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Abstract

Mobile applications are one of the most used pieces of software nowadays, as they continue to
expand, the architecture of those software systems becomes more important. In the fast-paced
domain of the mobile world, the applications need to be developed rapidly and they need to
work on a wide range of devices. Moreover, those applications need to be maintained for long
periods and they need to be flexible enough to work and interact with new hardware. Model
View Controller (MVC) is one of the most widely used architectural patterns for building those
kinds of applications. In this paper, we are analysing how an ML technique, in fact clustering,
can be used for detecting autonomously the conformance of various mobile codebases to the
MVC pattern. With our method CARL, we pave the way for creating a tool that automatically
validates a mobile codebase from an architectural point of view. We have analyzed CARL’s
performance on 8 iOS codebases distributed into 3 different classes based on their size (small,
medium, large) and it has an accuracy of 81%, an average Mean Silhouette coefficient of 0.81,
and an average Precision computed for each layer of 83%.
Keywords: Software Architecture Recovery, Mobile SDK, Clustering.

1. Introduction and Context
Mobile applications are one of the most important software products nowadays used by hun-
dreds of millions of people [16]. These applications need to be flexible to change as the entire
domain is fast-paced, there is a constant flux of new hardware and software updates that these
applications need to take advantage of, to stay relevant. The software architecture used for
building such products plays a major role in their success, as its heavily related to the flexibility
and maintainability of these software product [3, 22, 23]. By respecting an architectural pattern
the codebase becomes more testable and more extensible in the areas which are important for
the business. In addition to this, having a well-defined architecture in place helps the new or
inexperienced developers write new code more easily by having clear architectural guidelines
in place. Moreover if implemented correctly the architectural pattern makes the entire codebase
more open and accommodating to changes (hardware and software).

With this study, we pave the way for building an architecture checker system (that highlights
architectural issues, early in the development phase) and examining if there is a correlation be-
tween the number of components, size of the codebase, and the performance of our approach.
An automatic system that detects architectural layers and issues in the mobile codebase can
be integrated into CI / CD pipelines for improving the architectural health of those projects or
used as a quality gate. In a previous work [11], the architectural layers of mobile codebases
were detected by some heuristics, but they have quite a few downsides. It needs to have the
correct heuristics in place to yield good results. However, those might vary from one codebase
to another and needs developer interaction (for configuring the heuristics), that could also in-
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troduce some bias. Furthermore, the detection approach will have to be adjusted every time the
codebase evolves to another architectural pattern or when a new architectural layer / sublayer is
introduced.

Thus, arose the need for an automatic and non-deterministic approach, in which machine
learning techniques are used for automatically distributing the components of a mobile code-
base into architectural layers. CARL is using information from the mobile SDKs as they contain
more types of components, than web SDKs for instance and the majority of the mobile appli-
cations use them for building the UI interfaces. The proposed approach could also work on
other platforms such as desktop applications. However, for this study, we are continuing to
analyze mobile SDKs as they are richer and the vast majority of the mobile projects are us-
ing them. In this paper, we strengthen our findings regarding CARL, which is an unsupervised
approach, involving a clustering step. Related work in applying clustering techniques for detect-
ing architectural layers already exists [15, 19]. However, none of those approaches takes into
consideration the SDK information or is specifically designed for mobile applications.

We are extending our findings by better validating our approach and checking on what types
of mobile applications does this method work better. We have enriched the validation phase
by adding more codebases (we have added 5 new projects) and split them into 3 categories
(small, medium, and large applications, based on the number of components). Moreover, we are
enhancing the analysis mechanism by adding external metrics (Silhouette and Davies-Bouldin
indexes for measuring the clustering performance and homogeneity, and completeness scores
for measuring the integrity of our approach). Furthermore, we address the evaluation of our
approach as well as its applicability and efficiency on different types of applications with new
research questions. Last but not least, we look at the correlation between the number of compo-
nents in a codebase and the performance of our approach, to identify classes of applications in
which our method works best.

