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Abstract: 

Over the past several years, much research has examined the negative consequences that can arise from smartphone 
use. To help reduce these consequences, companies have developed smartphone applications and features to enable 
self-monitoring behaviors. However, the mechanisms that have caused smartphone-enabled self-monitoring behaviors 
to emerge and the positive outcomes that might result from such behaviors have received limited scholarly attention. In 
this study, we ameliorate this gap by proposing a framework that highlights key antecedents and outcomes of screen-
time self-monitoring success based on a smartphone-based self-monitoring intervention. Informed by a short-term 
longitudinal study, our results show how smartphone-based self-monitoring can enhance awareness of smartphone use 
and, consequently, lead to positive outcomes for users. Our findings reveal that how users perceive smartphone self-
monitoring affordances, their outcome expectations, and their smartphone self-monitoring efficacy positively relate to 
the extent they engage in smartphone-based self-monitoring behavior. In turn, self-monitoring enhances user 
productivity and leads to an overall sense of contentment with achievement. Nevertheless, our findings suggest that 
self-monitoring fatigue negatively moderates these relationships. This study offers novel theoretical and practical 
insights to encourage users to use smartphones in a more regulated manner. More generally, this study contributes to 
the literature on self-monitoring and self-regulation in digitally enabled environments.  

Keywords: Smartphone, Goal Setting, Self-regulation, Self-monitoring, Productivity, Contentment, Self-monitoring 
Fatigue, Screen Time, Affordance. 
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1 Introduction 

As a major manifestation of advances in information and communication technologies, smartphones have 
revolutionized the relationship between humans and digital technology. They have enabled new possibilities 
for social networking, gaming, shopping, and entertainment and new ways to connect with others and search 
for and share information. However, despite the unequivocal benefits that smartphones have created, we 
can also identify a dark side to their omnipresence in our lives and ever-increasing use (Lee et al., 2014b; 
Moqbel et al., 2022). Indeed, research has revealed that one in four children and young people have 
problematic smartphone use (Sohn et al., 2019). Additionally, over 60 percent of smartphone users self-
report a dependence on or addiction to their devices (Statista, 2021). Research has typically linked addictive 
smartphone use to symptoms such as strain, intolerance, withdrawal, and relapses, which conflict with job-
related tasks more than half the time (Lapointe et al., 2013; Moqbel et al., 2022). Hence, similar to other 
systems supporting leisure-based hedonic behaviors, such as the Internet, social media, and online games 
(Vaghefi et al., 2022), smartphones can create problems and lead to negative consequences for users 
(Brooks et al., 2017; Olson et al., 2022).  

Given the significant rise in smartphone usage over the past few years, especially during the coronavirus 
disease of 2019 (COVID-19) pandemic (Ratan et al., 2021), research has linked smartphone use to 
problems in social interactions, interference with school and work, and impulse-control disorders (Chen et 
al., 2019; Elhai et al., 2018; Panova & Carbonell, 2018). Research has also found an association between 
problematic smartphone use and negative physical, technical, professional, and emotional consequences 
for users (Bjerre-Nielsen et al., 2020; Duke & Montag, 2017; Wolniewicz et al., 2018). For instance, Lemola 
et al. (2014) found that excessive smartphone use can lead to sleep disturbances and depression. Hence, 
researchers have given much attention to its adverse effects (Turel et al., 2021) and, more recently, to its 
impact on productivity (Popoola & Atiri, 2021; Singh & Dasgupta, 2021).  

While research on smartphones’ negative consequences has accumulated over the last decade, research 
on corrective behavior and interventions has emerged only recently. By corrective behaviors, we mean 
behaviors that focus on helping users change their less desirable behaviors for behaviors that primarily 
benefit them (Osatuyi & Turel, 2020). One plausible approach to overcome the negative consequences 
would be quitting (Qahri-Saremi et al., 2021) or taking weeklong breaks from using a device (Stieger & 
Lewetz, 2018). While these strategies can be effective, implementing them may lead users to lose the 
benefits that smartphones offer altogether (e.g., better connectivity, access to the Internet and email from 
anywhere, or navigation) along with its side effects. Thus, an alternative, practical approach involves 
optimizing smartphone use through self-regulation (Osatuyi & Turel, 2020). Such behaviors may more 
feasibly generate desirable outcomes without sacrificing the myriad benefits that smartphones offer.  

While growing evidence shows that self‐regulation predicts productive technology use (Bruhn & Wills, 2018), 
studies fall short in explaining how self-regulatory behaviors emerge and lead to positive outcomes. 
Likewise, the impact that self-regulation has on technology use remains up for debate (e.g., Jiang & 
Cameron, 2020; Ranney & Troop-Gordon, 2020). We need to address this issue since doing so could 
provide insights into how we could fully or partially curb the negative consequences that arise from using 
smartphones. We also need such research to promote ways to meaningfully use digital technology since 
research has frequently cited the need to understand the technology-enabled self-regulation process to 
develop effective interventions across disciplines (e.g., Bruhn & Wills, 2018; Chow & Luzzeri, 2019; 
Faurholt-Jepsen et al., 2019; Jiang & Cameron, 2020).  

Self-monitoring, which involves recording and tracking a behavior’s intensity and frequency, represents one 
common way to achieve self-regulation (Turner-McGrievy et al., 2013). Research has reported self-
monitoring for behavioral control to have positive effects in various contexts, such as physical activity or 
weight loss (Burke et al., 2011). However, to our knowledge, little research has examined smartphone self-
monitoring and the factors that drive this behavior. Recent studies have revealed the importance of 
smartphone-based self-monitoring in different contexts, from physical health (Jiang & Cameron et al., 2020; 
Thornton et al., 2021) to mental health (Gatto et al., 2020; Melbye et al., 2020). Although self-monitoring 
cannot address all adverse effects that may result from using smartphones, behavioral sciences support 
self-monitoring as a practical measure to improve the extent to which users productively use smartphones 
(see Harris, 1986; Olson & Winchester, 2008). Still, the self-monitoring literature falls short in portraying how 
self-monitoring and, in particular, smartphone-based self-monitoring improves productivity. Accordingly, we 
first argue that examining the network of factors associated with smartphone self-monitoring and productivity 
has merit and can guide efforts to design and implement self-monitoring interventions. Second, despite the 
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supportive role that self-monitoring plays in self-regulation (Abhari et al., 2021), research on self-regulation 
suggests that maintaining self-monitoring comes with challenges. Therefore, we need to understand why, 
as individuals carry out self-monitoring over time, their wiliness to control their behaviors may decrease 
(Baumeister, 2002; Muraven & Baumeister, 2000).  

Prior studies on exercise activities have shown that, when depleted, exercise self-regulation can lead to 
reduced adherence to subsequent exercise activities (Martin Ginis & Bray, 2010; McAuley et al., 2011). 
Other studies have also reported self-regulation depletion to have comparable effects in digital environments 
such as mobile health (Corden et al., 2016), eHealth (Footracer, 2015), social media use (Bright et al., 2015; 
Dhir et al., 2019), and security compliance (Olt & Mesbah, 2019). Fatigue represents one such effect that 
prior research on self-regulation depletion has systematically studied (Brick et al., 2016; Pageaux et al., 
2015). Psychology research has defined fatigue as a personal reluctance to continue engaging with a task 
or performing a certain behavior (Brown, 1994) and a subjective state of tardiness due to exhaustion 
(Ravindran et al., 2014). As it pertains to self-regulation, one can see fatigue as a perceptive, cognitive 
feeling of exhaustion caused by extended self-regulation, which can reduce how well one performs a 
behavior in the future (Pageaux et al., 2015). Prior IS research has used the term fatigue from technology 
use to explain how users may feel tired from using (mostly hedonic) technologies such as social media (e.g., 
due to repetitively using the same features) or overloaded from too much information and communication 
on social applications (Corden et al., 2016). Nonetheless, to our knowledge, little research has examined 
whether fatigue occurs as users self-regulate their smartphone use. We posit that it seems reasonable to 
expect that self-regulatory resources may become exhausted as users continue to monitor themselves, 
which, in turn, may cause fatigue for reasons such as cognitive overload (see Hales et al., 2016). We argue 
that self-monitoring fatigue would then negatively affect self-monitoring outcomes.  

Taken together, we need to consider self-monitoring’s positive and negative aspects in evaluating 
smartphone-based self-monitoring outcomes. Accordingly, in this study, we focus on self-monitoring through 
smartphone technology. Specifically, we address the following research question: 

RQ: What are the antecedents and outcomes of smartphone self-monitoring? 

