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Abstract  

As socio-technical processes related to digital innovation are increasingly connected and distributed across ge-
ographical, organisational, and temporal boundaries, the methods we use to study them must be adapted to ac-
commodate the greater detail and scope of the phenomenon. Specifically, there is a need to operationalise meth-
ods for generating inductive theory of distributed digital innovation from digital trace data. An emerging stream 
of IS research on computationally intensive inductive theorising lays the groundwork for such methods. This 
paper builds on this foundation to develop a hands-on approach to operationalising grounded theorizing in 
computational analysis of digital trace data. The paper first conceptualises trace data of digital innovation as a 
new research context before articulating an approach to operationalising grounded theory in computational 
analysis of digital innovation. The application of the grounded computational analysis approach is then briefly 
illustrated in the context of digital trace data from an online social network before possible directions for further 
research are laid out.  
 
Keywords: Grounded theory, Computational methods, Digital innovation, Qualitative research 
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1 Introduction 

Empirical research of digital innovation is by nature directed at exploring a novel proposition in the 
form of the introduction of a new innovation (Bruno Latour, 1991; T. Venturini, 2009), a controversy 
(Madsen, 2012; Meyer, 2009; Ricci, 2010) or question to be researched such as the introduction of a 
new technology, actor, idea, or even a shift in the institutional context (Henfridsson & Yoo, 2013). It 
has recently been established that analysis of digitalization in the broadest sense relate to “a product, 
process, or business model that is perceived as new, requires some significant changes on the part of 
adopters, and is embodied in or enabled by IT” (Fichman et al., 2014).  

Recent developments in the methodology of computationally intensive qualitative analysis has shown 
the usefulness of leveraging computational analysis to build inductive theory (Berente et al., 2018; 
Berente & Seidel, 2014, 2018; Grover et al., 2020), and shown its relevance for analysing digital set-
tings  for applying such methods in digital environments (Lindberg et al., 2013; Selander et al., 2010; 
Vaast & Walsham, 2011). Similarly, research on digital actor networks (Tommaso Venturini, 2012; 
Tommaso Venturini & Latour, 2010) point to the usefulness of computational methods in unravelling 
the complexity of distributed innovation processes. This research proposes that the a priori nature of 
found digital trace data allows researchers to study social interaction processes involving multiple dis-
tributed actants at a resolution that is sensitive to individual level characteristics. This allows the re-
searcher to move beyond accounts of a few events of great magnitude to studying the cumulative ef-
fects of multiple distributed events of small magnitude (Ruttan, 1954; Usher, 1955). While for natural 
scientist the availability of large quantities of found data has been commonplace, it represents a great 
leap forward for the social sciences where “…up to now, access to collective phenomena has always 
been both incomplete and expensive” (Tommaso Venturini & Latour, 2010). This means it is now 
possible to develop much more granular methods for analysing distributed socio-technical processes, 
and specifically digital innovation, in both detail and at scale. Digital traces allow for analysis both in 
detail and at a scope that is commensurable with the unit of analysis of digital innovation. This combi-
nation is what sets digital trace analysis apart from other forms of qualitative analysis, where typically 
a choice must be made between detail and scope. 

However, while some initial efforts towards a computational methods for such research have been 
made, especially within the mapping of social controversies (Bruno Latour, 1991; Okada et al., 2008; 
Tommaso Venturini, 2012; Tommaso Venturini & Latour, 2010) and computationally intensive quali-
tative theorising (Berente et al., 2018; Berente & Seidel, 2014, 2018; Grover et al., 2020), the opera-
tionalisation of these approaches in researching digital innovation has so far received only sporadic 
attention in the received literature. Analysing any digitally distributed innovation involves simultane-
ously observing multiple distributed locations connected through complex and emerging digital infra-
structures (Tilson et al., 2010). This in itself presents a challenge for IS researchers, and when adding 
the need for longitudinal observations of the evolving nature of digital innovations, it is clear that the 
research techniques traditionally used in physical research settings are increasingly inadequate for ana-
lysing digital innovation (Czarniawska, 2004).  

The purpose of this paper is to apply grounded theorizing to analysis of digital trace data in the context 
of digital innovation. The following paragraph will elaborate on the consequences of trace data from 
digital innovations and explicate this as a new research context. I will then move on to consider the 
literature on grounded theory building explicating a grounded research practice before describing the 
methodological underpinnings of grounded computational analysis. The step-by-step operationalisa-
tion of the grounded computational analysis approach is then illustrated in the context of a small-scale 
social network, before moving on to describe its consequences for IS theorizing and briefly outlining 
possible venues of future research.  
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2 Trace Data and Digital Innovation as a Research Context 