The main research challenges are: assesing the performance of our detection method CARL
on different-sized codebases and investigating if there is a correlation between the size of the
codebase and the performance of CARL.

The following Section presents the background for our work using text mining and unsuper-
vised ML methods in architecture reconstruction and detection as well as insights about the an-
alyzed architectural pattern Model View Controller (MVC). Section 3 talks about our approach
CARL, the evaluation process is outlined in Section 4 together with the conducted experiments.
In Section 5 we present the downsides of our approach, and at the end of the paper (Section 6)
we talk about our conclusions and some directions for further work.

2. Background
For the purpose of this work, our focus was on one of the most prolific presentational archi-
tectural patterns, MVC [9], one of the most widely and commonly used architectural pattern
that represents the foundation for more specialised architectural patterns such as Model View
Presenter or Model View View Model. MVC is a software architecture frequently used in client
applications that separates the elements of the codebase in 3 layers: Model (business logic),
View (user input / output) and Controller (mediator between the Model and the View). MVC
continues to be one of the most used architectural patterns on mobile platforms, a survey con-
ducted in 2019 and filled by over 2000 developers showed that over 66% of the developers use
MVC as an architectural pattern, being the most popular of all the architectural choices [32].

Architecture reconstruction methods are two-folded: identification of architectural modules
(by clustering) and identification of architectural rules among modules. Several approaches were
proposed to support the architecture reconstruction process based on static analysis. A part of
these approaches exploit the structural information extracted from the codebase ( [7], [21] ),
another part exploit the lexical information ( [8] ), while some recent approaches exploit both of
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them ( [15], [19] ). Furthermore, few of them consider the architectural style of the system under
analysis. Because our empirical validation is performed in the context of three iOS applications
and Apple’s flavour of MVC which can be viewed as a linear layered architectural pattern,
we describe in what follows several approaches that take into account the particularities of the
layered-based architecture. Similar to the general systems case, the approaches developed for
analysing the layer-style projects take into account either the structural features of the codebase
( [18], [34] ) or the hybrid (structural and lexical) features ( [4], [26] ).

Even if these approaches are able to identify the codebase’s components that belong to
each layer, in the case of mobile applications they cannot be properly applied. For instance,
the methods developed in [31] produce clusters with a nested structure that does not fit the
MVC architecture that can be viewed as a layered-architecture. To our knowledge, there are
not any approaches that use the information from SDK for inferring the architectural layers of
a codebase, hence why we could not compare our method against another proposal. Tools such
as ARCADE [6] are not developed for mobile platforms and they are not fit for purpose when
applying them to mobile development languages such as Swift or Kotlin.

Vocabulary The following definitions are used throughout the remainder of the paper: com-
ponent – the building block of software architectures and patterns [17]; it can be a programming
language structure such as class, struct, another system or subsystem (eq. CarBookingViewCon-
troller - class, User - model entity, struct); layer – a set of components which perform the same
role in the software system [27] (eq. Model layer from MVC - responsible for the business logic
of the application, Coordinator layer - responsible for keeping the state of the application and
deciding when and how to alter it); module – a set of components that are related, fulfill the
same general purpose; class (of applications) – a category of applications based on the number
of components.

3. CARL - A Smart Framework for Automatic Detection of Architectural Layers
in Mobile Codebases

Mobile applications are usually client – presentational applications, they commonly use mono-
lithic architectures and are frequently self-contained. The purpose of CARL is to identify the
architectural layers in those codebases based on the scope of the composing components. Such
a system could be a real help for both the developers which would be constrained to write better
code as well as for the management team which could see in real time the architectural health
of the codebase.

The applicability of CARL was studied and explained in one of our previous articles [13],
our research has shown that over 60% of the students struggle with architectural issues, and over
94% of them make those mistakes, unknowingly in the projects they hand in (according to their
instructors). In terms of professional developers, all the responders to our survey stated they
encounter architectural issues at least once a month. Over 90% of the participants in our study
agreed that a tool like CARL would help them write better code.

