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Abstract: In this paper, we compare and assess the efficacy of a number of time-series instance feature
representations for anomaly detection. To assess whether there are statistically significant differences
between different feature representations for anomaly detection in a time series, we calculate and
compare confidence intervals on the average performance of different feature sets across a number of
different model types and cross-domain time-series datasets. Our results indicate that the catch22
time-series feature set augmented with features based on rolling mean and variance performs best on
average, and that the difference in performance between this feature set and the next best feature
set is statistically significant. Furthermore, our analysis of the features used by the most successful
model indicates that features related to mean and variance are the most informative for anomaly
detection. We also find that features based on model forecast errors are useful for anomaly detection
for some but not all datasets.

Keywords: time series analysis; anomaly detection; data representation; cloud monitoring; AIOPS

1. Introduction

A time series is a set of data points that were collected and are indexed sequentially
through time. Time series analysis can be applied to a wide range of data-generating
processes, including data from sensors monitoring tides, stock prices, and medical appli-
cations such as monitoring for cardiac pathologies. There are range methods that can be
applied, such as visualization, classification, and anomaly detection. This paper focuses
on anomaly detection in cloud systems. Anomaly detection is the identification of rare
events; these events could be indicative of critical failures in cloud systems. One area of
increasing importance for time-series analysis is the maintenance of cloud services. Cloud
services are often made up of many microservices, all of which can have different operating
parameters. For these services, different KPIs can be tracked and provide real-time insights
into the performance of the different micro-services within the system, for example, the
amount of network traffic might be useful for a load balancer, while levels of disk I/O
might be informative for a database. Consequently, these KPIs provide a basis for the early
detection of problems in a system due to system failure, crashes, or surges in traffic. Early
detection of problems in this way can allow engineers to address issues or scale systems in
a timely manner.

Nielsen [1] distinguishes between four different types of computational model for
time series analysis, namely, (i) statistical models (e.g., auto-regressive models, and moving
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averages); (ii) state-space models (e.g., kalman-filters, hidden markov models); (iii) machine
learning methods (e.g., SVMs, tree based ensembles) applied to hand-engineered feature
sets; and (iv) end-to-end deep learning methods (e.g., recurrent architectures, and convolu-
tional networks). Statistical and state-space methods augmented with thresholds and rules
can work well for anomaly detection on relatively stable KPIs where the thresholds can
be tailored to normal operation parameters of the KPI being monitored [2]. However, it
is difficult to set appropriate thresholds when there is significant variation within a KPI
due to temporal or seasonal variation [3], or where there is significant variation across a set
of KPIs that is being monitored as part of a cloud services infrastructure [4]. Focusing on
machine-learning-based methods, both supervised [5,6] and unsupervised methods [7–9]
for anomaly detection have been proposed. There is also a growing amount of research in
applying deep learning methods to anomaly detection for time-series. Within the research
on deep anomaly detection models, the majority of research has focused on unsupervised
methods; this is because of the difficulties that deep supervised models can have in mod-
elling imbalanced data, and because of the lack of available training data (see [10] for a
recent overview of this work). However, despite this current trend towards unsupervised
deep anomaly detection research, and following [4,11], we believe supervised approaches
to anomaly detection are ultimately necessary in order to achieve the high levels of per-
formance required to support critical cloud-based services. In particular, our long-term
research goals are to develop highly-accurate supervised machine learning/deep learning
approaches to anomaly detection that scale across multiple domains with minimal data
labelling overhead. This points to the use of transfer learning and active learning methods
in the final framework. However, as a first step in the development of a scalable framework
for time-series anomaly detection in this paper, we report results from a set of experiments
that were designed to assess the relative performance of different feature representations
of time-series data points for the task of cross-domain anomaly detection for univariate
time-series data; moreover, we will focus on the interaction between these features sets
and transfer learning and active learning in later work. The contributions of this paper are
as follows:

• A comprehensive analysis of the multiple feature time-series feature sets for anomaly
detection across a number of cross-domain time-series datasets;

• Identifying a feature set that outperforms the other representations by a statistically
significant margin on the task of cross-domain anomaly detection;

• Elaborating feature importance in the top performing representation.

The rest of this paper is structured as follows: in Section 2, we review related work on
feature representations for time-series analysis; in Section 3, we describe the set of features
that we are considering under experiment; in Section 4, we describe our experimental design
and in particular introduce the dataset and models types we use in the experiment and our
use of confidence intervals as part of our experimental method for feature comparison; in
Section 5, we present the experimental results; and in Section 7, we present our conclusions.

2. Related Work on Feature Engineering for Time-Series Analysis and Anomaly Detection

Feature engineering and selection can have significant impact on the performance
of a data-driven model on a given task. Using appropriate features can reveal relevant
underlying information in a domain. For example, in time-series analysis, features can
reveal variance, seasonality, or deviations from observable trends. However, including
irrelevant or redundant features in a representation can result in models overfitting the
particularities of the training sample. Furthermore, features that may be useful in one
time-series task may not be appropriate for another. For example, the use of a mean makes
sense where a time-series is stationary (or at least ergodic) but is less meaningful when
a time-series is non-stationary, and features such as max and min values may become
unstable as the length of a time-series increases ([1], p. 242). Consequently, selecting an
appropriate feature set for a task and domain is important, although this become more
challenging in a cross-domain setting.
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In an era of end-to-end deep learning, many data-driven projects often rely on the
ability of deep networks to learn the appropriate representations for a task from the raw
data [12]. However, as noted above, relatively little work has been done on supervised deep
learning methods for anomaly detection in time-series data because of the data required
for deep learning approaches and because of the difficulties of training deep models using
highly-imbalanced data. One example of recent work that has explored deep learning for
anomaly detection in time series data is [13], which used a synthetic dataset to compare the
performance of end-to-end LSTM approach trained on the raw time series with a number of
machine learning models trained on feature vector representations of the same time series
data points. One interesting point arising from that work was that both approaches, end-to-
end LSTM and feature-vector-based machine learning models, achieve similar performance
on this task. This indicates that time-aware (recurrent) deep architectures such as LSTMs
can learn useful representations from raw data, and this could save on feature engineering
efforts. However, this research was carried out on a single domain data set of contiguous
glucose monitoring for diabetes where anomalies were injected into the normal data.
This dataset was specifically prepared in order to ensure that there were enough labelled
examples available to train an end-to-end approach using supervised learning, and it is
not clear how the performance of the models might degrade as the size of training date is
reduced (although it is to be expected that the deep learning architecture’s performance will
be more sensitive to the data reduction than the less data-hungry machine learning models).
Furthermore, as we mentioned in the introduction, our long-term focus is on cross-domain
anomaly detection, and solving this challenge will likely require the use of transfer learning
and active learning as part of the solution. However, the integration between deep learning
and active learning is still an open research question, as demonstrated by recent work
such as [14,15], who have worked on deep active learning with image data. Some of the
challenges affecting the integration of deep learning and active learning include: (i) the
fact that neural networks are often overconfident in their predictions, and this can make
selecting data for labelling challenging; and (ii) the computational cost associated with
the frequent retraining of a deep architecture can be prohibitive. For these reasons, in this
work we focus on feature set design for machine-learning-based approaches to anomaly
detection, with a particular focus on feature sets that exhibit good performance across
multiple domains.