The digitization of once physical environments and practices has been identified as a crucial frontier in 
researching the organization of social activities in an increasingly digital world (Youngjin Yoo & 
Lyytinen, 2010). As digital innovations increasingly permeates into physical environments (Y Yoo et 
al., 2012), an abundance of practices that were once confined to a physical location are now taking 
place as networked digital innovation. Examples of emerging digital innovation include mobile and 
digital workplaces, online movements and activism, e-government, distributed product design and in-
novation settings and open-source communities. What these diverse environments have in common is 
a surprising inability to answer seemingly simple questions based on existing analytical methods in-
cluding questions like why do our customers buy our product, how effective are online petitions, and 
who are our most valuable employees? This presents what one could call a data overload paradox: an 
explosive increase in the volume and scope of digital trace data leads to an inability to, by means of 
existing methods, answer seemingly simple questions. The reasons for the data overload paradox are 
to be found in the materiality of emerging digital innovations. Digital innovations consist of large vol-
umes of digital trace data (Newell & Marabelli, 2015) produced by the increasing digitalization of so-
cial contexts (Hedman et al., 2013). Datafication of social actions and relations involves digital agents 
in the form of algorithms that have recently evolved from processing sequential computational calcu-
lations to performing machine learning processes involving interpretation, decision-making and trans-
lation. These processes all operate through the medium of digital trace data.  

There are at least three defining characteristics to digital traces, which set digital innovations apart 
from previously known research contexts in the social sciences. First, they are the manifestations of 
interactions in digital innovations such as status updates, comments, emails, server logs etc. These di-
verse manifestations of trace data are found data in the sense that they are a by-product of activities 
rather than produced by a predesigned data collection instrument (Berente et al., 2018; Hedman et al., 
2013). Secondly, trace data are relational data as they invariably represent events of actual interactions 
between socio-technical actors. A final characteristic of trace data is that it is predominantly longitudi-
nal because the events that make it up occur over time (Andersen & Hukal, 2021; Howison et al., 
2011).  

This means that the volume of available data accumulates at an increasing rate thus reinforcing the 
process of datafication (Andersen & Hukal, 2021; Lycett, 2013). The increasing datafication leads to 
an explosion of the scope and range of digital actors as ever more trace data is produced at the same 
time as increasing global connectivity of information systems and digital infrastructures widens the 
range of data repositories accessible to researchers. This process leads to an immense increase in data 
volumes that essentially serves as the fuel that catalyses the activities of digital agents (Andersen et al., 
2016).  

Consequently emerging digital innovations follow different organizing logics than physical environ-
ments (Youngjin Yoo et al., 2010). This has at least two important consequences. Firstly, the pro-
grammability and flexibility of the core architecture of digital technology means that digital innova-
tions are continuously shaped and adapted through the social practices they support over time 
(Henfridsson et al., 2009). This means that research into digital innovation must focus on relations 
rather than entities and process rather than state. Secondly, people, resources and information are con-
nected in widely distributed and heterogeneous networks that span geographical, organizational and 
social boundaries and affect multiple social contexts (Lindgren et al., 2008; Y Yoo et al., 2008). For 
example organizations increasingly rely on external data as previously internal processes are distribut-
ed in digital ecosystem environments (Selander et al., 2010). While these consequences of digitization 
present exciting opportunities, they also present significant challenges to existing research methodolo-
gy in all phases from data collection and analysis to problems of inference and theory building based 
on digital traces. Previous studies of digital innovations have emphasized the need for a new methodo-
logical approach to studying digital innovations (Bruno Latour, 1991, 1996), but so far attempts have 
been fragmented and confined to specific contexts (T. Venturini, 2009).   
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3 Grounded Theory and Computational Analysis 

As phenomena associated with information systems are increasingly distributed across geographical, 
organisational, and temporal boundaries, methods we use to study them are in need of adaptation. The 
use of computational methods are therefore well aligned with not only the research context of distrib-
uted digital innovation, but also relates to recent research commentary proposing that it is of vital im-
portance to IS research to not exclusively observe such digital artefacts from an outside perspective 
but to provide the perspective of the information system (Grover & Lyytinen, 2015). This means treat-
ing IT artefacts as informants that can help identify constructs and their relations and thereby build 
theory from digital trace data. The method by which theory is constructed in this research is based on a 
grounded theory approach. It has already been established that grounded theorizing in digitally distrib-
uted contexts must involve both be able to describe and classify specific digital innovations and to ex-
plain and make predictions that extend beyond a specific research domain (Vaast & Walsham, 2011). 
It is the ambition of this here to establish a methodology for building such grounded theory using 
computational techniques. 

Grounded theory first gained recognition after the publication of “The Discovery of Grounded Theo-
ry” by Barney Glaser and Anselm Strauss (1967). Notably, Bernie Glaser came from a background in 
quantitative methodology and was trained in qualitative mathematics, a method in which mathematical 
expressions, such as statistical formulas, can be stated qualitatively (B. G. Glaser, 1998; Strauss & 
Corbin, 1998). This suggests that bridging the divide between generalizable formal representations and 
contextualized inductive grounding was an integral component of grounded theory from the very be-
ginning. Since, however, grounded theory has attracted and been the object of many myths about its 
lack of generalizability including that of the researcher as a ‘blank slate’ (Urquhart, 2006) and that it 
leads to the production of low-level theory (Urquhart, 2001).  