We base our research on the idea that components from the same architectural layer should
have similarities (the same purpose, the same interface, or they achieve the same system goal).
In order to detect those similarities and not to restrict our research to a single platform or a single
programming language, CARL performs a static code analysis and groups the elements from the
codebase on layers by exploring a multi-modal knowledge extracted from: API contracts, public
/ private method and properties definition, inheritance mechanism.

CARL’s mechanism involves more stages. In the first phase, CARL identifies the program
elements (classes, procedures, data structures, etc.) contained in the source code and constructs
the abstract representation that reflects the dependencies between these elements. This phase
can be done with certain tools, specific for different programming languages and development
environments (such as SourceKitten for Swift, or kotlinx.ast for Kotlin). The second stage of
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the process is to extract information related to the source code architecture. A directed graph
is constructed based on the result from the previous stage. This graph reflects the relationships
between the program elements. The first two steps of CARL are similar to those of mACS [11]
and more details about them can be found in [12].

The next step, that of architecture’s identification, uses an unsupervised learning technique,
in which structural and lexical information associated with different program elements is used
and which results in a clustering of the elements into the basic categories of an architectural
model. ML algorithms are one of the most powerful tools we have for finding patterns in data.
Since every project is different we have decided to use an unsupervised and autonomous algo-
rithm for finding relations between the elements of the codebase. Unsupervised denotes from
an ML perspective that the algorithm needs no prior knowledge for finding patterns in data,
while autonomous means there is no developer interaction needed while using the proposed
approach. These two attributes (unsupervised and autonomous) enhance CARL to be a smart
system / framework.

In terms of Machine Learning, the investigated association component-layer is considered
a clusterisation problem: grouping components into clusters without an a-priori knowledge of
the category they belong to. The clustering process follows three important steps:

• extract relevant information (features) from the raw data source; in our case, each code-
base represents an instance of the dataset;

• use all the features or just some of them to analyse the similarities among components
and to build a clustering model; the output generated in this step is, in fact, a division of
the data;

• validate the obtained clusters by using evaluation standards.

For the clustering part of our approach, we have discovered using a trial and error approach
that Agglomerative Clustering [5, 25] works best for splitting the components of the codebase
into architectural layers, and this is what CARL uses.

For pilotating our approach, we have conducted a preliminary study where, based on the
available information extracted from the codebase, we searched the combination of features
which would yield the best results in terms of correctly splitting the codebase into architectural
layers [12]. For this part of the investigation, we have used a validation application from which
different sets of features were been extracted. This case study is actually an iOS E-Commerce
application which has over 20.000 lines of code and uses MVC architecture (this application
was also included in the experiments we conducted in the current paper). Two senior iOS
developers with over 5 years of development experience had constructed the ground truth by
manually labelling the components of the validation application. They tagged the components
of the codebase separately and afterwards, they cross checked the differences and agreed on the
correct architectural layer where a component should be placed. In their analysis the definition
of a codebase component (interface, inheritance, name) had a higher importance than the body of
the functions since the code written in a component can present various design and architectural
smells, since the purpose of CARL is to place the components in the right architectural layers
not to highlight architectural drift.

The preliminary study [12] resulted in 5 different approaches which incrementally improved
the accuracy of the clusterization process on the validation application as seen on Table 1:

• CARL F1 (Number of dependencies): how many dependencies a component has with
each of the other codebase’s components; we use F1(ci), for all components ci (i ∈
{1, 2, . . . , n}) of the codebase;

• CARL F2 (Presence of dependencies): the type of dependencies that it has with each of
the other codebase’s components;
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Table 1. Analysis of all five versions of CARL on the validation application

Model View Controller Accu-
Precision Recall Precision Recall Precision Recall racy

CARL-F1 0.50 0.01 0.22 1,00 1,00 0.10 0.24
CARL-F2 0.49 0.93 0.17 0.09 1,00 0.08 0.46
CARL-F3 0.62 0.75 0.33 0.53 0.65 0.22 0.52
CARL-F4 0.70 0.93 0.84 0.83 0.99 0.56 0.78
CARL-F5 0.76 0.99 1.00 1.00 0.99 0.57 0.85

• CARL F3 (Name distance): how many dependencies it has with each of the other code-
base’s components and the distances between the name of the current component and the
names of the other codebase’s components; the name distances are computed by using
specific text mining methods [20].