Machine-learning-based models (such as tree-based ensemble, feed-forward neural
nets, and SVM) were primarily developed for classification and regression prediction on
cross-sectional data. Consequently, these models are not naturally time-aware (as compared
with, for example, recurrent neural networks). As a result, in order to apply these models to
time-series data it is necessary to convert each data point in a time series into a fixed-width
feature vector. This fixed-width feature vector representation may include both global
features that summarize the characteristics of the entire time series and/or local features
that capture the relevant information (including temporal trends) within the temporal
locality of the data point within the time series. Frequently, converting the points within a
univariate time-series into a sequence of feature vectors is achieved by passing a sliding
window—these windows can either be overlapping or tiled (non-overlapping)—along the
time-series and calculating the features values for a point over the data within the window
that contains the point, and feature values for the time-series by comparing characteristics
calculated for different windows. Stability and lumpiness are examples of global features
that are calculated based on non-overlapping (tiled) windows [16]. The calculation of
stability and lumpiness assumes that a set of tiled time windows have been defined across
a time-series. The stability score for a time-series is then calculated by first calculating
the mean for each of the tiled windows and then calculating the variance of these means.
Lumpiness is calculated by first calculating the variance for each of the tiled windows
and then calculating the variance of these variances. Furthermore, although time-series
are naturally considered in the time-domain, it is often useful to transform a time-series
into a frequency domain, for example, by applying a Fourier transform to project a time-
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series into a sine and cosine coordinate system. These two representations naturally
foreground different characteristics of a time-series: the time-domain foregrounds lagged
relationships (how what happens in the past affects what will happen today/tomorrow),
and the frequency-domain is more suitable to analyse the cyclic nature of a time-series [17].

Examples of the types of features that can be derived through operations applied to
either the temporal and/or spectral representation of a time-series include: basic statistics
(e.g., the mean, maximum, or minimum values in the last n time steps), and features
derived from different forms of variation that may be present in the data, be it measures
of trend (long-term changes in the mean), cyclic/periodic variation (e.g., seasonality),
non-cyclic variation, entropy, and so on. An assumption underpinning many approaches
to time-series analysis is that the time-series is stationary; in general terms, a time-series is
stationary if the properties of one slice of the series are similar to those of any other ([18],
p. 17). For similarity to be maintained in this way across the time-series, it is necessary that
there is no underlying trend, the variance is constant, and there are no periodic variations.
If any of these conditions do not hold then different operations can be applied to transform
the raw time-series into a stationary one. For example, if a trend exists in the data, a
common method to remove the trend (i.e., to stabilize the mean), known as differencing,
is to transform the time-series into the differences between consecutive observations [19].
The concept of differencing can be used to generate features describing the characteristics
of the time series, such as the difference between the value at time t (xt) and a previous
value at some fixed time separation or lag k (xt−k).

A particularly important form of analysis of a time-series is autocorrelation, which
measures the linear relationship between the value of a time-series at time t, (xt), and at
lag k, (xt−k). The autocorrelation of a time-series can be measured at many different lags,
and so there are multiple autocorrelation coefficients for each time-series, one for each
lag, with rk being the autocorrelation coefficient for lag k. A standard visualisation for
these coefficients in the correlogram, in which the autocorrelation coefficients are plotted
against the lag. The correlogram is often referred to as the sample autocorrelation function [18],
and a number of features can be derived from this function, for example, the lag to the
first time the function crosses zero, or the first minimum of the function. The concept
of autocorrelation can be extended to non-linear dependencies by calculating mutual
information at different lags. Similarly, the calculated mutual information coefficients
can be plotted against lags to define the automutual information function, and a range of
features can be derived from this function. Another family of important features within
time-series analysis is based on autoregression. An autoregressive model uses lagged values
of a time-series to predict the value of the series at time t. One application of autoregression
is to measure the volatility within a time-series; for example, the autoregressive conditionally
heteroscedastic (ARCH) model [20] was developed to model changes in volatility in time-
series and was later extended to the generalized ARCH (GARCH) [21]. Autoregression
models are also frequently used to identify outlier anomalies [4,5], the intuition being
that the autoregression model learns the normal behaviour of the time-series, and a large
discrepancy between the predicted and actual value at time t is taken as evidence for a
potential anomaly [7].

The breadth of possibilities in feature design for time-series is most clearly demon-
strated via the highly comparative time-series analysis (hctsa) toolkit, which provides im-
plementations of over 7700 features for time series analysis and an extensive library of
time-series datasets [22–24]. Given such a large set of potential features, it is not surprising
that feature selection is a very important topic in time-series analysis. There are a growing
number of time-series feature sets that are now commonly used across a large number of
time-series projects; some of the best known include: feasts [25], tsfeatures [26], Kats [27],
tsfresh [28], TSFEL [29], and catch22 [30]. The majority of these general purpose time-series
feature sets are manually curated. For example, the tsfeatures package implements a set of
operations to extract a set of different types of frequently used features from a time-series,
including: the autocorrelation function and related features; various measures of trend
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and seasonality extracted from an STL decomposition, developed by [31], of a time-series;
flatspot features that are computed by dividing the sample space of a time series into
10 equal length bins and computing the maximum run length within a single interval;
crossing points, which returns the number of times a time-series crosses the median line;
lumpiness; and stability.

An exception to these manually designed feature sets is the recently developed catch22
feature set. The catch22—CAnonical Time-Series Characteristics—feature set was designed
to be “generically useful” and developed using a data-driven methodology that involved
evaluating a set of 4791 features from hctsa on 93 time-series classification tasks, and select-
ing 22 features that perform well across a diverse set of 93 time-series data sets, covering
multiple time-series tasks which were minimally redundant [30]. The selection of features
from the huge pool of features was achieved using a three step process: (i) statistical pre-
filtering of the features by removing any feature whose performance across the 93 datasets
was statistically equivalent to a random number generator; (ii) performance filtering of the re-
maining features by ranking the features by performance across the datasets and dropping
all features whose overall performance was below a threshold; (iii) redundancy minimization,
which involved clustering the remaining features into groups based on similar performance
on tasks (i.e., sets of similar datasets) and selecting a representative of each cluster for
inclusion in the final set of features. The clustering process generated 22 clusters, and
hence 22 features were included in the final catch22 feature set. The catch22 feature set
had comparable performance across the datasets as the initial pool of 4791 features from
hctsa: hctsa feature set achieved an average accuracy of 77.2%, whereas the catch22 feature
set achieved an average accuracy of 71.7%. The catch22 creators note that some of the
datasets used in their feature evaluation experiments were normalised and this resulted
in features that were derived from the mean and variance of a time-series begin excluded
from consideration; as a result, they recommend considering including features related to
the mean and variance if applicable when using the catch22 feature set [30]. The catch22
feature set includes linear and non-linear autocorrelation, successive differences, value
distributions, and outlier and fluctuation scaling properties features. The complete list of
catch22 features is shown in Table A1 in Appendix A.

