30T INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2022 CLUJ-NAPOCA, ROMANIA)

Microservices Security Challenges and Approaches

Amr S. Abdelfattah
Computer Science - Baylor University
Waco, TX 76798 USA amr_elsayedl @baylor.edu

Tomas Cerny

Computer Science - Baylor University
Waco, TX 76798 USA tomas_cerny@baylor.edu

Abstract

The fast-paced development cycles of microservices applications increase the probability of
insufficient security tests in the development pipelines and consequent deployment of vulner-
able microservices. The distribution and ephemeral of microservices create a discoverability
challenge for traditional security assessment techniques, especially for microservices being dy-
namically launched and de-registered. To address this in applications and networks, continuous
security assessments are used for vulnerability detection. Detected vulnerabilities are there-
after patched, essentially reducing the chances for security attacks. This paper illustrates the
microservices architecture and its components from the security perspective. It investigates,
summarizes, and highlights the microservices security-related challenges and the suggested ap-
proaches and proposals for facing them. It addresses the security impact on the different mi-
croservice architectural perspectives.

Keywords: Microservices Security, Cloud-native Security, OAuth, Policy Enforcement Point

1. Introduction

Cloud-native systems take full advantage of distributed computing offered by the cloud deliv-
ery model. These systems embrace microservices, a popular architectural style for construct-
ing modern applications. In this architectural style, the system is broken down into reusable,
lightweight, and granular services that interact with one another [15]. Microservices are inde-
pendently deployed, are loosely coupled, and are self-contained. This means that services can
be developed and tested by different development teams, dramatically lowering development
time. It is expected that microservices become easier to maintain due to their smaller size and
scope [[15]]. There is a recognized need for applying security control policies in a consistent way
across all microservices belonging to the same system [[13]].

The lack of usage of a generic threat model for microservice security is influenced by the
fact that the majority of research in this area comes from the software side of the field (engineer-
ing, languages) rather than from the side of security, which advocates for a security-by-design
approach [13]]. While there are attacks that specifically pertain to microservices, such as those
that leverage the scalability of microservice architectures to cause a denial of service, there are
no dedicated threat models to help developers become aware of those particular threats [[13].

This paper addresses the most common challenges and security vulnerabilities that are raised
with the evolution of microservices architecture. Therefore, the paper highlights different ap-
proaches that employ the microservices architecture components to support the security-related
perspective in the entire architecture. The rest of the article is organized as follows: Section 2
illustrates the background required for the security approaches. Section 3 states the security-
related challenges for microservices architecture. Section 4 depicts the approaches and direc-
tions shown for overcoming the challenges. Finally, Section 5 concludes the article.



ABDELFATTAH AND CERNY MICROSERVICES SECURITY CHALLENGES AND APPROACHES

2. Background

Securing a microservices architecture is a complex task that involves the application, infras-
tructure, and network layers. The application layer protection is to ensure that the proper user
controls are in place so that we can authenticate and authorize the users. While the infrastructure
layer keeps the service running, patched, and up to date to minimize the risk of vulnerabilities.
Finally, the network layer helps in protecting network access controls so that a service is only
accessible through well-defined ports and only to a small number of authorized servers.

This paper focuses on the application layer related to securing microservices based applica-
tions. These applications architecture has distributed components that communicate with each
other through REpresentational State Transfer (REST) and messaging streaming [[16]]. The
REST architecture defines a set of constraints for how the architecture emphasizes the scala-
bility of interactions between components, uniform interfaces, independent deployment of com-
ponents, and the creation of a layered architecture to facilitate caching components to reduce
user-perceived latency, enforce security, and encapsulate legacy systems.

Applying a single rule to all these distributed components could lead to many duplications
and inconsistencies over the entire application. Therefore, the API gateway plays a role as a
proxy and a policy enforcement point while it separates the interactions between the internal and
external components. The API gateway has responsibilities to provide the client application with
API, perform request routing, provide authentication, load balancing, monitoring, composition,
and protocol translation. When a client makes a request, the request transmits to the API gateway
[, [16]], and further, it routes to appropriate microservices. It helps to stop exposing internal
concerns to external clients. The API gateway communicates with service discovery [8, [16]
which includes a central server that maintains a global view of addresses and provides a dynamic
mechanism for locating the microservices routes.