• CARL F4 (Keywords presence): the features F3 are enriched by the keyword-based fea-
tures;

• CARL F5 (SDK inheritance): the features F4 are enriched by the SDK’s inheritance-based
features.

For all these feature subsets, the same agglomerative clustering algorithm is applied in order
to detect the clusters which encode architectural layers. In the initial study the focus was on
analysing MVC architectures; ergo, the number of clusters were set to 3 (Model, View and
Controller). After the clustering process is completed, CARL assigns responsibilities to the
layers based on the types of their components and their inheritance (eq. the cluster with the
most items that inherits from UIViewController is marked as Controller layer).

The best subset of features identified in the preliminary study is used in a second more
complex one, when eight application are investigated (see the details in Section 4.3). Finally,
the findings are analysed and possible improvements are suggested. For the rest of the study
we are focusing only on the iOS platform and we are analysing Swift codebases. However, our
proposed approach can be easily extrapolated to other platforms which use SDKs for building
user interfaces and are presentational software products.

4. Numerical Experiments
We validate our approach by applying it to various MVC iOS codebases. MVC was studied
by both practitioners and academia [9] and paves the way for analyzing more specialized ar-
chitectural patterns that descend from MVC (MVVM, MVP, etc.). Our analysis was focused
on the iOS platform; however, the same process can be applied to any other platform which
uses MVC and SDKs for building UI interfaces. We extend our previous study [12] with new
research questions. In this study we are interested in the effectiveness of our approach on more
different sized codebases, we examine the performance of the clustering process and inspect its
applicability and efficiency on 3 classes of applications (small, medium, large) of the process by
answering the following research questions:

• RQ1 - How effective is the proposed categorization method compared to manual inspec-
tions? 1

• RQ2 - What is the clustering process performance when using the proposed approach? 2

1Metrics like accuracy, precision, and recall will be used for this purpose
2The performance can be evaluated through metrics like homogeneity, completeness, Silhouette Coefficient score,

Davies-Bouldin index
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• RQ3 - On what class of applications does this method work best?

• RQ4 - What is the reliability of CARL when compared to mACS?

4.1. Analysed Codebases

We have enriched our analysis with five new codebases: Firefox, Game, Stock, Education and
Apple’s Demo for AR / VR applications. The analysis was conducted on applications from
different domains, different sizes, different development styles (private, open-source, Apple’s
example). For this study, we were interested in analyzing mobile codebases that follow the
rules of the MVC architecture, as it one of the most used architectural patterns of those types of
software products [32]. To our knowledge, there does not exist a selection of repositories used
for analyzing iOS applications. iOS was chosen as opposed to Android as it implements MVC
more consistently and Apple encourages the developers to be aware and respect architectural
patterns, especially MVC [1].

Table 2 presents the characteristics of the codebases: blank – refers to empty lines, comment
– represents comments in the code, code states the number of code lines, while components
represent the total number of components in the codebase. In addition to this, we’ve also split
the codebases into 3 different classes, small (Demo and Game), medium (Stock, Education,
Wikipedia, and Trust), and large (E-Commerce, Firefox). We’ve split the codebases into classes
based on the number of components because we are interested in whether or not CARL is able
to correctly place all the components in the right architectural layers, not on the complexity of
the components and how big they are (number of lines).