A recent empirical evaluation of the coverage, computational efficiency, and within-
feature-set redundancy of a number of general purpose time-series feature sets across
a set of over 800 real-world and synthetic time-series dataset found that hctsa was the
most comprehensive feature set, TSFEL and catch22 were the fastest to be evaluated for
time series in the range of 100–1000 samples, and the catch22 had the lowest within set
feature redundancy (which was a deliberate design choice for this feature set) [32]. How-
ever, a conclusion of this benchmarking work was that it would be important in future
work to evaluate the relative performance of feature sets on specific time-series analysis
tasks ([32], p. 7).

The focus of our work is anomaly detection, and more specifically anomaly detec-
tion for cloud infrastructure. A number of researchers have proposed manually curated
feature sets tailored to anomaly detection, for example, [4,5,16,33]. A recent example of
this task-specific approach to feature set design is the feature set developed in [4], which
was specifically designed for the task of anomaly detection for cloud systems. Similar
to the general catch22 feature set from [30], the [4] feature set also includes 22 features.
Consequently, these two feature sets are comparable representatives of the general versus
task-specific feature set design process. As with the catch22 feature set, the feature engi-
neering process used for the feature set from [4] converts each data point in the time series
into a set of 22 features that can capture both temporal and contextual information around
the point. The conversion from a univariate time-series to a sequence of 22-dimensional
feature vectors is achieved by passing a sliding window along the time-series using a step
size of 1, and each time the window is moved one time-step forward a feature vector is
generated to represent the right-most point in the time-series by calculating the 22 features
using the segment of the time-series covered by the window. For a given time-series, the
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width of the sliding window is calculated by using a Discrete Fourier Transform (DFT)
to estimate the periodicity of the data, and this periodicity is also used to determine the
size of the sliding window. This feature set includes three categories of features: statistical
features, forecasting error features, and temporal features. We describe each of these feature
sets below.

Statistical features are used to describe basic characteristics around each data point in
time series. The relevance of these statistical features for anomaly detection in time-series is
based on the expectation that anomalies may violate these basic characteristics [4]. The set of
statistical features included in the feature set from [4] is listed in Table A2 in Appendix A.

Error forecasting features are also considered relevant to anomaly detection, based
on the intuition that if an actual point deviates dramatically from the forecast for that
point then it is most likely to be an anomaly. In [4], ensemble models are used to carry
out forecasting and different models are used based on the seasonality of the time series.
The metric RMSE (root mean squared error) is used to provide different forecasting methods
with different weights at a fixed time. The weighted prediction result of the ensemble
model from M models at time t is calculated by:

Ŷt =
M

∑
m=1

Ŷm,t

M− 1
·
(

1− RMSEm,t

∑M
n=1 RMSEn,t

)
(1)

where Ŷm,t is prediction by model m at time t; RMSEm,t is the prediction error of model m
at time t; and Ŷt is the ensemble prediction at time t. The [4] feature set includes 5 features
based on forecasting errors: root mean squared error (RMSE), mean error (ME), mean
absolute error (MAE), mean percentage error (MPE), and mean absolute percentage error
(MAPE) (see Table A3 in Appendix A for the listing of the forecast error features used
in [4]). Note that the inclusion of a large number of forecasting error features in the feature
set does tailor the feature set to the task of anomaly detection because a large forecast error
may signal the presense of an anomaly; however, it likely does so at the cost of increasing
the internal redundancy among the features.

The final set of features proposed in [4] are temporal features. These features are
calculated relative to previous windows, and they are designed to capture drastic changes
between windows. For example, some of these features compare the data in two consecutive
windows and also compute the difference between the current value and previous w values
(e.g., the difference between xn−w and xn). Table A4 in Appendix A lists the temporal
features proposed in [4].

Another recent work that focuses on anomaly detection for time series data is [33],
which uses the spectral residual (SR) algorithm to convert raw time series into a feature
representation that is then fed into a convolutional neural network (CNN), which is respon-
sible for learning a decision rule for distinguishing between anomalies and non-anomalies.
In [33], the CNN model is trained using artificially generated anomaly labels. However,
for this paper the most relevant aspect of [33] is the SR algorithm that is used to transform
the raw data before presentation to the CNN. The SR algorithm was originally developed
to identify regions of interest in images for computer vision (based on concepts from bot-
tom up saliency detection) [34]. In [33], the SR algorithm is repurposed to the time-series
domain in an attempt to identify points of interest in time-series data (such as anomalies).
The SR algorithm is a domain-independent unsupervised method that consists of three
major steps: (i) applying a Fourier Transform to extract the log amplitude spectrum of
the input sequence; (ii) calculation of the spectral residual by subtracting the average log
spectrum from the log spectrum; and (iii) applying an Inverse Fourier Transform to convert
the spectral residual back into the spatial domain.

The comparison of feature representations for instance-based cross-domain anomaly
detection across multiple cloud-services univariate time-series datasets presented in this
paper is based on the above feature sets. One focus of this analysis is to asses whether
in a cross-domain setting there is a statistical difference in performance between general
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time-series feature sets and anomaly detection specific feature sets. In this context, it is
worth noting that there is relatively little overlap between the features listed in the catch22
and [4] feature sets. For example, the anomaly detection feature set proposed by [4] has a
large number of features based on forecasting errors, and these are not present in catch22.
Another focus is to examine whether combining features from different sets or extending
these feature sets produces better overall results, for example, combining SR with catch22
or with the feature set of [4]. Finally, the analysis will also consider whether there is any
similarity in terms of the most useful features found in these alternative feature sets for
anomaly detection in a cross-domain setting.

3. Feature Sets under Test

As a baseline representation for our experiments, we use the raw time series without
any form of preprocessing. In this raw representation, each data point is represented by
its raw value and the raw values of preceding n− 1 data points. For all datasets, we set
n = 15. This window size was set as the mean periodicity for a set of time series sampled
from across the different datasets used in the experiments (these datasets are introduced
in Section 4 below). In more detail, we used DFT to analyse the periodicity of each of the
selected time-series and then averaged across the results of this analysis.

All of the other feature sets we assess also use a sliding window to define the context
that the features are calculated over. For these other feature sets, the size of this window
was set separately for each time-series in a dataset. To set the window size for a time series,
we used the AUTOPERIOD method proposed in [35], which calculates the periodicity of a
time series using periodogram and autocorrelation. This AUTOPERIOD method involves a
two-step process:

1. A list of candidate periods are extracted from the time series using the periodogram
method, and

2. The candidate periods are then ranked using an autocorrelation method ACF.

The intuition behind the method is that if a candidate period from the periodogram
lies on a hill of the ACF, then we can consider it as a valid period, otherwise the period is
discarded as a false alarm.

