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Abstract
An exploration of representations of free energies and associated rates of dissipation for a
broad class of nonlinear viscoelastic materials is presented in this work. Also included are
expressions for the stress functions and work functions derivable from such free energies.
For simplicity, only the scalar case is considered. Certain standard formulae are generalized
to include higher power terms.

It is shown that the correct initial procedure in this context is to specify the rate of dissi-
pation as a positive semi-definite functional and then to determine the free energy from this,
rather than the other way around, which would be the traditional approach.

Particularly detailed versions of these formulae are given for the model with two memory
contributions in the free energy, the first being the well-known quadratic functional leading
to constitutive relations with linear history terms, while the second is a quartic functional
yielding a cubic term for the stress function memory dependence. Also, the discrete spec-
trum model, for which each memory kernel is a sum of exponentials, is generalized from
the quadratic functional representation for the free energy to that with the quartic functional
included.

Finally, a model is considered, allowing functional power series with an infinite number
of terms for the free energy, rate of dissipation and stress function.

Keywords Thermodynamics · Memory effects · Rate of dissipation · Free energy ·
Nonlinear

Mathematics Subject Classification 74D10 · 74A20 · 74A15

1 Introduction

We consider a material with memory, where the independent field variable will be referred
to as the strain function. It is taken to be a scalar quantity, for simplicity.

The general representation of a free energy of this material is a functional of the history
of strain and a function of the current strain. We assume that this functional can be expanded
as a finite or infinite functional Taylor expansion in the history of strain. The most general
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expansion of this kind has a dependence on the current strain in each kernel of the expansion.
This dependence is neglected in the model considered here. The stress function is derivable
from the free energy.

What we are dealing with in general is a nonlinear viscoelastic material. The linear mem-
ory/quadratic free energy model will be referred to as the linear model. Since the general
formulae are quite complicated, the case involving one extra term beyond the linear model
will be stated in full, including the linear model terms.

The results presented, or generalizations of these results to tensor form, should have
practical applications in the context of numerical analysis of the mechanical behaviour of
nonlinear materials with memory. Also, re-interpretation of the strain and stress functions as
other physical quantities, combined in some cases with one or two minor changes, broadens
the application range to include other thermodynamic systems, such as heat conductors and
electromagnetic materials.

Relations within an equation number are referred to by counting the number of =, <, >

etc.
Thermodynamical constraints [1] on the theory are not discussed in this work. This is an

important topic, requiring separate investigation.

2 Properties of Kernels

The current value of the strain function is E(t) while the strain history and some relative
histories are given by

Et(s) = E(t − s), Et
r (s) = Et(s) − E(t),

Eu
r (s) = Eu(s) − E(u), Er(s) = E(s) − E(t), s ∈ IR+.

(2.1)

Equation (2.1)3 differs from (2.1)2 only by a change of notation, but is included to emphasize
that the relative strain is not always defined with respect to the current time t . The simple
property

∂Et
r (s)

∂E(t)
= −1 (2.2)

will be used later. It is assumed here that

lim
s→∞Et(s) = lim

u→−∞ E(u) = 0, (2.3)

which simplifies certain formulae. Note also that

Ėt (u) = ∂

∂t
Et (u) = − ∂

∂u
Et(u) = − ∂

∂u
Et

r (u). (2.4)

The stress function is given by T (t) = T̃ (Et ,E(t)), while we denote a particular free
energy at time t by ψ(t) = ψ̃(Et ,E(t)), where T̃ (Et ,E(t)) and ψ̃(Et ,E(t)) are under-
stood to be functionals of Et and functions of E(t). Certain properties of free energies were
derived in [2] and used to characterize such quantities in [3–5] and elsewhere. They have
been referred to as the Graffi [6] definition of (or conditions for) a free energy and are given
as follows. Let ψ(t) = ψ̃(Et ,E(t)) be a free energy. Then
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P1:

∂

∂E(t)
ψ̃(Et ,E(t)) = ∂

∂E(t)
ψ(t) = T (t). (2.5)

P2: For any history Et

ψ̃(Et ,E(t)) ≥ φ̃(E(t)) or ψ(t) ≥ φ(t), (2.6)

where φ(t) > 0 is the equilibrium value of the free energy ψ(t), defined as

φ̃(E(t)) = φ(t) = ψ̃(Et ,E(t)), Et (s) = E(t) ∀ s ∈ IR+.

Thus, equality in (2.6) is achieved for equilibrium conditions. Observe that the classical
elastic energy φ(t) is always taken to be positive so that, from (2.6), the quantity ψ(t)

also has this property.
P3: It is assumed that ψ is differentiable. For any (Et ,E(t)) we have the first law (balance

of energy)

ψ̇(t) + D(t) = T (t)Ė(t), (2.7)

where D(t) ≥ 0 is the rate of dissipation of energy associated with ψ(t). This nonneg-
ativity requirement on D(t) is an expression of the second law.

The basic condition is P3. Relations P1 and P2 follow from P3.
Integrating (2.7) over (−∞, t] yields that

ψ(t) +D(t) = W(t), D(t) ≥ 0,

D(t) =
∫ t

−∞
D(u)du, W(t) =

∫ t

−∞
T (u)Ė(u)du.

(2.8)

The quantity W(t) is the work function, while D(t) is the total dissipation resulting from the
entire history of deformation of the body. It is assumed that the integrals in (2.8) are finite.
In particular, we must have

lim
t→−∞W(t) = 0, (2.9)

with a similar assumption for D(t). The time derivative of ψ̃(Et ,E(t)) consists of the ordi-
nary time derivative of the E(t) dependence, giving, with the aid of (2.5),

T (t)Ė(t) = Ẇ (t), (2.10)

and a functional derivative of the history dependence Et , which yields the dissipation. Note
that (2.10) follows from (2.8)4.

Let us now briefly demonstrate that the work function also obeys P1, using a somewhat
modified version of the argument in [2], and P2. We can write

Ẇ (t) = ∂

∂E(t)
W̃ (Et ,E(t))Ė(t) + δW̃ , (2.11)
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where the rightmost term is a Fréchet differential of W̃ , defined within a suitable Hilbert
space (for example [1], page 104). Thus, (2.10) can be written in the form

[
∂

∂E(t)
W̃ (Et ,E(t)) − T̃ (Et ,E(t))

]
Ė(t) = −δW̃ . (2.12)

The quantity Ė(t) can take arbitrary values, so that (2.5) or P1 must hold for ψ̃ replaced by
W̃ . Thus, we have

∂

∂E(t)
ψ(t) = ∂

∂E(t)
W(t) = T (t), (2.13)

giving

D̃(Et ,E(t)) = D̃(Et ). (2.14)

It follows that

∂

∂E(t)
D(t) = 0. (2.15)

Also, the quantity δW̃ must vanish.
Note that (2.8)1 implies

W(t) ≥ 0. (2.16)

2.1 Kernels of Free Energy Terms

The following functions are introduced:

G(k)(u(k)), u(k) = (u1, u2, . . . , uk) ∈ (IR+)k, k = 1,2, . . . ,N. (2.17)

The quantity N is a positive integer, which may be infinite. If it is infinite, convergence
assumptions must be included for the series involved. The superscript on G indicates the
total number of arguments. We shall argue below that, for even k, these may be the kernels
of a free energy, while for odd k, a particular choice of these quantities may define the stress
function derived from the free energy (see (2.5)).