To answer this question, we draw on goal-setting theory (GST) (Locke & Latham, 2002) and propose a 
research model that details the relationships between self-monitoring efficacy, outcome expectations, 
perceived affordances, and smartphone self-monitoring. We posit that smartphone self-monitoring, in turn, 
predicts improvements in individuals’ productivity and contentment with goal achievement. We also propose 
that self-monitoring fatigue can moderate the effect that self-monitoring has on these outcomes. We provide 
support for our proposed model and hypotheses via analyzing data that we collected in a multi-wave survey 
that we administered to participants in a smartphone self-monitoring intervention. We found that 
technology’s support for self-monitoring, such as Apple’s embedded screen-time feature, plays as crucial a 
role as behavioral and cognitive factors in the smartphone use context. More generally, our findings 
contribute to the growing literature on strategies to overcome the negative consequences associated with 
technology use and suggest that an optimal intervention approach should go beyond targeting cognitive and 
behavioral drivers and invest in self-monitoring technology (e.g., apps and features).  

This paper proceeds as follows: Section 2 provides an overview of the literature and details the theoretical 
foundations. We also illuminate the underlying mechanisms between personal and technological factors 
that contribute to self-monitoring and its outcomes. Section 3 presents our theoretical model and describes 
our hypotheses regarding the relationships between smartphone self-monitoring’s antecedents and 
outcomes. In Section 4, we describe the intervention and method we used to collect and analyze the data 
we obtained and, in Section 5, present our results. In Section 6, we discuss our findings and the study’s 
contributions to theory and practice. Finally, in Section 7, we conclude the paper. 

2 Background  

2.1 Consequences of Smartphone Use and Corrective Behaviors 

Smartphones have penetrated every aspect of our daily lives (Vaghefi et al., 2017) and have meaningfully 
improved our personal, social, and professional activities (Loid et al., 2020). For instance, smartphone 
applications afford new ways to communicate with others, offer accessible learning options, and help people 
stay organized, safe, healthy, and informed (Gowthami & Kumar, 2016). Among their positive outcomes, 
smartphones can significantly enhance productivity by allowing individuals to connect and work from any 
place and time, which presents unparalleled productivity opportunities. However, recent IS research has 
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shown an inevitable association between smartphone use and negative consequences on our personal and 
professional lives (Benlian, 2020; Califf et al., 2020). Scholars and practitioners have raised this issue as a 
concern (Mazmanian, 2013; Perlow, 2012) and linked smartphone use with behaviors similar to an addiction 
(Soror et al., 2015; Vaghefi et al., 2017), excessive use (Billieux et al., 2015), compulsive use (Wang et al., 
2019), problematic use (Wolniewicz et al., 2018), and even behavioral disorders (Lachmann et al., 2018). 
While nuanced differences among these behaviors exist, they all confer that smartphone use can become 
increasingly repetitive and even urge driven (Wang et al., 2019) to the point that addiction-like symptoms 
such as tolerance or withdrawal may emerge (Kurniasanti et al., 2019).  

Using smartphone applications such as news, games, and social media in a problematic way can increase 
the likelihood that individuals form or exacerbate their preexisting mental health issues such as 
psychological dependence (Andreassen, 2015; Park & Lee, 2012), overload (Gao et al., 2018), technostress 
(Brooks et al., 2017), sleep disorders, anxiety, depression (Demirci et al., 2015; Matar Boumosleh & 
Jaalouk, 2017), and risky behaviors (Pivetta et al., 2019). Researchers have found this problematic use to 
be associated with detrimental effects on users, families and friends, organizations, and even society 
(Mazmanian, 2013; Vaghefi et al., 2017; Venkatesh et al., 2019). Furthermore, such problematic behavior 
that persists over a long period may lead to a lower quality of life and emotional well-being (Lachmann et 
al., 2018)1. 

In the presence of such negative consequences, many users become motivated to apply corrective 
behaviors in order to take control over how they use smartphones and remedy the negative consequences 
(Soliman & Rinta-Kahila, 2019). For instance, prior research has investigated switching an addictive 
application, taking occasional breaks (Hanley et al., 2019), or even quitting and uninstalling an application 
from a device (Vaghefi et al., 2020). While these strategies could work, they also mean that the user loses 
the utility that smartphone applications provide. For example, although uninstalling Facebook could 
temporarily benefit users, taking such measures would prohibit them from connecting and communicating 
with their peers and, thus, lose their access to all the information and messages exchanged on the platform. 
Replacing a smartphone with an older phone without the Internet can adversely affect individual productivity. 
Older phones may not provide easy access to the Internet and do not contain tools such as email clients 
and navigation applications.  

Self-regulation (via self-monitoring device use in particular) represents a better strategy to help curb 
smartphone use (Abhari et al., 2021). As a case in point, in 2018, Apple introduced the screen time feature 
for iOS and advertised it as follows: “[w]ith Screen Time, you can access real-time reports showing how 
much time you spend on your iPhone, iPad, or iPod touch. You can also set limits for what you want to 
manage.” (Apple, 2018). This advertisement assumes that by self-monitoring the extent to which they use 
their smartphone, users can reduce negative consequences such as reduced productivity and well-being 
(Duke & Montag, 2017). While the assumption appears logical, we lack theoretical knowledge about self-
monitoring behaviors and smartphone use. Therefore, we need more research to better understand key 
factors that facilitate or challenge smartphone self-monitoring to realize its intended outcomes.  

2.2 Self-monitoring Behavior 

While smartphone self-monitoring behaviors have received limited attention in prior research, self-
monitoring is one of the most established and well-documented strategies that individuals use to regulate 
their behavior (Gunstone, 2013; Zimmerman et al., 1996). As an essential element of self-regulation, self-
monitoring refers to paying “deliberate attention to some aspect of an individual’s behavior and recording 
some details of that behavior… as well as the conditions under which they occur and their immediate and 
long-term effects” (Burke et al., 2011, p. 93). During the last three decades (Bruhn et al., 2015), the self-
monitoring literature has shown that when individuals closely monitor their behaviors and follow strict ways 
to track them down (e.g., using a diary or a checklist), they become better aware of the benefits and deficits 
of the particular actions related to that behavior (e.g., exercising, eating and diet) (Burke et al., 2011). In 
return, this awareness helps them to better regulate their future behaviors in light of possible gains and 
consequences (Schwarzer et al., 2015).  

                                                      
1Scholars across disciplines such as information systems (IS), health, or psychology continue to debate the criteria needed to formally 

diagnose such behaviors (e.g., considering technology use as an addiction or a disorder). Nonetheless, prior research has found 

significant behavioral and neurological similarities between smartphone (or other technology) addiction and other behavioral addictions 

(Turel & Vaghefi, 2019). For instance, internet gaming disorder is included as a condition in the latest version of Diagnostic and 

Statistical Manual of Mental Disorders (DSM5). 
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Research has explained the effect of self-monitoring on users’ behaviors in multiple ways. For instance, it 
has shown that self-monitoring 1) provides a medium for self-evaluation, 2) allows users to reflect on their 
past behavior (Bandura & Cervone, 1983; Schunk, 1996), 3) increases accountability and self-esteem, 
which, as a result, 4) improves how well they perform that behavior (van der Bij et al., 2016). Individuals 
with a high self-monitoring capacity can observe their behavior more objectively and adapt to their 
environment faster than those with a low self-monitoring capacity (Mill, 1984; Pillow et al., 2017). Those 
individuals also tend to interact with others and behave in a more disciplined manner. More importantly, 
prior research has established that individuals who have self-monitoring routines exhibit a high 
correspondence between their emotions, attitudes, and behaviors (e.g., Burke et al., 2009). Finally, such 
individuals tend to possess higher self-esteem and an internal locus of control (Day & Schleicher, 2006), 
which contributes to their ability to better regulate their own behavior. 

Research has also recognized self-monitoring’s positive outcomes as related to various self-regulatory 
behaviors. For instance, research has found self-monitoring to increase students’ attention span, accelerate 
patients’ recovery process, and reduce sedentary behaviors in adults or help them to regulate their diet and 
physical activities (Carvalho et al., 2009; Compernolle et al., 2019). Moreover, self-monitoring can positively 
affect behavior and productivity and, ultimately, improve performance (Ghanizadeh, 2017). For instance, in 
their study, Schmitz and Perels (2011) found that students who used standardized diaries as a self-
monitoring tool achieved higher learning outcomes.  