Having defined a window size per time series in a dataset, the next step in processing
is to convert each data point into a feature vector. We have defined a number of different
feature vectors based on feature sets reported in [4,30]. For the feature set from [4], we
dropped a number of features. In particular, we dropped lumpiness and flatspot from
the temporal-based features (this was because in our experiments we considered features
that are calculated over the running window whereas lumpiness and flatspot produce a
constant number of values for any length of time series), and we also dropped GARCHtest
from the statistical features (our reason for dropping GARCHtest was that we had an
easy-to-use implementation of ARCHtest available to us, and GARCH is just the extension
of ARCH, which considers an extra lag parameter). However, we also augmented this
reduced feature set with three other features that we thought could be relevant, these were:

1. Spectral Residual (SR) is the concept borrowed from the visual computing world which
is based on Fast Fourier Transform (FFT). Spectral residual is unsupervised and has
proven its efficacy in visual saliency detection applications. In anomaly detection
tasks, the anomalies in the time series have similar characteristics to saliency detection,
i.e., they both visually stand out from the normal distribution.

2. Skewness is the measurement of the symmetry in a frequency distribution. Skewness
is very sensitive to outlier values because the calculation of skewness depends on the
cubed distance between a value and the mean. Hence, we believe that the presence of
any outlier may affect the skewness of a distribution within a time window, and so
skewness might be helpful in anomaly detection tasks. Indeed, the authors of [36]
propose an approach to anomaly detection based on skewness.

3. Kurtosis is often described as the extent to which the peak of a probability distribution
deviates from the shape of a normal distribution, i.e., whether the shape is too peaked
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or too flat to be normally distributed. This feature can be used as a complementary
feature with the skewness in case of distributions that are symmetrical but are too
peaked or too flat to be normally distributed. In fact, it has been mathematically
proven in the context of dimensionality reduction techniques for anomaly detection
that the optimal directions of projection of a time series into a reduced dimensionality
are those that maximize or minimize the kurtosis coefficient of the project time series
(see [37,38]), and [39] is an example of recent work that proposes an approach to
anomaly detection in time-series data based on kurtosis.

In summary, taking the feature set proposed by [4] (see the statistical features listed in
Table A2, the forecasting error features listed in Table A3, and the temporal features listed
in Table A4) for their anomaly detection work as a basis, we designed a feature set tailored
to anomaly detection by first dropping three features (lumpiness, flatspot, and GARCHtest)
and replacing them with three features that we believe, based on prior literature, will be
useful for anomaly detection in time-series (namely SR, skewness and kurtosis). In what
follows, to distinguish this modified feature set from the original feature set proposed
in [4], we refer to this modified feature set as the handcrafted anomaly detection (HAD) feature
representation. Table 1 lists the HAD feature set.

Table 1. The HAD feature set, created by adapting the feature set of [4]. Notation: N number of data
points in a time series and/or set of predictions, µT mean of values in time series T, σT standard
deviation of values in time series T, Yi the observed value at time i, Ŷi the estimated value for time i

Feature Description

ACF1 First order of autocorrelation
ACF Remainder Autocorrelation of remainder
Mean Mean of the rolling time series window
Variance Variance of the rolling time series window
Entropy Spectral entropy (see [16])
Linearity Strength of linearity computed on the trend of STL decomposition (see [16])
Trend Strength of trend
Crossing Point Number of crossing points (see [16])
ARCHtest.p P value of Lagrange Multiplier (LM) test for ARCH model (see [20])
Curvature Strength of curvature computed on Trend of STL decomposition (from [16])

RMSE Root mean square error

√
∑N

i=1(Yi−Ŷi)
2

N

ME Mean error ∑N
i=1(Yi−Ŷi)

N

MAE Mean absolute error ∑N
i=1 |Yi−Ŷi |

N

MPE Mean percentage error 1
N ·∑

N
i=1

Yi−Ŷi
Yi

MAPE Mean absolute percentage error 1
N ·∑

N
i=1

|Yi−Ŷi |
Yi

Max level shift Max trimmed mean between two consecutive windows
Max var shift Max variance shift between two consecutive windows
Max KL shift Max shift in Kullback–Leibler divergence between two consecutive windows
Diff-w The differences between the current value and the w-th previous value
SR For time point i the value calculated from the SR transformed time series:

SRi =
√

SRi.real2 + SRi.imaginary2

Skewness Skewness coefficient of the rolling time series window T = Y1, . . . , YN : ST = ∑N
i=1(Yi−µT)

3/N
σ3

T

Kurtosis Kurtosis coefficient of the rolling time series window T = Y1, . . . , YN : KT = ∑N
i=1(Yi−µT)

4/N
σ4

T

We also assess a number of variants of the catch22 feature set, including: (i) the
standard catch22 set; (ii) the catch22 feature set augmented with the Spectral Residual (SR)
feature—we refer to this feature set as catch23; (iii) the catch22 feature set augmented with
window mean and variance features, which we refer to as catch24; and (iv) the catch22
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feature set augmented with SR, window mean, and window variance, which we refer to as
catch25. In total, in our experiments we assess the following six feature sets:

1. Raw (window size = 15),
2. HAD
3. catch22,
4. catch23 (catch22 + Spectral Residual),
5. catch24 (catch22 + Mean + Variance),
6. catch25 (catch22 + SR + Mean + Variance).

4. Experimental Design

This section provides an overview of the experimental process we used to analyse the
relative effectiveness of the six different features sets for instance-based anomaly detection
in cross-domain time-series. Within this study, we wish to control for model type and for
domain sample. Consequently, we assess the effectiveness of each feature representation
across all combinations of a number of different models and different datasets.

Following [13], we used the following set of six model types in our experiments: naïve
bayes, tree-based ensembles (random forests and xgboost), feedforward neural networks,
and SVM models (SVC and SVC linear). Note that the focus of this paper is on assessing the
general effectiveness of different feature sets rather than on fine-tuning the performance
of models. Consequently, we did not expend a large amount of time on fitting model
hyper-parameters. Instead, we selected a single set of hyper-parameters for each model
type and kept these consistent across the datasets. In most cases, these were the default
hyper-parameters set in sklearn [40]. The following hyper-parameters were used for training
each of these model types:

• Naïve bayes: Model parameters are inferred from training data.
• Random forest: 200 estimators, max_ f eatures =

√
n_ f eatures, no max depth, two

samples as minimum number of samples required to split an internal node, one as
minimum number of samples in newly created leaves, with bootstrapping, using
out-of-bag samples to estimate the generalization error.