The quantities G(k) k = 1,2, . . . ,N and related functions introduced below first enter the
model by their occurrence in integrals of the form

∫ ∞

0
G(k)(u1, u2, . . . , uk)f (u1)f (u2) . . . f (uk)du1du2 . . . duk

=
∫ ∞

0
G(k)(u(k))

k∏
i=1

f (ui)du(k),

du(k) = du1du2, . . . , duk, k = 1,2, . . . ,N,

(2.18)

where the single integral sign here and below is understood to mean as many integral signs
as there are du1, du2 etc. The function f (u), which is always related to the strain history,
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can be chosen arbitrarily, subject to the requirement that the integral exists. Note that
∫ ∞

0
G(k)(u1, u2, . . . , uk)f (u1)f (u2) . . . f (uk)du1du2 . . . duk

=
∫ ∞

0
G(k)(u2, u1, . . . , uk)f (u1)f (u2) . . . f (uk)du1du2 . . . duk,

(2.19)

which follows by using the standard device of renaming integration variables. A similar
property holds for any permutation of u1, u2, . . . , uk . The important property here is the
complete symmetry of the product of f (ui). Thus, only the totally symmetric part of the
kernel contributes to the integral. For simplicity, we assume that

G(k)(u1, u2, . . . , uk) = G(k)(u2, u1, . . . , uk), (2.20)

and similarly for any other permutation. In other words, we take G(k) k = 1,2, . . . ,N and
similar related quantities to be completely symmetric in all their arguments.

For odd k, the functional of f (u) given by (2.18) changes sign if f (u) is replaced by
−f (u), so that it cannot be positive definite or semi-definite for all choices of f (u). If k is
even, then this non-negativity property can hold, provided certain restrictions are imposed
on the kernel.

We only consider free energies consisting of terms with even k; the constraints on the
kernels to guarantee non-negativity are assumed to hold. Each term separately will be non-
negative. Equation (2.5) then gives that the stress function will only consist of terms with
odd k.

It is assumed that the quantities G(k)(u(k)), similar kernels introduced below and indeed
the strain histories, have differentiability properties as required in the various contexts dis-
cussed in this work.

The constants G(k)∞ are given by

G(k)
∞ = lim

uj →∞G(k)(u1, u2, . . . , uk), (2.21)

where j is any integer in the set {1,2, . . . , k}. The fact that this quantity is the same for every
j is an expression of the complete symmetry of the dependence of G(k) on its parameters.
We illustrate this with the case k = 2, where G(2)(u1, u2) is converging to let us say G1 if
the first argument is very large and G2 if the second is very large. The symmetry property
G(2)(u1, u2) = G(2)(u2, u1) gives that G2 = G1.

The quantities G(k)∞ are non-negative. Let us define

G̃(k)(u(k)) = G(k)(u(k)) − G(k)
∞ ,

G(k)(u(k)) = G
(k)

123...k(u
(k)), k = 1,2, . . . ,N,

(2.22)

where a subscripted integer j indicates partial differentiation with respect to the correspond-
ing uj . Thus

G(k)(u(k)) = ∂1∂2 . . . ∂kG
(k)(u(k)), k = 1,2, . . . ,N, (2.23)

where the operator ∂j is the partial derivative ∂
∂uj

.

The convergence of the integral (2.19)1 is better at large uj if G(k)(u1, u2, . . . , uk) is
replaced by G̃(k)(u1, u2, . . . , uk).
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Consider the function space F (k), where k is even, with a norm

N (k)(f ) =
∫ ∞

0
G̃(k)(u(k))

k∏
i=1

f (ui)du(k) ≥ 0, N (k)(f ) < ∞. (2.24)

This is a non-negative, finite quantity, as indicated. We assume that the function f , which in
this context is always related to strain history, belongs to the function space

F(f ) = F (0) ∪F (2) · · · ∪F (N), (2.25)

where N is even and F (0) contains functions without history dependence, specifically the
quantities φ(t), defined by (3.3) below, with E(t) replaced by f (t).

2.2 The Kernels of the Rate of Dissipation Terms

We also define the functions

K(k)(u(k)) =
k∑

i=1

∂iG
(k)(u(k)),

K(k)(u(k)) =
k∑

i=1

∂iG(k)(u(k)), k = 2,4, . . . ,2N,

(2.26)

which will be shown to be the negative of the kernels making up the rate of dissipation D(t),
introduced in (2.7). These kernels are defined only for the positive even integers. They have
the property that

K(k)(u(k)),K(k)(u(k)) → 0 for every parameter ui → ∞, i = 1,2, . . . , k, (2.27)

where k = 2,4, . . . ,2N .
A difficulty in constructing free energy functionals arises in making choices that en-

sure nonnegative functional forms both for the free energy and for the rate of dissipation.
A method, proposed in the context of the linear model [7], which renders this task more
straightforward, is generalized below to higher terms. Instead of constructing the free en-
ergy and determining from this the rate of dissipation, which may not have the required
nonnegativity, the procedure is reversed, which guarantees a satisfactory free energy func-
tional [7] (see also [1], pg. 394). One chooses a nonnegative functional for the rate of dis-
sipation. Formulae are presented below which give the associated free energy functional in
terms of the dissipation rate kernel. It emerges that the resulting free energy has the required
nonnegativity property.

Proposition 2.1 Let us assume that we know the form of the quantities K(k)(u(k)) and that
they have the required nonnegativity property, namely

−
∫ ∞

0
K(k)(uk)

k∏
i=1

f (ui)duk ≥ 0, k = 2,4, . . . ,2N, (2.28)



Free Energy Functionals for Nonlinear Materials 147

for arbitrary f . Then the kernels G(k)(u(k)) are determined by

G̃(k)(u(k)) = −
∫ ∞

0
K(k)(u(k) + z(k))dz, k = 2,4, . . . ,2N,

z(k) = (z, z, . . . , z) ∈ (IR+)k,

(2.29)

and they have the required nonnegativity properties.

