
30TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2022 CLUJ-NAPOCA, ROMANIA)

Topic Classification for Short Texts

Dan Claudiu Neagu
Cicada Technologies and Babes-Bolyai University
Cluj-Napoca, Romania dann@cicadatech.eu

Andrei Bogdan Rus
Cicada Technologies and Technical University of Cluj-Napoca
Cluj-Napoca, Romania bogdanr@cicadatech.eu

Mihai Grec
Cicada Technologies
Cluj-Napoca, Romania mihaig@cicadatech.eu

Mihai Boroianu
Cicada Technologies
Cluj-Napoca, Romania mihaib@cicadatech.eu

Gheorghe Cosmin Silaghi
Babes-Bolyai University
Cluj-Napoca, Romania gheorghe.silaghi@ubbcluj.ro

Abstract

In the context of TV and social media surveillance, constructing models to automate topic iden-
tification of short texts is a key task. This paper constructs worth-to-consider models for practi-
cal usage, employing Top-K multinomial classification methodology. We describe the full data
processing pipeline, discussing about dataset selection, text preprocessing, feature extraction,
model selection and learning, including hyperparameter optimization. We will test and compare
popular methods including: standard machine learning, deep learning, and a fine-tuned BERT
for topic classification.
Keywords: Natural Language Processing, Topic Classification, Text Classification, Machine
Learning, Deep Learning

1. Introduction
Part of Natural Language Processing (NLP), document classification assigns a document to one
or more classes or categories. When the input is text, we speak about text classification, which
is a popular technique applied to automate various processes like spam filtering [21], humor
detection [16], sentiment analysis [27] and many more including topic classification. This last
term refers to identifying abstract topics that occur in a collection of texts or documents, with
the motivation of discovering the interests discusses or described within the textual data.

Opposed to sentiment analysis where the overall target is to determine the polarity of a
text (i.e. positive, neutral or negative), in topic classification the number of classes could be
extremely high and in many cases, overlapping, thus the problem becoming much more diffi-
cult [18, 27]. Rather than considering topic classification as a standard classification problem,
we employ a Top-K multinomial classification methodology [20, 25], with the goal of inferring
the k highest probable classes for each text, from a set of predefined topics.

Special focus is towards social media, as its texts are of great informative value. In general,
social media platforms disseminate short unstructured texts, generated by their authors from



NEAGU ET AL. TOPIC CLASSIFICATION FOR SHORT TEXTS

mobile devices in short time intervals, with plenty of bad language [15]. These characteristics
of social media inputs bring in additional challenges, because such a short text does not pro-
vide sufficient word occurrences for a traditional text classification based on "Bag-Of-Words"
document representations [22].

The work presented here is done under the umbrella of a media surveillance project [13],
aiming to investigate specific habits of people interacting with TV and social media. Several
restrictions and limitations are imposed on the project like: frequent model retraining and de-
ployment due to the volatile nature of the environment, the need to processed immense volumes
of data in short time intervals, and the need to adhere to data privacy laws and security standards.
Given that, this paper describes our efforts for building a worth-to-consider classifier for short
texts which can be applied on social media data. Besides searching for a good topic prediction
accuracy of the various classifiers, the processing time is also highly important.

We present in detail the steps involved in the full NLP pipeline, from raw texts to topic pre-
diction, and the Top-1, Top-2, and Top-3 accuracies achieved by various classifiers. The pipeline
contains the following processes: dataset selection, data cleaning and preprocessing, feature ex-
traction, training and testing various classical machine learning and deep learning models, and
the hyper-parameter optimization methodology used for identifying the best parameters for each
trained ML model.

The rest of the paper is structured as following: in section 2 we present related work compet-
ing or influencing our research. Section 3 introduces the data under study and the steps followed
to construct the topic classification models. Section 4 present the achieved results and section 5
concludes our work.

2. Related Work
Discovering abstract topics that occur in a collection of texts or documents could be done with
either Topic Classification or Topic Modeling. Topic modeling is an unsupervised technique [8,
45] that doesn’t require labeled data, while topic classification is a supervised one, where labeled
data is needed for model training.

Topic modeling is a popular statistical tool for extracting latent variables from large datasets,
being well suited for textual data [8, 45]. Among the most used methods for topic modeling we
mention Probabilistic Latent Semantic Analysis (PSLA) and Latent Dirichlet Allocation (LDA).
In essence, conventional topic models reveal topics within a text corpus by implicitly capturing
the document-level word co-occurrence patterns [47, 9]. Directly applying these models on short
texts will suffer from the severe data sparsity problem, i.e. the sparse word co-occurrence pat-
terns in individual document [22]. Some workarounds try to alleviate the sparsity problem. Al-
banese & Feuerstein aggregate a number of short texts to create a lengthy pseudo-document [2],
its effectiveness being heavily data-dependent. The Biterm Topic Model [11] extracts unordered
word pairs (i.e. biterms) co-occuring in short texts and the latent topic components being mod-
eled using these biterms. This method seems to perform better for short texts compared to other
traditional approaches.