Table 2. Description of investigated applications together with the split by number of components

Application Blank Comment Code #comp Class
Demo [2] 785 424 3364 27 Small
Game [private] 839 331 2113 37 Small
Stock [private] 1539 751 5502 96 Medium
Education [private] 1868 922 4764 105 Medium
Wikipedia [33] 6933 1473 35640 253 Medium
Trust [30], 4772 3809 23919 403 Large
E-Commerce [private] 7861 3169 20525 433 Large
Firefox [24] 23392 18648 100111 514 Large

4.2. Evaluation Metrics

During the validation, we are interested in both the correctness and the integrity of the catego-
rization process. Three metrics are of interest in the correctness validation: accuracy, precision,
and recall [14], while the integrity is measured through some specific clustering scores: ho-
mogeneity and completeness [28]. Besides, we were also interested in the performance of the
clustering process, and we have used ML-specific metrics for analyzing this Silhouette Coeffi-
cient (Silh. Coef.) score [29] and Davies-Bouldin Index (Davies) [10].

The Silhouette Coefficient score indicates how well are the components placed, while the
Davies-Bouldin Index expresses whether or not the layers were correctly constructed. The ho-
mogeneity score denotes if a layer contains only members that are correctly placed, while the
completeness score expresses the degree to which all the members of a layer are assigned by the
categorization method to the same layer.

The accuracy, precision, and recall metrics are calculated for every architectural layer. For
instance, if a codebase has 100 components in the Model layer (in the ground-truth) and CARL
manages to correctly identify X, then the accuracy is X%. In the same manner, we calculate the
precision and recall against the number of elements in each layer.
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The ground truth was constructed by manually inspecting each component of the codebases
by two senior iOS developers (with over 5 years experience on the iOS platform) who reached
a consensus regarding the type of each component. Moreover, for the private projects, we also
had developer documentation and internal architectural guidelines to aid the process, since those
projects were developed by a mobile specialized software company.

4.3. Empirical Evaluation

After the experiments were ran we analysed the data and answered the research questions based
on the results obtained. This subsection presents our findings.

RQ1 - How effective is the proposed categorisation method compared to manual in-
spections?

Using CARL-F5 approach we have obtained an average accuracy of 81,17% on all the anal-
ysed codebases. We have observed that on one of the most complex and largest projects —
Firefox — we have obtained an accuracy of 91,17%. In the case of the worst performing code-
bases analysed with our method, we have found out that the elements did not have a consistent
naming convention. They did not contain many elements which had similarities between names
or contained one of the used keywords.

Our method works better in the cases where the codebase is consistent in respects to naming
conventions for each architectural layer. Table 3 presents the results of the proposed method on
all the analysed codebases.

Table 3. CARL-F5 results in terms of detection quality

Codebase
Model View Controller Accu-

Precision Recall Precision Recall Precision Recall racy
Firefox 0.92 0.95 1.00 0.99 0.73 0.64 0.91
Wikipedia 0.78 0.83 1.00 0.54 0.83 0.98 0.82
Trust 0.79 0.69 0.38 0.66 0.62 0.57 0.66
E-comm 0.76 0.99 1.00 1.00 0.99 0.57 0.85
Game 0.87 0.95 0.75 1.00 1.00 0.75 0.88
Stock 0.64 0.98 1.00 0.59 1.00 0.61 0.76
Education 0.55 0.98 0.50 0.05 0.95 0.44 0.62
Demo 0.96 1.00 1.00 0.75 1.00 1.00 0.96

From Tables 2 and 3 we can easily deduce that proposed approach works on both large
projects as well as smaller ones: we have good accuracies for large projects (Firefox) as well as
for the smaller ones (Game). Our approach however, is greatly impacted by the coding standards
and the consistencies of the project. The Education codebase had a recall of only 0.05 which is
extremely low. We have analysed the codebase to find the cause and we have discovered that the
components did not have a coding standard and a naming convention in place. Also the number
of elements in the codebase was small – ergo the clustering algorithm has problems in correctly
splitting the elements. The scores chosen for the features detection in the preliminary study [12]
might need to be adjusted for some of the analysed codebases, in order for those to yield better
results. A better scoring mechanism should be implemented in order to remove the variability
of the results.

