
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles

2022-12-05

The interaction of normalisation and clustering in sub-domain The interaction of normalisation and clustering in sub-domain

definition for multi-source transfer learning based time series definition for multi-source transfer learning based time series

anomaly detection anomaly detection

Matthew Nicholson
ADAPT Centre, Trinity College Dublin, matthew.nicholson@adaptcentre.ie

Rahul Agrahari
ADAPT Centre, Trinity College Dublin, rahul.agrahari@adaptcentre.ie

Clare Conran
ADAPT Centre, Dublin City University, clare.conran@adaptcentre.ie

See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/creaart

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Matthew Nicholson, Rahul Agrahari, Clare Conran, Haythem Assem, John D. Kelleher, The interaction of
normalisation and clustering in sub-domain definition for multi-source transfer learning based time series
anomaly detection, Knowledge-Based Systems, Volume 257, 2022, 109894, ISSN 0950-7051, DOI:
10.1016/j.knosys.2022.109894.

This Article is brought to you for free and open access by
ARROW@TU Dublin. It has been accepted for inclusion in
Articles by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License
Funder: SFI ADAPT Centre

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/creaart
https://arrow.tudublin.ie/creaart?utm_source=arrow.tudublin.ie%2Fcreaart%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=arrow.tudublin.ie%2Fcreaart%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=arrow.tudublin.ie%2Fcreaart%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Authors Authors
Matthew Nicholson, Rahul Agrahari, Clare Conran, Haythem Assem, and John D. Kelleher

This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/creaart/96

https://arrow.tudublin.ie/creaart/96

Knowledge-Based Systems 257 (2022) 109894

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

The interaction of normalisation and clustering in sub-domain
definition formulti-source transfer learning based time series anomaly
detection
Matthew Nicholson a,1, Rahul Agrahari a,1, Clare Conran b,1, Haythem Assem c,2,
John D. Kelleher d,∗,2

a ADAPT Research Centre, Trinity College Dublin, Ireland
b ADAPT Research Centre, Dublin City University, Ireland
c Huawei Research, Ireland
d ADAPT Research Centre, Technological University Dublin, Ireland

a r t i c l e i n f o

Article history:
Received 16 March 2022
Received in revised form11 September 2022
Accepted 12 September 2022
Available online 17 September 2022

Keywords:
Anomaly detection
Transfer learning
Time series analysis
Cloud infrastructure

a b s t r a c t

This paper examines how data normalisation and clustering interact in the definition of sub-domains
within multi-source transfer learning systems for time series anomaly detection. The paper intro-
duces a distinction between (i) clustering as a primary/direct method for anomaly detection, and
(ii) clustering as a method for identifying sub-domains within the source or target datasets. Reporting
the results of three sets of experiments, we find that normalisation after feature extraction and before
clustering results in the best performance for anomaly detection. Interestingly, we find that in the
multi-source transfer learning scenario clustering on the target dataset and identifying subdomains in
the target data can result in improved model performance, as compared to identifying sub-domains
through defining clusters using the multi-source dataset.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cloud infrastructures are now a standard platform for deploy-
ing software. Consequently, the reliability of these systems is
critical to the success of many technology companies. This has
led to a growth in research focused on identifying anomalous
behaviour in cloud systems. Cloud system monitoring data is nat-
urally time series based, and so identifying anomalous behaviour
in these systems is often framed in terms of time series anomaly
detection.

One of the major challenges in anomaly detection is the imbal-
ance in the data: anomalies by definition are rare events. There-
fore, applying supervised machine learning methods to anomaly
detection can require a substantial annotation effort. For cloud
services, however, the dynamic nature of the service usage and
deployment, as well as the variety of components monitored
makes the annotation of anomalies very expensive. At the same
time, unsupervised methods are unlikely to produce the high

∗ Corresponding author.
E-mail address: john.d.kelleher@tudublin.ie (J.D. Kelleher).