Although self-monitoring can contribute to helping one maintain a new behavior and achieve various positive 
outcomes, users cannot exert it consistently at a high level given its finite nature. Scholars have argued that 
one can see an individual’s self-regulation as limited energy (i.e., resource) that becomes depleted over 
time, which leads to a state of self-regulation exhaustion or “ego depletion” (Baumeister, 2002; Baumeister 
& Vohs, 2016; Muraven & Baumeister, 2000). In such a state, individuals will enter a low self-regulation 
period until they recover these resources. Further studies have also shown that a decline in self-regulation 
(i.e., self-regulation fatigue) can occur due to the energy and conscious decision making required to fight 
temptation and craving during a self-regulatory act (Baumeister & Vohs, 2016). In the technology use 
context (e.g., social media use), research has linked use-related fatigue to factors such as fear of privacy 
invasion (Dhir et al., 2019; Xiao & Mou, 2019) and information and communication overload (Corden et al., 
2016). The technostress literature suggests these stressors can have adverse effects on self-regulated 
technology use (Brooks et al., 2017; Salo et al., 2022) and, as a result, harm productivity (Tarafdar et al., 
2007). In this study, however, we take a different approach and focus on self-monitoring fatigue and not 
use-related fatigue to better understand self-monitoring’s limitations. 

2.3 Smartphone-based Self-monitoring 

While smartphone use, when out of control, can cause some negative consequences, some features and 
affordances (the action possibilities enabled by smartphone features) can help users regain control over 
their use and counterbalance the adverse effects. For example, smartphones and similar technologies can 
help users track their smartphone use and enhance the extent to which they can implement self-monitoring 
(Bruhn et al., 2016). According to cognitive and affective behavioral models, technology-enabled self-
monitoring can reduce the negative consequences that arise from using smartphones. For instance, self-
monitoring renders emotional self-awareness, which increases sensitivity to the negative feeling of certain 
behaviors and motivates behavior change (Chan et al., 2015; Jack & Miller, 2008). Regarding social media 
use, research has shown that usage monitoring can have a positive effect on youths’ and young adults’ 
overall well-being (e.g., by reducing anxiety and depression) (Coyne et al., 2020; Eschler et al., 2020). Also, 
in the smartphone use context, some studies have introduced technology-enabled self-monitoring as a 
potential remedy for excessive use or addictions (Compernolle et al., 2019; Okeke et al., 2018). These 
studies suggest that tracking and monitoring screen time can result in moderated smartphone use.  

While these studies have helped explain smartphone user behaviors, we need more research on the topic 
for two reasons. First, existing studies do not theoretically explain the factors and conditions necessary for 
self-monitoring efforts to succeed. We need such knowledge given that anecdotal evidence shows that most 
users drop using tracking features and applications rather quickly (Kaye et al., 2020). Furthermore, 
knowledge about smartphone self-monitoring’s potential outcomes remains at an early stage. For instance, 
studies have found mixed and inconclusive findings as to the effect that screen-time monitoring has on 
performance (i.e., they have found both an increase and decrease in performance) (e.g., see Orben, 2020). 
Second, the self-monitoring literature falls short in explaining self-monitoring’s downsides in the smartphone 
use context (e.g., whether smartphone users may back away from screen-time monitoring when they 
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become overwhelmed with frequent alerts and notifications). We address these limitations in this study by 
offering a theoretically grounded and empirically validated model that explains smartphone-based self-
monitoring behavior more rigorously. We draw on goal-setting theory (GST) (Locke et al., 1981) to identify 
the critical factors that lead to smartphone self-monitoring, which, in turn, enhances productivity and content 
with (goal) achievement. 

3 Theoretical Framework and Hypotheses 

We use GST to study smartphone self-monitoring for two reasons. First, Locke and Latham (2002) 
essentially created GST to formulate whether a goal-directed behavior succeeds by assessing the 
relationship between goal setting, motivation, goal accomplishment, and outcome achievement (Locke & 
Latham, 2002). In the same way, GST can explain smartphone self-monitoring behavior given that these 
applications allow users to set limits on their screen time (e.g., daily or weekly goals) and then track and 
monitor their use according to the set goals where success could mean screen time that does not exceed 
the goal limits. Second, researchers have used GST more broadly to explain individuals’ behavior in other 
similar contexts with a focus on self-monitored behavior to achieve goals, such as student learning (Bloom, 
2013), physical activity (Munson & Consolvo, 2012), and weight loss (Burke et al., 2011). 

3.1 Goal-setting Theory 

Originating from industrial-organizational psychology and Locke and Latham’s (2006, 1981) work, GST 
argues that goals that have specific and precise details typically lead to more concrete outcomes and 
improved performance as compared to vague, unclear goals or abstract statements (e.g., “do the best I 
can!”). Many experimental studies that GST has informed have established that individuals who have set 
explicit goals show a higher capacity to self-regulate their behaviors toward a specific goal, which helps 
them to steer away from other distractions or irrelevant goals. Researchers have also found goal setting to 
increase individuals’ enthusiasm and intrinsic motivations and, thus, to lead them to expend more energy 
toward achieving goal-directed tasks (Morisano et al., 2010). Furthermore, goal setting appears to improve 
individuals’ persistence when they face difficulties, anxiety, frustrations, and negative affect (Locke & 
Latham, 2002).  

GST has provided explanations for broad classes of factors that lead individuals to achieve goals. The first 
category relates to how much people believe that they can achieve important goals and tasks. Therefore, 
those who think they can achieve goals have a higher likelihood of doing so. Although one can consider 
several factors in this category such as training, experience or success, skills, or information, the goal-
setting literature has widely used the term self-efficacy. Self-efficacy refers to one’s confidence in own ability 
to act in order to achieve an intended outcome (Carberry et al., 2018). According to Locke and Latham 
(1990, p. 220), “self-efficacy includes all factors that could lead one to perform well at a task (e.g., 
adaptability, creativity, resourcefulness, perceived capacity to orchestrate complex action sequences)”. 
Prior research has shown that self-efficacy, very much like setting goals, directly affects achieving goals 
and higher performance (Bandura, 1982). This effect occurs through mechanisms that strengthen goal 
choice (e.g., focusing on set goals rather than choices), increase commitment, and help individuals find 
better strategies to achieve the relevant goal.  

The second category concerns outcome or performance expectations, which refer to the individuals’ 
confidence that their effort and energy will lead to outcomes that they anticipate and the achievement of 
goals. Individuals who believe that their action will produce the intended results have positive outcome 
expectations and are more likely to act accordingly to attain them (Schunk, 1990). Prior research in 
psychology has shown that, while individuals can follow many choices and strategies in every situation and 
that these strategies may all provide some value, individuals tend to follow those that seem more likely to 
successfully result in the intended outcome (Betz & Hackett, 1986). While self-efficacy and outcome 
expectations concepts may seem similar, they address distinct constructs. More specifically, the former 
concept refers to one’s estimate about what outcome will arise from pursuing a course of action, while the 
latter refers to one’s confidence in one’s own ability to execute actions required for an outcome (Bandura, 
1991).  

The third category considers the effect that the environment has on a goal-setter that enables and hinders 
goal attachment and a target behavior (also referred to as situational resources/constraints). For instance, 
when the environment makes it easy to set and follow goals or provides praises and rewards for goal 
attainment, people are more likely to succeed in attaining their goals (Latham & Locke, 1991). The 
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environment could have a limiting effect when it restraints users from setting and attaining goals or when 
they incur punishments for taking specific actions. According to Bandura (1997, p. 21), “[a] high sense of 
personal efficacy in a responsive environment that rewards valued accomplishments fosters aspirations, 
productive engagement in activities, and a sense of fulfillment”. To study the environment’s role in this 
context, we should choose context-specific variables (Hong et al., 2014) related to smartphone use. Given 
that smartphones now include screen time features and apps, smartphone affords several ways to help 
users monitor their behaviors via goal setting. We study these underexplored context-specific factors (Hong 
et al., 2014) through an affordance lens (Karahanna et al., 2018).  

The affordances concept considers the relationship between individuals and technology and “the 
possibilities for goal-oriented action afforded to specified user groups by technical objects” (Markus & Silver, 
200, p. 622). Researchers have used the concept in various contexts to explain technology user behaviors 
at both the organizational (Leonardi, 2013; Majchrzak et al., 2013) and individual (micro) analysis levels 
(Abhari et al., 2022; Goh et al., 2011; Vaghefi et al., 2022). In this study, we study the design affordances 
of smartphone screen-time monitoring options as the individual factors that contribute to one’s self-
monitoring behaviors. This approach corresponds to calls in research to contextualize theoretical insights 
more and include technology factors to understand a phenomenon (Chatterjee et al., 2015; Chiasson et al., 
2015).  

Building on these theoretical foundations, we developed our hypotheses focusing on the implementation 
conditions that motivate self-monitoring and its outcomes in the productivity context. We limited our 
theoretical framework’s scope to intrinsically motivated self-monitoring behavior since intrinsically motivated 
individuals are more likely to experience sustained behavior change (Sheldon et al., 1997). 