The following review serves the purpose of mitigating these myths by extending and translating 
grounded theory methodology to the digital age by proposing a practical framework for building 
grounded theory using computational techniques. First a general sequence of grounded theory is estab-
lished by reviewing extant literature on grounded theory. On this foundation a framework for conduct-
ing grounded analyses with computational techniques is proposed and finally illustrated with a small-
scale empirical example.  

3.1 The Process of Grounded Theory Building 

Building grounded theory that is based on empirical data is a structured process that can be thought of 
as involving a number of analytical steps performed in an iterative sequence with the purpose of estab-
lishing and refining concepts and their interrelations (Urquhart, 2012; Urquhart et al., 2009). Each it-
eration aims at identifying and saturating theoretical concepts by sampling, slicing and comparing da-
ta, thus adding layers of conceptual abstraction while building on the granularity of previous iterations. 
This raises the question where to start the process of a grounded analysis. The answer derived from the 
Glaserian version of grounded theory is remarkably simple: start by becoming an expert on the re-
search domain. 

In preparation for collecting the first data, the researcher should immerse into the empirical domain to 
the point of building general expert knowledge of the phenomenon being studied. This process of do-
main immersion has been seen as starting from initial ‘hunches’ (Miles & Huberman, 1984) based on 
lived experience or more broadly “…sources other than data” (B. Glaser & Strauss, 1967, p. 6). In or-
der to gain such experiential knowledge, the researcher must be deeply familiar with the research do-
main. Glaser suggests that this initial expert knowledge will guide selection of a ‘core category´ of 
interest within the specific empirical research domain, also referred to as the substantive area (B. G. 
Glaser, 1978, 1992). This core category will guide collection of the first slices of data (Urquhart et al., 
2009). 
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The initial analytical iteration describes the empirical research domain by establishing narrow con-
cepts and their properties. The first step is to select the area of inquiry guided by expert domain 
knowledge in the form of a general question or unexplored area within the empirical domain. The first 
slices of data are then collected within the area of inquiry. These first slices of data are rarely struc-
tured a priori, but are broken down into conceptual units with distinct sets of properties through open 
coding (B. G. Glaser, 1992; Urquhart, 2012). The result is an inventory of narrow concepts describing 
the area of inquiry.  

The second iteration involves interpreting the initial narrow concepts to build substantive theory. Data 
is sampled using theoretical sampling which represents a key element of grounded theory (B. Glaser & 
Strauss, 1967). Theoretical sampling involves the successive sampling of data slices based on emer-
gent theory (B. G. Glaser, 1992). To begin with this is based on specific empirical assumptions about 
the core category, and as more slices or layers of data are sampled, the core category is gradually re-
fined. Process stops when adding more layers of data stops affecting the definition of the core catego-
ry. This is referred to as ‘theoretical saturation’ (B. Glaser & Strauss, 1967) and helps determine 
whether a theory works i.e. whether or not it says something about what is actually going on within 
area of inquiry (Urquhart, 2012). The resulting substantive theory consists of a set of empirically satu-
rated concepts related to the specific empirical domain in which it is generated (B. G. Glaser, 1978, 
1992). Such saturated concepts are generally referred to as a substantive theory because it explains a 
set of concepts within the specific empirical substantive area (Urquhart, 2001). Presenting substantive 
theory as the conclusion of grounded research is where some of the criticism of grounded theory for 
producing low-level theory that is purely descriptive and does not generalize beyond the specific em-
pirical domain in which it was created arise from (Urquhart, 2006).  

Therefore, the final iteration aims at building theory meaning ‘scaling up’ substantive theory to be 
generalizable over a class of empirical contexts and to be relatable to other theories (Urquhart et al., 
2009). Such abstraction is achieved through what Glaser refers to as theoretical coding, which means 
grouping high-level substantive categories into one or two core categories (B. G. Glaser, 1978, 1992). 
This increases the density of relations between substantive concepts and adds a layer of abstraction 
representing a formal, generalizable theory. With every step towards a formal theory, context is neces-
sarily trimmed away from the categories for the sake of transferability and generalizability (B. G. 
Glaser, 1978).  