The main advantage of topic modeling methods is that they do not require labeled data, thus
data collection becomes more accessible and could be done in a fully or partially automated
manner. Despite its popularity, topic modeling is prone to serious issues with optimization,
noise sensitivity or result instability [1] and some techniques are not being representative for
real-world data relationships [7].

If labeled training data is available, topic classification overcomes most issues related with
topic modeling. Learning models on a small dataset with around 770 tweets distributed over
18 classes, Lee et al. [26] achieved an accuracy of ≈ 65% with the multinomial Naive Bayes
classifier and ≈ 62% with the standard SVM classifier. Rahman & Akter [41] worked with



ISD2022 ROMANIA

6000 texts extracted from Amazon’s product review corpus1 distributed over only 6 very specific
topics and achieved a very high classification rate of ≈ 92% with NB, ≈ 82% with k-NN and
≈ 79% with decision trees. Zeng et al. [48] proposes a hybrid approach, extracting the most
relevant latent features with topic modeling and then, feeding them to supervised ML algorithms
like SVM, CNN and LSTM. For the experiments they used the Twitter dataset released by
TREC20112 with around 15000 tweets, semi-automatically labeled into 50 topic classes. The
best obtained accuracy is with CNN and is poor: only ≈ 39.5%, and the topic modeling seems
not to significantly improve the learning.

Difficulty of topic classification resides also in the big number of target classes. To overcome
this, some authors [20, 34] use the Top-K accuracy instead of the standard one. Rather than
classifying a text to just one class and matching it to the a-priori label, the model will produce
the most K probable classes and if the label is among them, we consider the text as being
correctly classified. In our work we will report the standard accuracy (i.e. Top-1), the Top-2 and
Top-3 accuracies.

3. Data Processing Methodology
In the following subsections we present the whole pipeline methodology for topic classifica-
tion. We start by describing the dataset and after that we present the full processing pipeline:
data preprocessing, feature extraction, classifier selection and model building with the help of
hyperparameter optimization.

All processing modules were implemented in Python 3.9 and experiments were run on a
powerful machine with the following specifications: 2 × Intel Xeon Gold 6230 CPUs (20 Core
at 2.1 GHz), 128 GB DDR4 internal RAM, 8 × NVIDIA Tesla V100 32 GB.

3.1. Dataset Description

The dataset selected for our topic classification experiments is the News Category dataset avail-
able on Kaggle3 [31]. This dataset contains 202372 news headlines collected between 2012 up
to 2018 from HuffPost4 The site offers news, satire, blogs, original content, and covers a variety
of topics like politics, business, entertainment, technology, popular media, and more.

There are a number of reasons why we selected this dataset as the benchmark for our ex-
periments: (i) it contains short texts similar to those found on social media platforms, (ii) the
topics are fairly general and the number of topics is large enough, (iii) the category of each
article was manually labeled, (iv) high data volume, and (v) it was relatively recently collected.
Each record of the dataset contains the following attributes: category (41 categories), headline,
short_description, authors, date (of the publication), and link (URL link of the article).

For our classification problem we will focus only on the headline and short description
attributes of the dataset, ignoring the authors and date of publication. Therefore, we merged the
headline and the short description attributes and created a novel attribute named text_merged.

The vast majority of merged texts contain between 94 and 254 characters, with the mean
being ≈ 174 and the standard deviation almost 80 characters. This proves that the generated
texts have the characteristics of short texts similar to those present in social media platforms (a
Twitter tweet is limited to 280 characters, a Youtube comment is limited to 300 characters).

Figure 1a shows the distribution of the records among the 41 categories. The top-3 most pop-
ular classes are: "POLITICS" which contains ≈ 16% of the records, "WELLNESS" which con-

1https://jmcauley.ucsd.edu/data/amazon/
2http://trec.nist.gov/data/tweets
3https://www.kaggle.com/datasets/rmisra/news-category-dataset
4https://www.huffpost.com/, formerly The Huffington Post until 2017, is an American news aggregator

and blog with localized and international editions.

https://jmcauley.ucsd.edu/data/amazon/
http://trec.nist.gov/data/tweets
https://www.kaggle.com/datasets/rmisra/news-category-dataset
https://www.huffpost.com/


NEAGU ET AL. TOPIC CLASSIFICATION FOR SHORT TEXTS

(a) Original category distribution (41 total classes)

(b) Merged category distribution (26 total classes)

Fig. 1. Class distributions for the News Category dataset.

tains ≈ 9% of the records, and "ENTERTAINMENT" which contains ≈ 8% of the records. The
least most popular 4 classes are: "COLLEGE", "LATINO VOICES", "CULTURE & ARTS",
and "EDUCATION" each containing around 0.5% of the records.

