to go from i to j in

m+ n steps is

pm+n (i, j) =
∑
k

pm (i, k) pn (k, j) . (3.7)

Proof:
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Next we will dedicate ourselves to proving that equation (3.7) is correct, that is, we will show its truth
taking into account that going from i to j in m + n steps we have to go from i to k in m steps and from k
to j in n steps, that is [8],

P (Xn+m = j|X0 = i) =
∑
k

P (Xm+n = j,Xm = k|X0 = i) ,

=
∑
k

P (Xm+n = j,Xm = k|X0 = i) ,

=
∑
k

P (Xm+n = j,Xm = k,X0 = i)

P (X0 = i)
,

=
∑
k

P (Xm+n = j,Xm = k,X0 = i)

P (X0 = i)
· P (Xm = k,X0 = i)

P (Xm = k,X0 = i)
,

=
∑
k

P (Xm+n = j,Xm = k,X0 = i)

P (Xm+n = k,X0 = i)
· P (Xm = k,X0 = i)

P (X0 = i)
,

=
∑
k

P (Xm+n = j|Xm = k,X0 = i) · P (Xm = k,X0 = i) ,

=
∑
k

pm (i, k) pn (k, j) .

�

3.4. Initial distribution. Once we have already analyzed some concepts, we can ask ourselves what
happens if our first state is random, that is, consider the possibility that the first state of our Markov chain
is a randomly generated state [8], if this were, we will take into account the next

P (Xn = j) =
∑
k

P (X0 = i,Xn = j) ,

or

P (Xn = j) =
∑
i

P (X0 = i)P (Xn = j|X0 = i) . (3.8)

From equation (3.8) we can see that P (Xn = j|X0 = i) = pn (i, j), which assuming that P (X0 = i) =
q (i) it transforms in

P (Xn = j) =
∑
i

q (i) pn (i, j) . (3.9)

In other words, equation (3.9) tells us to multiply the transition matrix by the initial probabilities from
the left, in other words, for this operation to be well defined, since the transition matrix is of size k × k we
need to multiply by a matrix of size 1× k (row matrix), which leads us to the following definition.

Definition 3.8.
Let {Xn, n ≥ 0} be a Markov chain, we will call the initial distribution the row vector whose entries

are the probability that the random variable starts in a state and will be denoted by π0, that is,

π0 = (q (0) , q (1) , ..., q (k)) , (3.10)

where 0, 1, 2, ..., k ∈ S, q (i) = P (X0 = i) y
∑
i q (i) = 1.

3.5. Stationary distribution. It would be interesting to know what happens when the initial distribu-
tion is equal to the distribution of the random variable X1 [8], which leads us to the definition.

Definition 3.9.
If the distribution at time 0 is the same as at time 1, the Markov property assures us that it would be

the distribution at all times n, and it will be called the stationary distribution, that is,

π · P = π. (3.11)
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3.6. Limit distribution. As we have already seen throughout the previous sections, the long-term
behavior of a Markov chain is important, because we see how the chain will behave. Like the initial
distribution, we can define a row vector for each instant of it. The vector has as components the probability
of starting in one of the states at time n [18], that is,

πn = (πn (1) , ..., πn (k)) , (3.12)

with

πn (j) ≥ 0,
∑k
j=0 πn (j) = 1.

From where we get the following relationship

πn (j) = P (Xn = j) =

k∑
i=1

P (X0 = i)P (Xn = j|X0 = i)

or

πn (j) =

k∑
i=1

π0 (i)P (Xn = j|X0 = i) . (3.13)

If we use matrix theory for distribution calculations, we can view equation (3.13) above as follows

πn = π0P
n.

As already mentioned, every transition matrix P determines a succession of distributions π0, π1, ...
over the space of states S [18], and this is given by expression

πn = πn−1P = ... = π0P
n, with n ≥ 1. (3.14)

Under certain conditions the previous sequence is convergent to a probability distribution π, suppose then
that:

π = lim
n→∞

π0. (3.15)

Having said this, we will analyze the properties of the π distribution. Taking the limit as n→∞ in equality
(3.14) we have

π = πP

and

π = π0

(
lim
n→∞

Pn
)
. (3.16)

This leads us to the analysis of several intuitive results:
1. Equation (3.11) tells us that the limit distribution is a stationary distribution.
2. Equation (3.11) indicates that the limit distribution does not depend on the initial distribution.
3. Equation (3.16) implies that the limit distribution is given by the n-th power of the matrix P .
4. From equation (3.16) the limit of the powers P is a matrix with all its rows equal and the entries

of said matrix will be the elements of the limit distribution.
Now, we will analyze the formal definition of the limit distribution.

Definition 3.10.
We consider a Markov chain with transition matrix P and initial distribution π0. In the Markov chain

we will call the limit distribution of this chain the row matrix

π = lim
n→∞

π0P
n = lim

n→∞
π0p

n (i, j) . (3.17)

Next we will consider a couple of definitions about periodicity.
Definition 3.11.
Let {Xn, n ≥ 0} be a Markov chain with transition matrix P , we say that P is irreducible, if for each

i and j we can get from i to j , that is, pm (i, j) > 0 for some m ≥ 1.

Definition 3.12.
Let i be a state of a Markov chain, we will say that i is an aperiodic state, if the greatest common

divisor of Ji = {n ≥ 1|pn (i, i) > 0} is 1, that is:

gcd (Ji) = 1.

Suppose the greatest common divisor of Ji is k, in other words, k = gcd (Ji) we will say that k is the
period of the state i.
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3.7. Convergence theorem.