Figure 1 outlines this process of iteratively building grounded theory from empirical data. Even 
though for simplicity each iteration is depicted as a singular sequence, in practice each horizontal se-
quence will be repeated several times until satisfactory conceptualization is achieved. Also, as shown 
in figure 4, the sequence of grounded data analysis repeats itself in each iteration following a struc-
tured set of steps including data sampling, data slicing, data comparison and conceptualization. Data 
sampling involves mining or collecting a data set based on the criteria developed in the previous itera-
tion. From there the data sample is divided into slices, or layers if you will, depending on the level of 
abstraction and coded using open, selective or theoretical coding techniques (B. G. Glaser, 1992). Fi-
nally, coding is compared between data samples or populations within the sample to reveal conceptual 
patterns (i.e., concepts and their relations). 
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Figure 1. Iterations of grounded analysis 

When the data analysis has been conducted, it is of great importance to relate the resulting grounded 
theory to related theories to ensure that the grounded theory contributes in a valuable way to existing 
theoretical developments (Urquhart, 2012).  This is referred to as theoretical integration and means 
that the emerging theory should be related to existing high-level theories in the field such as structu-
ration theory (Giddens, 1984; Jones & Karsten, 2008) or actor network theory (Law, 1992; Sayes, 
2014). This final step ensures that a direct chain of evidence from each individual slice of data to gen-
eral high-level theory is established. 

3.2 Building Grounded Theory with Computational Analysis 

Building such grounded theory using computational techniques, the grounded theory process must be 
related to existing requirements for digital trace analysis in the social sciences in general (Rogers, 
2013) and recent research on mapping digital innovations specifically (Tommaso Venturini, 2012). 
This section draws the contours of a methodological approach to digital trace data analysis based on 
the grounded theory process and the materiality of digital traces and environments to propose a re-
search framework for empirical digital trace analysis of digital innovations. Computational data analy-
sis has long been applied in statistics and is also integral to other disciplines in the natural sciences, 
especially in emerging disciplines such as e.g. genetics and bioinformatics (Jombart, 2008; Kumar et 
al., 2001). The process of conducting computational data analysis can be described in dive steps: First, 
the raw observed digital trace data is mined from the research domain. Second, the data is processed in 
such a way that it fits the analysis. Then, each sample is distinguished by its discrete elements, or vari-
ables, providing a ‘clean’ or ‘tidy’ data set ready for analysis. Finally, the transformed tidy data set can 
be processed adding additional variables to each sample (Schutt & O’Neil, 2013). A simplified sche-
matic of the process of a data analysis process associated with the so-called ‘non-aqueous fractionation 
procedure’ in molecular biology can be found in Klie (2011). This research shows how the raw data 
sample, in this case organic material, is transformed through a number of steps adding layers of ab-
straction and gradually dislodging information from the empirical matter. First, the sample is treated in 
a way that reveals a particular property of the organic material called the NAF gradient. This ‘NAF 
gradient’ is now the data unit being analysed. Then, the gradient material is split into discrete catego-
ries through yet another chemical process. Depending on whether or not this process reveals strong 
enough markers, it is repeated adding new data samples and slices until a saturated set of discrete cat-
egories can be measured. Finally, the category measurements are classified into broader groups that 
are in turn visualized to validate the emerging pattern. The data analysis process applied in these fields 
include 1) data mining, 2) data unit separation, 3) data discretization and 4) validation and classifica-
tion and finally 5) conceptualization.   
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The first step involves mining digital trace data. To be able to investigate as large a variety of diverse 
questions in as great detail as possible, a high degree of perplexity should be maintained in the raw 
digital trace data (T. Venturini, 2009). This means the researcher should not simplify the number or 
nature of patterns to be extracted from the digital trace records. Digital trace data provides a ‘found’ 
data source in the sense that it, like organic material, does not need to be constructed with a data col-
lection instrument such as a survey or interview protocol. Instead, trace data can be mined using pro-
gramming languages such as Python or R to scrape websites or access information systems via data 
base queries or APIs (Application Programming Interfaces). Therefore, it is important that the data 
mining process makes as few assumptions about the digital innovation as possible and maintains a 
highest possible degree of complexity and variety in the data.  

The second step involves separating the data into ontological and temporal units. The raw data has 
such a form that it must be interpreted through a script or application to translate it into a readable 
format, i.e., in tabular or other structured format. As trace data samples are usually complex and multi-
facetted, it is necessary to identify and define salient data units. Normally raw digital trace data does 
not exist in a concise format structured for analysis and is often comprised of data from various 
sources. This means that data units must be cleaned and separated into units such as e.g., posts, trans-
actions, tweets, updates, profiles etc. In performing this separation, it is important to make sure that 
the number of voices that participate in the digital innovation and chronological texture is not arbitrari-
ly short-circuited by leaving out salient data units. Therefore, the data sample should be divided into 
both ontological and temporal units.  

The third step refers to discretization of data units into meaningful fractions. This includes evaluating 
the compatibility of emerging data units by comparing them with already included data units in such a 
way as to maintain them all in the same setting thus producing a hierarchy or relative positioning of 
each data unit. This is especially important in tracing the processes by which one emerging ontology 
redefines or displaces another as is the case in digital innovation (Godoe, 2000; Svahn et al., 2009). In 
practical terms this means that trace data units should in some way be turned into discrete data to de-
scribe the relative strength or position of each data unit. 