Some classes have different labels but denote the same topic, for example the classes "ARTS
& CULTURE" and "CULTURE & ARTS". Other classes are highly granular, like "SCIENCE"
and "TECH" but can be naturally grouped together in a common class. In order to improve
the quality of the data, we decided to cluster together a number of classes. Therefore, we
transformed the following classes as follows: "HEALTHY LIVING" was relabeled as the ex-
isting "WELLNESS" class; "PARENTS" was relabeled as the existing "PARENTING" class;
"STYLE" was relabeled as the existing "STYLE & BEAUTY" class; "GREEN" was rela-
beled as the existing "ENVIRONMENT" class; "TASTE" was relabeled as the existing "FOOD
& DRINK" class; "COLLEGE" was relabeled as the existing "EDUCATION" class; "THE
WORLDPOST" and "WORDPOST" were relabeled as the existing "WORLD NEWS" class;
"ARTS" and "CULTURE & ARTS" were relabeled as the existing "ARTS & CULTURE" class;
"BUSINESS" and "MONEY" were relabeled as a new class named "BUSINESS & FINANCES";
"SCIENCE" and "TECH" were relabeled as a new class named "SCIENCE & TECH"; "QUEER
VOICES", "BLACK VOICES", and "LATINO VOICES" were relabeled as a new class named
"GROUPS VOICES"; "FIFTY" and "GOOD NEWS" were relabeled as a new class named
"MISCELLANEOUS".

The new class feature was named category_merged and it contains only 26 distinct topics,
compared to the original 41. The full distribution of the merged topics can be seen in Figure
1b. After the topic clustering, no class has less than 1% of record labels, meaning that the least
popular class has more than 2000 records in the dataset.



ISD2022 ROMANIA

3.2. Text Preprocessing

In order to remove the natural noise which is existent in textual data, we developed a specialized
module for preprocessing (PP). It contains various functionalities which can be applied on many
types of textual data, not only on short texts. Some of them relies on SpaCy5 library [23]. For
the News Category dataset we applied the following preprocessing steps, in this specific order:

1. Extra white space removal

2. Word lemmatisation and tokenization

3. Stop-word removal

4. Lower case capitalization

5. Punctuation mark removal

In step 1, all consecutive white spaces which appear more than two times are removed from
the texts, i.e. "Foo bar!" becomes "Foo bar!". In step 2, we performed word lemmatisation and
tokenization, as advised by [33]. The input for this step are strings of the text_merged attribute
and the generated output is the list of tokens, where each token is either a number, lemmatised
word, or symbol. In step 3, stop-word tokens are identified and removed using the stop-word
dictionary offered by SpaCy. Stop-word removal is a common task in text preprocessing, as
indicated by [27]. In step 4, all tokens are transformed in lower case capitalization in order to
reduce the number of tokens which are written in different capitalizations but refer to the same
concept. The final step 5 removes all extra punctuation marks within tokens.

For the BERT classifier, a single preprocessing step consisting of sentence tokenization was
applied.

After the preprocessing step, the dataset was split into training and testing sets. The training
set contains 75% of the data while the testing test contains the remaining 25%. The split was
made such that the class distribution between the train and test set is similar.

3.3. Feature Extraction

Feature extraction is a key process of every NLP task. It starts from an initial set of text data
and builds derived values (features) intended to be informative and non-redundant, facilitating
the subsequent learning and generalization steps [18, 29]. Here, we considered Term Frequency-
Inverse Document Frequency (TFIDF or TF-IDF) [43] and Word2Vec [30]. TFIDF is still widely
used today [4] together with classical ML methods, although it can not account for the similar-
ity between the words in the document and in general, Word2Vec is seen as facilitating deep
learning.

We trained a TFIDF vectorizer on the training set. The TFIDF was applied on the prepro-
cessed token lists and the vocabulary was set to contain the tokens which appear at least 5 times.
This was done in order to remove a large number of tokens which are very rarely used or tokens
which may have been erroneously built in the preprocessing step. The trained TFIDF vocabulary
contains around 25000 tokens. Due to the sparse nature of TFIDF, the large number of training
instances, and the vocabulary size, the trained vectors are stored and used in the Compressed
Sparse Row (CRS) format.

Word2Vec[30] uses a neural network model to learn word associations from a large corpus
of texts, being able to better capture the language semantics. We used the Gensim6 library [42]
for learning the word vectors from our training data and we finally kept only the tokens which

5https://spacy.io/
6https://radimrehurek.com/gensim/

https://spacy.io/
https://radimrehurek.com/gensim/


NEAGU ET AL. TOPIC CLASSIFICATION FOR SHORT TEXTS

appear at least 5 times. The Word2Vec algorithm was applied using the Continuous Bag-Of-
Words (CBOW) architecture model. The vector embedding size for each token was set to 300.
The model was trained with the following parameters: learning rate alpha of 0.025, window of
5, over 5 epochs. After this step, each token from the vocabulary is represented by a feature
vector of size 300.