Securing these distributed components requires propagating the user authentication and au-
thorization identity during the full communication cycle. While OAuth2 is a token-based se-
curity framework that describes patterns for granting authorization but does not define how to
perform authentication, it can integrate with an Identity Provider (IdP), which allows users to
authenticate themselves with a third-party authentication service [16]]. That means an applica-
tion can take action or access resources from a server on behalf of the user without them having
to share their credentials. The JSON Web Token (JWT) [3]] is a standard token which defines a
compact and self-contained way for securely transmitting information as a JSON object.

This paper highlights these background concepts and techniques as they are employed in
different approaches and proposals to challenge the security problems that impact the nature of
microservices-based applications.

3. Security-based Microservices Challenges

Microservices architecture introduces new concepts related to the communication layers and
technologies. The microservices development process lacks the adoption of security-by-design
[[13[], such that security in microservices frequently comes as an afterthought. In contrast, it
should be one of the main concerns for their engineering. Microservices use diverse sets of
technology stacks, each characterized by peculiar exploits. To secure microservice architectures
effectively, implementors need dedicated technological references to avoid known threats.
Moreover, the authors in [13] analyzed the leakage in microservices systems. They stated
that issues raised with the technology transfer from academia to industry on microservices se-
curity; lack of guidelines for adopting security by design in microservices; lack of appropriate
threat models; lack of guidelines for addressing the attack surface given by technology hetero-
geneity; and security issues when migrating systems to microservices. Furthermore, Lwakatare,
Lucy Ellen, et al. [21] showed that the migration is one of the main challenges faced in this con-



ISD2022 ROMANIA

text, such that migrating applications introduces important security concerns that are difficult to
track due to the lack of appropriate devices (both organizational and linguistic) to elicit them
from the source codebase and make sure they hold in the migrated one.

While the microservices architecture utilizes the usage of multiple components and concepts
such as Distributed Computing, REST services, Cloud Computing, and the Diversity of Devel-
opment languages, unfortunately, they face the challenges related to each part of them as well.
More research investigated the microservices distributed-nature-related challenges. Therefore,
most of them are highlighted in [24] as follows:

* Distributed Communication: It places an overhead on security tasks, especially for se-
curity assessments which are traditionally configured for static network resources, hosts,
and applications. Therefore, traditional security assessment techniques are challenged
with discoverability problems, i.e., the capacity to constantly locate deployed microser-
vices.

» Ephemeral Nature of Resources: It means that an ephemeral microservice can be de-
stroyed at any time and then resurrected to its last known state immediately.

» Trust Among Inter-Communicating Microservices: All inter-communicating service in-
stances are assumed to operate within a common security trust domain. However, this
could introduce security issues. For example, an attacker who gains control over a mi-
croservice could propagate an attack against other microservices.

Since microservices components employ the REST in their implementation, the microservices
architecture is influenced by the REST-related challenges, such as the automated discovery of
entry and exit points. Moreover, the responses produced by RESTful applications could be
dynamically generated at request time, unlike web applications whose responses are predictable
[24]]. Therefore, traditional security assessment techniques fail to explore REST web services,
which are the core of microservice implementation [24].

Cloud-specific vulnerabilities are most related to the different kinds of deployment strate-
gies and the way to secure them, such as the Infrastructure as a Service (IaaS) platforms and
the Containers as a service (Caas). However, this kind of challenge is most delegated to appli-
cation owners (cloud users); they are responsible for securing rented Virtual Machines (VMs)
or containers through approaches such as configuring firewalls and security groups. It is clear
that microservices still need to mature at different levels such as the lack or unavailability of
specialized elements (such as firewalls) that are aware of their specificity [22]. Moreover, the
independence deployment could lead to deploying the services over different cloud providers,
which adds additional challenges. For example, service providers offer services that need to
share this data across multiple external services as part of an offered service plan without end-
users being aware of their existence [[17]]. Furthermore, utility-microservices [23]] is the category
of microservices that implement middleware functionalities to be consumed through the core-
microservices. The utility-microservices container may include vulnerabilities that threaten the
entire application. They often need intrusive access and capabilities in the core-microservice
container. Such access can be granted via injecting the utility-microservice into the same con-
tainer as the core-microservice. That causes the leaking of sensitive information (such as secu-
rity keys and credentials), causing security concerns.

On the other hand, the microservices approach motivates choosing the best development
languages and tools for specific problems, which leads to having multiple languages in the same
application. This means applying vulnerability detection techniques in this application requires
different configurations for each microservice based on the development language. Besides,
developers integrate several open source components while these components could be laden
with vulnerabilities [24]].