Theorem 3.2 (Convergence theorem). If P is irreducible and has an aperiodic state, then there is a
unique stationary distribution π for any i and j, that is:

lim
n→∞

pn (i, j) = π (j) . (3.18)

Proof:
Let {Yn, n ≥ 0}, a independent Markov chain of the chain {Xn, n ≥ 0}, but with the same transition

matrix. In this way we define {Zn, n ≥ 0}. Since Zn = (Xn, Yn) is a Markov chain with transition
probability, then

P (Zn = (xn+1, yn+1) |Zn = (xnyn)) = p (xn, xn+1) p (yn, yn+1) . (3.19)

We can easily verify that Zn has a stationary distribution, that is,

πZ = πXπY . (3.20)

To see that this is indeed true, let us take (x0, y0) ∈ S ′, where S ′ is the state space of {Zn, n ≥ 0}, thus∑
(x0,y0)

πZ ((x0, y0)) p ((x0, y0) , (x, y)) =
∑
x0

∑
y0

πX (x0)πY (y0) p (x0, x) p (y0, y) ,

rearranging terms∑
(x0,y0)

πZ ((x0, y0)) p ((x0, y0) , (x, y)) =
∑
x0

πX (x0) p (x0, x)
∑
y0

πY (y0) p (y0, y)

or ∑
(x0,y0)

πZ ((x0, y0)) p ((x0, y0) , (x, y)) = πX (x)πY (y) = πZ ((x, y)) .

We see that, as P is irreducible then there exists a natural n0, such that

pn (x0, x) > 0 y pn (y0, y) > 0 para toda n ≥ n0.

So that

pn ((x0, y0) , (x, y)) = pn (x0, x) pn (y0, y) ∀n ≥ n0 .

The above is true becauseXn and Yn are aperiodic, so Zn is recurrent positive and in particular is recurrent.
Let j be a state of the original chain (Xn), we define the first moment in which the chain Zn, n ≥ 0,

first time visit to the state (j, j) like τj = min {n ≥ 1 : Zn = (j, j)}, let τ = min {n ≥ 1 : Xn = Yn},
and τ will be the first time the two chains match, like Zn, n ≥ 0, is recurring then P (τ <∞) = 1, further
τ ≤ τj , by the Markov property

P (Xn = x, τ ≤ n) =
∑
j

n∑
r=1

P (Xn = x,Xr = j, τ = r) .

Through a transformation of the second member of the preceding equation, we have

∑
j

n∑
r=1

P (Xn = x|Xr = j, τ = r)P (Xr = j, τ = r)

in equivalent form
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∑
j

n∑
r=1

P (Yn = x|Yr = j, τ = r)P (Yr = j, τ = r) ,

or

∑
j

n∑
r=1

P (Yn = x|Yr = j)P (Yr = j, τ = r) .

Finally, we concluded that

P (Xn = x, τ ≤ n) = P (Yn = x, τ ≤ n) . (3.21)

That is, about the event (τ ≤ n), random variables Xn and Yn have the same probability distribution, on
the other hand

P (Xn = j) = P (Xn = j, τ ≤ n) + P (Xn = j, τ > n) ,

and by using equation (3.21) we can write

P (Xn = j) = P (Yn = j, τ ≤ n) + P (Xn = j, τ > n) ,

or

P (Xn = j) ≤ P (Yn = j) + P (τ > n) . (3.22)

While

P (Yn = j) = P (Yn = j, τ ≤ n) + P (Yn = j, τ > n) ,

and by virtue of equation (3.21) we can write

P (Yn = j) = P (Xn = j, τ ≤ n) + P (Yn = j, τ > n) ,

or

P (Yn = j) ≤ P (Xn = j) + P (τ > n) . (3.23)

From equations (3.22) and (3.23) we conclude that

|P (Xn = j)− P (Yn = j)| ≤ P (τ > n)→ 0, (3.24)

when n→∞. Taking X0 = i with probability one, we can write

P (Xn = j) = P (Xn = j|X0 = i)P (X0 = i) = pn (i, j)P (X0 = i) ,

or

P (Xn = j) = pn (i, j) . (3.25)

If we take Y0 with the stationary distribution π, then:

P (Yn = j) =
∑
i

P (Yn = j|Y0 = i)π (i) =
∑
i

π (i) pn (i, j)

too

P (Yn = j) = π (j) . (3.26)

Substituting in (3.24) we can conclude that

|pn (i, j)− π (j)| → 0. (3.27)

This theorem is known as the convergence theorem [18]. �
Corollary 3.1.
If for n, pn (i, j) > 0 for all i and j then there is a unique stationary distribution π and

lim
n→∞

pn (i, j) = π (j) . (3.28)

Proof:
Like P is irreducible, then we can get to any state in n steps, that is, pn (i, j) > 0, like i and j are

arbitrary, then all states are aperiodic, thus pn+1 (i, j) > 0 so that n, n+ 1 ∈ J and gcdJi = 1. �
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3.8. Doubly Stochastic Chains. Since we have analyzed the fundamental concepts of Markov chains,
now we will introduce a new idea, although related to the previous ones and based on it we will see if the
different properties that we already have are still fulfilled.

Definition 3.13.
Let {Xn, n ≥ 0} be a Markov chain, where

∑
j p (i, j) = 1, further assuming that the chain satisfies

the condition that
∑
i p (i, j) = 1, then Xn, n ≥ 0, is a doubly stochastic Markov chain.

Proposition 3.1.
Let {Xn, n ≥ 0} be a doubly stochastic chain and if the chain has N states, then the stationary distri-

bution is π (i) = 1/N , as ∑
i

π (i) p (i, j) =
1

N
. (3.29)

Proof:
To see that (3.29) is valid, π (i) = 1/N we have to

∑
i

1
N p (i, j) = 1

N

∑
i p (i, j) and by definition

3.13 we know that
∑
i p (i, j) = 1 which leads us to affirm that (3.29) is true.

3.9. Continuous Time Chains . Throughout this work we have discussed the Markov chains in which
the changes between the different states occur in a discrete manner, that is, in a fixed period of time. These
chains are known as discrete time chains, however, in general the time periods are not necessarily fixed,
that is, there is the possibility that the changes occur continuously over time, in which case we will call it a
process of Markov. There is also the possibility that the periods are continuous random variables. We will
call this type of process continuous-time Markov Chains. These chains are quite useful for solving models
of queuing systems, manufacturing systems and re-manufacturing systems [6].

To get a clearer idea of this, we will consider the study of a process that is a clear example of a Markov
chain of continuous time, this process is known as a Poisson process.

3.10. Poisson process. Next we will study one of the most important processes within the theory of
continuous-time Markov chains. First we will analyze the definition of a Poisson process, having said this
we will give the main characteristics of the Poisson process [6].