Having mined, separated, and discretized the digital trace data we can now start identifying and vali-
dating patterns from the data. At this point it is useful to employ various data exploration and visuali-
zation techniques to support classification of the data (Rogers, 2009, 2013; Tommaso Venturini & 
Latour, 2010) such as traditional descriptive statistics or other descriptive techniques such as Natural 
Language Processing (Chang et al., 2013; Landauer et al., 1998) and Social Network Analysis 
(Granovetter, 1973; Prell, 2012) depending on the stage of theory development. The aim is to validate 
the discretization and generate pattern classifications for further analysis. As previous research has 
suggested it can be difficult to draw conclusions from static network analyses (Trier, 2008). Because 
digital traces are generated through sociotechnical process of interactions with and within digital tech-
nology, they are inherently dynamic, why longitudinal analysis should be conducted to empirically 
validate the emergence of a concepts from trace data. 

Finally, once the patterns have been ontologically and temporally validated, the researcher should no 
longer question their validity as a part of the digital innovation (B Latour, 2004, p. 109). Instead, it is 
necessary to conceptualize the identified patterns in order to generate and develop insights and theory 
from the digital trace analysis. This means employing theory and other data sources to develop an ex-
planation for the identified patterns. Figure 2 shows how each computational step corresponds to the 
grounded analysis sequence discussed in the previous section.   

Zooming in for a closer look at the outcome of each data analysis step shown in figure 2, it becomes 
clear that digital trace data, even though thought of as observational data, undergo a series of computa-
tional processes significantly transforming the more or less structured original raw data sample into an 
analysis ready data set with a very different structure. This process of slicing and moulding the data is 
underestimated in at least two ways; it represents a significant analytical process which is both time 
consuming and tedious, and the fact that the original sample is reconstructed for computational analy-
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sis means it does not contain direct or ‘objective’ representations but is prone to a series of biases in-
cluding being interpreted by the researcher.  

In the context of analysing processes of distributed digital innovation, the latter point is especially per-
tinent as the multi-facetted, distributed, and temporal characteristics of the object of analysis means 
that extensive domain knowledge is a prerequisite for the researcher to make appropriate analytical 
decisions (Andersen & Hukal, 2021). This requirement bares remarkable resemblance to the domain 
immersion described in classic grounded theory literature. Another crucial function of constant do-
main immersion and re-immersion in grounded computational analysis is the concept of ‘iterative con-
ceptualization’ (Urquhart et al., 2009) where theory is built in three successive iterations. After each 
iteration, it is necessary to relate the emerging theoretical constructs to the body of pre-acquired do-
main knowledge in order to make informed decisions about whether and how to repeat previous steps 
to increase construct clarity or proceed with the next analytical iteration. That means that analytical 
reflection and conditioning through domain immersion is effectively the mechanism that distinguishes 
grounded theory building from variance-based hypothesis testing.  

Figure 2 outlines a method for building grounded theory with computational data analysis techniques. 
The method is formulated as a guide for applying computational techniques in each of the analytical 
steps, illustrated by solid arrows, for the three iterations of grounded analysis detailed in this section. It 
shows examples of the reflections required by the digital innovation researcher illustrated by the 
dashed arrows.  

As indicated in the circular conceptualization, the grounded computational method adopts the theory 
building milestones of a Glaserian grounded theory method discussed in the previous section, narrow 
concepts, substantive theory, formal theory, and theoretical integration. The way in which each mile-
stone is achieved is where a computational method needs to adopt general data science techniques, 
specifically explorative data analysis (EDA), statistical models and machine learning algorithms 
(MLA) and data visualization (DV) techniques (Schutt & O’Neil, 2013). As indicated in figure 5, the 
first analytical iteration with the purpose of building narrow constructs can be supported through ex-
plorative data analysis involving simply describing the characteristics of the data through means of 
summarization and visualization (Tukey, 1977). Following this, substantive theory consisting of satu-
rated concepts can be built by fitting appropriate statistical or machine learning algorithms such as 
various clustering, neural network, genetic and deep learning algorithms (Bishop, 2006; Goldberg & 
Holland, 1988; Marsland, 2014). Relating and visualizing the results of the formal theory building 
process visualization (Ware, 2012). As illustrated in the models, these computational techniques are 
just that: techniques. They cannot by any means be automatically applied and need to be treated as any 
other qualitative coding exercise relying on prior knowledge and analytical conditioning and reflection 
by the researcher. 