3.2 The Role of Self-efficacy 

In this study’s context, we define smartphone self-monitoring efficacy as one’s judgment about one’s own 
capability to use smartphone technology for self-monitoring. This judgment can directly relate to the self-
monitoring act (see Marakas et al., 1998). According to GST, to attain a set goal, individuals should perceive 
themselves as able to successfully take the required actions. Hence, we can expect that individuals with 
higher self-efficacy to succeed more at self-monitoring behaviors. Prior research has shown that self-
efficacy enables more commitment toward (especially hard-to-attain) goals (Bandura et al., 1997). 
Individuals who possess higher self-efficacy tend to be more adaptable and resourceful in dealing with the 
challenges related to challenging goals (Bandura, 1982). Research has shown self-efficacy about goal 
attainment to determine whether individuals will initiate a behavior, how much effort they will put into it, and 
how long they will persist in performing it (Marcus et al., 1992). Accordingly, researchers have recognized 
self-efficacy’s role in several goal-setting contexts such as healthy interactions (Harrison et al., 1996), 
exercising (Marcus et al., 1992), binge eating control (Linardon, 2018), and career choice (Betz & Hackett, 
1986).  

In the technology use context, research has also shown self-efficacy to determine users’ intention to pursue 
different technology-related behaviors, such as performing a specific task in a digitally enabled environment 
(Marakas et al., 1998). Prior research has established the important role that self-efficacy plays in the initial 
technology use and adoption context (Compeau et al., 1999). More recently, researchers have found an 
association between self-efficacy and corrective technology use behaviors such as discontinuing the use of 
problematic social media (Vaghefi et al., 2020; Turel, 2015). For instance, Turel (2015) showed that users’ 
self-efficacy beliefs can predict their intentions to discontinue addictive social networking site use. In the 
same vein, we argue that users’ higher self-efficacy to monitor their smartphone use (which we refer to as 
smartphone self-monitoring efficacy henceforth) strengthens and commitment and elevates their efforts 
toward self-monitoring, which increases the likelihood that they will successfully monitor and achieve 
outcomes. Therefore, we hypothesize: 

H1: Higher smartphone self-monitoring efficacy is associated with higher smartphone self-
monitoring. 

3.3 The Role of Outcome Expectations 

According to GST, outcome expectation motivates individuals to work on set goals—especially goals such 
as self-regulation that require significant effort to maintain (Compeau et al., 1999). Existing research has 
identified the consequences that users expect to result from achieving a goal and its potential benefits as 
key denominators of behavioral change and goal attainment in many contexts (Webb & Sheeran, 2006), 
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such as self-monitoring (Landry, 2003) and controlling problematic behaviors (e.g., smoking) (Godding & 
Glasgow, 1985). Prior IS research has also shown that individuals who more favorably view gains from 
using a system (e.g., improved job performance or enhanced communication) have a higher tendency to 
adopt and use the system (Venkatesh, 2000). Similarly, expecting corrective action (such as self-monitoring) 
as an outcome can increase individuals’ willingness to start that behavior (Bandura, 1991; Compeau et al., 
1999). In our context, we expect that smartphone users who perceive that their self-monitoring efforts will 
have more favorable outcomes (e.g., increased productivity) are more likely to engage and then sustain 
their self-monitoring behavior. Therefore, we hypothesize: 

H2: Higher self-monitoring outcome expectations are associated with higher smartphone self-
monitoring. 

3.4 The Role of Self-monitoring Affordances 

While research has noted technology’s role in assisting self-monitoring behavior for the past decade, the 
research on the potential effect that technology has on whether these efforts succeed continues to develop 
(Jensen et al., 2016). For example, studies provide some evidence that self-monitoring may have a positive 
effect on students’ learning outcomes (Bedesem, 2012), weight control (Jensen et al., 2016), eating 
disorders (Tregarthen et al., 2015), physical activity (Ormel et al., 2018), stress management (Swendeman 
et al., 2018), and even their ability to self-manage psychiatric disorders (Faurholt-Jepsen et al., 2019). 
Overall, these studies provide a positive view on using smartphone features and applications to set goals 
and their significance in achieving outcomes (e.g., Patel et al., 2019). Smartphone-based interventions also 
appear a viable and accessible strategy to reduce screen time and work disruptions (Lubans et al., 2014). 
In the same vein, developers have created mobile applications and iOS and Android features to bring 
awareness to users about their smartphone use and its potential negative consequences (Howells et al., 
2016). These applications typically include features that enable screen-time monitoring with nudging options 
that can help address smartphone addiction (Lee et al., 2014a).  

To capture technology’s effect, we extend the affordance lens to the self-monitoring context and examine 
the role that smartphones themselves have on self-monitoring behaviors. Unlike prior studies, we examine 
smartphone affordances to regulate behaviors associated with smartphone use itself rather than external 
activities such as monitoring diet, health indicators, or learning. Users should perceive these possibilities 
before their goal-directed intentions can actualize them. We argue that the perceived functional affordances 
provide a broader and more generalized way to view the utility that smartphone self-monitoring technology 
offers as compared to the features that may manifest in different forms from one application to another (see 
Abhari et al., 2017; Jarrahi et al., 2018; Lu & Cheng, 2013; Witt & Riley, 2014). These studies suggest the 
extent to which users perceive the affordances of self-monitoring functions (that their smartphone affords) 
as possibilities to self-monitor will positively affect their self-monitoring behaviors. Therefore, we 
hypothesize: 

H3: Higher perceived smartphone self-monitoring affordances are associated with higher 
smartphone self-monitoring. 

3.5 Self-monitoring Outcomes 

Although smartphones have unequivocally contributed to our capacity for productivity, their ubiquity and 
unlimited access to the Internet, social media, and other hedonic applications has also presented a 
roadblock to sustainable productivity. The adverse effects on productivity from smartphone use may occur 
in multiple ways. First, constant interaction with these devices can add up to a significant amount of time 
during the day, which limits time spent on important productive tasks. Frequent interaction with smartphones 
(which can occur as frequently as every five minutes) can also create severe workflow disruptions (Addas 
& Pinsonneault, 2018). Accordingly, mounting evidence indicates that excessive smartphone use has 
significant deleterious effects on work productivity (Vaghefi et al., 2017) and academic performance 
(Samaha & Hawi, 2016). Accordingly, we expect self-monitoring to create an opportunity for users to reduce 
use and remedy some negative consequences (particularly regarding users’ work output and productivity) 
as measured at a daily level (Popoola & Atiri, 2021; Singh & Dasgupta, 2021). This argument concurs with 
recent findings observing the positive relationship between self-monitoring and performance metrics in 
educational and professional settings (e.g., Bruhn & Wills, 2018; Chow & Luzzeri, 2019; Meyer, 2018; Sherif 
et al., 2020; Wells et al., 2017). Therefore, we hypothesize: 
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H4: The higher the extent to which users monitor their own smartphone use, the more they perceive 
themselves as productive.  

Given that self-monitoring can help individuals achieve outcomes such as improved productivity, we expect 
that it also contributes to their satisfaction when they achieve them (Rock, 2005). A recent study shows that 
those users who reported practicing self-monitoring also perceived more satisfaction with their achievement 
(Zhu et al., 2019). We captured this type of self-monitoring outcome via the concept contentment, which we 
can define as the extent to which individuals meet their wants and desires from self-monitoring (Cordaro et 
al., 2016). Prior research has also showed that experiencing contentment with achievement improves 
overall well-being, satisfaction with life, and even perceptions about life quality (Albert-Lorincz et al., 2008; 
Cordaro et al., 2016). Thus, we argue that contentment with achieving the set usage goal constitutes a 
suitable and more immediate outcome of smartphone self-monitoring behaviors, which could bring about 
additional positive yet distant outcomes. Therefore, we hypothesize: 

H5: The higher the extent to which users monitor their own smartphone use, the higher their 
contentment with their achievement. 

Although self-monitoring can directly contribute to contentment, improvements in user productivity can also 
contribute to it. Prior research has shown that problematic smartphone use (e.g., excessive use or addiction) 
typically leads to significant impairments in well-being (Moqbel et al., 2022) and productivity levels (Duke & 
Montag, 2017), which can lead to additional stress and reduced life satisfaction (Samaha & Hawi, 2016). At 
the same time, recent research provides evidence that taking corrective actions (e.g., short-term breaks 
from using a smartphone) can significantly improve life satisfaction (Stieger & Lewetz, 2018), perceptions 
about affective well-being, and quality of life (Hall et al., 2019). Hence, we argue that the productivity gains 
from smartphone self-monitoring can also contribute to users’ overall contentment with their achievements. 
Therefore, we hypothesize: 

H6: The more users perceive themselves as productive, the higher their contentment with their 
achievement. 