• Xgboost: gbtree booster, step size shrinkage of 0.3, 0 Minimum loss reduction required
to make a further partition on a leaf node of the tree, 6 maximum depth of a tree,

• Multi-layer perceptron: 1 hidden layer with 100 ReLU units per layer with a single
logistic unit in the output layer, adam as the solver, using L2 penalty of 0.0001, batch
size of 200, constant learning rate, 0.001 step-size in updating the weights, max
iterations set to 200, no early stopping, 0.9 as exponential decay rate for estimates
of first moment vector, and 0.999 as exponential decay rate for estimates of second
moment vector, 1 × 10−8 for numerical stability.

• SVC: rbf kernel, regularization parameter of 1.0, scaled kernel coefficient on data set
variance, and vector length.

• SVC linear: linear kernel, and regularization parameter of 0.25.

– Other SVC parameters: shrinking heuristic, no probability estimates, 1 × 10−3

tolerance for stopping criterion, 200 MB kernel cache, no class weights, no limit
on number of iterations, and one-vs.-rest decision function.

We use six different datasets for analyzing the feature representations: NAB (AWS and
Twitter) [41], Yahoo (Real and Artificial) [5], IOPS KPI (sometimes referred to as AIOPS in
literature) (Available from: https://github.com/NetManAIOps/KPI-Anomaly-Detection
(accessed on 20th May 2020), and Huawei. These datasets have time series of different time
intervals and fan across different spectrum of patterns. In more detail:

• NAB (AWS and Twitter) is a benchmark for evaluating anomaly detection algorithms
in streaming, real-time applications. It is composed of over 50 labeled real-world and
artificial time series. We focus on two of the real-world datasets: (i) web monitoring
statistics from AWS and (ii) Twitter tweet volumes. The AWS time series are taken from
different server metrics such as CPU utilization, network traffic, and disk write bytes.

https://github.com/NetManAIOps/KPI-Anomaly-Detection
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The Twitter dataset is the number of Twitter mentions of publicly-traded companies
such as Google and IBM. The value represents the number of mentions for a given
ticker symbol in every five windows.

• Yahoo Anomaly Detection Dataset is a publicly available collection of datasets released
by Yahoo for benchmarking anomaly detection algorithms. The dataset has four sets
of time series: one is collected from production traffic to yahoo services, which is
labelled by editors manually, whereas the others are synthesized with anomalies that
are embedded artificially. We use the real data and synthesised data but not the “A3”
and “A4” datasets.

• IOPS KPI dataset is a collection of time series datasets provided by Alibaba, Tencent,
Baidu, eBay, and Sogou. The dataset is from real traffic on web services and was
published as part of a series of anomaly detection competitions.

• Huawei dataset is the dataset obtained from the anomaly detection hackathon or-
ganised by Huawei (Details of the Hackathon competition are available at: https:
//huawei-euchallenge.bemyapp.com/ireland (accessed on 2 December 2020)). The se-
lected time series contains different KPI values, and each datapoint is labelled as either
anomaly or not anomaly.

Table 2 below provides summary statistics of the size of each dataset and the % of
anomalies present in each dataset.

Table 2. Summary statistics for the datasets used in the experiment.

Dataset Number of Points % Anomalies Number of Time Series Mean Length

Yahoo Real 91 K 1.76% 64 1415
Yahoo Art 140 K 1.76% 100 1415
IOPS 3 M 2.26% 29 105,985
AWS 67 K 4.57% 17 67,740
Twitter 142 K 0.15% 10 142,765
Huawei 54 K 4.19% 6 9056

Below, we describe the performance metrics we record and how we calculate the
confidence interval for each metric, and the set of models and datasets we use.

We use F1, precision, and recall as our metrics for evaluating performance:

R =
TP

TP + FN
(2)

P =
TP

TP + FP
(3)

F1 =
2× P× R

P + R
(4)

where P and R are precision and recall, respectively. TP, FP, and FN refer to true positive,
false positive, and false negative, respectively. F1 is the main evaluation metric for our
models because if we pay more attention towards precision we might miss out on some of
the crucial anomalies and reduce the recall, whereas focusing on recall only may increase
the number of false positives; hence, we take F1 to maintain the balance between precision
and recall.

As described above for each feature set, we calculate aggregate performance metrics
for F1, precision, and recall by calculating the mean value for each metric across all model
types and dataset folds. In other words, given that we use five-fold cross validation,
and given that we have six model types and six datasets, the mean F1 score for a feature set
is calculated across a sample of (folds×model-type×dataset) 5× 6× 6 = 180 observations.
We can calculate a confidence interval around the mean value in order to quantify the

https://huawei-euchallenge.bemyapp.com/ireland
https://huawei-euchallenge.bemyapp.com/ireland
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uncertainty in this mean value with respect to the unknown true mean for this feature set
across the models and datasets considered using the following equation:

CI = x̄± T × σ√
n

(5)

where x̄ is the mean value of the observations, T is the critical value of Z-score for the
respective confidence level from the T-distribution, σ is the standard deviation of the sample,
and n is the number of observations in the sample. By comparing whether there is an
overlap between the confidence intervals of different feature sets, we can determine whether
a difference in mean performance is statistically significant at the chosen confidence level.

Algorithm 1 below provides a pseudo-code description of our experimental approach.

Algorithm 1: Structure of Experimental Design
input : feature sets {Raw, HAD, catch22, catch23, catch24, catch25}
input : datasets {AWS, Huawei, IOPS, Twitter, Yahoo Artificial, Yahoo Real}
input : model types {NB, SVM (linear), SVM (RBF), MLP, RF, XGBoost}
output : ranking of feature sets based on the mean performance and confidence

interval of each feature set calculated across k-folds per dataset for each
model type

1 for each feature set {Raw, HAD, catch22, catch23, catch24, catch25} do
2 for each dataset {AWS, Huawei, IOPS, Twitter, Yahoo Artificial, Yahoo Real} do
3 for each model type {NB, SVM (linear), SVM (RBF), MLP, RF, XGBoost} do
4 use k-fold cross-validation to train and evaluate k models;
5 record the performance of each of these k models on their

corresponding validation set for each performance metric (e.g., F1);
6 end
7 end
8 calculate a per feature set mean performance (e.g., mean F1) across all dataset

folds and model type instances trained using the feature set representation;
9 calculate the confidence interval for each feature set mean performance score

using the variance across the results of all model instances trained using that
feature set representation and dataset folds;

10 end
11 rank feature sets by mean performance score (e.g., mean F1);
12 check for statistical significance in differences between feature set mean

performance scores by comparing confidence intervals;

Figure 1 below illustrates the combinations of datasets, feature sets, and models
that we used in our experiments. In the next section, we will report the results from
these experiments.
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Figure 1. The combinations of datasets, feature sets, and models used in the experiments. Non-
standard terminology and acronyms: catch23 is catch22+sr, catch24 is catch22+mean+variance,
catch25 is catch22+sr+mean+variance, random forest (RF), Naïve Bayes (NB), multi-layer perceptron
(MLP), radial basis function (RBF), and multilayer perceptron (MLP).