In order to fine-tune the BERT classifier, the pre-trained BertTokenizer7 was applied on the
tokenized sentences. This process generated the specific BERT encodings consisting of word
mappings and an attention masks.

3.4. Classifier Selection

Many supervised classifiers have been applied for text classification tasks [18, 27]. For our
experiments we selected the following methods for classification:

• Classic ML: Bernoulli Naive Bayes (Bernoulli NB), Random Forest, Support Vector Ma-
chine (SVM)

• Deep Learning: Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN)

• BERT plus a classification layer

Bernoulli NB[28] is a probabilistic classifier designed to use an implicit mixture model for
generation of the underlying documents. It can handle irrelevant or missing features which are
very common in text classification and in some NLP tasks this is the reference model [29]. Due
to its simplistic nature, model training times are usually very low. Random forest [10] is a
popular choice for classification tasks over a large features set, including text classification[18].
SVMs [25] are reported to achieve state of the art prediction performances for text classification
compared to other classic ML algorithms. Thus, we selected SVM among our classifiers and we
trained the models with a linear kernel in order to better scale to large number of samples and to
reduce the training time.

Deep Learning (DL) with the help of artificial neural networks has achieved state of the art
results across many domains, including a wide variety of NLP applications. Thus, we selected
two variations of DL for our task: the Long short-term memory (LSTM) network [36] as a type
of recurrent neural networks (RNNs) and the Convolutional Neural Network (CNN) [24].

The BERT model available on the Hugging Face transformers8, was used with the standard
English uncased variant. On top of BERT we added a simple neural network with one hidden
dense layer with 128 nodes and ReLU activation function, followed by the standard classifica-
tion layer with 26 nodes which will generate the topic. We selected Adam as the optimization
function, with a learning rate of 2e− 5 and ϵ = 1e− 8. The loss function was set to Categorical
Cross-Entropy. The BERT classifier was fine-tuned on the specific BERT encodings generated
in section 3.3.

Compared to the standard ML algorithms presented above, LSTMs and CNNs are able to
process sequences of data as is the case with the multidimensional representation of Word2Vec.
Due to this, the LSTM and CNN algorithms were applied on the Word2Vec features while the
classic learning algorithms (Bernoulli NB, Random Forest, and SVM) were applied only on the
TFIDF features. In order to apply LSTM and CNN on the sequenced data, we introduced an
embedding layer between the input layer and the hidden layers. The embedding layer maps each
token from an instance to its corresponding Word2Vec representation, being equipped with the
word embeddings generated during feature extraction (see section 3.3).

7https://huggingface.co/docs/transformers/main_classes/tokenizer
8https://huggingface.co/docs/transformers/model_doc/bert

https://huggingface.co/docs/transformers/main_classes/tokenizer
https://huggingface.co/docs/transformers/model_doc/bert


ISD2022 ROMANIA

The classic learning algorithms were implemented with the help of Scikit-Learn library [38],
the deep learning algorithms with Keras [12], and the BERT classifier with PyTorch [37].

3.5. Hyperparameter Optimization

Hyperparameter optimization or tuning is the step of choosing the optimal parameters for a
classifier such as to minimize the generalization error [5]. Among various alternatives that could
be considered, like exhaustive grid search, random search [6] or Bayesian optimization [44], we
opted for evolutionary optimization (EO).

Evolutionary optimization using population-based probabilistic search algorithms [39] could
drastically speed up the hyperparameter optimization while producing a good-enough combina-
tion of parameter values. Noticing the vast literature accompanying the metaheuristic design of
DNNs [35] or recent applications of DL where parameters were selected with the help of ge-
netic algorithms [19, 46] or suggestions that EO could outperform Bayesian optimization [32],
we decided to employ a classical genetic algorithm for hyperparameter search.

We used Sklearn-genetic-opt library9[3] for implementing the GA-based EO. Sklearn-genetic-
opt makes usage of the Deap framework10 [17], which supplies many evolutionary algorithms
needed for solving optimization problems.

The GA was designed as following: given a number n of parameters to optimize for some
specific classifier, a chromosome is a vector (P1, P2, ..., Pn) of values selected for each param-
eter. A population consisting of 10 individuals which are evolved over 20 generations, with a
crossover probability of 0.8 and mutation probability to 0.1. Individuals are selected for the next
generation with a standard elitist tournament of size 3. Internally, each individual is evaluated
using the accuracy as fitness function, computed with 3-folds cross-validation.

In the case of the classic ML algorithms all the parameters described in the official Sklearn
documentation were optimized. In the case of the LSTM and CNN, we considered among the
parameters the following: the network capacity (the number of hidden layers and the number
of units per layer), the activation function, the regularization function, drop-out rate. Because
both CNN and LSTM need the embedding weight parameter which is 2D tensor, we modified
the source code of Sklearn-genetic-opt in order to transmit the multi-dimmensional parameters
directly to Deap. Other additional parameters important for DL were optimized: batch size,
number of epochs, initializer functions.