3.6 The Moderating Effect of Self-monitoring Fatigue  

While smartphone self-monitoring can produce positive outcomes such as improved productivity and 
contentment, this effect may not hold over time. As individuals carry out their self-monitoring, they will 
exhaust the self-regulatory resources that they need to monitor their behaviors and experience less desire 
to monitor their use in the future. Ego-depletion theory (Baumeister et al., 1998; Baumeister, 2003) explains 
this effect. This theory views the “capacity to control” as a finite resource and its strength as varying among 
individuals. As people exert self-control on ongoing tasks and behaviors, the self-control resource (i.e., ego) 
becomes depleted; in such cases, individuals have fewer resources available for subsequent self-regulatory 
tasks (Muraven & Baumeister, 2000). In turn, this reduction in the self-control resource increases one’s 
vulnerability to withdraw from subsequent efforts to control a resource-demanding behavior. Nevertheless, 
several studies show that the extent (and pace) of self-control depletion depends on several factors such 
as motivation, mood, life stressors, coping skills, or even trait characteristics (Hofmann et al., 2012; 
Baumeister & Heatherton, 1996).  

In our study’s context, we expect that self-monitoring fatigue, which we define as the subjective feeling of 

exhaustion from self-monitoring, will interact with self-monitoring and reduces the likelihood that we will 

observe its positive outcomes. Accordingly, we argue that, as users exhaust their self-control resources by 

exerting self-monitoring over time, the resulting fatigue attenuates the effect that self-monitoring has on its 

outcomes. In this situation, individuals who develop more fatigue tend to apply lower quality self-monitoring 

(compared to when they began) and pay less attention to their smartphone use. As a result, they will achieve 

expected positive outcomes at a lower level (i.e., productivity and contentment with achievement). 

Therefore, we hypothesize: 

H7: The higher the self-monitoring fatigue, the lower the relationship between self-monitoring and 

a) perceived productivity and b) contentment with achievement. 

In Figure 1, we summarize the theoretical arguments that we present above. We validated this research 
model by implementing a longitudinal intervention that we describe in Section 4. 
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Figure 1. Research Model 

4 Methodology 

To validate the research model and proposed hypotheses, we designed a three-week longitudinal field study 
that included intervention and various surveys. We collected data from an undergraduate university student 
sample, which we deemed appropriate for this study for several reasons. First, prior research shows that 
young adults, particularly college and university students, are more susceptible to excessive smartphone 
use or addiction and its side effects mainly due to earlier exposure to the technology (Wang et al., 2019). 
Second, younger generations feature higher rates of smartphone addiction, related mental health issues 
(e.g., depression and anxiety), and related physical problems (Matar Boumosleh & Jaalouk, 2017). Third, 
students typically have a flexible schedule, inadequate supervision over their technology use (e.g., no 
parental control), and unrestricted access, which all contribute to their developing problematic smartphone 
use habits (Loiacono et al., 2018). Finally, college students highly depend on smartphone use due to their 
lifestyle and work style. Therefore, they are more vulnerable to addictive behavior, especially if they 
experience anxiety, stress, or depression (Lăzăroiu et al., 2020). Given these reasons, college students are 
more likely to suffer from excessive smartphone use and, at the same time, benefit from monitoring their 
smartphone use and bringing it back to controllable levels. 

4.1 Data-collection Procedure 

We collected data using a four-wave survey from three large public universities in New York, California, and 
Hawaii. We invited undergraduate students in business school courses from these three participating 
universities. We recruited all participants simultaneously and through a similar procedure (posters, class 
announcements, and emails). We asked them to answer a screening question regarding their interest in 
installing a self-monitoring mobile app to track their screen time. We used the app to assign students to 
treatment or control groups. We required the treatment group participants to complete four surveys and 
install a monitoring application (called Space, previously called BreakFree; see Appendix A). The control 
group encompassed the participants who did not install the app for personal or technical reasons such as 
battery concerns or privacy. However, they received the same surveys. We compensated all participants 
(control or treatment group) for their participation (we offered extra credit). 

4.1.1 The Self-monitoring Tool 

The Space app was the only cross-platform and free screen-time monitoring app available at the time of 
this study. The app also provided the same user interface with similar features for both Android and iOS. 
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As such, we could collect consistent and comparable data from participants on whatever phone operating 
system they used. The application enabled participants to set periodic smartphone usage, unlock goals 
(e.g., daily and weekly), and then track their usage against their set goals (see Appendix A). The participants 
who did not want to install the application could still participate in the study by completing the surveys. We 
used the data collected from this group as a control mechanism. For example, we compared the smartphone 
use (t = 1.7, p = 0.01) and addiction scores (t = 1.02, p = 0.31) between these two groups when we began 
the study and found no significant difference between them and, thus, no selection bias.  

4.1.2 The Surveys 

We distributed the surveys to the participants when we began the study (t0), at the end of the first week (t1), 
at the end of the second week (t2), and, finally, at the end of the third week (t3) (see Figure 2). In the first 
data-collection phase (t0), we also asked participants to install the Space app and answer a set of baseline 
questions on their smartphone usage, perceived productivity, and contentment with achievement. Then, we 
instructed participants to upload a screenshot of the app installed on their smartphones as part of the survey. 
While the surveys were anonymous, we assigned a random ID to each participant and asked them to use 
the same ID to submit all four surveys so we could match responses to the right individual. We measured 
demographic variables at t0, which included participant gender, school year, and smartphone operating 
system. We measured other control variables, such as social desirability, at t3. 

 
Figure 2. Survey Distribution2 

While we used the t3 survey outcome to test our model, we controlled for baseline values, perceived 
productivity, and contentment with achievement, which we measured at t0. We needed to account for these 
control variables as we had an interest in changes and improvements in the self-monitoring behaviors and 
outcomes for the users (see Kim & Malhotra, 2005). While we did not use the data that we collected during 
t1 and t2 to test the hypotheses, we asked participants to upload a screenshot of the Space app’s 
“dashboard”, which showed their mobile usage for that week (see Figure 3). We used the screenshots to 
verify that they continued to use the app and cross-check the usage numbers that we collected via the 
survey to ensure the intervention’s fidelity (Chiasson et al., 2015; Williams et al., 2017). We excluded 
participants who failed to submit all screenshots or removed the app at any point during the study from the 
dataset. 

4.2 Measurements  

We adopted validated measurements from previous studies but made minor adjustments to them so that 
they made sense in our context (Duke & Montag, 2017; Gökçearslan et al., 2016; Lubans et al., 2014). Our 
antecedents included perceived smartphone self-monitoring efficacy (Gökçearslan et al., 2016; Jerusalem 
& Schwarzer, 1992), self-monitoring outcome expectations (Compeau et al., 1999), and self-monitoring 
affordances (Rockmann & Gewald, 2018). We measured self-monitoring with Houghton and Necks’ (2002) 
scale and self-monitoring fatigue with Zhang et al.’s (2016) scale. The outcome variables included perceived 
productivity (Miller & Cardy, 2000) and contentment with achievement (Gendolla, 1998), which we measured 
at both t0 and t3. We used demographics (age, gender, school year, location, race), smartphone operating 
system, grade point average (GPA), pre-intervention perceived productivity and contentment, social 
desirability, and the addiction score that the app calculated as control variables given that they might have 

                                                      
2 H: The measurements we used to test hypotheses 
P: The measurements we used to ensure participants used the apps 
S: The measurements we used to ensure no selection bias 
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influenced the proposed relationships. Appendix B provides the list of items we used in this study (including 
items that we removed from the final survey). We initially tested and evaluated the instrument in a pilot 
study. We designed this pre-test to assess respondent concerns and questionnaire-related issues. We 
circulated the survey questionnaire among eight researchers familiar with both the study’s concepts and 
context to solicit feedback on how we worded and presented the questions. Then, we conducted a pilot 
study via an online survey and collected data from 67 participants (separate from the sample). The pilot 
study helped to establish reliability and validity after we removed three items and adjusted five other items. 

   

Figure 3. Images of Space App Dashboard that a Participant Submitted at the End of the Third Week 

We employed the partial least squares (PLS) modeling technique and SmartPLS to assess the 
measurement and structural models (Ringle et al., 2015). We used PLS over other analytical techniques 
since we focused on developing a theory (exploration) versus testing an existing theory (confirmation) (Hair 
et al., 2011; Wetzels et al., 2009). Prior studies have identified PLS as a preferred method when one seeks 
to identify key drivers based on extending an existing structural theory (Hair et al., 2013). In developing such 
models, one typically seeks to maximize how much variation the independent variables (PLS) explain in the 
dependent variables rather than to confirm the goodness of fit between the model and data as in covariance-
based structural equation modeling (Petter, 2018). PLS also offers greater efficiency in parameter estimation 
and prediction power in situations with inflated standard errors (e.g., due to a small sample size) (Reinartz 
et al., 2009).  