5. Results

Table 3 presents for each feature set the mean F1, recall, and precision, along with
the 95% confidence interval and ranges. Our initial experimental plan was that for each
feature set the calculation of the mean values and confidence intervals is calculated across
the set of results generated by training one instance of each of the six types of models on
each of five folds per each of the six datasets. This would have meant that each mean value
and confidence interval would have been calculated based on a population of 180 samples
(six model types by six datasets and five folds per dataset). However, in some model/fold
combinations the model did not converge, in particular the SVC and SVC Linear models
failed to fit on some folds. Consequently, the observation population size per feature
set was as follows: Raw:157; HAD:179; catch22:172; catch23 (catch22+SR):172; catch24
(catch22+mean+var):151; and catch25 (catch22+mean+var+SR):151.

Table 3. For each feature set under test, the mean F1, recall, and precision, along with confidence
intervals calculated to 95% and range calculated across model types and dataset fold combinations
(populations sizes: 157, 179, 172, 172, 151, and 151). Bold font indicates highest score for a metric.

F1 Recall Precision
Avg Conf Range Avg Conf Range Avg Conf Range

Raw (ws = 15) 0.2558 ±0.0390 0.2168 0.2263 ±0.0389 0.1873 0.5604 ±0.0565 0.5039
0.2948 0.2652 0.6169

HAD 0.6481 ±0.0464 0.6016 0.6297 ±0.0465 0.5833 0.7818 ±0.0460 0.7358
0.6945 0.6762 0.8278

catch22 0.5537 ±0.0528 0.5009 0.5132 ±0.0516 0.4617 0.6993 ±0.0541 0.6452
0.6066 0.5648 0.7534

catch23 0.5506 ±0.0525 0.4980 0.509 ±0.0511 0.4579 0.699 ±0.0542 0.6447
0.6031 0.5601 0.7532

catch24 0.5889 ±0.0614 0.5275 0.5407 ±0.0608 0.4799 0.7826 ±0.0507 0.7319
0.6503 0.6015 0.8333

catch25 0.5825 ±0.0612 0.5213 0.532 ±0.0608 0.4712 0.7812 ±0.0504 0.7308
0.6436 0.5928 0.8316

In Table 3, we can see that the HAD feature set performs the best, followed by different
variants of catch22, and the Raw feature set does not perform well at all. Examining
how the inclusion of extra features into the catch22 feature set affects performance, it
is interesting to note that the addition of the SR feature actually resulted in a drop in
performance (both in the case of catch22 versus catch22+SR, and catch22+mean+var versus
catch22+mean+var+SR). Why the inclusion of the SR feature does not help is something
we will explore in future work. However, the inclusion of mean and variance features
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into the catch22 feature set results in improved performance (in terms of F1, recall, and
precision), and, in fact, the catch24 (catch22+mean+var) has the second best performance
in terms of F1 and recall and has the highest precision overall. Returning to the HAD
feature set, although this feature set was the best performing in terms of F1, at the 95%
confidence level there is overlap between the ranges for the mean F1 confidence interval of
the HAD feature set and all the catch22-based features sets, so this good performance of the
HAD feature set is not statistically different from the catch22-based feature sets at the 95%
confidence interval. We also examined what would happen at a 90% confidence interval
and found that there is a statistically significant difference between the HAD feature set
and catch22 and catch23; however, with the addition of rolling mean and variance to the
features (i.e., catch24), that margin is closed and the difference in performance is no longer
statistically significant.

We also examined the mean performance by dataset and by model type. Table 4
presents the mean F1 score and confidence interval for all feature sets by model type
combinations across the five folds of each dataset. Ideally, each of these mean F1 scores and
confidence intervals would have been calculated across a population of 180 observations:
six feature sets times six model types and times five folds. However, as noted above not all
models converged on all folds, and consequently the population size for each dataset was
as follows: AWS:165; Huawei: 180; IOPS:137; Twitter:165; Yahoo Artificial:170; and Yahoo
Real:165.

Table 4. Mean F1 by dataset, confidence interval calculated to 95% with population sizes 165, 180,
137, 165, 170, and 165, respectively. Bold font indicates highest average F1 score.

Average Confidence
Data F1 (Error Margin) Range

AWS 0.3963 ±0.0549 0.3414
0.4512

Huawei 0.5830 ±0.0553 0.5278
0.6383

IOPS 0.5693 ±0.0513 0.5180
0.6206

Twitter 0.3729 ±0.0476 0.3253
0.4205

Yahoo Artificial 0.7724 ±0.0392 0.7333
0.8116

Yahoo Real 0.4958 ±0.0593 0.4365
0.5551

Table 5 presents the mean F1 score and confidence interval for all feature set by
dataset combinations across the six model types. Ideally, each of these mean F1 scores and
confidence intervals would have been calculated across a population of 180 observations:
six feature sets times six dataset times five folds. However, as noted above not all models
converged on all folds, and consequently the population size for each dataset was as
follows: MLP:180; Naïve Bayes:180; RF:180; SVC:163; SVC Linear:99; and Xgboost:180.

Looking at the dataset results in Table 4, the results for Yahoo Artificial are significantly
better than those of the other datasets. This indicates the results on the Yahoo Artificial may
be outliers that are skewing the feature set results we observed in Table 3. This consideration,
together with the fact that Yahoo Artificial is a synthetic dataset, prompted us to consider
removing the Yahoo Artificial results from our analysis and to examine how this would
affect the relative performance of the different feature sets. Similarly, if we examine the
model results in Table 5, we can observe that the best performing models are Random
Forest and XGBoost and, indeed, these tree-based algorithms perform significantly better
than the other models. Consequently, we also decided to remove the three weakest model
types (Naïve Bayes, the SVM-based models, and multi-layer perceptron) and reexamine the
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results for the feature sets when these weak model results were removed. Table 6 presents
the per feature set mean performance results and confidence intervals after the removal
of the results for the weak models and the Yahoo Artificial feature set. The removal of
these outlier values resulted in a reranking in the performance of the different feature
sets: catch24 (catch22+mean+var) now performs better than HAD in terms of F1, recall,
and precision. In fact, the improvement in F1 performance between the catch24 feature set
and the HAD feature set is statistically significant at the 95% confidence interval, and the
addition of mean and variance in catch24 provides a significant improvement in F1 score
when compared to catch22 and catch23.

Table 5. Mean F1 by model type, confidence interval calculated to 95% with population sizes 180,
180, 180, 163, 99, and 180, respectively. Bold font indicates highest average F1 score.