 
Figure 2. Building grounded theory through computational analysis 
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The model shown in figure 2 is structured as a single iteration of the grounded theory process dis-
cussed earlier. The model should therefore be seen as contingent on the specific research design in-
cluding the availability of additional, possibly non-digital, data and the patterns discovered in previous 
analytical iterations. The method outlined in figure 5 can therefore be applied as part of a purely com-
putational study or as a component of a mixed methods research design (Zachariadis et al., 2012) re-
placing one or more analytical iterations. To exemplify the grounded computational analysis method, 
the following section describes a brief empirical example of a grounded computational analysis. 

4 Empirical Illustration of Grounded Computational Analysis 

To provide a thin illustration of the process of how grounded computational analysis can be applied to 
digital innovation research, the following outlines the key steps in its implementation in a single re-
search iteration aimed to build narrow concepts in the context of a small-scale social network.  

A relatively small-scale trace data analysis of a Facebook-like Social Network for PR professionals in 
Denmark, hereafter referred to as PRnet, was conducted. I had prior to the analysis been thoroughly 
immersed into both the technological and social dimensions of the research domain, and therefore fo-
cused the analysis on the triggers, that make an online social network ‘take-off’ in the sense that it 
reaches a critical mass of users and the role of specific users in network growth. The following briefly 
illustrates the implementation of each step in the grounded computational analysis approach before 
reviewing key implications and limitations of grounded computational analysis.   

Data mining: To analyse the PRnet online social network example I first retrieved a raw digital trace 
data sample using a SQL database queries. This saved the trace data from the online network into a 
comma-separated document. The raw and unstructured data represents digital traces generated through 
interactions on the online social network. The digital trace data represents a seven-month timespan 
from the formation of the PRnet community consisting of 13,101 connections created by 2,149 mem-
bers. In the fairly simple PRnet data set, the raw data contained traces of connections between mem-
bers, member name and affiliation and time intervals for each connection.  

Data unit separation: The raw data was then separated into a structured data table where each row rep-
resented the formation of a connection on the network using a Python script.  Already at this point 
made some initial decisions are made about the ontological hierarchy inherent in the data by fore-
grounding connections as the most salient ontological unit. This has direct consequences for the scope 
of analysis that can be employed at later stages in the process, as it would be possible to choose a dif-
ferent ontological unit such as individual members, organizations etc. Specifically, the raw data was 
separated into a tabular form with each row representing a connection and each column representing 
source node, target node, time stamp, and affiliation. This structured format allows for further analysis 
of our ontological units by separating them into discrete units. 

Data discretization: By plotting the number of members with at least one connection at each time in-
terval (1,899 in total) the emergence of the online social network over the first six-month after launch 
is visualized, thereby identifying the emergence of ontological units, i.e., network members, over time. 
The left-hand plot in figure 3 summarizes the number of connected users at each indexed time interval. 
This confirms that indeed take-off in user adoption happens at a specific time interval indicating a 
“take-off” phase.  In fact, by plotting average actor degree in our time series, the phase pattern indicat-
ed in figure 6 were reproduced on a continuous scale of node degree. Consulting the data reveals three 
phases in the emergence of PRnet: the first phase from time index 0 to 17 representing a pre-formation 
phase, a take-off phase between time index 18 and 40, and a consolidation phase from index 41 to in-
dex 100. This way I have and identified at least three discrete units. 
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Figure 3. Connected network members and avg. degree over time 

However, in order to analyse the mechanisms by which these phases delimited, I decided to measure 
the degree to which each member is connected to other members. This choice was informed by previ-
ous domain knowledge of highly connected central actors in the industry and was chosen as a coding 
scheme to describe this pattern in the data. The open source social network analysis software Gephi 
(Bastian et al., 2009) was used to compute connection degree for each member. Degree, also referred 
to as connectivity, indicates the number of connections for each member. For good measure, both in-
degree (number of links directed to each member), out-degree (number of links from each member) 
and member degree (total number of connections for each member) was computed. The average mem-
ber degree for the entire network over time is plotted in the right-hand chart shown in figure 3. As the 
plot shows, average degree increases in a similar pattern to member adoption. This indicates that new 
members when joining the network connect to existing members rather than form separate disconnect-
ed clusters. This confirms that connection degree is a valid metric for coding the emergence of the 
three phases. 

Validation and classification: To validate the degree metric and use it to code members in the net-
work, a graph visualization of the network was generated using Gephi as shown in figure 9. The illus-
tration is drawn making node size dependent on the in-degree to which each member receives connec-
tions from other members and node colour is based on outgoing connections. The colour of edges, or 
lines between nodes, is defined by the in-degree of the target node, i.e., the number of connections 
pointing to the target member. The graph diagram reveals an emergent pattern where members are lo-
cated in one of in three spheres depending on their degree of connectivity. I can now distinguish a 
highly connected core (orange) with an orbiting sphere of medium connectivity (blue) and a green ha-
lo of loosely coupled members. Having extracted this pattern from the data and validated it through 
visualization, a classification of network members emerges. Where to some extent this classification 
relies on domain knowledge, e.g., the difference in degree is important, the resulting classes and the 
boundaries between them emerges exclusively from empirical analysis of the digital trace data. In or-
der to further validate the temporal and ontological classifications of the professional network, similar 
network visualizations for each phase was generated and the average degree computed as illustrated in 
figure 4. 