A process is called a Poisson process if:
1. The probability of occurrence of an event in the time interval (t+ δt) is λδt+ o (δt). Where λ is

a positive constant and o (δt) is such that

lim
δt→0

o (δt)

δt
= 0.

2. The probability of occurrence of none event in time interval (t, t+ δt) is 1− λt+ o (δt).
3. The probability of occurrence of more than one event is o (δt).

In this way, an event of this process can describe the arrival of a bus or a change of client [6]. From 1, 2 and
3, we can observe the Poisson distribution.

Proposition 3.2.
The following statements are equivalent to each other: (1) The arrival process of a Poisson process

with rate λ. (2) Let N (t) be the number of arrivals in the time interval [0, t], then

Pn (N (t) = n) =
(λt)

n

n!
e−λt, n = 0, 1, 2, ...

(3) The arrival time follows the exponential distribution with mean −λ.
Proof:
Let Pn (t) be the probability that event n occurs in the interval [0, t], we suppose that Pn (t) is differ-

entiable, then we can get a relation between Pn (t) and Pn−1 (t) by

Pn (t+ δt) = Pn (t) (1− λδt− o (δt)) + Pn−1 (t) (λδt+ o (δt)) + o (δt) .

By taking the limit when δt→ 0, we have

lim
δt→0

Pn (t+ δt)− Pn (t)

δt
= −λPn (t) + λPn−1 (t) + lim

δt→0
[Pn−1 (t) + Pn (t)]

o (δt)

δt
,

or

lim
δt→0

Pn (t+ δt)− Pn (t)

δt
= −λPn (t) + λPn−1 (t) + 0.
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So we get a differential equation

dPn (t)

dt
= −λPn (t) + λPn−1 (t) , n = 0, 1, 2, ... (3.30)

If we take n = 0 in (3.30) as P−1 (t) = 0 we get the following differential equation for P0 (t)

{
dPn(t)
dt = −λP0 (t) ,

P0 (t) = 1,

where P0 (0) is the probability that no event occurred in the interval [0, 1] that’s why it must be 1. Solving
the equation for P0 (t) we get

P0 (t) = e−λt. (3.31)

Expression (3.31) is the probability that none event occurs in the interval [0, t]. Thus

1− P0 (t) = 1− e−λt (3.32)

is the probability that at least one event occurred in the time interval [0, t], so the probability density dis-
tribution f (t) (for the waiting time and the first event occurs) is given by the exponential distribution, well
known as

f (t) =
d(1−e−λt)

dt = λe−λt, t ≥ 0.

Let’s mention that 
dPn(t)
dt = −λPn (t) + λPn−1 (t) , n = 0, 1, 2, ...

P0 (t) = e−λt

Pn (0) = 0, n = 1, 2, ...

We will start by solving this differential equation for n = 1. In this case

dP1 (t)

dt
+ λP1 (t) = λP0 (t) ,

or

dP1 (t)

dt
+ λP1 (t) = λe−λt.

Multiplying both sides by eλt and integrating we get∫
d

dt

[
eλtP1 (t)

]
dt = λ

∫
tdt,

thus

P1 (t) = λte−λt.

For n = 2, we have

dP2 (t)

dt
+ λP2 (t) = λP1 (t) ,

or

dP2 (t)

dt
+ λP2 (t) = λ2te−λt.

Again if we multiply both sides of the above equation, then we can write

e−λt
dP2 (t)

dt
+ λeλtP2 (t) = λ2t.
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In this way it is found

P2 (t) =
(λt)

2

2!
e−λt.

For n = 3, we consider the differential equation

dP3 (t)

dt
+ λP3 (t) = λP2 (t)

or

dP3 (t)

dt
+ λP3 (t) =

λ3t2

2
e−λt.

If we multiply this equation by eλt

eλt
dP3 (t)

dt
+ λeλtP3 (t) =

λ3t2

2
,

whose solution is

P3 (t) =
(λt)

3

3!
e−λt.

In general

Pn (t) =
(λt)

n

n!
e−λt.

With this we can say that the Poisson process, the Poisson distribution and the exponential distribution are
related to each other [6]. �

Now, we can conclude that the Poisson process is a clear example of a Continuous-time Markov chain.

3.11. A Two-State Continuous Markov Chain. We consider a server queue system that has two
possible states: 0 (idle) and 1 (busy). Assume that the client arrival process is a Poisson process with
mean rate λ and the server time follows the exponential distribution with mean rate µ. Let P0 (t) be the
probability that the server is down at time t, and P1 (t) be the probability that the server is busy at time t. If
we use the same argument as in the Poisson process [6], then we have

P0 (t+ δt) = P0 (t) (1− λδt− o (δt)) + P1 (t) (µδt+ o (δt)) + o (δt) .

P1 (t+ δt) = P1 (t) (1− µδt− o (δt)) + P0 (t) (λδt+ o (δt)) + o (δt) .

Rearranging the terms of the above equations, we find

P0 (t+ δt)− P0 (t)

δt
= −λP0 (t) + µP1 (t) + [P1 (t)− P0 (t)]

o (δt)

δt
,

P1 (t+ δt)− P1 (t)

δt
= λP0 (t)− µP1 (t) + [P0 (t)− P1 (t)]

o (δt)

δt
.

If we take the limit when δt→ 0, then

lim
δt→0

P0 (t+ δt)− P0 (t)

δt
= −λP0 (t) + µP1 (t) + lim

δt→0
[P1 (t)− P0 (t)]

o (δt)

δt

lim
δt→0

P1 (t+ δt)− P1 (t)

δt
= λP0 (t)− µP1 (t) + lim

δt→0
[P0 (t)− P1 (t)]

o (δt)

δt
,

which leads to

lim
δt→0

P0 (t+ δt)− P0 (t)

δt
= −λP0 (t) + µP1 (t)



Valenzuela M.- Selecciones Matemáticas. 2022; Vol. 9(1): 53-78 65

lim
δt→0

P1 (t+ δt)− P1 (t)

δt
= λP0 (t)− µP1 (t) ,

or

dP0 (t)

dt
= −λP0 (t) + µP1 (t) ,

dP1 (t)

dt
= λP0 (t)− µP1 (t) .

Consequently, we obtain a system of differential equations, with P1 (0) = 1, of the form dP0(t)
dt

dP1(t)
dt

 =

 −λ µ

λ −µ

 P0 (t)

P1 (t)

 ,

where

A =

 −λ µ

λ −µ

 .