5 Results 

In total, 469 participants joined the treatment group and submitted their responses at t0. From this sample, 
we removed 138 participants due to incomplete responses (91) or missing screenshots or surveys in t1 or 
t2 (47), which left 331 usable responses for the analysis (a ~70% participation rate). We considered this 
participation rate acceptable given the multiple data-collection phases and the study’s voluntary nature with 
no monetary compensation. Our sample contained 59 percent males and 40 percent females (the rest did 
not wish to disclose their gender). On average, they were 22 years old (i.e., ranged from 18 to 29 years old). 
As for their study year in university, we identified one percent in their first year, 31 percent in their second 
year, 31 percent in their third year, and 18 percent in their fourth year. In terms of achieving self-monitoring 
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goals, 14 percent reported “fully achieved”, 21 percent “mostly achieved”, 21 percent “half achieved”, 27 
percent “mostly not achieved”, and 17 percent “not achieved at all”.  

5.1 Preliminary Analysis  

After the initial screening, we validated the measurement instrument. Evaluating reflective constructs 
involved testing construct reliability (item reliability and internal consistency), construct factorability, and 
construct validity (discrimination validity). As we report in Appendix C, all other measurement items had 
loadings that exceeded 0.70, which indicates acceptable item reliability. Cronbach’s alpha and the 
composite reliability for all constructed also exceeded 0.70 (Table 1), which indicates adequate internal 
consistency among the items that measured each construct (Hair et al., 2011). All average variance 
extracted (AVE) values exceeded 0.50, which provides evidence for adequate convergent validity (Hair et 
al., 2011). Further, all the pathological VIFs that resulted from the full collinearity test did not exceed 5.0 
(1.0 to 3.2). 

Table 1. Construct Reliability and Validity 

Construct a CR AVE 

Smartphone self-monitoring perceived affordances 0.87 0.91 0.73 

Smartphone self-monitoring outcome expectations 0.75 0.85 0.66 

Smartphone self-monitoring efficacy 0.90 0.93 0.78 

Smartphone self-monitoring 0.83 0.89 0.66 

Self-Monitoring fatigue 0.87 0.92 0.79 

Perceived productivity 0.90 0.93 0.71 

Contentment with achievement 0.83 0.92 0.85 

 

Table 2. Discriminant Validity 

Construct PSA SOE SSE SLM SMF PP CWA 

Smartphone self-monitoring 
perceived affordances 

0.85       

Smartphone self-monitoring 
outcome expectations 

0.59 0.81      

Smartphone self-monitoring efficacy 0.42 0.42 0.88     

Smartphone self-monitoring 0.54 0.49 0.46 0.82    

Self-monitoring fatigue -0.04 -0.07 -0.1 -0.04 0.89   

Perceived productivity 0.31 0.27 0.45 0.39 0.09 0.84  

Contentment with achievement 0.41 0.38 0.53 0.58 -0.01 0.76 0.92 

PSA: smartphone self-monitoring perceived affordances, SOE: smartphone self-monitoring outcome expectations, SSE: 
smartphone self-monitoring efficacy, SLM: smartphone self-monitoring, SMF: self-monitoring fatigue, PP: perceived productivity, 
and CWA: contentment with achievement. 

Additionally, each item loaded more highly on its construct compared to other constructs, which indicates 
discriminant validity. As Table 2 shows, the AVE of each reflective construct was also higher than the 
construct’s highest squared correlation with any other construct. The heterotrait-monotrait (HTMT) ratio of 
correlations also did not exceed 0.90, which indicates discriminant validity (Henseler et al., 2014). Moreover, 
we tested for common method bias using a full collinearity assessment (i.e., vertical and lateral). The test 
indicated that our study lacked common method bias since all the pathological VIFs resulting from the full 
collinearity test did not exceed the 3.3 recommended threshold (Kock, 2015). Therefore, we did not find 
evidence for significant common method variance. 

5.2 Model Testing 

We tested our hypotheses with control variables that could have impacted our model, namely, 
demographics, social desirability, and a priori productivity and contentment (baseline values measured at 
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t0). To test the model, we examined how significantly the antecedents directly affected self-monitoring. We 
found an association between higher smartphone self-monitoring efficacy and higher self-monitoring (H1:  
= 0.24, p < 0.001). We also found that self-monitoring outcome expectations had a significant positive impact 
on self-monitoring (H2:   = 0.20, p < 0.001) and a positive association between perceived self-monitoring 
affordances and self-monitoring (H3:  = 0.32, p < 0.001). Regarding the outcomes, we found that self-
monitoring behavior had a positive effect on both self-monitoring outcomes, perceived productivity (H4:  = 
0.30, p < 0.001), and contentment with achievement (H5:  = 0.33, p < 0.001) when controlled for their t0 

baseline values. In addition, our data analysis supported the relationship between perceived productivity 
and contentment with achievement (H6:   = 0.62, p < .001). Next, we tested the moderating effect that self-
monitoring fatigue had on the effect that smartphone self-monitoring had on perceived productivity and 
contentment with achievement and found support for the former relationship (H7a:   = -0.1, p < 0.01) but 
not for the latter (H7b:  = -0.05, p = 0.198).  

 

Figure 4. The Structural Model Test Results 

 

Table 3. Path Coefficients and Significance 

Hypothesis  t R2 Q2 

H1: SSE → SLM 
H2: SOE → SLM 
H3: PSA→ SLM 

0.24 
0.20 
0.32 

4.59*** 
3.42*** 
5.26*** 

0.38 0.24 

H4: SLM → PP 
H7a SLM X SMF → PP 

0.30 
-0.10 

5.43*** 
2.17* 

0.34 0.23 

H5: SLM → CWA 
H6: PP → CWA 

H7a SLM X SMF → CWA 

0.33 
0.62 
-0.05 

7.52*** 
16.88*** 
1.71ns 

0.67 0.54 

SSE: smartphone self-monitoring efficacy, SLM: smartphone self-monitoring, SOE: smartphone self-monitoring outcome 
expectations, PSA: smartphone self-monitoring perceived affordances, PP: perceived productivity, SMF: self-monitoring fatigue, 
and CWA: contentment with achievement. 
Β = path coefficients, R2 = determination coefficient, Q2 = predictive relevance (calculated by blindfolding), ns: not significant. 
* p < 0.05, ** p < 0.01, *** p < 0.001. 

Overall, we found support for all hypotheses except H7b (see Table 3). The variables accounted for 38 
percent of the variance in smartphone self-monitoring, 34 percent in perceived productivity, and 67 percent 
in contentment with achievement in the presence of the control variables. The control variables had no 
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significant effect on the dependent variables except in two cases: 1) baseline perceived productivity had a 
significant effect on perceived productivity ( =0 .30, p < 0.001) and social desirability had a significant effect 
on contentment with achievement ( = -0.10, p < 0.05). 

While we did not hypothesize about it, our model suggests that self-monitoring antecedents have an indirect 
effect on its outcomes. Hence, we tested the indirect effect that the antecedents had on perceived 
productivity and contentment with achievement via self-monitoring by using the bootstrapping 
method (Preacher & Hayes, 2008). We used this approach rather than Baron and Kenny’s method or the 
traditional Sobel’s test because it has better explanatory power and does not violate normality assumptions, 
especially with small sample sizes (Hayes, 2013; Preacher & Hayes, 2008; Rucker et al., 2011). With this 
approach, we could also directly measure the indirect effect in the bootstrapping method rather than merely 
infer that it existed or not through various tests. We obtained the 95 percent confidence interval of the 
indirect effects with 5,000 bootstraps. The findings showed the significant but modest indirect effect that the 
antecedents had on perceived productivity. Perceived self-monitoring affordances had a stronger indirect 
effect on perceived productivity ( = 0.06, p < 0.01, CI: 0.01—0.10) than self-monitoring outcome 
expectations ( = 0.04, p < 0.05, CI: 0.01—0.07) and smartphone self-monitoring efficacy had on perceived 
productivity ( = 0.05, p < 0.05, CI: 0.01—009). The antecedents, smartphone self-monitoring efficacy ( = 
0.09, p < .001, CI: 0.04—0.13), self-monitoring outcome expectations ( = 0.07, p < 0.01, CI: 0.03—0.12), 
and perceived self-monitoring affordances ( = 0.12, p < 0.001, CI: 0.06—0.15), also had a significant 
indirect effect on contentment with achievement. 

