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ABSTRACT 

The objective of this work was to characterize the community of endophytic fungi of cassava Manihot esculenta 

cultivated in the state of Acre, Brazil. For that, M. esculenta root, stem and leaf were collected, washed and disinfected 

by immersion in 70 % ethanol (1 min), sodium hypochlorite 2 % (5 min), 70 % alcohol (30 sec) and washing in water 

sterile distilled (1 min) three times. The samples were fragmented and inoculated in BDA and Oat culture media and 

incubated at 28 ºC for 30 days. The isolated fungi were characterized by morphology and grouped into 

morphospecies. There was isolated a total of 39 endophytic fungi from M. esculenta, 19 (48.7 %) of stem 13 (33.3 

%) of leaf and 7 (18 %) root. On culture medium, 23 (59 %) fungi were isolated in BDA medium and 16 (41 %) in 

Oat medium. Penicillium and Phomopsis were the most frequent genera, with 30.8% each, followed by Fusarium 

(10.2 %), Aspergillus (5.1 %), Guignardia (5.1 %), Acremonium (2.6 %), Colletotrichum (2.6 %), Phoma (2.63 %), 

and unidentified (10.2 %). This is the first study report of the endophytic fungi community of Manihot esculenta. 

Key Words: Leaf, Penicillium, Phomopsis, Root, Stem. 

 

RESUMEN 

El objetivo de este trabajo fue caracterizar la comunidad de hongos endofíticos de yuca Manihot esculenta cultivados 

en el estado de Acre, Brasil. Para ello, la raíz, el tallo y la hoja de M. esculenta se recogieron, lavaron y desinfectaron 

por inmersión en etanol al 70 % (1 min), hipoclorito de sodio al 2 % (5 min), alcohol al 70 % (30 seg) y lavado en 

agua destilada estéril (1 min) tres veces. Las muestras se fragmentaron e inocularon en medios de cultivo BDA y 

avena y se incubaron a 28 ºC durante 30 días. Los hongos se caracterizaron por la morfología y se agruparon en 

morfoespecies. Se aisló un total de 39 hongos endofíticos M. esculenta, 19 (48, %) del tallo 13 (33,3%) de la hoja y 

7 (18 %) de la raíz. En medio de cultivo, se aislaron 23 (59 %) hongos en medio BDA y 16 (41 %) en medio avena. 

Se identificaron ocho géneros de hongos. Penicillium y Phomopsis fueron los géneros más frecuentes, con un 30,8 

% cada uno, seguidos de Fusarium (10,2 %), Aspergillus (5,1 %), Guignardia (5,1 %), Acremonium (2,6 %), 

Colletotrichum (2,6 %), Phoma (2,63 %) y no identificado (10,2 %). Este es el primer informe de un estudio de la 

comunidad de hongos endofíticos de Manihot esculenta. 

Descriptores: Hoja, Penicillium, Phomopsis, Raíz, Tallo. 
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INTRODUÇÃO 

Cassava is a plant of the Euphorbiaceae family 

of the genus Manihot. This genus has several species, 

with economic highlight Manihot esculenta Crantz 

(DA SILVA and DO AMARAL, 2020). M. esculenta 

is one of the most important crops in world agriculture, 

the basis for the manufacture of food and feed in the 

agribusiness. The most consumed part of the plant is 

the root, staple food, source of carbohydrate for more 

than 2 billion people in the world, mainly in 

underdeveloped countries (FERRARO et al., 2016). In 

addition, cassava has a social function such as reducing 

poverty and reducing rural exodus, it has simple 

cultivation and requires few resources. (LOBO et al., 

2018). Due to its social importance, this crop stands out 

in the agricultural economy due to its multitude of 

industrial uses such as the commercialization of the 

starch produced (SILVA et al., 2018). 

According to statistical data from the United 

Nations Food and Agriculture Organization, the 

cultivated area of cassava is responsible for occupying 

24.5 million ha worldwide (FAO, 2018). Brazil alone 

is responsible for 1.2 million ha of cultivated area, 

equivalent to a total production of approximately 176 

thousand tons per year of this root (FAO, 2018). These 

numbers represent the greatness of this culture to the 

world, especially Brazil, which is fundamental for food 

security in low-income families and a guarantee of 

livelihood for small farmers (LOBO et al., 2018). 