 
Figure 4. Emergence of the PRnet community 
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As the network visualizations in figure 4 illustrate, the cumulative position of the network’s most cen-
tral members is reinforced over time as the community grows from the periphery around a central 
group of highly connected individuals. Interestingly, the material properties of digital trace data, i.e. 
the temporal separation of relational data units, afford detailed temporal validation of the otherwise 
static classification of ontological units revealing dynamic patterns in the data. These patterns emerg-
ing through grounded computational techniques are the basis for the construction of concepts and their 
relations and thus ultimately theory building. 

Conceptualization: As the analytical iteration illustrated in the PRnet example leads to the construc-
tion of narrow concepts using explorative data analysis, conceptualization consists of an inventory of 
narrow concepts describing the area of analysis. In the PRnet example, this inventory includes three 
temporal phases and three member categories defined by the connectivity of each member. This initial 
inventory also hints at some relations between the narrow concepts, specifically at least three patterns, 
or narrow conceptualizations of the system dynamics, emerge from the data analysis:  1) The PRnet 
network emerges in three phases including pre-formation, take-off and consolidation phases. 2) Mem-
bers are divided into three distinct types by being part of either the dense core, connected orbit or the 
loosely connected halo, depending on the degree to which they are connected to other members. 3) 
The online network emerged around a highly connected core group and took off with the inclusion of 
a large group of connected followers.  

The analysis does not specifically show whether members transition from the periphery to the center 
or are a part of a member group by virtue of their profession, seniority, community standing or other 
attributes. To answer more detailed questions such as which mechanisms drive member adoption and 
mobility and what type of members are more likely to appear in which tier, more data must be mined 
and/or sliced based on the empirical conceptualization of narrow concepts, and this data must then in 
turn be subjected to a similar analytical process.  

The PRnet illustration deliberately includes very little text analysis as it aims to illustrate how digital 
traces can be coded and interpreted as a text. Closer semantic analysis could have been included in the 
next iteration to saturate the narrow categories derived from this explorative data analysis thus gener-
ating substantive theory, just like additional interpretation of outcomes at each step would be expected 
in the reporting of findings.   

5 Scope and Limitations  

With regards to the practice and process of conducting grounded research, applying computational 
methods means adopting a context independent inclusion criterion for coding, in the form of computer 
code and scripts, that to a certain extent formalizes the link between data sample and analytical coding. 
This happens in such a way that the coding scheme itself is, beyond the initial data mining, is agnostic 
of the research domain and specific empirical context if the data format is consistent with the compu-
tational coding scripts. The introduction of computational coding scripts has at least two implications 
for the validity of the emerging theory: First, computational coding scripts allow for visualization and 
quantification of the link between data samples and theoretical constructs, thus making the chain of 
evidence more transparent. Also, it potentially leads to transferability of coding schemes across con-
texts within the scope of the theory, allowing for some measure of empirical reproducibility 
(Drummond, 2009) and ‘theory scoping’.  
However, despite these potential benefits with regards to transparency and transferability of grounded 
theory, computational analysis also introduces several limitations by way of relying on data that are 
created through existing systems, platforms, and infrastructures. The first limitation stems from the 
design of the system from which digital traces are mined, and specifically the agendas of the people 
designing and managing said system. Each digital innovation is built with a set of affordances with the 
purpose of promoting certain behaviours and deterring others, thus producing digital trace data with an 
inherent ‘design bias’. Secondly, there are at least three reasons why grounded computational analysis 
is not in itself applicable as a mixed methods research framework (Venkatesh et al., 2013; Zachariadis 



J.V. Andersen/Grounded Computational Analysis 

Thirteenth Scandinavian Conference on Information Systems (SCIS2022), Helsinge, Denmark. 12 

 

et al., 2013). Most prominently, it is not necessarily mixed in the sense that it is usually conducted on 
a single data source consisting of digital traces and following the grounded approach to theorizing. 
Also, there are no synergies and interactions between different methods that need to be aligned and 
exploited in triangulation. Finally, it does not integrate different epistemologies as it follows the 
grounded theory methods but applies it to digital trace data.  

In conducting grounded computational analysis, it is important to reflect on and explicate such design 
bias. The second limitation originates in the way in which digital trace data is transmitted and recorded 
in digital data repositories. Being mindful of the materiality of digital traces, they are inherently con-
nected and time stamped. This means that grounded computational analysis is restricted to identifying 
patterns of processes and relations. As both processes and relations are dynamic and contingent in na-
ture, grounded computational analysis should not be applied to derive universal statements about the 
properties of certain constructs but explain in detail the contingencies and relational patterns that 
emerge from the research domain. A final word of caution is that applying a new set of computational 
techniques to grounded theory building does not mean automating basic analytical reflection or re-
place basic analytical principles such as the acquisition of domain knowledge, theoretical sampling, 
and integration to existing theory. 