6 Discussion 

In this study, we identify and test the key antecedents and outcomes of smartphone-enabled self-monitoring 
behavior. We identified smartphone self-monitoring perceived affordances, outcome expectations, and self-
efficacy as the main antecedents of effective smartphone use self-monitoring. As expected, self-monitoring 
appears necessary to encourage individuals to use smartphones in an optimized way. Our results also 
suggest that users who expect greater outcomes from self-monitoring are more likely to monitor their 
smartphone use. Additionally, we argue that we can expect users to more highly engage in self-monitoring 
when they perceive more action possibilities with self-monitoring technology (e.g., the Space app we used 
in our intervention). One can enable these action possibilities through features such as screen-time 
recording, goal setting, usage reporting, usage dashboards, and usage alerts. 

While we grounded our model in the GST (Rickard et al., 2016; Schwarzer et al., 2015; Shapiro & Schwartz, 
2011), we propose a parsimonious model to predict smartphone-based self-monitoring behavior and its 
outcomes. Our results indicate that an increase in the extent to which users monitor their own smartphone 
usage leads to improvements in (perceived) productivity and contentment with achievement. Our findings 
support prior research that has looked at the effect that smartphones have on users’ output and productivity 
(Duke & Montag, 2017). We note that self-monitoring smartphone use does not necessarily translate to 
“less use” but rather “more productive use” in our context here (we observed less than a 20 percent change 
in smartphone use in both directions). Therefore, our findings lend support to understanding the 
mechanisms through which smartphone use can be more productive. For instance, our study promotes self-
initiated interventions through screen-time optimizations rather than discontinued smartphone use to avoid 
its negative consequences (Vaghefi et al., 2020). 

Lastly, the results support that self-monitoring fatigue weakens the effect that self-monitoring has on 
productivity. As such, it seems that individuals need to manage fatigue in designing behavioral interventions 
due to the possible diminishing effect. However, this negative effect did not significantly moderate the 
relationship between smartphone self-monitoring and contentment with achievement. We found a partial 
link between content and user satisfaction with overcoming a challenge or responding to a trigger or 
feedback (e.g., Hanson, 2016). Accordingly, self-monitoring fatigue does not necessarily weaken the effect 
that self-monitoring has on contentment with achievement.  

6.1 Theoretical Contributions  

With this study, we make four notable contributions. First, we contribute to the emerging scholarly research 

on the positive and negative (aka bright vs. dark) aspects of technology use (smartphone use in particular) 

(Moqbel et al., 2022). We extend this literature by establishing smartphone self-monitoring as a viable 

mechanism to prevent the deleterious effects that uncontrolled use has on individuals’ personal, social, and 

professional lives (Vaghefi et al., 2022; Soror et al., 2015). Prior research has examined various ways to 
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correct problematic behaviors (including an addiction), such as permanent or temporary discontinuance 

(Soliman & Rinta-Kahila, 2019). Although these strategies could be effective, self-monitoring appears to be 

a more realistic and sustainable approach given smartphones’ ubiquity and their penetration into every 

aspect of life. In addition, we can consider self-monitoring a proactive approach (compared to quitting after 

one forms an addiction). In this way, it can allow users to take advantage of the smartphone’s benefits while 

ensuring productivity and contentment with achievement. Some recent studies have paid attention to 

technology-based self-monitoring’s positive outcomes. For instance, a recent eight-year study found that 

self-monitoring social media use positively affects overall health and reduces anxiety and depression 

(Coyne et al., 2020). Another study found that monitoring and reducing smartphone use by one hour each 

day can have long-term positive effects on individuals’ well-being and help them establish healthier lifestyles 

(Brailovskaia et al., 2022). We extend these findings by establishing self-smartphone monitoring as a valid 

and effective strategy to curb (at least some) the negative consequences that arise from using smartphones. 

Second, we enhance the current theoretical self-monitoring knowledge by theorizing about the antecedents 
to smartphone self-monitoring. Specifically, we used GST to demonstrate that outcomes expectation and 
self-efficacy play a critical role in self-monitoring. Without high expectations, users may perceive self-
monitoring as a trivial rather than meaningful practice. Likewise, if users believe that they do not have the 
ability or competency to self-monitor, they may not appropriately respond to self-monitoring interventions. 
Moreover, changes in smartphone users’ behavior can be attributed not only to the users’ potential to 
envision their capability and expected outcomes but also to the self-monitoring capability of a smartphone 
that is now available to them. This finding complements prior studies that have solely focused on personal 
and behavioral traits (Barrick et al., 2005) and that disregarded the role that technology (affordances) plays 
in enabling better self-monitoring.  

Third, our results extend existing knowledge on the potentially positive outcomes that result from monitoring 
smartphone use. While prior studies have mainly focused on controlling excessive use to minimize negative 
consequences (Chen et al., 2019; Elhai et al., 2018; Panova & Carbonell, 2018), we evaluated productivity 
and introduced a concept called contentment with achievement as a higher-order outcome. While this 
construct conceptually overlaps with user satisfaction (see Sultan et al., 2020), we can consider it an 
important factor that predicts mental health. Contentment and productivity can also help overcome the 
limitations that arise when using the productivity scale as the only performance measure.  

Lastly, we introduced and examined self-monitoring fatigue, which increases as self-monitoring efforts go 
on and extend, as a moderating factor that weakens the positive relationship between self-monitoring and 
its outcomes. Our findings suggest that smartphone-supported self-monitoring interventions may deplete 
users’ cognitive resources for self-monitoring and control (e.g., by frequent notification signaling excessive 
use) and, consequently, lead to a mental lassitude that prevents them from fully benefiting from self-
monitoring efforts. This mental state can limit the likelihood that they will use the device productively. Our 
findings support the assertion that one can use the ego-depletion theory (Muraven & Baumeister, 2020) to 
understand self-monitoring technology and develop strategies to monitor and respond to fatigue.  

6.2 Practical Implications 

In addition to theoretical contributions, we also make important practical implications toward user-driven 
design in the mental health and wellness context (Djamasbi & Strong, 2019; Wilson & Djamasbi, 2015). 
First, we shed light on the important role that technology-enabled interventions play in supporting users’ 
productivity. Practitioners can use the mechanisms identified through the antecedents we studied to assess 
and support self-monitoring and realize its outcomes. Our findings suggest that one needs to identify users 
with low self-monitoring efficacy and outcome expectations for such behavioral interventions to succeed. 
Thus, users may be more open to behavioral intervention when they initially receive sufficient support, 
training, and encouragement. The contributions that this study offers have greater importance for workforce 
development as more digital natives enter the workforce. For example, this study presents a considerable 
opportunity for educators and employers to intervene in obstructive smartphone use and, ultimately, impact 
productivity and mental health. 

Second, this study supports and clarifies the positive relationship between monitored smartphone use and 
productivity. Our findings suggest that the first step to increasing productivity involves tracking the time users 
spend on their smartphones and presenting it to them in a meaningful but not exhausting and overwhelming 
way. This suggestion supports mobile operating system developers’ decision to provide a screen-time report 
as a default system capability since 2018. These applications can offer additional self-monitoring 



271 Screen Time and Productivity: An Extension of Goal-Setting Theory to Explain Optimum Smartphone Use 

 

Volume 14  Paper 1  

 

affordances that sustainable self-monitoring behaviors require. Our work also supports “quantified self-
solutions” since they may lead to healthier behaviors by helping individuals consciously scrutinize ingrained, 
undesirable habits beyond smartphone use context (see Bajracharya et al., 2019). Hence, we encourage 
researchers to explore such generalizations in other contexts. 

Third, this study views self-monitoring behavior in digital environments in a practical manner. In this way, it 
can help one design more effective self-monitoring applications in general and in other problematic hedonic 
technologies (e.g., online games and social media). For instance, system developers can embed features 
that remind users about their efficiency in achieving positive outcomes through self-monitoring. Our study 
confirms that such support constitutes an essential ingredient for any self-monitoring intervention that 
focuses on changing behavior. Otherwise, self-monitoring affordances through features such as screen time 
reports would not be enough to encourage self-monitoring, much less improve productivity.  

Lastly, to ensure behavior change, users must accept and pursue interventions through technology for some 
time to warrant a change in habits. The negative effect of self-monitoring fatigue suggests that users may 
ignore and stop feedback and notifications after initial use. Therefore, such interventions require methods 
to maintain engagement with self-monitoring technology over time to succeed. Practical strategies to control 
self-monitoring fatigue and, therefore, improve self-monitoring outcomes include enhancing usage-tracking 
features, optimizing notification frequency, customizing reports, and personalized feedback.  