Finally, Security becomes a challenging aspect since the small and independent teams need
to know many aspects of security [20]] and those DevOps criteria for testing, building, and de-



ABDELFATTAH AND CERNY MICROSERVICES SECURITY CHALLENGES AND APPROACHES

ployment automation. Thus, another major challenge is the coordination between development
teams in the context of privacy-handling issues [19].

4. Security Approaches

Prior research efforts are focused on security measures such as authentication and authorization
in microservices, €.g., using token based-authorization like JWT [S]]. Other works consider ef-
fective monitoring approaches such as integrating network security monitoring with cloud Soft-
ware Defined Networks (SDN) [14] that enables the network to be intelligently and centrally
controlled by separating the control plane from the data plane. Some works investigate in-
jecting security in microservices Continuous Development and Continuous Integration (CD/CI)
pipeline [24].

As depicted in the challenges above, security is multidimensional in the sense that it needs
to be present at multiple layers of an application and at all stages of its development. For
microservices, the security models focus on the following dimensions [22]:

* Microservice Components: Authentication and authorization are essentially considered
at this layer toward securing services. The usage of OpenlD Connect [7] is a common
approach for these concerns. It is built on top of the OAuth 2.0 protocol to use JWT as
an ID token to standardize areas that OAuth 2.0 leaves up to choices, such as scopes and
endpoint discovery.

* Application Architecture: The potential need for specific security components or ele-
ments, such as instrumentation and detection. The gateway and the coordination logic
should be updated in order to action failover mechanisms.

e Infrastructure: The underlying infrastructure, such as the operating systems and the net-
work. A good approach is to use the Docker Security Scanning add-on prior to using
images. Another good practice is to plan security roles within containers rather than run-
ning root users.

e External Interfaces: The external interfaces used for interdomain communication, where
multiple third parties may need to cooperate, each with its own security controls.

Each of the above dimensions has different requirements and different concerns in order to
approach the security in its layer. Threat models are the ones that need to be addressed for the
microservices dimensions. While there are attacks that specifically pertain to microservices,
such as those that leverage the scalability of microservice architectures to cause a denial of
service, there are no dedicated threat models to help developers become aware of those particular
threats. Threat modeling should be performed early in the development cycle when potential
issues can be caught early and remedied, preventing a much costlier fix down the line. Using
threat modeling to think about security requirements can lead to proactive architectural decisions
that help reduce threats from the start [10]].

Many threat-modeling methods have been developed such that they can be combined to cre-
ate a more robust and well-rounded view of potential threats. Not all of them are comprehensive;
some are abstract, and others are human-centric. There are 12 threat-modeling methods sum-
marized in [10]. However, STRIDE Threat Modeling [9]] is the one highlighted in the context
of microservices and its distributed architecture [[13]]. It is a model of threats that can be used as
a framework for ensuring secure application design. It considers Spoofing Identity, Tampering
With Data, Repudiation Threats, Information Disclosure, Denial of Service, and Elevation of
Privileges. And also, the quantity of spoofing, tampering, and repudiation attacks highlights
the need to address the general problem of data provenance in microservices [13]. However,
the microservices’ development diversity makes this modeling methodology more challenging
because it must be covered through these different development languages.

Some research proposed their models, such as in [[17], the authors focused on building a



ISD2022 ROMANIA

model for data sharing security. They applied distributed tracing to collect tracing information
for building a repository of service endpoints, service traces, and network addresses. After that,
they depended on the service’s attributes, such as successability, reliability, compliance, etc., to
measure the risk per microservice. They used QWS Dataset [[11] to test their model with data
flow between microservices.

The data provenance is highlighted in [25]], such that the authors demonstrated how to define
the privacy requirements formally and to enable the analysis of privacy policy preservation.
Their approach supports traceability between the high-level privacy description — the user’s
consent to disclose particular data to certain organizations — and the formal definition of the
privacy-preserving constraints. They used graphical modeling to represent system architecture
and the data flow. After that, the diagrams are translated into a formal modeling framework
Event-B [4], to verify the impact of privacy violations and security attacks on the behavior
of the system. Event-B [4] is a formal method for system-level modeling and analysis which
depends on the set theory as a modeling notation.