M. esculenta is the focus of studies that allow 

the advancement of its cultivation technology, essential 

for solving agricultural problems that involve this 

culture. The agricultural limitations of cassava mainly 

include the physiological deterioration of its leaves and 

roots, caused by phytopathogenic microorganisms 

including, viruses, bacteria and fungi (MORAIS et al., 

2013). The phytosanitary problem generates very low 

crop yields, some diseases generate losses of up to 95 

%, as in the case of plants affected with Cassava 

Mosaic (ANDRADE and LARANJEIRA, 2019). 

Examples of diseases caused by bacteria include 

bacterial burning, spotting, rotting and wilting. Fungal 

diseases include anthracnose, leaf spot, over-stretching 

of cassava, rust and stem rot (MCCALLUM et al., 

2017). 

Thus, sustainable alternatives to control these 

diseases are required, for economic reasons and for the 

food security that cassava provides. In this context, the 

knowledge of the community of microorganisms that 

live in symbiotic association with M. esculenta 

becomes essential for the search for new technologies 

(DE SILVA et al., 2019). Potential microorganisms 

include endophytic fungi, where the study of this 

community in cassava can be a source of active 

molecules for the production of biofertilizers, toxic to 

the target organism and without producing 

environmental waste (SEGARAN and SATHIAVELU, 

2019). 

Endophytic fungi symbiotically inhabit the 

internal region of plant tissues, without causing 

apparent damage to the host, living part of its life cycle 

in association with the plant (AZEVEDO et al., 2000). 

Endophytes establish beneficial relationships to the 

plant, help in adapting to different environments, with 

different temperatures, and promote states of tolerance 

to stress, such as pH fluctuation, high levels of salinity 

and heavy metals, herbivory and mainly against pests 

and diseases through produced metabolites (BILAL et 

al., 2020; PETERS et al., 2020; GOPANE et al., 2021; 

SOPALUN et al., 2021). Thus, they can act not only in 

the control of pests and diseases, but also in 

technological areas of agriculture, the basis for 

sustainable development, producing ex situ technology 

for culture. 

Among the endophytic fungi with proven 

biological activity for the control of pests and diseases, 

it is important to mention the genera Colletotrichum, 

Phomopsis, Penicillium, Trichoderma, Fusarium, and 

https://www.sciencedirect.com/science/article/abs/pii/S1878818119305869#!
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(LARRAN et al., 2016; TOGHUEO et al., 2016; 

PETERS et al., 2020). Despite the fungi strains 

reported in other cultures, there are no reports in the 

literature about the community of M. esculenta 

endophytic fungi, which represents an important source 

of microorganisms with potential to act in different 

technological areas of cassava cultivation, especially in 

the problems phytosanitary (SEGARAN and 

SATHIAVELU, 2019). Thus, the objective of this 

work was to characterize the community of endophytic 

fungi of cassava Manihot esculenta cultivated in the 

state of Acre, Brazil. 

 

MATERIAL AND METHODS 

Material Collection 

Two specimens of de Manihot esculenta were 

collected in areas of sustainable production in the cities 

of Rio Branco and Senador Guiomard, state of Acre, 

Brazil (Figure 1). 

 

 

Figure 1. Location map of Manihot esculenta collection sites. A. Root; B. Aerial part. 

 

 

Isolation of Endophytic Fungi 

Two branches of M. esculenta (1 branch per 

plant) containing healthy leaves and stems and two 

roots (one per plant) were collected. For each plant, 60 

fragments were used, taken from samples of roots, 

stems and leaves (Figure 2). The plant material was 

washed with a sponge and detergent under running 

water to remove solid residues and epiphytic 

microorganisms. After washing, the material was 

subjected to surface disinfection by immersion in 70 % 

ethanol (1 min), 2 % sodium hypochlorite (5 min), 70 

% alcohol (30 sec) and washing in sterile distilled water 

https://www.sciencedirect.com/science/article/abs/pii/S1878818119305869#!
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(1 min) three times. Subsequently, 20 fragments were 

used for each plant tissue, 10 fragments inoculated in 

PDA culture medium (potato-dextrose-agar) and 10 in 

oat culture médium (Figure 2). Each disinfected 

fragment obtained a diameter of 5 mm and was 

inoculated into the culture medium with 

chloramphenicol antibiotic (100 mg. L-1), and the 

plates incubated at 28 oC for 30 days (ARAÚJO et al., 

2010). 