In general, convergence can be seen after 10-15 generations, thus evolving the populations
over 20 generations is enough to guarantee a good parameter selection. In table 1 we present
the parameters and their optimum values for each classifier used in our experiments.

In the case of BERT classifier, training and testing just one model is extremely time consum-
ing therefore we decided not to perform evolutionary optimization. Instead of cross-validation,
10% of the training data was used for validation. The model was trained for 4 epochs because
after this number the accuracy on the validation set started to decrease.

4. Experiments and Results
As mentioned in subsection 3.1, we worked with the News Category dataset. Details about the
dataset are presented in subsection 3.1. We applied all the preprocessing steps as described
in subsection 3.2 and we considered two different feature extraction methods, as indicated in
subsection 3.3. For each encoding we selected the classifiers indicated in subsection 3.4 and we
trained them using the best parameters found during the hyperparameter optimization process
described in subsection 3.5 to obtain relevant models for topic classification.

9https://sklearn-genetic-opt.readthedocs.io/
10https://github.com/deap/deap

https://sklearn-genetic-opt.readthedocs.io/
https://github.com/deap/deap


NEAGU ET AL. TOPIC CLASSIFICATION FOR SHORT TEXTS

Table 1. Optimal parameters identified with EO hyperparameter search

Classifier Optimal parameters (parameter_name=parameter_value)
Bernoulli NB alpha=0.222, binarize=0.07, fit_prior=True
Random Forest n_estimators=23, criterion=entropy, max_depth=None, min_sample_split=18,

min_sample_leaf=8, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.01, bootstrap=True, oob_score=True,
warm_start=False, class_weight=None, ccp_alpha=0.005

Linear SVM dual=False, C=0.233, penalty=l2, fit_intercept=True, intercept_scaling=2.575,
class_weight=None, tol=0.0001, loss=squared_hinge, multiclass=ovr,
max_iter=431

LSTM batch_size=559, epochs=16, activation=tanh, recurrent_activation=sigmoid,
kernel_initializer=lecun_normal, recurrent_initializer=he_uniform,
bias_initializer=zeros, unroll=False, kernel_regularizer=None,
bias_regularizer=None, activity_regularizer=None, use_bias=True,
recurrent_regularizer=l1, mask_zero=False, optimizer=rmsprop,
loss=sparse_categorical_crossentropy, dropout_rate=0.484, embed-
ding_layer_size=300, n_hidden_layers=2, first_hidden_layer_size=89,
second_hidden_layer_size=63

CNN batch_size=880, epochs=17, activation=softsign, kernel_initializer=orthogonal,
use_bias=True, bias_initializer=glorot_normal, kernel_regularizer=None,
bias_regularizer=l1, activity_regularizer=l2, optimizer=adamax,
mask_zero=True, kernel_size=3, padding=same, pool_size=2, pool_strides=1,
loss=sparse_categorical_crossentropy, dropout_rate=0.264, embed-
ding_layer_size=300, n_hidden_layers=1, hidden_layer_size=112

The optimization and training was done on ≈ 151000 instances (75% of the dataset) while
the testing on ≈ 51000 (25% of the dataset). We collected the following performance metrics
for each model:

• Top-1, Top-2 and Top-3 accuracy on the test set (%),

• execution time of the hyperparameter optimization process → opt (s),

• training time of the classifier with optimum parameters → train (s), and

• classifier prediction time on the test set → test (s).

The results of each classifier are presented in Table 2.

Table 2. Classification performances

Classifier Feature
Extraction

Top-1 Acc.
(%)

Top-2 Acc.
(%)

Top-3 Acc.
(%)

opt (s) train
(s)

test
(s)

Bernoulli NB TFIDF 64.2 78.9 85.2 443 0.66 0.04
Random Forest TFIDF 31.0 40.7 50.2 2992 14.5 0.1
Linear SVM TFIDF 68.0 81.8 87.1 8005 25.8 0.03
LSTM Word2vec 67.6 80.5 85.6 286062 130.2 9.5
CNN Word2Vec 66.2 80.1 85.3 37317 46.5 1.5
BERT 75.52 88.13 92.3 11189 357

As expected, BERT achieved the best classification accuracy in all three cases. The Top-1,
Top-2, and Top-3 accuracies are approximately 7.5%, 6%, and 5% higher when compared to the
second best algorithm, Linear SVM. But all of this came with a very high computational cost.
Fine tuning a single BERT classifier over 4 epochs was approx. 430 times slower when com-
pared to Linear SVM. The difference on the test data is even bigger, BERT taking around 350



ISD2022 ROMANIA

seconds while Linear SVM taking less than 1 second. Because training a single BERT model
took around 3 hours, hyperparameter optimization could not be performed on this classifier.
But, as we noticed, this process is not needed because just one BERT classifier trained with the
recommended parameters supplies state-of-the-art results.