The distributed nature of microservices introduces the need for technologies that provide
global yet decentralized observability and control. For instance, tools that aid in the enforcement
of security policies over a whole architecture without single points of failure [[13]. Clearly,
having a centralized controller that manages the orchestration of microservices helps this process
and is closer in spirit to the monolithic workflow. However, the advent of multi-cloud and
microservices solutions has led to a decentralization of control, making new decentralized or
hybrid solutions emerge for certificate-based authentication. The authors in [12] proposed a
decentralized high-fidelity city-scale emulation to verify the scalability of the authorization tier.

Security Enforcement Points are commonly used to enforce security policies at runtime. The

Service Discovery is one of the components that are able to provide this capability. It provides
reactive mechanisms for the detection of security issues for the reason of being in the service
registration procedures that include data for performing the preventive analysis of the composi-
tion [13]. Furthermore, The API Gateway is the other component that could work as Security
Enforcement Point forcing a security assessment through the whole architecture.
The authors in [24] proposed a security gateway, though similar to the microservices API gate-
way pattern while it differs operationally. In addition, they introduced two additional concepts:
dynamic document store and security health endpoints. The dynamic document store helps
the security gateway to overcoming the challenge of exploring the REST web services. This
approach uses OpenAPI 2 (formerly Swagger) for generating this document. However, the
static analysis and microservices reconstruction approach should work perfectly, in this case,
to automate this critical part of the process as illustrated in [15)]. The security health endpoint
effectively affords security observability by providing security health information for every de-
ployed microservice instance. Health Endpoint Monitoring Pattern provides for periodic health
checks against applications via heartbeat checks. This health endpoint to situational awareness
fulfills the observability tenet of microservices. Moreover, this approach highlighted two im-
portant concerns for addressing important challenges, first is the Security gateway should not
be discoverable by other microservices except the core services, e.g., service registry and dis-
covery and API Gateway. Secondly, the solution should be able to automatically identify the
development technology and test it accordingly.

Moreover, Security-as-a-Service (SecaaS) [14] is a model that provides security services
like data loss prevention, antivirus management, and intrusion detection. Thus, the API gateway
may be configured to grant access to such services after due authentication and authorization.
Following this direction, Sun et al. [[14] proposed a design for SecaaS for microservices-based
cloud applications. They added a new API primitive FlowTap for the network hypervisor to
flexible monitor and enforce policies for network traffic to secure cloud applications. This ap-
proach followed and leveraged SDN network technology such that it provides the ability to



ABDELFATTAH AND CERNY MICROSERVICES SECURITY CHALLENGES AND APPROACHES

scan through network packets at every forwarding element and control the forwarding as per
the application requirements. Moreover, it boosts the decision separation about where to place
security monitors from the network flows themselves. FlowTap establishes monitoring relation-
ships between microservices and security monitors, allowing them to enforce policies over the
network traffic seen by the microservices. Some of the enforcing policies could be Connection
Policy which decides whether or not a microservice can have a direct connection to another mi-
croservice, Request-specific Policy that defines what kind of request a microservice can make
to another microservice, and Request Integrity Policy that analyzes the body of requests to en-
sure that the same user is referred to throughout the processing of the user request by multiple
microservices. FlowTap caused about 6% throughput drop for the web server, which makes it a
promising practical approach, however deploying it in VMs requires architectural support from
cloud infrastructure in order to deliver relevant network events to corresponding security VMs.

Addressing the different modes for operating the security approach, Torkura et al. [24]
summarized the following modes for the security gateway:

* Strict Mode: The secure mode implements a strict policy enforcement strategy. Microser-
vice instances are not registered with the service discovery server if they do not satisfy
the security policy being implemented.

* Permissive Mode: In the permissive mode, the policy could specify a set of rules which
could be combined to determine the action to be taken.

There are currently no policy languages for RESTful web service security. However, these
policies should aid in keeping production environments healthy by defining risk levels and ap-
propriate actions when policies are breached. The authors in [24] continued to propose and
introduce the following policies:

* Global Policy: They are applied to all the microservices in an application.

* Microservice-Specific Policy: These policies are defined based on the implementation
details of each microservice.

* VM and Container Policy: This policy acts as a security control for automating security
testing of images and containers to detect vulnerabilities. Given that over 30 percent of
official images in the docker hub contain high-priority vulnerabilities [[18]].