RQ2 - What is the clustering process performance when using the proposed approach?
Apple’s AR / VR example (Demo project) codebase performed best from a clustering per-

formance perspective when we applied the proposed method. Table 4 shows the clustering
performance on all the codebases, and we can see that Apple’s application scored nearly per-
fect on the Mean Silhouette Coefficient as well as in the case of the Davis-Bouldin Index. The
Mean Silhouette Coefficient was better for small codebases in which there were fewer types
of components as the distinction between the three clusters (corresponding to the Model, View



DOBREAN AND DIOŞAN ON WHAT KIND OF APPS CAN CLUSTERING INFERR MVC LAYERS?

Table 4. CARL-F5 results in terms of cohesion and coupling of identified clusters. Homogeneity &
Completeness of the analysed codebases.

Codebase
Mean Silhouette

Coefficient
Davies-Bouldin

Index
Homogeneity

score
Completeness

score
Firefox 0.78 0.44 0.60 0.62
Wikipedia 0.74 0.43 0.50 0.56
Trust 0.73 0.42 0.19 0.17
E-comm 0.78 0.32 0.66 0.73
Game 0.89 0.32 0.73 0.78
Stock 0.82 0.37 0.40 0.49
Education 0.78 0.32 0.16 0.30
Demo 0.95 0.05 0.80 0.90

and Controller layer) was more pronounced. In the case of larger codebases where we had many
components that fulfilled various micro purposes in each layer, the performance of the clustering
algorithm decreased. The Davies-Bouldin Index was also worst in the case of large codebases
compared to the smaller ones. This is mainly due to the fact that in small codebases, just like
in the case of the Mean Silhouette Coefficient, the clustering algorithm created better clusters
(which have a higher density and a larger distance from the other clusters).

CARL achieved good homogeneity and completeness scores on both small (Demo, Game)
codebases as well as on larger ones (Firefox, E-comm). The results are in-sync with the ones
from Table 3 where accuracy, precision, recall were computed. The homogeneity and complete-
ness score of the worst performing codebases (Trust, Education) are also caused by the naming
conventions or the lack of conventions used in the codebase. Those had fewer components that
had similarities between the names and did sometimes contain multiple keywords for the same
element.

RQ3 - On what class of applications does this method work best?
CARL works well on all classes of codebases, when compared to the manual inspection of

the codebases the best accuracy was obtained on one of the smallest codebases (Demo 0.96)
followed closely by one of the largest codebases (Firefox 0.91) however similarly good values
were also obtained for smaller codebases (Demo, Game 0.88).

Table 5 shows the average of the results on each class of codebases, from an accuracy point
of view, the method works best on small and large-sized applications. Those results are in sync
with the ones obtained at a layer level (precision and recall) and with Homogeneity and Com-
pleteness scores. While the method might separate better codebases that have fewer elements,
as the differences between them are more prominent, it’s important to notice that CARL also
works well on large-sized codebases. The class of applications with the worst performance is
the medium one, in this case, the separation of concerns is not that well defined, and coding
standards are not always in place, hence our feature selection does not yield good results on
those. If the coding standards are not well implemented in the codebase, especially in one of a
medium-size where the clustering doesn’t have a lot of components to work with, CARL may
not achieve the best results.

In terms of ML metrics, the Adjusted Rand Index (ARI), Davies Bouldin index, and Mean
Shillouete Coefficient, those results (see Table 5) are in sync with the ones obtained when com-
pared the results with the ground-truth. The clustering algorithm performed best on the small
class of applications, followed by the large one. This is mainly because in smaller codebases
the clusters are more pronounced, the components from a cluster have many more particularities
than the items in the other clusters.