6 Implications for IS Theory Building  

Grounded computational analysis provides a method for analysing distributed digital innovation be-
yond variance-based hypothesis testing. The combination of computational techniques and grounded 
theory building makes it possible to conduct research aimed specifically at understanding distributed 
processes related to digitization and the impact of digital technology. The grounded computational 
analysis approach has at least three implications salient for theorizing distributed digital innovation: a) 
theory building from the perspective of the digital artefact by accessing digital traces; b) a move from 
high magnitude to small magnitude theorizing; c) quantifiable qualitative analysis. Each of these im-
plications will now in turn be discussed in greater detail with the purpose of outlining the ways in 
which a grounded computational analysis approach might influence subsequent theory building.  

First, recent commentary calls for research to take the perspective of the IT artefact rather than treating 
technology as exogenous static entity (Grover & Lyytinen, 2015). In the context of digital innovation 
this means unravelling the black box of IT artefacts and adopting the point of view of the digital arte-
fact when building theory. The grounded computational analysis approach is an attempt to apply com-
putational tools and techniques in the process of grounded theory building. Grounded computational 
analysis provides a method for analysing distributed digital innovation beyond variance base hypothe-
sis testing. The combination of computational techniques and grounded theory building makes it pos-
sible to conduct research aimed specifically at understanding distributed phenomena related to digiti-
zation and the impact of digital technology. This has the added effect of deep immersion into the digi-
tal artefact itself thus building theory from the perspective of digital technology, as recently requested 
in IS research (Grover & Lyytinen, 2015). Secondly, in the context of distributed innovation localized 
micro-level interactions accumulate into emergent radical transformations through the distribution of 
access to and control of innovation (Y Yoo et al., 2008). 

Following from this, it is important to realize the perils of conceptualizing distributed digital innova-
tion as an act of genius. This leads to theorizing that over emphasizes a relatively small number of ac-
tions, which are each of them highly conditional as described previously in this paper. A second dan-
ger of adopting a notion of innovation centred around a single protagonist entrepreneur is a notion of 
change as punctuated and infrequent events of great magnitude (Gersick, 1991; Romanelli & 
Tushman, 1994). Instead, the conceptualization of distributed digital innovation based on grounded 
computational analysis builds on a theory of innovation as emerging from changes that “…are numer-
ous, pervasive, and of very small magnitudes” (Usher, 1955, p. 525). This change in analytical scope 
shifts the focus of conceptualization from entity specific concepts to system centric conceptualization.  
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This is evident in the empirical example of PRnet, where the initial concepts that are built relate to the 
general dynamics and properties of the entire social network rather than specific individuals. Deep 
contextualization and rich description then follows as a way of relating initial narrow concepts in a 
substantive theory.  

Grounded computational analysis favours neither variance research nor adopts a fully interpretivist 
approach. In this respect, and considering the implications outlined above, grounded computational 
analysis represents an approach to theory building in information systems that might be labelled as 
‘quantifiable qualitative analysis’. The analytical approach presented in this paper is potentially useful 
for researchers wanting to capture the scale and multiplicity of distributed social interactions that con-
stitute digital innovation processes, while maintaining contextualization and semantic texture normally 
associated with more traditional qualitative research techniques. The only prerequisite is the acquisi-
tion by the researcher of basic coding skills. Further research should be conducted to investigate the 
benefits and trade-offs of automated analytical tools such as those provided by NVivo and Atlas.ti as 
well as various machine learning techniques for grounded computational analysis.  

In summary, grounded computational analysis proposes a method for analysing the emergent phenom-
enon of distributed digital innovation and unlocking insights relating to the digital artefacts at their 
core. Consequently, a preliminary set of implications of grounded computational analysis for the IS 
researcher seeking to implement such an approach might be formulated as follows; 1) acquire domain 
knowledge 2) take the perspective of the digital artefact 3) question and interrogate information sys-
tems as you would documents or human respondents (this includes learning the language of infor-
mation systems, namely computer coding languages) and finally 4) use computational techniques to 
build rather than to test theory.  

7 Conclusion  

The methodological approach presented in this paper has attempted to apply these characteristics to 
build a novel approach for studying distributed digital phenomena. The grounded computational anal-
ysis approach developed in this paper outlines a way forward for combining the connectivity and lon-
gitudinal characteristics of such processes in a research approach that is practically applicable to any 
digital trace record of distributed innovation processes. However, this is merely a first crude step on a 
long journey to develop new methodological approaches for researching an increasingly connected 
and digital world. The hope is for this first step to provide some direction for future endeavours in 
grounded computational analysis of digital innovation. 
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