On the other hand, the security systems come in two different styles Intrusion Detection
Systems (IDS) and Intrusion Prevention Systems (IPS) [25]. IDS is a monitoring system that
detects suspicious activities and generates alerts when they are detected. While IPS could use
the IDS rules and policies, it is a network security program that continuously monitors a network
for malicious activity and takes action to prevent it.

Finally, DevSecOps [2]] is a methodology that tackles security issues in the DevOps process.
It is an approach to culture, automation, and platform design that integrates security as a shared
responsibility throughout the entire IT lifecycle. Therefore, the security policies are enforced in
the development pipeline as an optimization effort to reduce the duration of pre-registration tests
and strategize security testing for different versions of a microservice. Besides this, DevSecOps
involves securing the system and its deployment model from the infrastructure and containers’
perspectives. The authors in [23]] promote the principle of least privilege to address the utility-
microservices container challenge. They proposed an approach to diffuse certain boundaries
between the containers of utility-microservices and core-microservices. They grant the utility-
microservice the capabilities and permission it needs to perform its functions while protecting
the core-microservice by limiting its visibility and accessibility. This approach challenges the
balancing between affording accessibility and constraints, such that it concerns with preventing
the utility-microservices container from impacting the core container execution, communicating
with the outside world, and leaking information to host-local accomplices (e.g. other malicious
containers). Therefore, achieving this approach requires various aspects to be controlled such



ISD2022 ROMANIA

as namespace isolation that starts with full isolation between these containers and then shares
a subset of the namespaces in the next steps, de-privileging this container to make it an unpriv-
ileged entity by mapping its user ID inside its container to a non-root, resource isolation that
prevents it from indirectly impacting the core-container and the host, access fo disk and memory
state that restricts it from accessing the core-container disk-level system state and the system
process in the memory, access to network state that controls the core-container network connec-
tions, and access to resource stats. They accommodated Kubernetes [6] coupled with Docker
[3] to demonstrate that this approach achieves the fusion without compromising the security of
the target container. This approach suggests its future work to support automatic examination to
figure out the needed capabilities and privileges.

5. Conclusion

Security challenges have been raised with the evolution of the microservices architectures. This
architecture highlights the characteristics of distributed communication, ephemeral resources,
and trust among inter-communicating microservices, besides the different approaches for de-
ployment introduced specific Vulnerabilities. These multidimensional security challenges en-
courage designing different approaches to be present at multiple layers of an application and
at all stages of its development. This paper focused on the application layer approaches that
support securing the microservices based applications. Therefore, many approaches addressed
the API gateway and service discovery components as Security Enforcement Point to enforce
security policies at runtime. Furthermore, many threat-modeling methods have been developed,
such that they can be combined together and use standard protocols such as OAuth 2.0 to create
a more robust and well-rounded view of potential threats, such as STRIDE Threat Modeling is
the one that is mentioned as the most suitable for microservices architecture nature. Security
standards are a staple element of industries and organizations, which pushes future work.

Employing static and dynamic analysis techniques with these kinds of approaches is a proper
future work to enhance the security approaches. Moreover, there is not enough research related
to a better understanding of the relationships between vulnerabilities in intercommunicating
microservices. Finally, it is clear that microservice architecture still needs to mature at different
levels, such as to address the lack or unavailability of specialized elements (i.e., firewalls) and
the data provenance challenges.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant
No. 1854049 and a grant from Red Hat Research https://research.redhat.com.

References

1. Api gateway in microservices architecture (Jun 2022), https://marutitech.
com/apli—-gateway—-in—-microservices—architecture/

2. Devsecops manifesto (Jun 2022), https://www.devsecops.org

3. Docker - build, ship, and run any app, anywhere (Jun 2022), https://www.
docker.com/

4. Event-b and the rodin platform (Jun 2022), http://www.event-b.org/index.
html

5. Introduction to json web tokens (Jun 2022), https://jwt.io/introduction

6. Kubernetes: Production-grade container orchestration (Jun 2022), http://
kubernetes.io

7. Oauth vs open id (Jun 2022), https://www.okta.com/identity—-101/
whats-the-difference-between-oauth-openid-connect-and-saml/


https://research.redhat.com
https://marutitech.com/api-gateway-in-microservices-architecture/
https://marutitech.com/api-gateway-in-microservices-architecture/
https://www.devsecops.org
https://www.docker.com/
https://www.docker.com/
http://www.event-b.org/index.html
http://www.event-b.org/index.html
https://jwt.io/introduction
http://kubernetes.io
http://kubernetes.io
https://www.okta.com/identity-101/whats-the-difference-between-oauth-openid-connect-and-saml/
https://www.okta.com/identity-101/whats-the-difference-between-oauth-openid-connect-and-saml/