By calculating the eigenvalues for A, so det (A− πI) = 0, that is,∣∣∣∣∣∣ −λ− π µ

λ −µ− π

∣∣∣∣∣∣ = π2 + (λ+ µ)π = 0.

When solving π2 + (λ+ µ)π = 0, we see that the eigenvalues are π1 = 0 y π2 = − (λ+ µ), now
we will calculate the respective eigenvectors to each of the eigenvalues, in this way for π1 = 0, we have
(A− 0I)X = 0, therefore  −λ µ

λ −µ

 x1

x2

 =

 0

0

 .

So we get  −λ µ

λ −µ

→
 1 −µ/λ

λ −µ

→
 1 −µ/λ

0 0

 .

Whereby x1 = µ
λx2, if we do x2 = λthen we see that v1 =

 µ

λ

. Now we compute the eigenvector for

π2 = − (λ+ µ), that is, (A+ (λ+ µ) I)X = 0, therefore λ µ

λ µ

 x1

x2

 =

 0

0

 .

So, we find  λ µ

λ µ

→
 1 1

0 0

 .

Like x1 = −x2, if x2 = −1, then for π2 = − (λ+ µ), is obtained v2 =

 1

−1

. In this way we can say

that the solution of the system is P0 (t)

P1 (t)

 = C1

 µ

λ

+ C2

 1

−1

 e−(λ+µ)t.
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In virtue of P1 (0) = 1, we can write

C1

 µ

λ

+ C2

 1

−1

 =

 0

1

 ,

where C1 = 1
λ+µ and C2 = − µ

λ+µ , whereby

P0 (t) =
µ

λ+ µ
− µ

λ+ µ
e−(λ+µ)t,

P1 (t) =
µ

λ+ µ
+

µ

λ+ µ
e−(λ+µ)t.

Since the probabilities of the stable states are given by

lim
t→∞

P0 (t) =
µ

λ+ µ
,

lim
t→∞

P1 (t) =
µ

λ+ µ
.

With this we can say that it is not necessary to solve the system of differential equations to find the
probability distribution of the stable state, that is, it can be seen that both P0 (t) and P1 (t) when t → ∞
are constant, that is, they do not depend on t, if we take P0 (t) = p0 and P1 (t) = p1 then

P0 (t)

dt
=
dp0
dt

= 0,

P1 (t)

dt
=
dp1
dt

= 0.

By reducing the problem to calculate the following system of linear equations, the probability of the stable
state is calculated, that is,  −λ µ

λ −µ

 P0

P1

 =

 0

0

 .

Finally, taking into account that p0 + p1 = 1, we have λ µ

1 1

∣∣∣∣∣∣ 0

1

→ ...→

 1 0

0 1

∣∣∣∣∣∣ µ/ (λ+ µ)

λ/ (λ+ µ)

 .

Whereby p0 = µ/ (λ+ µ) and p1 = λ/ (λ+ µ). With this it can be affirmed that the distribution of the
stable state of the Markov chain is due to the fact that the indicators of the system; such as the expected
number of customers, and the mean waiting time, can be written in terms of the steady-state probability
distribution [6].

4. Markovian birth-death processes. A population is a set whose elements have a common charac-
teristic. The number of elements in a given population at time t is denoted by N (t). The states of a growth
process are the different ones that N (t) can take; these are generally non-negative integers. pn (t) denotes
the probability that N (t) takes a non-negative integer value n.

A birth occurs each time a new element joins the population; a death occurs each time a member leaves
the population. A pure process of birth is one in which there are only births and no deaths; a pure process
of death is one in which there are only deaths and no births.

4.1. Markov birth-death processes, generalized. A population growth process is a Markovian pro-
cess if the transition probabilities to change from one state to another depend only on the current state and
not on the past history of the process reaching the current state. More formally, a generalized Markovian
birth-death process [12][1][23] satisfies the following criteria:

1. Probabilistic distributions that control for the number of births and deaths during a time interval
depend on the length of the interval, but not on its initial point.
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2. The probability of exactly one birth in the interval of duration δt, given a population of n elements
at the beginning of the interval, is λn∆t + o (∆t), where λn is a possibly different constant for
different values of n.

3. The probability of exactly one death in an interval of duration ∆t, given a population of n elements
at the start of the interval, is µn∆t+ o (∆t), where µn is a possibly different constant for different
values of n.

4. The probability of more than one birth and the probability of more than one death in an interval of
duration ∆t are both o (∆t).

These criteria imply, in the limit when ∆t→ 0, the Kolmogorov equations [13] for the state probabilities:

dPn (t)

dt
= − (λn + µn) pn (t) + µn+1Pn+1 (t) + λn−1Pn−1 (t) , (4.1)

dP0 (t)

dt
= −λ0p0 (t) + µ1P1 (t) , (4.2)

where n = 1, 2, ...

4.2. Markovian processes of birth, linear. A linear Markovian birth process is a pure Markovian
birth process [20], in which the probability of a birth in a small interval is proportional to both the actual
number of elements in the population and the length of the interval. That is, for all n, µn = 0 and λn = nλ.
The proportionality constant λ is the birth rate or arrival rate. The solution to equations (4.1) and (4.2), for
a population of one element, is:

pn (t) =

{
[1− exp (−λt)]n−1 exp (−λt)

0

(n = 1, 2, ...)

(n = 0)
(4.3)

The expected size of the population at the time t is E [N (t)] = exp (λt). If the initial population has N (0)
elements, then its expected size at time t is:

E [N (t)] = N (0) exp (λt) . (4.4)

4.3. Markovian processes of death, linear. A linear Markovian death process is a pure Markovian
death process [20], in which the probability of a death in a small interval is proportional to both the actual
number of elements in the population and the length of the interval. That is, for all n, µn = nµ y λn = 0.
The proportionality constant µ is the birth rate or death rate. The solution to equations (4.1) and (4.2), for
an initial population N (0), is:

pn (t) =


(
N (0)

n

)
[1− exp (−nµt)]N(0)−n

exp (−nµt)

0

[n ≤ N (0)]

[n > N (0)]
(4.5)

The expected size of the population at time t is E [N (t)] = exp (λt). If the initial population has N (0)
elements, then its expected size at time t is:

E [N (t)] = N (0) exp (−µt) . (4.6)

4.4. Markovian birth-death processes, linear. A linear Markovian birth-death process [20] is a
Markovian birth-death process in which, for all n, λn = nλ and µn = nµ. The solution to equations
(4.1) and (4.2), for an initial population of one element, is:

pn (t) =

{
[1− r (t)] [1− s (t)] [s (t)]

n−1

r (t)

(n = 1, 2, ...)