1 These authors contributed equally to this work, and are joint first authors.
2 These authors jointly supervised the work, and are joint senior authors on

this work.

level of accuracy required for the effective and timely main-
tenance of these systems [1]. Transfer learning has the poten-
tial to produce the high-accuracy of supervised models while at
the same time reducing the annotation effort required to de-
velop these systems. Transfer learning involves using information
learned to carry out a task in one domain to aid learning in
another domain, and for transfer learning to work well the two
domains should be similar [2].

Within cloud services the optimal definition of domains is
non-trivial. For example, for a given cloud service there is likely
a stream of time series monitoring data related to CPU usage and
also a stream of monitoring data related to GPU usage. In such
a scenario it may be optimal to consider CPU and GPU usage as
distinct domains. However, it may also be useful to consider the
combination of CPU and GPU usage as a single domain. The reason
for this is that within a particular cloud system the configuration
and usage of CPUs and GPUs may be such that the data streams
generated by both of these processes are similar enough that
they can be usefully modelled as being sampled from a single
distribution, in which case merging these two streams of data will
result in more labelled data being available for anomaly detection
across both these services. Furthermore, across different cloud
services, the CPU usage from one service may be more similar to
the GPU usage from another service as compared with the CPU
usage of this other service.

https://doi.org/10.1016/j.knosys.2022.109894
0950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.knosys.2022.109894
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2022.109894&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:john.d.kelleher@tudublin.ie
https://doi.org/10.1016/j.knosys.2022.109894
http://creativecommons.org/licenses/by/4.0/

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

This paper examines how the definition of domains affects the
performance of anomaly detection within cloud services. More
specifically it explores how normalisation and clustering pro-
cesses interact in the definition of domains and the downstream
effect of these interactions on the accuracy of anomaly detection
systems in cross-domain time series anomaly detection. The pa-
per is structured as follows: we begin by introducing the research
challenge of multi-source transfer learning, we then distinguish
between the use of clustering as a mechanism for anomaly detec-
tion versus sub-domain definition, next we describe the different
methods of normalisation that we assess, this is followed by
an experiments section that reports 3 different experiments, the
paper finishes with a conclusions section which overviews the
main findings of the research.

2. Multi-source transfer learning & related work

Following the standard definition of transfer learning – as set
out in e.g. [3,4] – a domain D is composed of two parts:

1. a feature space X that defines all possible feature vectors,
and

2. a marginal distribution P(X) over the data sample X , where
X = {x1, · · · , xn} ∈ X (i.e., xi is the ith instance in X).

Similarly, a task T in a domain D is also composed of two parts:

1. a label space Y (for anomaly detection Y = {true, false})),
and

2. a predictive function f (∗) which is not observable but
which can be learned from a dataset of instances and label
pairs {xi, yi}.

Given these definitions of a domain D and a task T , transfer
learning is defined as using information learned from the source
domain DS to do task TS to improve the learning in the target
domain DT of the target predictive function fT (∗) for task TT ,
where DS ̸= DT or TS ̸= TT .

The transfer learning constraint that DS ̸= DT or TS ̸= TT
means that transfer learning can be used when the domains are
different (either because XS ̸= XT or P(XS) ̸= P(XT) or when
the tasks are different (because YS ̸= YT or fS(∗) ̸= fT (∗)).
Corresponding with the different ways that domains can differ
Pang & Yang [3] identify four transfer learning methods based on
what is being transferred:

1. instance-based methods attempt to correct the differences
in the marginal distribution (i.e., these methods attempt
to make P(XS) and P(XT) more similar) by weighting the
samples in the source domain based on their similarity
with the samples in the target domain,

2. feature-representation transfer methods which focus on
using the data sample from the source domain XS to learn
a useful feature representation X for the target domain
(these methods often use dimensionality reduction or
unsupervised/semi-supervised methods to attempt to use-
fully align XS and XT with the knowledge transferred
between the domains being the learned feature represen-
tation),

3. parameter transfer methods focus on sharing parameters
between fS(∗) and fT (∗) (in other words, they assume that
the conditional probability distribution for the task in the
source and target domain are similar),

4. relation knowledge transfer is applicable in scenarios where
within each domain (source and target) relationships ex-
ist between entities in the domain and the relationships
among the data in the source and target domains are
similar and so the distribution of relationships within the
source domain can help on the task in the target domain.