Proof It follows from (2.29) that

k∑
i=1

∂iG
(k)(u(k)) = −

∫ ∞

0

d

dz
K(k)(u(k) + z(k))dz = K(k)(u(k)), (2.30)

which is (2.26). We have

∫ ∞

0
K(k)(u(k) + z(k))

k∏
i=1

f (ui)duk =
∫ ∞

z

K(k)(vk)

k∏
i=1

f (vi − z)dvk. (2.31)

Let us put

F(v, z) =
{

f (v − z), v ≥ z,

0, 0 ≤ v < z,
(2.32)

for arbitrary choices of f (u). Then,

∫ ∞

0
G̃(k)(u(k))

k∏
i=1

f (ui)duk = −
∫ ∞

0
dz

{∫ ∞

0
K(k)(vk)

k∏
i=1

F(vi, z)dvk

}
≥ 0, (2.33)

by virtue of (2.28). It follows that G̃(k)(u(k)) has the required non-negativity property. �

There are two equivalent alternatives for the developments outlined below, the first be-
ing to use G̃(k)(u(k)), K(k)(u(k)), Ėt (s) and the second to use G(k)(u(k)), K(k)(u(k)), Et

r(s).
Both have been widely adopted in discussing the minimum and related free energies for
linear constitutive materials. In the present work, we will mainly present formulae in both
notations. Moving from one alternative to the other involves a series of integrations by parts.

We can in fact choose either alternative for each parameter ui , rather than fix on the same
choice for all ui , as in (3.1), below. For example, for ui , we could switch from G̃(k)(u(k)),
K(k)(u(k)), Ėt (ui) to ∂iG

(k)(u(k)), ∂iK
(k)(u(k)), Et

r(ui).

3 The General Form of Free Energy and Dissipation Functionals

We now construct (2.7) for the nonlinear material under consideration.
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3.1 Free Energies

For a scalar theory the form of a free energy is given by

ψ(t) = φ(t) +
N∑

k=1

ψ2k(t),

ψ2k(t) = 1

2k

∫ ∞

0
G̃(2k)(u(2k))

2k∏
i=1

Ėt (ui)du(2k)

= 1

2k

∫ ∞

0
G(2k)(u(2k))

2k∏
i=1

Et
r(ui)du(2k).

(3.1)

The quantity φ(t) is the static limit of ψ(t). The multiplying constants are chosen so the they
lead to a constant equal to unity on the stress functionals introduced below. Using (3.1)2, we
see that

ψ2k(t) = −φ(2k)
e (t) + 1

2k

∫ ∞

0
G(2k)(u(2k))

2k∏
i=1

Ėt (ui)du(2k),

φ(2k)
e (t) = 1

2k
G(2k)

∞ [E(t)]2k.

(3.2)

Note that the kernel G(2k) has been used here instead of G̃(2k). A simple choice for φ(t) in
(3.1)1 is given by

φ(t) =
N∑

k=1

φ(2k)(t),

φ(2k)(t) = 1

2k
G(2k)

∞ [E(t)]2k,

(3.3)

and we have

ψ(t) =
N∑

k=1

ψ
(0)

2k (t),

ψ
(0)

2k (t) = 1

2k

∫ ∞

0
G(2k)(u(2k))

2k∏
i=1

Ėt (ui)du(2k).

(3.4)

Another version of these formulae, obtained by a change of variables, is given by

ψ2k(t) = 1

2k

∫ t

−∞
G̃(2k)(t(2k) − u(2k))

2k∏
i=1

Ė(ui)du(2k)

= 1

2k

∫ t

−∞
G(2k)(t(2k) − u(2k))

2k∏
i=1

Er(ui)du(2k),

(3.5)

where t(n) = (t, t, . . . , t) ∈ (IR)n.
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Observe, from for example (3.1)3, that ψ2k is a polynomial of order 2k in E(t). Also,
ψ(t) = ψ̃(Et

r ,E(t)) is a polynomial of order 2N in E(t), while the stress function T (t) =
T̃ (Et

r ,E(t)), introduced below, is a polynomial of order 2N − 1. Examples of these poly-
nomials are given below.

There is a further form for a free energy functional:

ψ(t) = S(t) +
N∑

k=1

ψ
(1)

2k (t),

ψ
(1)

2k (t) = 1

2k

∫ ∞

0
G(2k)(u(2k))

2k∏
i=1

Et(ui)du(2k),

(3.6)

where

S(t) =
∫ E(t)

0
T̃ (Et ,E′)dE′

= E(t)T (t) −
∫ E(t)

0
E′ ∂

∂E′ T̃ (Et ,E′)dE′

= E(t)T (t) − 1

2
E2(t)

∂

∂E(t)
T (t) + 1

2

∫ E(t)

0
(E′)2 ∂2

∂E′2 T̃ (Et ,E′)dE′

= E(t)T (t) − 1

2
E2(t)

∂

∂E(t)
T (t) + 1

6
E3(t)

∂2

∂E(t)2 T (t)

− 1

6

∫ E(t)

0
(E′)3 ∂3

∂E′3 T̃ (Et ,E′)dE′.

(3.7)

The first form given for the quantity S(t) is required to ensure that (2.5) holds. The others
result from repeated integrations by parts. The two general terms are

(−1)k−1

{
1

k!E
k(t)

∂k−1

∂E(t)k−1 T (t) − 1

k!
∫ E(t)

0
(E′)k ∂k

∂E′k T̃ (Et ,E′)dE′
}

,

k = 1,2, . . . .

(3.8)

As noted above, all quantities of interest, in the present model, are polynomials in E(t) of
order 2N or lower, in particular, the stress function T (t), which is a polynomial of order
2N − 1. In this context, we refer to (4.2). Thus, if k = 2N , the integral and all subsequent
terms in (3.8) vanish.

3.2 Dissipation Functionals

The rate of dissipation has the form

D(t) =
N∑

k=1

D2k(t),

D2k(t) = − 1

2k

∫ ∞

0
K(2k)(u(2k))

2k∏
i=1

Ėt (ui)du(2k)
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= − 1

2k

∫ ∞

0
K(2k)(u(2k))

2k∏
i=1

Et
r(ui)du(2k) (3.9)

= − 1

2k

∫ t

−∞
K(2k)(t(2k) − u(2k))

2k∏
i=1

Ė(ui)du(2k)

= − 1

2k

∫ t

−∞
K(2k)(t(2k) − u(2k))

2k∏
i=1

Er(ui)du(2k).

A question which immediately arises is what choices of the functions K(2k)(u(2k)) ensures
that D(t) will be nonnegative? The simplest choice is to assume that K(2k) is completely
factorizable, giving

K(2k)(u(2k)) =
2k∏
i=1

dk(ui), (3.10)

so that

D2k(t) = [B2k(t)]2k ≥ 0,

B2k(t) =
∫ ∞

0
d2k(u)Ėt (u)du.