The results of our approach CARL are promising. However, for achieving a better clus-
terization performance on large and especially medium-sized codebases and other architectural
patterns the proposed approach needs to be enriched with more features for the clusterization
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Table 5. Average (on applications classes) precision, recall, accuracy, Homogeneity, Completeness,
Adjusted Rand Index, Mean Silhouette Coefficient, and Davies Bouldin Index. of CARL F5 on
the analyzed codebases against the ground truth.

Size Average Acc Homog Compl ARI Silh DaviesPrecision Recall
Small 0.93 ± 0.11 0.90 ± 0.13 0.93 0.77 0.84 0.80 0.92 0.18
Medium 0.81 ± 0.15 0.67 ± 0.24 0.74 0.35 0.45 0.33 0.78 0.37
Large 0.80 ± 0.16 0.78 ± 0.15 0.81 0.48 0.51 0.50 0.76 0.40

process and analyze them with respect to the entropy of the analyzed codebase. CARL can be
efficient and scalable on both small and large projects, as long as the naming conventions and
the coding standards are respected all over the codebase.

For measuring the correlation between the number of components and the performance of
our proposed approach, we’ve used Pearson’s Correlation Coefficient.

In terms of the correlation between accuracy and the number of components, as shown
in Table 6, there is a perfect negative relationship in the case of small codebases, and a high
positive relationship in the case of the large-sized applications. Those results are in sync with
the ones obtained for precision and recall at a layer level. While in the case of large-sized
codebases the results are not perfect, the values obtained indicate good performance for those
types of applications. In the case of large applications, the results might not be perfect as the
number of components is much higher and their roles are not as well defined as in the case
of small applications. In addition to this, in the case of large codebases, the coding standards
and naming conventions are often not consistent throughout the entire codebase which makes
the detection mechanism less accurate, nevertheless, we have discovered strong correlations
between the number of components and the accuracy of the method which indicates that our
method is well suited for those kinds of codebases as well.

Table 6. Pearson’s Correlation Coefficient between the number of components and the detection
quality of CARL F5

Size Model View Controller AccuracyPrecision Recall Precision Recall Precision Recall
All 0.16 -0.35 0.02 0.37 -0.69 -0.31 -0.43
Small -1.00 -1.00 -1.00 1.00 0.00 -1.00 -1.00
Medium 0.90 -1.00 0.46 0.38 -0.97 0.93 0.70
Large 0.90 0.52 0.71 0.69 0.03 0.97 0.85

In terms of correlation between the number of components and the precision for the Con-
troller, the layer was the least valuable metric as the values indicate that there is no correlation
between those two.

RQ4 - What is the reliability of CARL when compared to mACS?
Table 7 presents the topological structure of the codebases after applying CARL. The table

contains the number of components in each layer, together with the total number of relationships
between the layers (#ExtDepends) and the number of unique ones (#DiffExtDepend). CARL
managed to split the codebase in a way that there are fewer architectural violations for the Fire-
fox, Wikipedia, Demo, and Game codebases when compared to mACS CoordCateg. approach.
In the comparison with mACS CoordCateg, we have noticed an increase in the number of exter-
nal dependencies (#CompleteExtDepend) for the Model layer and a decrease for the View and
Controller layers. That means that the components inferred as Model by CARL had more exter-
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Table 7. Analysis of codebases dependencies - CARL

#ExtDepends / #DiffExtDepend
Dependency Firefox Wiki. Trust E-comm. Game Stock Educ. Demo
View-Model 27 / 9 7 / 3 160 / 27 72 / 27 1 / 1 0 / 0 0 / 0 1 / 1
View-Ctrl 0 / 0 0 / 0 2 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
Model-View 22 / 10 0 / 0 16 / 10 1 / 1 0 / 0 17 / 3 5 / 1 0 / 0
Model-Ctrl 66 / 10 6 / 3 120 / 29 418 / 64 0 / 0 64 / 14 46 / 10 0 / 0
Ctrl-Model 290 / 44 86 / 33 124 / 23 292 / 63 38 / 6 51 / 14 71 / 20 9 / 6
Ctrl-View 126 / 26 31 / 13 77 / 48 148 / 29 2 / 2 41 / 10 0 / 0 5 / 3