(n = 0)
(4.7)

where

r (t) =
µ [exp (λ− µ) t− 1]

λ exp [(λ− µ) t]− µ
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and

s (t) =
λ [exp (λ− µ) t− 1]

λ exp [(λ− µ) t]− µ
.

The expected size of the population at the time t is E [N (t)] = exp [(λ− µ) t]. If the initial population has
N (0) elements, then its expected size at time t is:

E [N (t)] = N (0) exp [(λ− µ) t] . (4.8)

It is clear that the linear birth-death process includes the linear birth process and the linear death process
as the special cases µ = 0 and λ = 0, respectively.

4.5. Poissonian processes of birth. A Poisson birth process [19] is a pure Markovian birth process,
in which the probability of a birth in a small interval is proportional to both the actual number of elements
in the population and the length of the interval. That is, for all n, µn = 0 and λn = nλ. In this type of
process, new arrivals in the population are not a result of the current number of elements. New elements can
arrive in the population even when the current state is 0, which represents a marked difference in relation to
the linear Markov processes of birth.

The solution of the equations (4.1) and (4.2) for an initial population of 0 is:

pn (t) =
(λt)

n

n!
exp (−λt) (n = 0, 1, 2, 3, ...) (4.9)

If the population starts with N (0) elements, the solution to equations (4.1) and (4.2) is:

pn (t) =

{
(λt)n−N(0) exp(−λt)

[n−N(0)]!

0

[n ≥ N (0)]

[n < N (0)]
(4.10)

The expected size of the population at time t is:

E [N (t)] = N (0) + λt. (4.11)

We can condense (4.9) and (4.10), in a Poissonian birth process with birth rate λ, N (t)−N (0) has a
Poisson distribution, with parameter λt. Furthermore, in such a case, the interarrival time, which is the time
between successive births, has an exponential distribution with expected value 1/λ.

4.6. Poissonian processes of death. A Poissonian death process [19] is a pure Markovian death pro-
cess, in which the probability of a death in a small interval is proportional to both the actual number of
elements in the population and the length of the interval. That is, for all n, µn = µ and λn = 0. The
solution to equations (4.1) and (4.2), for an initial population, is:

pn (t) =


0

(µt)N(t)−n exp(−µt)
[N(0)−n]!

1−
∑N(0)
n=1 pn (t)

[n > N (0)]

[1 ≤ n ≤ N (0)]

(n = 0)

(4.12)

4.7. Poissonian birth-death processes, linear. A Poissonian birth-death process is a Markovian birth-
death process in which both the probability of a birth and a death in any small interval is independent of
population size. That is, for all n, λn = λ and µn = µ. These are the basis of queuing theory [19] [2] [17].

4.8. Solution to the Markovian processes of birth-death. With λn = nλ and µn = nµ, Kol-
mogorov equations (4.1) and (4.2), become

dPn (t)

dt
= −n (λ+ µ) pn (t) + (n+ 1)µPn+1 (t) + (n− 1)λPn−1 (t) , (4.13)

for n = 1, 2, ... and

dP0 (t)

dt
= µP1 (t) . (4.14)



Valenzuela M.- Selecciones Matemáticas. 2022; Vol. 9(1): 53-78 69

One way to solve these equations is by substituting them as a single partial differential equation for the
probabilistic generating function

F (z, t) =

∞∑
n=0

pn (t) zn. (4.15)

The procedure is the next. Multiply (4.13) by zn, add for all n, and add the result to (4.14), leaving after
sorting,

∞∑
n=0

dPn (t)

dt
zn = − (λ+ µ)

∞∑
n=1

npn (t) zn + µ

∞∑
n=0

(n+ 1)Pn+1 (t) zn + λ

∞∑
n=0

(n− 1)Pn−1 (t) zn.

(4.16)
But differentiating (4.15),

∞∑
n=0

dpn (t)

dt
zn =

∂F (z, t)

∂t
,

∞∑
n=0

npn (t) zn = z
∂F (z, t)

∂z
,

∞∑
n=0

(n+ 1) pn+1 (t) zn =
∂F (z, t)

∂z
,

∞∑
n=0

(n− 1) pn−1 (t) zn = z2
∂F (z, t)

∂z
.

Then, (4.16) becomes,

∂F (z, t)

∂t
= − (λ+ µ) z

∂F (z, t)

∂z
+ µ

∂F (z, t)

∂z
+ λz2

∂F (z, t)

∂z
. (4.17)

Solving this partial differential equation by separation of variables, one solution is found to be:

et
(

z − 1

z − µ/λ

)1/(µ−λ)

.

The general solution to equation (4.17) is:

F (z, t) = g

[
et
(

z − 1

z − µ/λ

)1/(λ−µ)
]
, (4.18)

where g is an arbitrary function of one variable. To determine g, note that for an initial population of one
element: p1 (0) = 1 and pn (0) = 0 (n 6= 0); then,

F (z, 0) =

∞∑
n=0

pn (0) zn = z. (4.19)

Applying this initial condition to (4.18), we obtain:

z = g

[(
z − 1

z − µ/λ

)1/(λ−µ)
]
. (4.20)

Making

y =

(
z − 1

z − µ/λ

)1/(λ−µ)

we have inversely

z =
(µ/λ) yλ−µ − 1

yλ−µ − 1
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and (4.20) can be written as

g (y) =
(µ/λ) yλ−µ − 1

yλ−µ − 1
. (4.21)

So (4.18) will be expressed by

F (z, t) =

z

[
et
(

z−1
z−(µ/λ)

)1/(λ−µ)]λ−µ
− 1[

et
(

z−1
z−(µ/λ)

)1/(λ−µ)]λ−µ
− 1

, (4.22)

which simplifies to

F (z, t) =
µ
[
et(λ−µ) − 1

]
+ z

[
−µet(λ−µ) + λ

][
λet(λ−µ) − µ

]
− zλ

[
et(λ−µ) − 1

] . (4.23)

Finally, we need to expand F (z, t) into powers of z, thus obtaining pn (t) as a coefficient of zn. Be
done

r (t) =
µ [exp (λ− µ) t− 1]

λ exp [(λ− µ) t]− µ

s (t) =
λ [exp (λ− µ) t− 1]

λ exp [(λ− µ) t]− µ

and

m (t) =
λ− µet(λ−µ)

λet(λ−µ) − µ
.