The third best algorithm, LSTM, achived similar accuracies to SVM in the Top-1 and Top-
2 cases but underperformed more significantly in the Top-3 case. In terms of accuracy CNN
performed slightly worse than LSTM but the difference can be considered negligible. Bernoulli
NB achieved the second worse Top-1 accuracy score, of around 64%, but had a comparable
performance to CNN and LSTM in the Top-2 and Top-3 cases. The Random Forest classifier
had by far the worst accuracy, even the Top-3 accuracy being considerably lower than the Top-1
accuracy of the Bernoulli NB.

We took advantage of a very powerful machine to run all experiments. Even so, time spent
for hyperparameter optimization and model training, with the exception of Bernoulli NB, are
not negligible (especially for BERT and the deep learning algorithms). The optimization time
for Bernoulli was around 7 minutes while for linear SVM was almost 50 minutes. Searching for
the best structure and parameters for CNN took ≈ 10 hours and for LSTM ≈ 79 hours.

Regarding the training time, Bernoulli NB was by far the faster with a training time of under
1 second. This was excepted due to the simplistic nature of the algorithm. Random Forest and
Linear SVM had the second and third best training times of around 15 seconds and 25 seconds,
respectively. Compared to Linear SVM, CNN took about double the time to train while LSTM
was 5 times slower. Regarding the testing times, all the classic algorithms performed extremely
well, having execution times of under 0.2 seconds. CNN had a testing time of around 1.5
seconds while LSTM of around 9.5. Although considerably slower than the classic algorithms,
these times are very good considering that the testing was made on over 50000 records. BERT
classifier had by far the slowest training and testing times.

If no a-priori English language knowledge in the form of pre-trained Word2Vec embeddings
like Glove [40] or the deployment of a BERT [14] model is infeasible due to hardware limita-
tions, we shall note that SVM remains the best option. Probably better results could be achieved
with LSTM or CNN with pre-trained embeddings, but with an additional computational cost:
number of weights to learn being increased due to the size of the pre-trained language models.

5. Conclusions
Within the larger scope of a media surveillance project [13] we constructed a system capable
of inferring the topic discussed within short texts, which are common within social media plat-
forms. Due to the lack of a publicly available social media dataset with manually labeled topic
classes, we identified an appropriate candidate which can be used for training machine learning
models. After augmenting the quality of the selected public dataset we inspected the average
text lengths and conclude that these are similar with those usually found in microblogging.

After processing the data following the standard recommended methodology found in the
literature, we built and evaluated various models constructed using standard machine leaning ,
deep learning, and fine-tuned the state-of-the-art BERT model for the topic classification task.
We consider that the 26 topic classes used in our work should be enough for any general topic
analysis task. Given the big number of parameters to optimize for the classic and deep learn-
ing models, we opted to perform hyperparameter search using the evolutionary optimization
approach.

Considering the limitations imposed on our project, we found that the SVM with a linear
kernel is the most robust one, and TF-IDF encoding is sufficient if no additional linguistic re-
sources are available. Using LSTM with Word2Vec embeddings achieves a similar accuracy to
linear SVM but with a significantly increased computational cost. As indicated by the literature,
Bernoulli Naive Bayes gives robust results, but Random Forest does not perform well, having



NEAGU ET AL. TOPIC CLASSIFICATION FOR SHORT TEXTS

a Top-1 accuracy of 31% which is only around 3-4% above what ZeroR classification would
achieve.

If one disposes plenty of available resources, and processing times are not a barrier, then a
fine-tuned BERT classifier will deliver the best classification performance.

Acknowledgement
This paper was financed by the project with the title “Platformă inovativă pentru măsurarea
audienţei TV, identificarea automată a telespectatorilor şi corelarea cu date analitice din plat-
forme de socializare online” (Innovative platform for measuring TV audience, automatic iden-
tification of viewers and correlating it with analytic data from social media). The project was
cofinanced by "Fondul European de Dezvoltare Regională prin Programul Operaţional Com-
petitivitate (POC) 2014-2020, Axa prioritară: 2-Tehnologia Informat,iei şi Comunicaţiilor (TIC)
pentru o economie digitală competitivă." (the European Regional Development Fund (ERDF)
through the Competitiveness Operational Program 2014-2020, Priority Axis 2 - Information
and Communication Technology (ICT) for a competitive digital economy), project code SMIS
2014+:128960, beneficiary: CICADA TECHNOLOGIES S.R.L. The project is part of the call:
POC/524/2/2/ “Sprijinirea creşterii valorii adăugate generate de sectorul TIC şi a inovării în
domeniu prin dezvoltarea de clustere” (Supporting the added value generated by the ICT sector
and innovation in the field through cluster development). The content of this material does not
necessarily represent the official position of the European Union or the Romanian Government.