6.3 Limitations and Future Research Avenues  

Similar to most prior studies in this domain, we primarily used self-reported survey data, which limits our 
ability to claim causality without further investigation. While our findings concur with the literature, we cannot 
speak with confidence to the possibility that self-monitoring caused outcomes or that self-monitoring resulted 
from the introduced antecedents. For example, individuals with higher productivity may tend to self-regulate 
their smartphone use, or self-monitoring may have a reciprocal relationship with self-monitoring efficacy. 
Therefore, future research can address this limitation by validating our model in a more controlled 
environment and with experiments. An experimental design would allow researchers to account for other 
usage factors such as use type and frequency. Qualitative studies can also offer a better explanation for 
what motivates or hinders self-monitoring in the first place, such as interest, excitement, and confidence in 
such behavior or anxiety, stress, and other personal concerns. Moreover, longitudinal studies would be 
instrumental in exploring self-monitoring’s effects over time, especially in examining the dynamic effect of 
self-monitoring fatigue. 

We advise some caution in generalizing our results to the larger population or another context due to 
limitations in sampling. We focus on sample groups that skew toward young, educated, and tech-savvy 
individuals. We collected data from college students in the US and, therefore, the results might not represent 
the general public. However, we checked whether self-monitoring was uniform within and across research 
sites and student groups (e.g., age, gender) to support the extent to which the findings transfer to the general 
student population. The results suggest that self-monitoring did not differ across demographic groups. We 
also used a longitudinal survey to control for the baseline values and tested for common method bias to 
ensure our results’ validity. Moreover, our intervention relied on one specific application (Space) and a 
specific self-monitoring mechanism (screen-time monitoring). Therefore, researchers need to examine other 
tools and technologies in the future.  

Future studies could also investigate different technological interventions such as native features or 
embedded reporting and nudging functions in applications that users may heavily use, such as social 
network sites or online games. We also encourage future research to consider the technological factors that 
inhibit self-monitoring, such as battery power and privacy concerns, in addition to other cognitive and 
behavioral challenges that factors beyond fatigue cause (e.g., stress or technostress). Our study also opens 
new research avenues for developing and testing new technology-enabled self-monitoring interventions in 
light of their limitations. For example, future research could extend the principles that we establish in this 
study to investigate other mechanisms such as mindfulness practices, reflectiveness, gamification, and 
social interventions that may affect self-monitoring (Klase et al., 2022; Loiacono et al., 2018; Thatcher et 
al., 2019). More importantly, the long-term effect that self-monitoring has on productivity remains unclear. 
Future research should provide additional evidence to support that self-monitoring leads to lasting behavior 
change beyond the three-week duration that we considered. Also, scholars have not yet examined whether 
individuals can use episodic self-monitoring for sustainable habit change. Hence, we recommend 
researchers conduct additional longitudinal studies since we know little about factors that facilitate 
individuals to use self-monitoring technology in a sustained manner.  
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We should also acknowledge that self-monitoring by itself cannot prevent problematic behaviors or motivate 
positive changes. Hence, researchers should also investigate self-monitoring along with other external 
reward and supporting mechanisms. They could also investigate self-monitoring technologies by looking at 
user motivations, goals, capabilities, perception of usefulness, and data privacy. Likewise, future research 
needs to study what effect different self-monitoring features such as report and notification timing, design, 
frequency, and modality has on smartphone addiction and smartphone use in general.  

7 Conclusion 

Although research on self-monitoring continues to develop in mental health and psychology research, the 
IS and HCI literatures contain little theoretical and empirical research on the topic. In this study, we focused 
on self-monitoring via smartphones and unearthed some key mechanisms that underlie self-monitoring 
success. We identified smartphone self-monitoring’s main antecedents (smartphone self-monitoring 
perceived affordances, smartphone self-monitoring outcome expectations, and smartphone self-monitoring 
efficacy) and its outcomes (productivity and contentment with achievement). We also shed light on the 
discouraging effect that self-monitoring fatigue has on whether individuals can realize self-monitoring 
strategies’ full potential. Our study contributes to the emerging literature on productive and mindful 
smartphone use, and paves the way for future research and intervention programs to overcome excessive 
smartphone use or addiction. 
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Appendix A: Space App 

The Space app offers a personalized behavior-change environment that helps users monitor how they use 
their smartphones and reflect on how the use affects their lives. The app focuses on helping individuals find 
their phone-life balance through a conscious choice rather than a habit. The application does not focus on 
reducing screen time per se. Rather, it helps smartphone users exert control over their devices and discover 
their digital balance. To do so, it allows users to set goals and monitor their smartphone use (Figure A1 
left), track their daily progress and benchmark performance against other Space users (Figure A1 middle), 
and use a toolkit and collect achievement badges (Figure A1 right). For more information, see the app 
website at https://findyourphonelifebalance.com. 

 

Figure A1. Set Goals (L), Track/Compare Progress (M), Achievements (R) 
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Appendix B: Survey Items  

Table B1. Survey Items 

Construct Items* 

Self-monitoring self-efficacy 
Gökçearslan et al. (2016), 

Jerusalem & Schwarzer (1992) 

Using the Breakfree** app installed on my smartphone, I am: 

• Confident about the ability to manage smartphone usage 

• Self-assured about capabilities to control smartphone usage 

• Able to watch my smartphone usage carefully 

• Able to succeed in managing smartphone usage 

Self-monitoring outcome 
expectations 

Compeau et al. (1999) 

Using the Breakfree app would: 

• Enhance my effectiveness by managing smartphone usage 

• Improve my performance by regulating smartphone usage 

• Help me manage time by monitoring smartphone usage 

Self-monitoring perceived 
affordances 

Rockmann & Gewald (2018) 

Over the last 7 days, the Breakfree app has enabled me to: 

• Keep the history of smartphone usage 

• Record smartphone usage 

• Monitor smartphone usage 

• Get feedback on smartphone usage 

Smartphone self-monitoring 
Houghton & Necks (2002) 

Over the last 7 days, by using the Breakfree app: 

• I could attend to aspects of my smartphone usage behavior 

• I was able to watch my smartphone usage carefully 

• I could monitor whether I have achieved the smartphone usage goal that I 
set 

• I could keep track of my progress toward my smartphone usage goal. 

Self-monitoring fatigue 
Zhang et al. (2016) 

Over the last 7 days, how did you respond to the Breakfree app alerts? 

• I became tired of the (self-monitoring) alerts 

• I become wearisome of the alerts 

• I lost concern about the alerts 

• I stopped paying attention to the alerts 

Perceived productivity 
Miller & Cardy (2000) 

Over the last 7 days: 

• I was effective in managing tasks 

• I was efficient in performing tasks 

• I was satisfied with the quality of work 

• I felt in control of productivity 

• Overall, I was productive in my work (or study) 

Contentment with achievement 
Gendolla (1998) 

Over the last 7 days, I felt satisfied with: 

• Accomplishing what had planned to accomplish 

• Achieving the smartphone usage goal 

* Items removed: 
 Self-monitoring self-efficacy: “I am able to set a smartphone usage goal that is attainable”. 
 Self-monitoring outcome expectations: “Using the Breakfree app would be useful in managing my smartphone usage” 
 Self-monitoring: “I could evaluate my smartphone usage behavior in light of the goal to be achieved” and “I could compare 

my smartphone usage level against my personal goal” 
 Fatigue: “I ignored the alerts” 
 Productivity: “I accomplished what I had planned to accomplish” 
** Breakfree was the former name of the Space app. 
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Appendix C: Item Loadings 

Table C1. Item Loadings* 

Items PSA SOE SSE SLM SMF PP CWA 

PSA1 0.89       

PSA2 0.87       

PSA3 0.83       

PSA4 0.82       

SOE1  0.77      

SOE2  0.83      

SOE3  0.83      

SSE1   0.89     

SSE2   0.9     

SSE3   0.87     

SSE4   0.86     

SLM1    0.72    

SLM2    0.83    

SLM3    0.83    

SLM4    0.87    

SMF1     0.78   

SMF2     0.93   

SMF3     0.93   

PAP1      0.85  

PAP2      0.84  

PAP3      0.85  

PAP4      0.84  

PAP5      0.85  

CWA1       0.94 

CWA2       0.90 

PSA: smartphone self-monitoring perceived affordances; SOE: smartphone self-monitoring outcome expectations; SSE: 
smartphone self-monitoring efficacy; SLM: smartphone self-monitoring; SMF: self-monitoring fatigue; PP: perceived productivity; 
and CWA: contentment with achievement.  
* We do not show item loadings less than 0.4 for better readability. 
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