(3.11)

This option is discussed further in Sect. 6.

3.3 Non-uniqueness of the Free Energy

The kernels G(2k)(u(2k)) and G(2k)(u(2k)) are not uniquely given. If we add a term G
(2k)

1 (u(2k))

to G(2k)(u(2k)), such that the positivity requirements are preserved but G
(2k)

1 (u(2k)) has the
property

G
(2k)

1 (u(2k−1),0) = 0, (3.12)

then the functional (3.1) remains a valid free energy, yielding the same stress function. Such
a change effects K(2k)(u(2k)) and K(2k)(u(2k)) also. This line of argument suggests that there
are typically many free energies and dissipation functionals corresponding to a given con-
stitutive relation for stress. Such properties are known to exist for the linear model (see for
example [8]). Discussion of this issue and how to achieve uniqueness may be found in [9].

3.4 The Stress Function

Let T (t) be the stress at time t , determined by (2.5). Then the constitutive relation has the
equivalent forms

T (t) = Te(t) +
N∑

k=1

T2k−1(t),

T1(t) =
∫ ∞

0
G(1)(u1)E

t
r (u1)du1 =

∫ ∞

0
G̃(1)(u1)Ė

t (u1)du1,
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T3(t) =
∫ ∞

0
G(3)(u1, u2, u3)E

t
r (u1)E

t
r (u2)E

t
r (u3)du1du2du3

=
∫ ∞

0
G̃(3)(u1, u2, u3)Ė

t (u1)Ė
t (u2)Ė

t (u3)du1du2du3,

(3.13)

T2k−1(t) =
∫ ∞

0
G(2k−1)(u(2k−1))

2k−1∏
i=1

Et
r(ui)du(2k−1)

=
∫ ∞

0
G̃(2k−1)(u(2k−1))

2k−1∏
i=1

Ėt (ui)du(2k−1).

An alternative form is

T2k−1(t) =
∫ t

−∞
G(2k−1)(t(2k−1) − u(2k−1))

2k−1∏
i=1

Er(ui)du(2k−1)

=
∫ t

−∞
G̃(2k−1)(t(2k−1) − u(2k−1))

2k−1∏
i=1

Ė(ui)du(2k−1).

(3.14)

The quantity Te(t) is the stress function for the equilibrium limit (Et
r(u) = 0, u ∈ IR+)

and the quantity G(1)(·) : IR+ 
→ IR+ is the linear relaxation function of the material. The
quantity Te(t) in (2.4) is given by

Te(t) = ∂φ(t)

∂E(t)
. (3.15)

For odd choices of k, the quantities G(k)(u(k)),G(k)(u(k)), k = 1,3, . . . ,2N − 1 are assumed
to be nonnegative, as is true for k = 1.

Remark 3.1 Condition (2.5) is satisfied provided that

G(2k−1)(u(2k−1)) = G(2k)(u(2k−1),0), k = 1,2, . . . ,N, (3.16)

where G(2k−1)(u(2k−1)) is the kernel in the stress function (see (3.13)) corresponding to
G(2k)(u(2k)). Any kernel with 2k − 1 parameters could be indicated by G(2k−1)(u(2k−1)), but
we choose to reserve this notation for those occurring in the definition of stress, obeying
(3.16). An alternative form of (3.16) is given by

G(2k−1)(u(2k−1)) =
2k−1∏
i=1

∂iG
(2k)(u(2k−1),0), k = 1,2, . . . ,N. (3.17)

The assertion in (3.17) may be demonstrated with the aid of (2.2), (3.1)3 and (3.14)1.

Remark 3.2 The kernels G(2k−1)(u(2k−1)) are assumed to be determined by the material under
consideration. In other words, we can determine the kernel by a series of measurements
of the stress function, for given strain histories ([10], Chap. 5, Sect. 2). This means that
the stress function T̃ (Et ,E(t)) and indeed the quantity S(t), given by (3.7), are uniquely
associated with the material. The non-uniqueness associated with ψ(t) lies in the term after
S(t) in (3.6).
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3.5 Symmetry Under Sign Inversion

We have

ψ(t) = ψ̃(Et
r ,E(t)) = ψ̃(−Et

r ,−E(t)),

D(t) = D̃((Et ,E(t)) = D̃(−Et,−E(t)),

D(t) = D̃((Et ,E(t)) = D̃(−Et,−E(t)).

(3.18)

The stress function derivable from a free energy, in accordance with (2.5), only has odd
powers of the stress history, so it has the property that

T (t) = T̃ (Et ,E(t)) = −T̃ (−Et,−E(t)). (3.19)

3.6 The Work Function

Basic properties of W(t) are

Ẇ (t) = T (t)Ė(t), lim
u→−∞W(u) = 0. (3.20)

Let uc(2k−1) = (u2k, u2k, . . . , u2k) ∈ (IR+)2k−1. Explicit forms of W(t) can be expressed as
follows:

W(t) = φ(t) +
N∑

k=1

W2k(t),

W2k(t) =
∫ t

−∞
du2k

∫ u2k

−∞
G̃(2k−1)(uc(2k−1) − u(2k−1))

2k∏
i=1

Ė(ui)du(2k−1).

(3.21)

The second integral sign in (3.21)2 indicates the presence of 2k − 1 identical integral signs.

3.7 The Energy Equation

Let us now show that the energy conservation equation (2.7) holds, as a consequence of the
above formulae. We use the second form of (3.5) for the free energy. The time derivative
acting on the upper limit of the integrals give zero since Er(t) = 0. The time derivative
acting on the arguments t − ui can be replaced by −∂i , while if it is acting on Er(u2k), we
obtain −Ė(t). In this term, the integral and derivative with respect to the selected variable
u2k cancel out to give u2k a value t so that t − u2k = 0. Thus,

d

dt
ψ2k(t) = 1

2k

2k∑
i=1

∫ t

−∞
∂iG(2k)(t(2k) − u(2k))

2k∏
i=1

Er(ui)du(2k)

+Ė(t)

⎡
⎣

∫ t

−∞

2k−1∏
j=1

∂jG
(2k)(t(2k−1) − u(2k−1),0)

2k−1∏
i=1

Er(ui)du(2k−1)

⎤
⎦ (3.22)
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= 1

2k

∫ t

−∞
K(2k)(t(2k) − u(2k))

2k∏
i=1

Er(ui)du(2k)

+Ė(t)

[∫ t

−∞
G(2k−1)(t(2k−1) − u(2k−1))

2k−1∏
i=1

Er(ui)du(2k−1)

]
.