 

Figure 2. Isolation of endophytic fungi from the root, 

stem and leaves of M. esculenta in PDA and Oat culture 

médium

 
 

Fungal colonies with distinct characteristics 

according to macroscopic observations (staining and 

growth) were purified using the streak depletion 

technique in Petri dishes with  PDA culture medium 

and incubated for 48 h. The purified fungal colonies 

were inoculated in tubes with inclined PDA medium 

(ARAÚJO et al., 2010), and the fungi were preserved 

in distilled water (CASTELLANI, 1963) and mineral 

oil (BUELL and WESTON, 1947). 

 

Morphological Characterization 

The fungi were organized into morphospecies 

according to the characteristics of the colony, such as 

color, texture and pigment production. One 

representative of each morphospecies was used for 

micromorphological identification. To make the 

microculture, the fungi were inoculated in 1 cm2 cubes 

of PDA and Oat medium and covered with coverslips, 

inside a Petri dish. The plates were incubated at room 

temperature for 7 days for mycelial growth and the 

coverslips stained with lactophenol blue for 

visualization of reproductive structures under an 

optical microscope (LACAZ et al., 1998; BARNETT 

and HUNTER, 1999). 

 

Data analysis 

To calculate the total frequency of isolates and 

genera by plant tissue and culture medium, the numbers 

obtained in each treatment were divided by the total 

number of isolates multiplied by one hundred, with the 

aid of the Excel program. GraphPad Prism 5.0 was used 

to make figures. 

 

RESULTS  

 

A total of 39 endophytic fungi were isolated 

from M. esculenta, 19 (48.7 %) stem, 13 (33.3 %) leaf 

and 7 (18 %) root were isolated. About the culture 

medium, 23 (59 %) were isolated in PDA medium and 

16 (41 %) in Oat medium (Tabela 1)
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Table 1. Relative frequency of endophytic fungi isolated from Manihot esculenta according to plant tissue 

and culture medium 

Table 1. 

Relative 

frequency of 

endophytic 

fungi isolated 

from Manihot 

esculenta 

according to 

plant tissue and 

culture 

medium.Genera 

Plant Tissue  Culture medium 
Total RF (%) 

Stem Leaf Root  PDA Oat 

Phomopsis 12 - -  5 7 12 30.8 
Penicillium - 9 3  9 3 12 30.8 
Fusarium 4 - -  4 - 4 10.2 
Aspergillus - 2 -  - 2 2 5.1 
Guignardia - - 2  2 - 2 5.1 
Colletotrichum 1 - -  - 1 1 2.6 
Acremonium - 1 -  1 - 1 2.6 
Phoma - 1 -  1 - 1 2.6 
Unknown 2 - 2  1 3 4 10.2 
Total 19 13 7  23 16 39 100 
RF (%) 48.7 33.3 18.0  59.0 41.0   

RF = Relative Frequency; PDA = Potato-Dextrose-Agar 

 
35 fungi (89.7 %) were identified, distributed 

in eight genera. Penicillium and Phomopsis were the 

most frequent, with 30.8 % relative frequency each, 

followed by Fusarium (10.2 %), Aspergillus (5.1 %), 

Guignardia (5.1 %), Acremonium (2.6 %), Colletotrichum 

(2.6 %), Phoma (2.6 %), and not identified fungi (10.2 %) 

(Figure 3A). The presence of generalist and species-

specific fungi was also observed (Figure 3B) 

 

Figure 3. Frequency of endophytic fungi of Manihot esculenta. A) Frequency of endophytic according to 

plant tissue and culture médium. B) Venn diagram showing the intersection of the isolation conditions of M. 

esculenta endophytic fungi. Ph: Phomopsis; Pe: Penicillium; Fu: Fusarium; As: Aspergillus; Gu: Guignardia; Co: 

Colletotrichum; Ac: Acremonium; Pm: Phoma. 