References
1. Agrawal, A., Fu, W., Menzies, T.: What is wrong with topic modeling? and how to fix

it using search-based software engineering. Information and Software Technology 98,
pp. 74–88 (2018)

2. Albanese, F., Feuerstein, E.: Improved topic modeling in twitter through community
pooling. In: String Processing and Information Retrieval - 28th International Sym-
posium, SPIRE 2021. LNCS, vol. 12944, pp. 209–216. Springer (2021), https:
//doi.org/10.1007/978-3-030-86692-1_17

3. Arenas Gomez, R.: GASearchCV - sklearn genetic opt 0.4.0 documentation
(2021), https://sklearn-genetic-opt.readthedocs.io/en/0.4.0/
api/gasearchcv.html

4. Beel, J., Gipp, B., Langer, S., Breitinger, C.: Research-paper recommender systems: A
literature survey. International Journal on Digital Libraries 17(4), pp. 305–338 (2016)

5. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter op-
timization. In: Advances in Neural Information Processing Systems 24: 25th Annual
Conference on NIPS 2011. Proceedings. pp. 2546–2554 (2011)

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of
Machine Learning Research 13, pp. 281–305 (2012)

7. Blei, D., Lafferty, J.: Correlated topic models. Advances in neural information process-
ing systems 18, pp. 147 (2006)

8. Blei, D.M.: Probabilistic topic models. Communications of the ACM 55(4), pp. 77–84
(2012)

9. Boyd-Graber, J.L., Blei, D.M.: Syntactic topic models. In: Proc. of the 22nd Annual
Conf. on Neural Information Processing Systems, 2008. pp. 185–192 (2008)

10. Breiman, L.: Random forests. Machine Learning 45(1), pp. 5–32 (2001)
11. Cheng, X., Yan, X., Lan, Y., Guo, J.: Btm: Topic modeling over short texts. IEEE

Transactions on Knowledge and Data Engineering 26(12), pp. 2928–2941 (2014)
12. Chollet, F., et al.: Keras. https://keras.io (2015)

https://doi.org/10.1007/978-3-030-86692-1_17
https://doi.org/10.1007/978-3-030-86692-1_17
https://sklearn-genetic-opt.readthedocs.io/en/0.4.0/api/gasearchcv.html
https://sklearn-genetic-opt.readthedocs.io/en/0.4.0/api/gasearchcv.html
https://keras.io


ISD2022 ROMANIA

13. Cicada Technologies: Innovative platform for measuring tv audience, automatic iden-
tification of viewers and correlating it with analytic data from social media (2020),
https://www.cicadatech.eu/projects/, accessed on April 08, 2022

14. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: Proc. of the 2019 Conf. of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Volume 1 (Long and Short Papers). pp. 4171–4186.
ACL (2019), https://doi.org/10.18653/v1/n19-1423

15. Eisenstein, J.: What to do about bad language on the Internet. In: Human Language
Technologies: Conference of the North American Chapter of the Association of Com-
putational Linguistics, Proceedings, 2013. pp. 359–369. ACL (2013)

16. Fan, X., Lin, H., Yang, L., Diao, Y., Shen, C., Chu, Y., Zou, Y.: Humor detection via an
internal and external neural network. Neurocomputing 394, pp. 105–111 (2020)

17. Fortin, F.A. et al.: DEAP: Evolutionary algorithms made easy. Journal of Machine
Learning Research 13, pp. 2171–2175 (2012)

18. Gentzkow, M., Kelly, B., Taddy, M.: Text as data. Journal of Economic Literature 57(3),
pp. 535–74 (September 2019)

19. Gorgolis, N., Hatzilygeroudis, I., Istenes, Z., Gyenne, L.: Hyperparameter optimization
of LSTM network models through genetic algorithm. In: 10th Intl. Conf. on Informa-
tion, Intelligence, Systems and Applications, IISA 2019. pp. 1–4. IEEE (2019)

20. Gupta, M.R., Bengio, S., Weston, J.: Training highly multiclass classifiers. Journal of
Machine Learning Research 15(1), pp. 1461–1492 (2014)

21. Guzella, T.S., Caminhas, W.M.: A review of machine learning approaches to spam
filtering. Expert Systems with Applications 36(7), pp. 10206–10222 (2009), https:
//doi.org/10.1016/j.eswa.2009.02.037

22. Hong, L., Davison, B.D.: Empirical study of topic modeling in Twitter. In: Proc. of the
3rd Workshop on Social Network Mining and Analysis, SNAKDD 2009 . pp. 80–88.
ACM (2010), https://doi.org/10.1145/1964858.1964870

23. Honnibal, M., Johnson, M.: An improved non-monotonic transition system for depen-
dency parsing. In: Proc. of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015. pp. 1373–1378. ACL (2015)

24. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with
convolutional neural networks. International journal of computer vision 116(1), pp. 1–
20 (2016)

25. Joachims, T.: Text categorization with support vector machines: learning with many
relevant features. In: Proceedings of ECML-98, 10th European Conference on Machine
Learning. LNCS, vol. 1398, pp. 137–142. Springer (1998)

26. Lee, K. et al.: Twitter trending topic classification. In: 2011 IEEE 11th Intl. Conf. on
Data Mining Workshops (ICDMW), Proceedings. pp. 251–258. IEEE Computer Soci-
ety (2011)

27. Liu, B.: Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge
University Press (2020)

28. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classi-
fication. In: Learning for Text Categorization: Papers from the 1998 AAAI Workshop.
pp. 41–48 (1998)

29. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications:
A survey. Ain Shams engineering journal 5(4), pp. 1093–1113 (2014)

30. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representa-
tions of words and phrases and their compositionality. In: 27th Annual Conference on
Neural Information Processing Systems 2013. Proceedings. pp. 3111–3119 (2013)

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1016/j.eswa.2009.02.037
https://doi.org/10.1016/j.eswa.2009.02.037
https://doi.org/10.1145/1964858.1964870


NEAGU ET AL. TOPIC CLASSIFICATION FOR SHORT TEXTS

31. Misra, R.: News Category Dataset - Sculpturing Data for ML (June 2018),
http://doi.org/10.13140/RG.2.2.20331.18729

32. Mori, N., Takeda, M., Matsumoto, K.: A comparison study between genetic algorithms
and bayesian optimize algorithms by novel indices. In: Proc. of the 7th Annual Conf.
on Genetic and Evolutionary Computation. pp. 1485–1492. ACM (2005)

33. Müller, T., Cotterell, R., Fraser, A.M., Schütze, H.: Joint lemmatization and morpho-
logical tagging with lemming. In: Proc. of the 2015 Conf. on Empirical Methods in
Natural Language Processing, EMNLP 2015. pp. 2268–2274. ACL (2015)

34. Oh, S.: Top-k hierarchical classification. In: Proceedings of the 31st AAAI Conference
on Artificial Intelligence. pp. 2450–2456. AAAI Press (2017)

35. Ojha, V.K., Abraham, A., Snásel, V.: Metaheuristic design of feedforward neural net-
works: A review of two decades of research. Engineering Applications of Artificial
Intelligence 60, pp. 97–116 (2017)

36. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: Proc. of the 30th Intl. Conf. on Machine Learning, ICML 2013. JMLR
Workshop and Conference Proc., vol. 28, pp. 1310–1318. JMLR.org (2013)

37. Paszke, A. et al.: Pytorch: An imperative style, high-performance deep learning library.
In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc. (2019)

38. Pedregosa, F. et al.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, pp. 2825–2830 (2011)

39. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A survey of optimization by building and
using probabilistic models. Computational Optimizations and Applications 21(1), pp.
5–20 (2002)

40. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representa-
tion. In: Proc. of the 2014 Conf. on Empirical Methods in Natural Language Processing,
EMNLP 2014. pp. 1532–1543. ACL (2014)

41. Rahman, M.A., Akter, Y.A.: Topic classification from text using decision tree, K-NN
and Multinomial Naïve Bayes. In: 2019 1st Intl. Conf. on Advances in Science, Engi-
neering and Robotics Technology (ICASERT). pp. 1–4. IEEE Press (2019)

42. Řehůřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora.
In: Proc. of the LREC 2010 Workshop on New Challenges for NLP Frameworks. pp.
45–50. ELRA, Malta (May 2010)

43. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Infor-
mation processing and management 24(5), pp. 513–523 (1988)

44. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: 26th Annual Conference on NIPS 2012. Proceedings. pp. 2960–
2968 (2012)

45. Vayansky, I., Kumar, S.A.: A review of topic modeling methods. Information Systems
94, pp. 101582 (2020)

46. Violos, J., Tsanakas, S., Androutsopoulou, M., Palaiokrassas, G., Varvarigou, T.: Next
position prediction using lstm neural networks. In: 11th Hellenic Conference on Artifi-
cial Intelligence. p. 232–240. ACM (2020)

47. Wang, X., McCallum, A.: Topics over time: a non-Markov continuous-time model of
topical trends. In: Proc. of the 12th ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining, 2006. pp. 424–433. ACM (2006)

48. Zeng, J., Li, J., Song, Y., Gao, C., Lyu, M.R., King, I.: Topic memory networks for
short text classification. In: Proc. of the 2018 Conf. on Empirical Methods in Natural
Language Processing. pp. 3120–3131. ACL (2018)


	Introduction
	Related Work
	Data Processing Methodology
	Dataset Description
	Text Preprocessing
	Feature Extraction
	Classifier Selection
	Hyperparameter Optimization

	Experiments and Results
	Conclusions