Then

F (z, t) =
r (t) + zm (t)

1− zs (t)
. (4.24)

For the geometric series, 1
1−x =

∑∞
n=0 x

n (|x| < 1), equation (4.24) gives:

F (z, t) = r (t) +

∞∑
n=1

[r (t) s (t) +m (t)] [s (t)]
n−1

zn.

It can be verified algebraically that

r (t) s (t) +m (t) = [1− r (t)] [1− s (t)] .

Then

F (z, t) = r (t) +

∞∑
n=1

{
[1− r (t)] [1− s (t)] [s (t)]

n−1
}
zn. (4.25)

The coefficients in (4.25) give equation (4.7).
It can be verified that any power of a solution to (4.16) is itself a solution. In particular,

Φ (z, t) = [F (z, t)]
N(0)

,

where F (z, t) is given by (4.23) or (4.25), it is a solution; and this solution satisfies the initial condition

Φ (z, 0) = [F (z, 0)]
N(0)

= zN(0).

Then, Φ (z, t) is the generating function of the state probabilities for a population that starts with N (0)
elements. The fact that Φ is equal to FN(0) implies that the random variable corresponding to Φ can be
expressed as the sum of N (0) independent random variables, each one corresponding to F .
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5. Applications of Markov chains .

5.1. Monopoly Chain. This section is dedicated to the board game known as Monopoly. This game
is played on a board consisting of 40 boxes (see Figure 5.1), each box has its name. For practical purposes
we will consider labeling them from 0 to 39, the game is very simple as it is played with two dice and we
move around the board adding the number on the face of the dice after rolling them. For this work we will
omit some small details to facilitate the construction of the Markov chain for this game: First we will omit
the fact that if a person falls in jail they stay in it until they get pairs, or three turns pass. Second, we will
consider the Communal Ark and Fortuna slots as common slots, just like the rest of the slots.

Figure 5.1: Monopoly board.

The first thing we have to notice is that the chain that we will model has as state space
S = {0, 1, 2, 3, ..., 38, 39}, let’s take into account that, as we play with two dice, the minimum sum that
can be obtained by throwing a pair of these is 2, while the maximum number of squares that we can
advance is 12, so we will call rk the probability that the sum of the dice is k, in other words, r2 = 1/36,
r3 = 2/36,...,r11 = 2/36, r3 = 1/36. It is easy to see that

∑12
k=2 rk = 1, in this way we consider that

Xn, n ≥ 0, is the possibility that a player is in square n in the n-th turn Xn, n ≥ 0 is a Markov chain. Now
we will define the transition probability, that is, the probability of going from being in square i to square j
in one turn, with i, j ∈ S, and we will define it as follows:

p (i, j) = rk si j + k mod (40) . (5.1)

5.1.1. Transition Matrix. To get an idea of this distribution function, suppose we are in box number
38, and when we roll a die we get an 8, so 38 + 8 = 46 and 46mod (40) = 6, so p (38, 6) = r8 = 5/36. So
the transition matrix is given by

P =



0 0 0.028 . . . 0 0 0

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

. . . . . . .

. . . . . . .

. . . . . . .

0.056 0.083 0.111 . . . 0 0 0.028

0.028 0.056 0.083 . . . 0 0 0

0 0.028 0.056 . . . 0 0 0



.

To see what a Markov chain is, let’s take into account that
∑
i p (i, j) = 1, for each i, as well as p (i, j) ≥ 0

for all i, j ∈ S , the interesting thing about a Markov chain is to see how it behaves in the long run. With
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the help of Python we will do the necessary calculations to see how this chain behaves, using the necessary
commands to avoid doing the calculations by hand, since the transition matrix has size 40 × 40, thus
calculating P 2 can be found

P 2 =



0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

. . . . . . .

. . . . . . .

. . . . . . .

0 0.00784 0.003136 . . . 0 0 0

0 0 0.000784 . . . 0 0 0

0 0 0 . . . 0 0 0



.

Again with the help of the software, we calculate P 4

P 4 =



3.62× 10−3 1.96× 10−3 1.00× 10−3 . . . 1.50× 10−2 9.89× 10−3 6.15× 10−3

6.18× 10−3 3.59× 10−3 1.98× 10−3 . . . 2.16× 10−2 1.50× 10−2 9.89× 10−3

9.94× 10−3 6.15× 10−3 3.62× 10−3 . . . 2.97× 10−2 2.16× 10−2 1.50× 10−2

. . . . . . .

. . . . . . .

. . . . . . .

4.63× 10−4 1.89× 10−4 6.87× 10−5 . . . 3.59× 10−3 1.96× 10−3 9.92× 10−4

1.00× 10−3 4.57× 10−4 1.90× 10−4 . . . 6.15× 10−3 3.59× 10−3 1.96× 10−3

1.98× 10−3 9.92× 10−4 4.61× 10−4 . . . 9.89× 10−3 6.15× 10−3 3.59× 10−3



.

From P 4 we can see that all the entries in the transition matrix are positive. With this we can conclude
that P is irreducible and aperiodic, this is even easier to see since the maximum sum of the faces of the dice
is 12, if we throw the dice 4 times, the minimum we can advance is 8 squares, while the maximum squares
that can be advanced is 48, and basically with 4 launches we can go around the board completely. In the
case that in the four releases we obtained quantities very close to 12. Continuing with the calculations to
see the long-term behavior, we have

P 8 =



0.0038 0.0053 0.0073 . . . 0.0016 0.0020 0.0027

0.0027 0.0038 0.0054 . . . 0.0014 0.0016 0.0029

0.0020 0.0027 0.0038 . . . 0.0015 0.0014 0.0016

. . . . . . .