A                                                                                                B 
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DISCUSSION 

Maniohot esculenta demonstrated in the 

present study to have a rich community of endophytic 

fungi. 39 fungi were isolated, and stem was the plant 

tissue with the highest frequency of isolates (48.7 %). 

Variations in the rate of colonization between plant 

tissues are commonly described in the literature, and 

can be directly affected by abiotic and biotic factors, 

plant age, seasonality, ecological conditions and 

geographic distribution (FAETH et al., 2002; OKI et 

al., 2009). In addition, the anatomy of the stem also 

favors colonization, as the stem contains specific 

substances, such as bisabolol, which has a protective 

function to the fungal community (OTERO et al., 

2002). 

Some studies corroborate our findings, such as 

the endophytic fungi of Oenocarpus bacaba and, 

Mangifera indica which also showed higher rates of 

stem colonization (DASHYAL et al., 2019; DINIZ et al., 

2020). Despite the greater stem isolation in this work, 

any plant tissue can be used in the process of isolating 

endophytic fungi. 

Another factor that plays a decisive role in the 

isolation of endophytic fungi is the culture media used. 

This work revealed that in the BDA medium there was 

a higher frequency of fungal isolation in relation to the 

Oat medium, totaling (59 %). This is the most used 

culture medium for isolating endophytic fungi and was 

used to isolate fungi from Croton lechleri (VARGAS 

et al., 2018), Polygonum hydropiper (YE et al., 2019), 

Euterpe precatoria (PETERS et al., 2020) and 

Oenocarpus bacaba (DINIZ et al., 2020). It is 

important to offer different nutritional conditions to 

simulate conditions similar to the niche where the fungi 

originated. Thus, the culture medium can be a 

determining factor in the variation of isolated 

morphospecies (CARNAÚBA et al, 2007) 

Some fungal genera in the present study were 

generalists or specifists for the conditions in which they 

were isolated. Regarding the culture media, only 

Phomopsis and Penicillium were generalists, the others 

being specific to a type of media. As for plant tissue, 

only Penicillium colonized two tissues, leaf and root. 

Both fungi were the most frequent (Penicillium (30.8 

%) and Phomopsis (30.8 %)), which colonization is 

reported in numerous species and plant tissues 

(VARGAS et al., 2018; WU et al., 2020).  

Penicillium is a promising fungal genus for 

agriculture, has shown numerous benefits, promoting 

disease resistance and production of plant hormones in 

inoculated plants, such as Penicillium 

citrinum (WAQAS et al., 2015). Vegetative hormones, 

such as gibberellins and indole-3-acetic acid and 

solubilization of inorganic phosphate produced by 

endophytes of the genus Penicillium, biologically 

impact plants, even in stressful conditions, favoring 

assimilation of nutrientes (GÓMEZ-MUÑOZ et al., 

2018; BILAL et al., 2018). On biological control of 

diseases, has promising results, such as inducing 

resistance in banana trees to Fusarium wilt, inhibiting 

the growth of pathogens that cause root rot in vitro, 

such as Alternaria panax, Fusarium sp. Fusarium 

oxysporum, Fusarium solani, Phoma herbarum and 

Mycocentrospora acerine (TING et al., 2012; ZHENG 

et al., 2017; ROJAS et al., 2020). 

Phomopsis had the same colonization 

frequency as Penicillium in M. esculenta. This fungal 

genus is known to produce secondary metabolites of 

importance for agriculture, producing compounds such 

as dothiorelones A – C and H and cytosporones C and 

U with antiviral activity against the tobacco mosaic 
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virus, in addition, the crude extract of a purified 

exopolysaccharide had strong inhibitory effects against 

infection with this virus (TAN et al., 2017). They also 

have polyketide-producing genes, a source of 

promising bioactive metabolites in the pharmaceutical 

industry (RAO and SATISH, 2015; SONG et al., 2017; 

QU et al., 2020). 