The total symmetry between the arguments has been invoked. Using the last relation of
(2.26), together with (3.9) and (3.14), we see that (3.22) implies (2.7).

4 Formulae for N=2

We now give the explicit version of a free energy, the corresponding rate of dissipation,
together with the work and stress functions, all for N = 2.

The following identities make explicit the property referred to above, that all quantities
of interest are polynomials in E(t). In the quadratic case,

Et
r(u1)E

t
r (u2) = Et(u1)E

t (u2) − E(t)
[
Et(u1) + Et(u2)

] + E2(t), (4.1)

while for the quartic terms,

Et
r(u1)E

t
r (u2)E

t
r (u3)E

t
r (u4) = Et(u1)E

t (u2)E
t (u3)E

t (u4)

− E(t)
[
Et(u1)E

t (u2)E
t (u3) + Et(u1)E

t (u2)E
t (u4)

+ Et(u1)E
t (u3)E

t (u4) + Et(u2)E
t (u3)E

t (u4)
]

+ E2(t)
[
Et(u1)E

t (u2) + Et(u1)E
t (u3) + Et(u2)E

t (u3)

+Et(u1)E
t (u4) + Et(u2)E

t (u4) + Et(u3)E
t (u4)

]

− E3(t)
[
Et(u1) + Et(u2) + Et(u3) + Et(u4)

] + E4(t).

(4.2)

The form of a free energy is

ψ(t) = φ(t) + 1

2

∫ ∞

0
G̃(2)(u1, u2)Ė

t (u1)Ė
t (u2)du1du2

+ 1

4

∫ ∞

0
G̃(4)(u1, u2, u3, u4)Ė

t (u1)Ė
t (u2)Ė

t (u3).

.Ėt (u4)du1du2du3du4

= φ(t) + 1

2

∫ ∞

0
G(2)(u1, u2)E

t
r (u1)E

t
r (u2)du1du2

+ 1

4

∫ ∞

0
G(4)(u1, u2, u3, u4)E

t
r (u1)E

t
r (u2)E

t
r (u3).

.Et
r (u4)du1du2du3du4,

(4.3)
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or

ψ(t) = φ(t) + 1

2

∫ t

−∞
G̃(2)(t − u1, t − u2)Ė(u1)Ė(u2)du1du2

+ 1

4

∫ t

−∞
G̃(4)(t − u1, t − u2, t − u3, t − u4).

.Ė(u1)Ė(u2)Ė(u3)Ė(u4)du1du2du3du4

= φ(t) + 1

2

∫ t

−∞
G(2)(t − u1, t − u2)Er(u1)Er(u2)du1du2

+ 1

4

∫ t

−∞
G(4)(t − u1, t − u2, t − u3, t − u4).

.Er(u1)Er(u2)Er(u3)Er(u4)du1du2du3du4.

(4.4)

Relation (3.7) becomes in this context

S(t) = E(t)T (t) − 1

2
E2(t)

∂

∂E(t)
T (t) + 1

6
E3(t)

∂2

∂E(t)2 T (t)

− 1

24
E4(t)

∂3

∂E(t)3 T (t).

(4.5)

Alternatively, using (4.1) and (4.2), together with symmetry properties, relation (4.3) takes
the form

ψ(t) = S(t) + 1

2

∫ ∞

0
G(2)(u1, u2)E

t (u1)E
t (u2)du1du2

+ 1

4

∫ ∞

0
G(4)(u1, u2, u3, u4).

.Et (u1)E
t (u2)E

t (u3)E
t (u4)du1du2du3du4,

S(t) = φ0(t) +
∫ ∞

0
G(1)

2 (u1)E
t (u1)du1E(t)

+
∫ ∞

0
G(3)(u1, u2, u3)E

t (u1)E
t (u2)E

t (u3)du1du2du3E(t)

+ 3

2

∫ ∞

0
G(2)

4 (u1, u2)E
t (u1)E

t (u2)du1du2E
2(t),

+
∫ ∞

0
G(1)

4 (u1)E
t (u1)du1E

3(t),

(4.6)

where

φ0(t) = 1

2
G(2)(0)E2(t) + 1

4
G(4)(0)E4(t),

G(1)

2 (u1) = ∂1G
(2)(u1,0), G(2)(0) = G(2)(0,0),

G(3)(u1, u2, u3) = ∂1∂2∂3G
(4)(u1, u2, u3,0), (4.7)
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G(2)

4 (u1, u2) = ∂1∂2G
(4)(u1, u2,0,0),

G(1)

4 (u1) = ∂1G
(4)(u1,0,0,0), G(4)(0) = G(4)(0,0,0,0).

Note that (4.7)2,4 are examples of (3.16).
We can write S(t) as a polynomial in E(t), as follows

S(t) = S1E(t) + S2E
2(t) + S3E

3(t) + S4E
4(t),

S1 =
∫ ∞

0
G(1)

2 (u1)E
t (u1)du1

+
∫ ∞

0
G(3)(u1, u2, u3)E

t (u1)E
t (u2)E

t (u3)du1du2du3,

S2 = 3

2

∫ ∞

0
G(2)

4 (u1, u2)E
t (u1)E

t (u2)du1du2 + +1

2
G(2)(0),

S3 =
∫ ∞

0
G(1)

4 (u1)E
t (u1)du1,

S4 = 1

4
G(4)(0).

(4.8)

For N = 1, the case where the stress function is a linear history of the strain, S(t) takes
the form

S(t) = E(t)T (t) − 1

2
G(2)(0)E2(t), (4.9)

which is familiar in various contexts [1].
The stress function is given by

T (t) = Te(t) +
∫ ∞

0
G̃

(1)

2 (u1)Ė
t (u1)du1

+
∫ ∞

0
G̃(3)(u1, u2, u3)Ė

t (u1)Ė
t (u2)Ė

t (u3))du1du2du3

= Te(t) +
∫ ∞

0
G(1)

2 (u1)E
t
r (u1)du1

+
∫ ∞

0
G(3)(u1, u2, u3)E

t
r (u1)E

t
r (u2)E

t
r (u3)du1du2du3,

Te(t) = G(2)
∞ E(t) + G(4)

∞ E3(t),

(4.10)

where G(2)∞ and G(4)∞ are special cases of the quantity introduced in (2.21). We have
G̃

(1)

2 (u1) = G
(1)

2 (u1) − G(1)∞ where G
(1)

2 (u1) is the linear relaxation function, while G(1)

2 (u1)

is the derivative of this linear relaxation function. Also, G̃(3)(u1, u2, u3) = G(3)(u1, u2, u3)−
G(3)∞ , the quantity G(3)(u1, u2, u3) being a generalization of the linear relaxation in the con-
text of cubic terms. The definitions of G(1)

2 (u1) and G(3)(u1, u2, u3) in terms of more basic
quantities are given in (4.7).
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Alternatively, we can write the stress function as

T (t) = Te(t) +
∫ t

−∞
G̃

(1)

2 (t − u1)Ė(u1)du1

+
∫ t

−∞
G̃(3)(t − u1, t − u2, t − u3)Ė(u1)Ė(u2)Ė(u3))du1du2du3

= Te(t) +
∫ t

−∞
G(1)

2 (t − u1)Er(u1)du1

+
∫ t

−∞
G(3)(t − u1, t − u2, t − u3)Er(u1)Er(u2)Er(u3)du1du2du3.