ABDELFATTAH AND CERNY MICROSERVICES SECURITY CHALLENGES AND APPROACHES

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Service discovery (Jun 2022), https://avinetworks.com/glossary/
service-discovery/

Stride threat modeling (Jun 2022), https://www.softwaresecured.com/
stride-threat-modeling/

Threat modeling: 12 available methods (Jun 2022), https://insights.sei.
cmu.edu/blog/threat-modeling-12-available—-methods/

Al-Masri, E., Mahmoud, Q.H.: Qos-based discovery and ranking of web services. In:
2007 16th international conference on computer communications and networks. pp.
529-534. IEEE (2007)

Andersen, M.P., Kolb, J., Chen, K., Fierro, G., Culler, D.E., Katz, R.: Democratizing
authority in the built environment. ACM Transactions on Sensor Networks (TOSN)
14(3-4), 1-26 (2018)

Berardi, D., Giallorenzo, S., Mauro, J., Melis, A., Montesi, F., Prandini, M.: Microser-
vice security: a systematic literature review. Peer] Computer Science 7, €779 (2022)
Blakeley, B., Cooney, C., Dehghantanha, A., Aspin, R.: Cloud storage forensic: hu-
bic as a case-study. In: 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom). pp. 536-541. IEEE (2015)

Bushong, V., Abdelfattah, A.S., Maruf, A.A., Das, D., Lehman, A., Jaroszewski,
E., Coffey, M., Cerny, T., Frajtak, K., Tisnovsky, P., Bures, M.: On microservice
analysis and architecture evolution: A systematic mapping study. Applied Sciences
11(17) (2021). https://doi.org/10.3390/app11177856, https://www.mdpi.com/
2076-3417/11/17/7856

Carnell, J., Sdnchez, I.H.: Spring microservices in action. Simon and Schuster (2021)
Gorige, D., Al-Masri, E., Kanzhelev, S., Fattah, H.: Privacy-risk detection in microser-
vices composition using distributed tracing. In: 2020 IEEE Eurasia Conference on 10T,
Communication and Engineering (ECICE). pp. 250-253. IEEE (2020)

Gummaraju, J., Desikan, T., Turner, Y.: Over 30% of official images in docker hub
contain high priority security vulnerabilities. Technical Report (2015)

Gupta, R.K., Venkatachalapathy, M., Jeberla, FK.: Challenges in adopting continuous
delivery and devops in a globally distributed product team: a case study of a healthcare
organization. In: 2019 ACM/IEEE 14th International Conference on Global Software
Engineering (ICGSE). pp. 30-34. IEEE (2019)

Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P.: A survey of devops concepts
and challenges. ACM Computing Surveys (CSUR) 52(6), 1-35 (2019)

Lwakatare, L.E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkild, V., Itkonen, J., Ku-
vaja, P., Mikkonen, T., Oivo, M., Lassenius, C.: Devops in practice: A multiple case
study of five companies. Information and Software Technology 114, 217-230 (2019)
Nehme, A., Jesus, V., Mahbub, K., Abdallah, A.: Securing microservices. IT Profes-
sional 21(1), 4249 (2019)

Suneja, S., Kanso, A., Isci, C.: Can container fusion be securely achieved? In: Pro-
ceedings of the 5th International Workshop on Container Technologies and Container
Clouds. pp. 31-36 (2019)

Torkura, K.A., Sukmana, M.1., Meinel, C.: Integrating continuous security assessments
in microservices and cloud native applications. In: Proceedings of the10th International
Conference on Utility and Cloud Computing. pp. 171-180 (2017)

Vistbakka, 1., Troubitsyna, E.: Analysing privacy-preserving constraints in microser-
vices architecture. In: 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC). pp. 1089-1090. IEEE (2020)


https://avinetworks.com/glossary/service-discovery/
https://avinetworks.com/glossary/service-discovery/
https://www.softwaresecured.com/stride-threat-modeling/
https://www.softwaresecured.com/stride-threat-modeling/
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://www.mdpi.com/2076-3417/11/17/7856
https://www.mdpi.com/2076-3417/11/17/7856

	Introduction
	Background
	Security-based Microservices Challenges
	Security Approaches
	Conclusion