Fusarium is one of the most studied fungi in 

the literature. It is known to cause great damage in 

agriculture, so the studies are focused on the control of the 

pathogen, which causes fusariosis (NEFZI et al., 2019; 

BÁEZ-VALLEJO et al., 2020). However, a study 

reported the species Fusarium solani producing the 

vegetable hormone ethylene, which acts to protect 

tomatoes against soil fungal pathogens. 

(GARANTONAKIS et al., 2018). Furthermore, it is a 

promising genus for the biological control of 

nematoids, to which the species Fusarium oxysporum 

appears nematicidal activity to Radopholus similis, one 

of the main banana pests in the world (NIERE et al., 

2006; KUMAR; DARA, 2021). 

The endophytes Aspergillus and Guignardia 

presented 5.1 % isolation frequency each. Aspergillus 

is a cosmopolitan fungus of industrial interest, 

especially for agriculture. Production of plant 

hormones such as gibberellins and production of 

isoflavonoids has been reported, in addition to 

promoting plant growth under saline stress (KHAN et 

al., 2011; LUBNA et al., 2018). It has also provided 

biological control, such as the defoliating caterpillar 

(Spodoptera litura) by the production of extracellular 

enzymes (ELANGO et al., 2020). Guignardia has few 

studies for biotechnological applications in agriculture, 

however they demonstrate the presence of secondary 

active metabolites such as meroterpenes, derived from 

dioxolanone, ergosterol and cyclo- (Phe-Pro) with 

proven anti-fungal activity (FENG-WU, 2012; LI et al., 

2015; CHEN et al., 2019). 

The Acremonium (2.6 %), Colletotrichum (2.6 

%) and Phoma (2.6 %) genera had the lowest isolation 

rates. Acremonium is an important fungus that produces 

extracellular enzymes, such as cellulases, chitinases 

and xylanases and may have industrial and agricultural 

applications (MARQUES et al., 2018; CHUNG et al., 

2019). It also has potential for biological control, such 

as Meloidogyne incognita, a nematode causal agent of 

root gall in tomatoes (TIAN et al., 2014).  

Colletotrichum is known to be or cause 

anthracnose, causing great economic losses, such as 

Fusarium (RODRIGUES et al., 2020). This genus, 

when isolated as endophyte, provided great results in 

the production of active compost, as in the case of the 

metabolite piperine, produced by the Piper nigrum 

plant, which was also reported as non-endophyte 

Colletotrichum gloeosporioides (CHITHRA et al., 

2014). This substance has antimicrobial and antitumor 

properties (MGBEAHURUIKE, et al., 2019; TURRINI 

et al., 2020; WANG et al., 2020). Or endophyte 

Colletotrichum sp. isolate of Uncaria tomentosa also 

confirmed that different non-extracted fungal compost, 

using the bioautography technique, has antibacterial 

activity for Escherichia coli, Enterecoccus faecalis, 

Klebsiella pneumoniae and Staphylococcus aureus 

(GONÇALVES et al., 2019). 

Phoma is an endophyte with interesting 

technological application for agriculture, it has 

biofertilizing potential for the production of vegetative 

hormones such as gibberellins, as well as promoting 

growth and induction of germination of milho seeds 

(Zea mays), when compared to non-inoculated plants 

(KEDAR et al., 2014; TUDZYNSKI et al., 2018). 

Furthermore, the secondary metabolites produced are 

of interest in the pharmaceutical industry because they 
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have anti-inflammatory, anti-viral and anti-câncer 

activities (WU et al., 2018; KIM et al., 2019; LIU et al., 

2019). 

Thus, we can see that important endophytic 

fungi are capable of colonizing M. esculenta, with 

important industrial, pharmaceutical biotechnological 

applications and mainly in current agriculture. 

Knowing this, aspects such as promoting plant growth, 

biological control or enzyme production should be 

explored in these strains in future studies, in order to 

provide ex situ technology for cassava providing 

improvements to this crop. 

Endophytic fungi are able to colonize all 

tissues of cassava (Manihot esculenta), being more 

frequent in stem tissue, and the genera Penicillium and 

Phomopsis observed more frequently. This is the first 

report of studies of the community of endophytic fungi 

of Manihot esculenta. 
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