. . . . . . .

. . . . . . .

0.0098 0.0128 0.0164 . . . 0.0038 0.0053 0.0073

0.0073 0.0098 0.0098 . . . 0.0027 0.0038 0.0053

0.0054 0.0073 0.0098 . . . 0.0020 0.0027 0.0038



.

Squaring the above matrix, we find
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P 16 =



0.0210 0.0206 0.0204 . . . 0.0359 0.0339 0.0317

0.0317 0.0293 0.0206 . . . 0.0377 0.0359 0.0339

0.0340 0.0317 0.0210 . . . 0.0391 0.0377 0.0359

. . . . . . .

. . . . . . .

. . . . . . .

0.0220 0.0196 0.0175 . . . 0.0293 0.0268 0.0244

0.0244 0.0219 0.0197 . . . 0.0317 0.0293 0.0268

0.0269 0.0244 0.0220 . . . 0.0339 0.0317 0.0293



.

After 16 stages, or turns, we will calculate for 32, and all of the above is possible thanks to the Chapman-
Kolmogorov equation

P 32 =



0.0210 0.0206 0.0204 . . . 0.0227 0.0220 0.02149

0.0317 0.0210 0.0206 . . . 0.0234 0.0227 0.02207

0.0221 0.0214 0.0210 . . . 0.0241 0.0234 0.02272

. . . . . . .

. . . . . . .

. . . . . . .

0.0202 0.0201 0.0202 . . . 0.0210 0.0206 0.02034

0.0203 0.0201 0.0201 . . . 0.0214 0.0210 0.02062

0.0206 0.0203 0.0202 . . . 0.0220 0.0214 0.02101



.

If we continue squaring, we can see that

P 64 =



0.0253 0.0253 0.0255 . . . 0.0250 0.0251 0.0252

0.0252 0.0253 0.0256 . . . 0.0250 0.0250 0.0251

0.0251 0.0252 0.0256 . . . 0.0249 0.0250 0.0250

. . . . . . .

. . . . . . .

. . . . . . .

0.0255 0.0255 0.0256 . . . 0.0253 0.0253 0.0254

0.0254 0.0255 0.0256 . . . 0.0252 0.0253 0.0253

0.0254 0.0254 0.0255 . . . 0.0251 0.0253 0.0253



.

5.1.2. Stationary Distribution. Each entry of our matrix tends to 0.025, now we will calculate the
stationary distribution. As we note that the matrix is irreducible and aperiodic, it can be affirmed by the
Convergence Theorem that (for the Monopoly chain) the stationary distribution exists. We will do this
calculation by taking the first 39 columns of matrix P and we will subtract 1 from the diagonal and we will
replace the last column with a column that consists only of ones, in this way we have
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A =



−1 0 0 . . . 0 0 1

0 −1 0 . . . 0 0 1

0 0 −1 . . . 0 0 1

. . . . . . .

. . . . . . .

. . . . . . .

0.056 0.083 0.111 . . . −1 0 1

0.028 0.056 0.083 . . . 0 −1 1

0 0.028 0.056 . . . 0 0 1



.

By calculating the inverse matrix with the help of Python, we find

A−1 =



−1.0035 0.0244 0.0244 . . . −0.0036 −0.0035 0.9964

−0.0070 −1 0.0488 . . . −0.0072 −0.0071 0.9929

−0.0106 0.0173 −0.9547 . . . −0.0108 −0.0108 0.9893

. . . . . . .

. . . . . . .

. . . . . . .

−0.0488 −0.0486 −0.0509 . . . −0.9928 0.0070 0.9790

−0.0244 −0.0244 −0.0241 . . . 0.0035 −0.9964 1.0035

0.0250 0.0249 0.0250 . . . 0.0250 0.0250 0.0249



.

If we look at the last row of matrix A−1, then

π =
(

0.0250 0.0249 0.0250 . . . 0.0250 0.0250 0.0249
)

which is very close to

π =
(

1
40

1
40

1
40 . . . 1

40
1
40

1
40

)
.

5.1.3. Limit distribution. Let us now consider the row vector of size 1× 40 where the first entry is a
1, and the rest of the entries are 0, and we will say that it will be the initial distribution, since in this game
all the players start in the starting square, then:

π0 =
(

1 0 0 . . . 0 0 0
)
.

It is interesting to see what happens with the distribution of this Markov chain, if we start with the
previous initial distribution, having said that we will calculate the limit distribution for this chain, notice
that

π1 = π0P =
(

0 0 0.028 0.056 0.083 . . . 0 0
)
.

Calculated π2 = π1P = π0P
2

π2 = π0P
2 =

(
0 0 0 0 0.000784 0.003136 0.007784 ... 0 0

)
.

Analogously for n = 4

π4 = π0P
4 =

(
3.6235× 10−3 1.96513× 10−3 1.00042× 10−3 . . . 6.15312× 10−3

)
.
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For n = 8

π8 = π0P
8 =

(
0.003891 0.00539 0.00737 0.00984 0.01286 . . . 0.002042 0.002789

)
.

If we continue with the process we can see that

π16 = π0P
16
(

0.02939 0.02688 0.02450 0.02198 0.01286 . . . 0.03396 0.031732
)
.

For n = 32 we can see where the limit distribution is headed

π32 = π0P
32 =

(
0.02103486 0.02062202 0.02018032 0.02018032 0.02013923 . . . 0.02149927

)
.

A clearer idea of the above is seen in the following calculation

π64 = π0P
64 =

(
0.0253434 0.02538735 0.02552678 0.0255072 0.02555667 . . . 0.02524536

)
.

With the calculations made above, we can say that

lim
n→∞

πn =
(

1
40

1
40

1
40 . . . 1

40
1
40

1
40

)
.

In fact, it is the stationary distribution. It is clear that we would arrive at the stationary distribution, we can
affirm this by the convergence theorem.

5.2. Weather Chain (Climate). In this section we will study a Markov chain using EXCEL, this to
see how the chain behaves and how it evolves, that is, to see what states it visits. Consider the weather chain
studied in the previous section, remember that its state space is S = {1, 2, 3} where, 1 is rainy, 2 is cloudy
without rain, and 3 is sunny, we know that this chain has transition matrix P , given by

0.2 0.5 0.3

0.1 0.3 0.6

0.7 0.2 0.1

 .