(4.11)

Using (4.10)2, the stress function can be written as a polynomial in E(t):

T (t) = T0 + T1E(t) + T2E
2(t) + T3E

3(t),

T0 =
∫ ∞

0
G(1)

2 (u1)E
t (u1)du1

+
∫ ∞

0
G(3)(u1, u2, u3)E

t (u1)E
t (u2)E

t (u3)du1du2du3,

T1 = G(2)(0) + 3
∫ ∞

0
G(2)

4 (u1, u2)E
t (u1)E

t (u2)du1du2,

T2 = 3
∫ ∞

0
G(1)

4 (u1)E
t (u1)du1,

T3 = G(4)(0).

(4.12)

Substituting (4.12)1 into (4.5), we obtain

S(t) = T0E(t) + 1

2
T1E

2(t) + 1

3
T2E

3(t) + 1

4
T3E

4(t), (4.13)

or

S1 = T0, S2 = 1

2
T1, S3 = 1

3
T2, S4 = 1

4
T3. (4.14)

These relations could also be derived from (4.8) and (4.12).
The rate of dissipation will now be considered. From (2.26), we see that

K(2)(u1, u2) =
{

∂

∂u1
+ ∂

∂u2

}
G(2)(u1, u2),

K(4)(u1, u2, u3, u4) =
{

∂

∂u1
+ ∂

∂u2
+ ∂

∂u3
+ ∂

∂u4

}
G(4)(u1, u2, u3, u4).

(4.15)

Inverses of these relations are given by the following special cases of (2.29)

G̃(2)(u1, u2) = −
∫ ∞

0
K(2)(u1 + z,u2 + z)dz,

G̃(4)(u1, u2, u3, u4) = −
∫ ∞

0
K(4)(u1 + z,u2 + z,u3 + z,u4 + z)dz.

(4.16)
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Equations (4.15)1 and (4.16)1 are familiar from the linear model [1, 7]. Similar relations to
(4.15) and (4.16) are true for K(2),K(4) and G(2),G(4).

The rate of dissipation is given by

D(t) = −1

2

∫ ∞

0
K(2)(u1, u2)Ė

t (u1)Ė
t (u2)du1du2

− 1

4

∫ ∞

0
K(4)(u1, u2, u3, u4).

.Ėt (u1)Ė
t (u2)Ė

t (u23)Ėt (u4)du1du2du3du4

= −1

2

∫ ∞

0
K(2)(u1, u2)E

t
r (u1)E

t
r (u2)du1du2

− 1

4

∫ ∞

0
K(4)(u1, u2, u3, u4).

.Et
r (u1)E

t
r (u2)E

t
r (u3)E

t
r (u4)du1du2du3du4,

(4.17)

or

D(t) = −1

2

∫ t

−∞
K(2)(t − u1, t − u2)Ė(u1)Ė(u2)du1du2

− 1

4

∫ t

−∞
K(4)(t − u1, t − u2, t − u3, t − u4).

.Ė(u1)Ė(u2)Ė(u3)Ė(u4)du1du2du3du4

= −1

2

∫ t

−∞
K(2)(t − u1, t − u2)Er(u1)Er(u2)du1du2

− 1

4

∫ t

−∞
K(4)(t − u1, t − u2, t − u3, t − u4).

.Er(u1)Er(u2)Er(u3)Er(u4)du1du2du3du4.

(4.18)

For N = 2, the expression (3.21) for the work function can be written as

W(t) = φ(t) +
∫ t

−∞
du

∫ u

−∞
du1G

(1)

2 (u − u1)Ė(u)Ė(u1)

+
∫ t

−∞
du

∫ u

−∞
du1

∫ u

−∞
du2

∫ u

−∞
du3G

(3)(u − u1, u − u2, u − u3).

.Ė(u)Ė(u1)Ė(u2)Ė(u3)

= φ(t) +
∫ ∞

0
du

∫ ∞

u

du1G
(1)

2 (u − u1)Ė
t (u)Ėu(u1)

+
∫ ∞

0
du

∫ ∞

u

du1

∫ ∞

u

du2

∫ ∞

u

du3G
(3)(u − u1, u − u2, u − u3).

.Ėt (u)Ėu(u1)Ė
u(u2)Ė

u(u3) (4.19)
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= φ(t) +
∫ t

−∞
du

∫ u

−∞
du1G(1)

2 (u − u1)(E(u) − E(t))(E(u1) − E(u))

+
∫ t

−∞
du

∫ u

−∞
du1

∫ u

−∞
du2

∫ u

−∞
du3G(3)(u − u1, u − u2, u − u3).

.(E(u) − E(t))(E(u1) − E(u))(E(u2) − E(u))(E(u3) − E(u))

= φ(t) +
∫ ∞

0
du

∫ ∞

u

du1G(1)

2 (u − u1)E
t
r (u)Eu

r (u1)

+
∫ ∞

0
du

∫ ∞

u

du1

∫ ∞

u

du2

∫ ∞

u

du3G(3)(u − u1, u − u2, u − u3).

.Et
r (u)Eu

r (u1)E
u
r (u2)E

u
r (u3).

The quadratic term can be written as

∫ t

−∞
du

∫ u

−∞
du1G

(1)

2 (u − u1)Ė(u)Ė(u1)

=
∫ t

−∞
du1

∫ t

u1

duG
(1)

2 (u − u1)Ė(u)Ė(u1)

=
∫ t

−∞
du

∫ t

u

du1G
(1)

2 (u1 − u)Ė(u)Ė(u1)

= 1

2

∫ t

−∞
du

∫ t

−∞
du1G

(1)

2 (|u − u1|)Ė(u)Ė(u1).