Average Confidence
Data F1 (Error Margin) Range

Multi-Layer 0.6129 ±0.0451 0.5677
Perceptron 0.6580

Naïve Bayes 0.2386 ±0.0242 0.2144
0.2627

Random Forest 0.8279 ±0.03110 0.7967
0.8590

SVC 0.3259 ±0.04680 0.2791
0.3727

SVC Linear 0.2233 ±0.0710 0.1524
0.2943

Xgboost 0.8082 ±0.0322 0.7760
0.8404

Table 6. For each feature set under test, the mean F1, recall, and precision, along with confidence
intervals, were used to calculate the 95% interval (in all cases using a population of 50 samples), and
range was calculated across the results for the Random Forest and Xgboost model types and dataset
fold (excluding Yahoo Artificial) combinations. Bold font indicates highest score for a metric.

F1 Recall Precision
Avg Conf Range Avg Conf Range Avg Conf Range

Raw (ws = 15) 0.4253 ±0.0700 0.3553 0.3236 ±0.0693 0.2543 0.7800 ±0.0445 0.7355
0.4954 0.3930 0.8245

HAD 0.8675 ±0.0269 0.8406 0.8030 ±0.0378 0.7652 0.9556 ±0.0144 0.9412
0.8944 0.8408 0.9700

catch22 0.8434 ±0.0315 0.8119 0.7610 ±0.0419 0.7191 0.9598 ±0.0120 0.9478
0.8749 0.8029 0.9718

catch23 0.8360 ±0.0313 0.8047 0.7495 ±0.0413 0.7082 0.9587 ±0.0123 0.9464
0.8673 0.7909 0.9710

catch24 0.9167 ±0.0196 0.8971 0.8678 ±0.0283 0.8395 0.9766 ±0.0070 0.9696
0.9364 0.8960 0.9835

catch25 0.9161 ±0.0198 0.8964 0.8671 ±0.0284 0.8387 0.9760 ±0.0073 0.9687
0.9359 0.8954 0.9832

Feature Importance by Random Forest

The Random Forest model has the best overall model performance of any model
type (see Table 5). The Random Forest model also has built-in feature importance, which
is computed by Gini importance (mean decrease in impurity). A Random Forest is the
set of decision trees (DT), and each DT is the combination of internal nodes and leaves.
The selected features in the internal nodes are used to make the decision about how to
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divide the data into two separate sets with similar responses. The selection criterion for the
internal nodes for classification tasks can be Gini impurity or information gain. Random
forest measures how each feature decreases the impurity of the split. Hence, for each
feature we can collect the average decreases the impurity by splitting by that feature in
each tree and use this as a measure of feature importance across the ensemble of trees.

The figures below show the feature importance ranking of the features in the catch25
(we chose catch25 over catch24 because it included the largest set of features based on
catch22) and the HAD feature sets for the Random Forest model when training on the
Huawei and IOPS dataset (we selected these datasets as we believe they are the most
representative of cross-domain anomaly detection in cloud architectures). Figures 2 and 3
plot for the random forest model trained on the Huawei dataset the feature rankings from
the catch25 and HAD feature sets, respectively, and Figures 4 and 5 show corresponding
plots for the IOPS dataset. Examining the ranking of the features, it is noticeable that
features related to mean and variance are in the top three positions across all combinations
of the Huawei and IOPS datasets and catch25 and HAD feature sets (note: the features
termed as rolling_avg or the mean and rolling_var or var were calculated in the same
way: they were computed over a moving window). More specifically, the mean feature
is ranked in the top two positions in both of the datasets and feature representations,
and other features such as crossing point, trend, variance, and pNN40, which are in top
three positions, are indirectly extracted using mean or the variance. For example, the
crossing point is the number of points crossing the mean level at the given window. These
rankings of the mean and variance features align with the results of the experiments that
showed that adding mean and variance improved the performance of the catch22 feature
set performance.

Finally, we also noted earlier that the HAD dataset included a large number of features
based on forecast errors (see Table A3, listed here for convenience: root mean squared
error (RMSE), mean error (ME), mean absolute error (MAE), mean percentage error (MPE),
and mean absolute percentage error (MAPE)). The inclusion of these features reflects the
fact that the HAD feature set was hand-tailored towards the task of anomaly detection,
and these features may be particularly useful for this task because a large forecast error
may signal the presence of an anomaly. However, we also noted that the inclusion of a
number of features that are likely to be correlated contrasted with the design principals of
the catch22 feature set, which was specifically designed to be a feature set with minimal
redundancy. Reviewing Figure 3, we can see that on the Huawei dataset these features have
low importance for the model with the features ranked at 10th (MPE), 11th (MAPE), 20th
(MAE), 21st (ME), and 25th or least important (RMSE). By contrast, examining Figure 5
we observe that on the IOPS dataset the random forest ranks all of these features in the
top 10 most important features, at 4th (MPE), 5th (MAPE), 6th (RMSE), 8th (MAE), and
9th (ME). The fact that the ranks of these set of features changes consistently as the dataset
changes indicates that these features are redundant, and likely it would be a good idea to
remove some of them. Furthermore, the impact of this set of anomaly-detection-specific
but redundant features is evident in the performance of the Random Forest model on these
two datasets. Table 7 lists the mean F1, recall, and precision of the Random Forest model on
the Huawei and IOPS datasets using the catch25 and HAD feature sets, respectively. It can
be observed that on the Huawei dataset for which the model ranks these features as having
low importance, the catch25 feature set outperforms the HAD feature set in precision, recall,
and F1. However, for the IOPS dataset the Random Forest model returns much higher
importance rankings for these forecast features, and the performance of the HAD features
set on this dataset is much more competitive, resulting in higher recall and a slightly better
F1 score. Overall, we take from this analysis that for some (but not all) anomaly detection
datasets, including forecast error features can be useful; however, minimizing redundancy
between features is likely still a useful principle.
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Figure 2. catch25 feature importance for Random Forest on Huawei dataset.

Figure 3. HAD feature importance for Random Forest on Huawei dataset.

Figure 4. catch25 feature importance for Random Forest on IOPS dataset.
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Figure 5. HAD feature importance for Random Forest on IOPS dataset.

Table 7. Mean F1 Recall and Precision of the Random Forest model on the Huawei and IOPS datsets
using the catch25 and HAD feature sets, respectively. Bold font indicates highest F1 on a dataset.

Huawei IOPS
Prec. Recall F1 Prec. Recall F1

catch25 0.9940 0.9465 0.9697 0.9908 0.8957 0.9409
HAD 0.9881 0.8759 0.9287 0.9897 0.9069 0.9465

6. Discussion

Within the field of anomaly detection for Internet of Things (IoT), a distinction can be
made between (i) approaches that primarily focus on identifying abnormal data points or
patterns within a data stream without reference to the structure of the network and (ii) ap-
proaches that explicitly consider the structure, type, and patterns of activations across the
connections between devices in the network. In this work, we have focused on identifying
anomalies within univariate time series data without reference to the structure of the cloud
infrastructure or network the data was sampled from, and so our work is most closely
aligned with category (i). Often, these category (i) approaches to anomaly detection are
based on machine learning or statistical analysis and so do not explicitly define the structure
of an anomaly [42]. Instead, in these systems feature design and feature selection are the
key success factors, and it is left to the learning algorithm to induce accurate anomaly
detection rules that work on the selected data representation. It is for this reason that we
have focused in this work on feature set design and evaluation. For a broader perspective
on this type of anomaly detection research, a well-regarded survey of the anomaly detection
within this general setting (i.e., network structure agnostic) is [43], and examples of recent
IoT-specific research that can be framed in this way include [44–49].