5.2.1. Transition function for Xn. Suppose that X0 = 1, the objective of this study is to construct
the sequence {Xn : n ≥ 1}, or to generate said sequence we have three possibilities:

1. If Xn = 1, then

P (Xn+1 = 1) = 0.2

P (Xn+1 = 2) = 0.5

P (Xn+1 = 3) = 0.3

.

2. If Xn = 2, then

P (Xn+1 = 1) = 0.1

P (Xn+1 = 2) = 0.3

P (Xn+1 = 3) = 0.6

.

3. If Xn = 3, then

P (Xn+1 = 1) = 0.7

P (Xn+1 = 2) = 0.2

P (Xn+1 = 3) = 0.6

.

5.2.2. Distribución de Xn. In EXCEL we can generate random numbers in [0, 1] with the command
U = ALEATORIO(), in this way we will generate the distribution of the random variable for case 1, as
follows [6]

Xn+1 =


1 if

2 if

3 if

U ∈ [0, 0.2)

U ∈ [0.2, 0.7)

U ∈ [0.7, 1]
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Similarly the distribution for case 2

Xn+1 =


1 if

2 if

3 if

U ∈ [0, 0.1)

U ∈ [0.1, 0.4)

U ∈ [0.4, 1]

.

Analogously, we do it for case 3

Xn+1 =


1 if

2 if

3 if

U ∈ [0, 0.7)

U ∈ [0.7, 0.9)

U ∈ [0.9, 1]

.

5.2.3. Study in EXCEL. In the following table we explain the function that each cell will perform in
EXCEL to simulate our Markov chain, to be more specific, our model will tell us how our chain evolves
over 40 stages, that is, Xn, n = 0, 1, 2, 3, ..., 40. That said, let’s see how this program works in EXCEL [6].

Q2 1,2,3

B3 =ALEATORIO()

C3 =SI(B3¡0,2,1,-1)

D3 =SI(Y(B3¿0.2,B3¡0.5),2,-1)

E3 =SI(B3¿0.5,3,-1)

F3 =MAX(C3,D3,E3)

G3 =ALEATORIO()

H3 =SI(G3¡0.2,1,-1)

I3 =SI(Y(G3¿0.2,G3¡0.5),2,-1)

J3 =SI(G3¿0.5,3,-1)

K3 =MAX(H3,I3,J3)

L3 =ALEATORIO()

M3 =SI(L3¡0.2,1,-1)

N3 =SI(Y(L3¿0.2,L3¡0.5),2,-1)

O3 =SI(L3¿0.5,3,-1)

P3 =MAX(M3,N3,O3)

Q3 =MAX(SI(Q2=1,F3,-1),SI(Q2=2,K3,-1),SI(Q2=3,P3,-1))

In the table we can see that Q2 isX0, this implies that the chain can start at 1,2 or 3, from B3 − Q3 it will
be the simulation for X1, we will have to do each of the steps of the table up to Bi −Qi, i = 3, 4, 5, ..., 42
which will be the value 1,2 or 3 that the chain takes in the 40 steps. This is how we show how our studio
looks. For the case in which X0 = 1 and figure 5.2 shows us a graph of said study, while figure 5.3 shows
us the case in which X0 = 2 in the same way that figure 5.4 shows us show what happens when X0 = 3.
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Figure 5.2: Study of a Markov chain in EXCEL when X0 = 1. We can see that we will have exactly 18
days with rain, 9 cloudy days without rain, and 14 sunny days.

Figure 5.3: Study of a Markov chain in EXCEL when X0 = 2. We can see that we will have exactly 17
days with rain, 8 cloudy days without rain, and 16 sunny days.

Figure 5.4: Study of a Markov chain in EXCEL when X0 = 3. We can see that we will have exactly 14
days with rain, 13 cloudy days without rain, and 14 sunny days.

6. Conclusions. Throughout this work, basic concepts of probability theory were analyzed, such as
conditional probability, the property of total probability and the Bayes Formula. We study homogeneous
Markov chains using some concepts and reaffirming, the most important part of this work consisted in
analyzing discrete-time Markov chains and continuous-time chains related to Markov processes. Then we
prove the Convergence Theorem and for this we study important concepts such as: the transition function,
the limit distribution, the reducible and irreducible chains, finally we saw the stationary distribution and
the periodicity. We also study chains in continuous time such as the Poisson process. With the help of
Python we calculate the limit distribution and the stationary distribution of the Monopoly game chain, since
the chain has a limit distribution and a stationary distribution, our chain is irreducible. In addition, with
the help of Excel we studied a chain of time (climate), this allowed us to see the behavior of the chain
throughout 40 stages. This we think about the endless applications that Markov chains have, as well as the
importance that they give us by making a more detailed analysis.

Later we can continue studying the following lines of research related to Markov chains, particularly
in queuing theory, Markov chains in continuous time a little more complex. While in the part of discrete
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time chains, processes such as martingales, birth and death chains, absorbing Markov chains could be
studied. Furthermore, we can go into the study of Markov decision processes, or a bit of stochastic calculus,
manufacturing and re-manufacturing systems (which are widely related to queuing theory and continuous-
time processes), Markov chains of Monte Carlo, in short a number of theories in which this work could be
continued.

Markov chains are useful in certain branches of Physics such as Thermodynamics, Quantum Mechanics
and gauge field theories [21], in Meteorology it helps to have more accurate predictions in the change of
time from one day to another, in Biological Sciences Epidemiological models are explained, in Game
theory, Finance, or Social Sciences, Statistics and Mathematics.
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[3] Artalejo JR, Gómez-Corral A, He QM. Markovian arrivals in stochastic modeling: A survey and some new results. Statistics

and Operations Research Transactions. 2010; 34:101-144.
[4] Caballero ME, Rivero VM. Cadenas de Markov, Un enfoque elemental. Sociedad Matemática Mexicana. 2004.
[5] Castellanos-Rodrı́guez V. Forma de la Distribución cuasiestacionaria de una cadena de Markov bivariada: Aplicación a un
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