#CompleteExtDepends
Model 3281 1077 1332 1927 122 442 471 278
View 752 182 903 337 42 114 20 13
Ctrl 1897 3077 1066 1826 204 475 264 106

nal dependencies with the other layers. In addition to this, the components from the View layers
also exhibited an increase in the number of external dependencies. Judging by the number of
external dependencies and the relationship between the number of dependencies among the lay-
ers, CARL concluded that the components of the Model and View are more coupled than in the
case of mACS. When compared to mACS SimpleCateg. approach, CARL identified much fewer
violations of the architectural rules, while the results for the number of external dependencies
have the same distribution and are roughly the same for both approaches, with small differences
between the codebases and the layers.

5. Threats to Validity
After the analysis we have found out that our proposed method presents the following threats of
validity.

Internal: we discovered the features sets based on a trial and error approach; however, a
different set of features which was not tested might yield better results. In order to have more
details about this aspect, entropy could be used for measuring the importance of a feature.

External: the experiments were ran on the iOS platform and on the Swift language, there
might be other SDKs and languages which have particularities which we have not addressed in
this paper. Moreover, we have focused this preliminary research only on the MVC pattern with-
out taking much into consideration more complex architectural patterns and their particularities.

Conclusion: the analysed codebases might also be responsible for some bias and more
experiments should be exectured.

6. Conclusion & Further Work
With our study, we have increased the confidence in applying AI techniques for the detection of
software architectures on mobile devices. Our proposed approach CARL works well on code-
bases that respect coding standards and development best practices, in its current state, small
and large-sized codebases. CARL is an unsupervised method that needs no prior knowledge to
work with a system and is fully autonomous. It paves the way for identifying architectural issues
in the codebase by taking care of one of the most important aspects, the mapping between the
codebase elements and the architectural layer they reside in.

We plan to further increase the accuracy of the system by running more experiments to find
better-suited features that can be feed to the clusterization process as well as trying to leverage
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the behavioral aspects of the analyzed architectures. Later, we want to test the approach on
more specialized architectures, which have more than three layers, and see in what other kinds
of software architectures could CARL be applied. In the end, we intend to use this system for
improving the architectural health of the mobile codebases by highlighting architectural issues
early in the development phase mobile ArchCheckSys [11]. Furthermore, such a system can be
successfully used for educational purposes, as it can aid beginners to write better-architectured
code.
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11. Dobrean, D., Dioşan, L.: An analysis system for mobile applications MVC software
architectures. In: ICSOFT. pp. 178–185. INSTICC, SciTePress (2019)
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13. Dobrean, D., Dioşan, L.: Importance of software architectures in mobile projects. In:
2021 IEEE 15th International Symposium on Applied Computational Intelligence and
Informatics (SACI). pp. 000281–000286. IEEE (2021)

14. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8), 861–
874 (2006)

15. Garcia, J., Ivkovic, I., Medvidovic, N.: A comparative analysis of software architecture
recovery techniques. In: ICASE. pp. 486–496. IEEE Press (2013)

16. Intelligence, G.: 2019 report. https://www.gsmaintelligence.com (2019)
17. Lakos, J.: Large-scale c++ software design. Reading, MA 173, 217–271 (1996)
18. Laval, J., Anquetil, N., Bhatti, U., Ducasse, S.: Ozone: Layer identification in the

presence of cyclic dependencies. SCP 78(8), 1055–1072 (2013)
19. Le, D.M.: Architectural evolution and decay in software systems. Ph.D. thesis, Univer-

sity of Southern California (2018)

https://developer.apple.com/library/archive/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://apple.co/3eHS164
https://www.gsmaintelligence.com
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