(4.20)

The quantity W(t) cannot be regarded as a free energy if the property discussed in [11]
is taken into account. However, from (2.8), it follows that it must be greater than or equal to
the maximum free energy associated with the material, an observation which follows from
(2.8) for any free energy ψ(t). Thus, we have in general the requirement that

ψ(t) ≤ W(t). (4.21)

5 Discrete-Spectrum Materials

We will give the relevant formulae for N = 2. Generalization to larger values of N is rela-
tively straightforward. Repeating certain relations from (4.3), we find that

ψ(t) = φ(t) + ψ2(t) + ψ4(t),

φ(t) = 1

2
G(2)

∞ [E(t)]2 + 1

4
G(4)

∞ [E(t)]4,

ψ2(t) = 1

2

∫ ∞

0
G̃(2)(u1, u2)Ė

t (u1)Ė
t (u2)du1du2

= 1

2

∫ ∞

0
G(2)(u1, u2))E

t
r (u1)E

t
r (u2)du1du2,
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ψ4(t) = 1

4

∫ ∞

0
G̃(4)(u1, u2, u3, u4)Ė

t (u1)Ė
t (u2)Ė

t (u3)Ė
t (u4)du1du2du3du4

(5.1)

= 1

4

∫ ∞

0
G(4)(u1, u2, u3, u4)E

t
r (u1)E

t
r (u2)E

t
r (u3)E

t
r (u4)du1du2du3du4,

G̃(2)(u1, u2) =
n∑

i,j=1

C
(2)
ij e−αiu1 − αju2 ,

G(2)(u1, u2) =
n∑

i,j=1

αiαjC
(2)
ij e−αiu1 − αju2 ,

G̃(4)(u1, u2, u3, u4) =
n∑

i,j,k,l=1

C
(4)
ijkle

−αiu1 − αju2 − αku3 − αlu4 ,

G(4)(u1, u2, u3, u4) =
n∑

i,j,k,l=1

αiαjαkαlC
(4)
ijkle

−αiu1 − αju2 − αku3 − αlu4 ,

where n is a positive integer and the inverse decay times αi , i = 1,2, . . . , n, are positive. The
quantities with components C

(2)
ij , C

(4)
ijkl must be non-negative on IRn, IRn × IRn respectively.

This means that if λ1, i = 1,2 . . . , n are the components of a vector in IRn then

n∑
ij=1

C
(2)
ij λiλj ≥ 0,

n∑
ijkl=1

C
(4)
ijklλiλjλkλl ≥ 0, (5.2)

for all choices of λi .

Remark 5.1 We are taking the values of the decay parameters αj , j = i,2, . . . , n and their
total number n as equal for the quadratic and quartic terms, to avoid proliferation of sub-
scripts and superscripts. In fact, we are free to choose them to be unequal, which can be
indicated by assigning extra subscripts or superscripts to these parameters.

Also, from (4.17),

D(t) = D2(t) + D4(t),

D2(t) = −1

2

∫ ∞

0
K(2)(u1, u2)Ė

t (u1)Ė
t (u2)du1du2

= −1

2

∫ ∞

0
K(2)(u1, u2))E

t
r (u1)E

t
r (u2)du1du2,

D4(t) = −1

4

∫ ∞

0
K(4)(u1, u2, u3, u4)Ė

t (u1)Ė
t (u2)Ė

t (u3)Ė
t (u4)du1du2du3du4

= −1

4

∫ ∞

0
K(4)(u1, u2, u3, u4)E

t
r (u1)E

t
r (u2)E

t
r (u3)E

t
r (u4)du1du2du3du4,

K(2)(u1, u2) = −
n∑

i,j=1

�
(2)
ij e−αiu1 − αju2 , (5.3)
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K(2)(u1, u2) = −
n∑

i,j=1

αiαj�
(2)
ij e−αiu1 − αju2 ,

K(4)(u1, u2, u3, u4) = −
n∑

i,j,k,l=1

�
(4)
ijkle

−αiu1 − αju2 − αku3 − αlu4 ,

K(4)(u1, u2, u3, u4) = −
n∑

i,j,k,l=1

αiαjαkαl�
(4)
ijkle

−αiu1 − αju2 − αku3 − αlu4 ,

�
(2)
ij = (αi + αj )C

(2)
ij ,

�
(4)
ijkl = (αi + αj + αk + αl)C

(4)
ijkl,

where the summation convention is not in force. The matrices �
(2)
ij , �

(4)
ijkl are independent of

each other (note remark 5.1 in this context), so that, for example, one of them can be put
equal to zero, if we wish to focus on the properties of the other.

These quantities �
(2)
ij , �

(4)
ijkl are assumed to be non-negative in the sense of (5.2). This

ensures that the second law D(t) ≥ 0 is obeyed. Then, it follows from Proposition 2.1 that
C

(2)
ij , C

(4)
ijkl are also positive semi-definite quantities.

Using (4.7), (4.10) and (5.1), we see that the stress function is given by

T (t) = Te(t) + T (1)(t) + T (3)(t),

Te(t) = G(2)
∞ E(t) + G(4)

∞ [E(t)]3,

T (1)(t) =
∫ ∞

0
G(1)

2 (u1))E
t
r (u1)du1,

T (3)(t) =
∫ ∞

0
G(3)(u1, u2, u3)E

t
r (u1)E

t
r (u2)E

t
r (u3)du1du2du3,

G(1)

2 (u1) = −
n∑

i=1

αiG
(1)
i e−αiu1

= −
n∑

i=1

αi

n∑
j=1

C
(2)
ij e−αiu1 ,

G(3)(u1, u2, u3) = −
n∑

i,j,k=1

αiαjαkG
(3)
ijke

−αiu1 − αju2 − αku3

= −
n∑

i,j,k=1

αiαjαk

n∑
l=1

C
(4)
ijkle

−αiu1 − αju2 − αku3 .

(5.4)

Thus, we must have

G
(1)
i =

n∑
j=1

C
(2)
ij ,

G
(3)
ijk =

n∑
l=1

C
(4)
ijkl,

(5.5)
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where G
(1)
i , i = 1,2, . . . , n are the coefficients of the exponentially decaying terms in the

linear relaxation function and G
(3)
ijk , i, j, k = 1,2, . . . , n are the corresponding quantities for

the cubic nonlinear terms in the constitutive equations. The forms given in terms of C
(2)
ij and

C
(4)
ijkl may be derived from (5.1), together with (4.7)2,4. We note the points made after (4.10),

in this context.
The vector e in R

n is defined by [1]

ei(t) = −αiE
t
r+(−iαi) = E(t) − αiE

t
+(−iαi) = d

dt
Et

+(−iαi), i = 1,2, . . . , n, (5.6)

where

Et
+(ω) =

∫ ∞

0
Et(s)e−iωsds. (5.7)

The quantities Et+(−iαi) are real. They are the Laplace transforms

Et
+(−iαi) =

∫ ∞

0
Et(s)e−αi sds. (5.8)

We have

ėi (t) = Ė(t) − αiei(t), i = 1,2, . . . , n,

∂

∂E(t)
ei = 1, i = 1,2, . . . , n.