Research aligned with our second category of anomaly detection work explicitly
considers the structure and/or activation patterns across a network. This type of research
is sometimes referred to as graph-based or network anomaly detection, and surveys of this
literature are available [43,50–53]. Often, this research uses predefined signatures or motifs
of activations within a network to identify an anomaly [36]. Examples of this type of
research include [54,55], and a recent example of this type of work specific to IoT is [56].
The above work on network-structure-aware anomaly detection can be understood as
working on generic networks. However, the framing of IoT networks as social networks
has enabled the used of social network analysis models to be applied to IoT analysis.
For example, in the Social Internet of Things (SIoT) [57] framing of IoT, each node in an IoT
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network is understood as a social entity with social skills and, importantly, social relations
with other entities (such as parental object relationship, ownership relationship, co-work object
relationship, and so on). The SIoT concept has recently been expanded to the Multiple
Internets of Things (MIoT), thereby allowing nodes to belong to multiple IoT networks
at the same time and expanding the set of types of social relationships that a node can
have with other nodes in the network [58]. The typing of relationships between nodes
in a network (be it an SIoT or MIoT) expands the basis for the definition of anomalous
signatures/motifs in network behavior and thereby expands the possibilities for defining
network anomalies. Examples of research focused on anomaly detection in social networks,
SIoT, and MIoT contexts include [42,59–62].

These two approaches to anomaly detection within IoT research can be understood as
being complementary. The statistical/machine-learning-based models that omit network
structure are capable of detecting unknown attacks, whereas anomaly detection methods
that utilize predefined motifs or signatures across a network can struggle to identify
novel anomalies but are often more accurate at detecting known anomaly types [63].
Consequently, maintaining and securing IoT and cloud infrastructure will likely involve
combining both approaches.

7. Conclusions

To conclude, across the representations that we assessed we find the catch24, catch22
with the addition of variance, and mean to be the best performing feature representation.
When looking at the best performing models and removing outlier datasets, we see there
is a statistically significant improvement in F1 score between catch24 and both HAD and
catch22, at a 95% confidence level. Looking at the importance of features reinforces that
features based on mean and variance are useful for anomaly detection. For our instance-
based anomaly detection task, spectral residual does not seem like a particularly useful
feature. Spectral residual may be more useful to consider for sequential analysis such as
recurrent architectures, because in the literature the use of this feature for anomaly detection
is associated with improving the latency of the detection, which points to its use being most
beneficial in sequential/recurrent time-aware models. We also found that the feature sets
assessed in our experiments work best with tree-based ensemble models, although it is
possible that hyperparameter tuning or additional preprocessing could improve any of the
models tested. These results will feed into our future work in terms of providing a basis
for selecting both the feature representations we explore and the model types we use in
our experiments.
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Appendix A

Table A1. The catch22 feature set (based on Table 1 from [30] and reproduced here with minor
formatting and wording modifications under the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/)).

Feature Description

DN HistogramMode 5 Mode of z-scored distribution (5-bin histogram)
DN HistogramMode 10 Mode of z-scored distribution (10-bin histogram)
SB BinaryStats mean longstretch1 Longest period of consecutive values above the mean
DN OutlierInclude p 001 mdrmd Time intervals between successive extreme event above the mean
DN OutlierInclude n 001 mdrmd Time intervals between successive extreme events below the mean
CO f1ecac First 1/e crossing of autocorrelation function
CO FirstMin ac First minimum of autocorrelation function
SP Summaries welch rect area 5 1 Total power in lowest fifth of frequencies in the Fourier power spectrum
SP Summaries welch rect centroid Centroid of the Fourier power spectrum
FC LocalSimple mean3 stderr Mean error from a rolling 3-sample mean
IN AutoMutualInfoStats 40 gaussian fmmi First minimum of the automutual information function
CO HistogramAMI even 2 5 Automutual information, m = 2, τ = 5
CO trev 1 num Time-reversibility statistic,

〈
(xt+1 − xt)

3
〉

t
MD hrv classic pnn40 Proportion of successive differences exceeding 0.04σ
SB BinaryStats diff longstretch0 Longest period of successive incremental decreases
SB MotifThree quantile hh Shannon entropy of two successive letters in equiprobable 3 letter symbolization
FC LocalSimple mean1 tauresrat Change in correlation length after iterative differencing
CO Embed2 Dist tau d expfit meandiff Exponential fit to successive distances in 2-d embedding space
SC FluctAnal 2 dfa 50 1 2 logi prop r1 Proportion of slower time scale fluctuations that scale with DFA (50% sampling)
SC FluctAnal 2 rsrangefit 50 1 logi prop r1 Proportion of slower time scale fluctuations that scale with linearly rescaled

range fit
5SB TransitionMatrix 3ac sumdiagcov Trace of covariance of transition matrix between symbols in 3-letter alphabet
PD PeriodicityWang th0 01 Periodicity

Table A2. The statistical feature set (based on Table 1 in [4]).

Feature Description

ACF1 First order of autocorrelation
ACF Remainder Autocorrelation of remainder
Mean Rolling mean
Variance Rolling variance
Entropy Spectral entropy
Linearity Strength of linearity
Trend Strength trend
Crossing Point number of crossing points
ARCHtest P value of Lagrange Multiplier (LM) test for ARCH model
Curvature Strength of curvature computed on Trend of STL decomposition
GARCHtest.p P value of Lagrange Multiplier

https://huawei-euchallenge.bemyapp.com/ireland
http://creativecommons.org/licenses/by/4.0/
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Table A3. Forecasting error features (based on Table 2 in [4]).

Feature Formula Description

RMSE

√
∑(Yi−Ŷi)

2

N Root mean square error

ME ∑(Yi−Ŷi)
N Mean error

MAE ∑ |Yi−Ŷi |
N Mean absolute error

MPE 1
N ·∑

N
i=1

Yi−Ŷi
Yi

Mean percentage error

MAPE 1
N ·∑

N
i=1

|Yi−Ŷi |
Yi

Mean absolute percentage error

Table A4. Temporal features set (based on Table 3 in [4]).

Feature Description

Max level shift Max trimmed mean between two consecutive windows
Max var shift Max variance shift between two consecutive windows
Max KL shift Max shift in Kullback–Leibler divergence between two consecutive windows
Diff-w The differences between the current value and the w-th previous value
Lumpiness Changing variance in remainder
Flatspots Discretize time series value into ten equal sized interval, find maximum run length

within the same bucket
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