(5.9)

Then,

ψ(t) = φ(t) + 1

2

n∑
ij=1

eiC
(2)
ij ej + 1

4

n∑
ijkl=1

eiejC
(4)
ijklekel,

D(t) = 1

2

n∑
ij=1

ei�
(2)
ij ej + 1

4

n∑
ijkl=1

eiej�
(4)
ijklekel,

T (t) = Te(t) +
n∑

ij=1

C
(2)
ij ej +

n∑
ijkl=1

C
(4)
ijklej ekel .

(5.10)

6 Product Formulae for the Rate of Dissipation

Referring to (3.10), (2.29) and (2.27), we look at the case

K(2k)(u1, u2, . . . , u2k) = −
2k∏
l=1

d2k(ul),

K(2k)(u1, u2, . . . , u2k) = −
2k∏
l=1

d ′
2k(ul),

G̃(2k)(u1, u2, . . . , u2k) =
∫ ∞

0

2k∏
l=1

d2k(ul + z)dz, (6.1)
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G(2k)(u1, u2, . . . , u2k) =
∫ ∞

0

2k∏
l=1

d ′
2k(ul + z)dz,

d ′
2k(u) → 0 as u → ∞, k = 1,2, . . .N.

Let

B2k(t, z) =
∫ ∞

0
d2k(u + z)Ėt (u)du =

∫ ∞

z

d2k(s)Ė
t+z(s)ds

=
∫ ∞

0
d ′

2k(u + z)Et
r (u)du =

∫ ∞

z

d ′
2k(s)E

t
r (s − z)ds,

B2k(t) = B2k(t,0).

(6.2)

Also,

F(t, z) =
∞∑

k=1

a2k[B2k(t, z)]2k, F (t) = F(t,0), (6.3)

where the coefficients ar , r = 2,4, . . . are assumed to be nonnegative quantities, so that
the function F(t, z) is also nonnegative. If the summations are infinite, we must assume
convergence. The form (6.2)3 will be used. Then,

D(t) = F(t), ψ(t) = φ(t) +
∫ ∞

0
F(t, z)dz,

D(t) =
∫ t

−∞
F(s)ds =

∫ ∞

0
F(t − z)dz,

T (t) = ∂

∂E(t)
ψ(t) = Te(t) +

∫ ∞

0

∂

∂E(t)
F (t, z)dz,

∂

∂E(t)
F (t, z) =

∞∑
k=1

2ka2k[B2k(t, z)]2k−1(d2k(z) − d2k(∞)).

(6.4)

The stress T (t) emerges from (6.4)5,6,7 and differentiating the term E(t) in Et
r(u) = E(t −

u) − E(t) with respect to E(t).
Let us check that (2.7) holds. The contribution T (t)Ė(t) follows from T (t) determined

as above. The quantity D(t) arises by differentiating Et(u) = E(t − u) with respect to t

in (6.2)2, treating E(t) as a constant. This action will be denoted by ∂d . Using the same
manipulation as in (2.4), we see that

∫ ∞

0
d ′

2k(u + z)
∂

∂t
Et (u)du = −

∫ ∞

0
d ′

2k(u + z)
∂

∂u
Et(u)du

= −
∫ ∞

0
d ′

2k(u + z)
∂

∂u
Et

r (u)du =
∫ ∞

0
d ′′

2k(u + z)Et
r (u)du

=
∫ ∞

0

∂

∂z
d ′

2k(u + z)Et
r (u)du.

(6.5)
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Then,

∂dF (t, z) =
∞∑

k=1

2ka2k[B2k(t, z)]2k−1
∫ ∞

0

∂

∂z
d ′

2k(u + z)Et
r (u)du

= ∂

∂z

[ ∞∑
k=1

a2k[B2k(t, z)]2k

]
,

(6.6)

so that

∂dψ(t) =
∫ ∞

0
∂dF (t, z)dz = −F(t) = −D(t). (6.7)

Remark 6.1 Observe that discrete spectrum materials, discussed in Sect. 5, are particular
examples of (6.1) if the matrices �ij and �ijkl are factorizable in the sense that

�ij = γ
(2)
i γ

(2)
j , �ijkl = γ

(4)
i γ

(4)
j γ

(4)
k γ

(4)
l , i, j, k, l = 1,2, . . . , n, (6.8)

where γ
(2)
i , γ

(4)
i ∈ IR+.

6.1 Exact Summations for a Simple Model

Let us now specialize further to the case where the functions d2k are the same for all terms
so that

K(2k)(u1, u2, . . . , u2k) = −
2k∏
l=1

d(ul),

K(2k)(u1, u2, . . . , u2k) = −
2k∏
l=1

d ′(ul),

G̃(2k)(u1, u2, . . . , u2k) =
∫ ∞

0

2k∏
l=1

d(ul + z)dz,

G(2k)(u1, u2, . . . , u2k) =
∫ ∞

0

2k∏
l=1

d ′(ul + z)dz.

(6.9)

We put

B(t, z) =
∫ ∞

0
d(u + z)Ėt (u)du =

∫ ∞

z

d(s)Ėt (s − z)ds

=
∫ ∞

0
d ′(u + z)Et

r (u)du =
∫ ∞

z

d ′(s)Et
r (s − z)ds,

B(t) = B(t,0).

(6.10)

Also,

F(t, z) =
∞∑

k=1

a2k[B(t, z)]2k, F (t) = F(t,0), (6.11)
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where the coefficients al , l = 2,4,6 . . . are assumed to be nonnegative quantities, so that
the function F(t, z) is also nonnegative. Then, the general forms of the rate of dissipation,
free energy, total dissipation and stress function are given by the first six relations of (6.4).
The general shape of D(t) should be obtained from experiments. We make a mathematically
convenient choice, taking

a2k = (−1)k−1C

k! , k = 1,2, . . . , (6.12)

which gives

F(t, z) = C[1 − e−B2(t,z)], (6.13)

where C is a positive constant. This is zero for vanishing strain and C for large strain. Thus,
using (6.4), we have

D(t) = C[1 − e−B2(t)], ψ(t) = φ(t) + C

∫ ∞

0
[1 − e−B2(t,z)]dz,

D(t)) = C

∫ t

−∞
[1 − e−B2(v)]dv = C

∫ ∞

0
[1 − e−B2(t−z)]dz,

T (t) = ∂

∂E(t)
ψ(t) = Te(t) + 2C

∫ ∞

0
(d(z) − d(∞))B(t, z)e−B2(t,z)dz.

(6.14)
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