In time series anomaly detection it is standard practice to
convert each data point in a time series into a fixed-width feature
vector before applying an anomaly detection decision process
to the data point. This is done by applying a feature extraction
process to the raw time series. Fig. 1 illustrates this feature
extraction process.

The same feature extraction process can be applied to any
univariate time series and consequently the feature spaces are the
same across the datasets we consider (i.e., XS = XT). Technically,
when XS = XT the transfer learning process is categorised as
homogeneous transfer learning [4]. Furthermore, all the datasets
we consider are focused on anomaly detection and so YS = YT
(anomaly = true or false). However, the source and target domains
may differ in terms of the marginal distribution P(XS) ̸= P(XT)
(i.e., the task involves domain adaptation) and also in terms of
the conditional probability distributions for the task fS(∗) ̸= fT (∗).
Consequently, for our scenarios, instance-based transfer learning
is most suitable and it is the approach we will focus on in this
work.

One of the challenges in applying instance-based transfer
learning to cross-domain cloud service anomaly detection is that
both the source and target domain datasets are composed of
multiple heterogeneous data streams. Consequently, not every in-
stance in the source domain is relevant to a particular target data
point. Transferring irrelevant or incorrect data from the source
to the target domain both increases computational overhead and
can also result in reduced learning performance in the target
domain, a phenomenon which is known as negative transfer [5,6].
As a result, it is not necessarily a good idea to use all the source
data to pre-train the task model [6].

One approach to addressing the problem of multiple distinct
data sources (or distributions) within the source domain is to
train a separate model for each data source/distribution and then
combine these separate models into a single model. Adopting this
perspective, Christodoulidis et al. [7] is an example of research
on transfer learning that directly addresses the problem of multi-
source transfer learning: i.e., the source dataset contains data
from different sources. The focus of Christodoulidis et al. [7] is
to develop a computer-aided diagnosis system for lung pattern
analysis. Due to the difficulty of sourcing medical images and
the cost of annotation associated with medical data they adopt
a transfer learning approach. The diagnosis of interstitial lung
disease from CT scans involves recognising textural patterns. Con-
sequently, they created a source domain dataset by combining
6 general texture databases. The proposed approach to transfer
learning involved: (a) training a separate CNN for each of the 6
general texture databases, and (b) creating multiple ensembles
of the 6 CNNs resulting from the first phrase by repeatedly
using an iterative forward-selection algorithm to select different
subsets of the CNNs for each ensemble, (c) creating a single
ensemble that merges the ensembles created in the previous
step by averaging their outputs, and (d) using knowledge dis-
tillation (also known as model compression) to compress the
huge ensemble into a smaller form: more specifically a final
model is trained using the soft targets (i.e., the class probabilities)
generated for each training instance by the large single ensemble.
Yi et al. [8] is an example of more recent work that tackled the
challenge of transfer learning in the context where the source do-
main contains data sampled from multiple distributions. Xu et al.
distinguish between the problems of multi-source and multi-
component transfer learning: in multi-source transfer learning
the multiple sources of data in the source dataset are caused
by known factors such as distinct data collection techniques or
distinct data sources, whereas the causes of differences between
distinct components in the source dataset are not usually known
in advances. One consequence of this distinction between multi-
source and multi-component is that in a multi-source scenario

2

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

Fig. 1. Feature extraction from univariate time series data resulting in each raw time series data point being represented by a vector of features.

it is possible to use prior knowledge to cleanly and explicitly
disentangle the distinct data distributions in the source domain
(e.g., Christodoulidis et al. begin their approach by separating
each of the 6 general textual datasets and training a separate
model for each of these) whereas in a multi-component scenario
the different data distributions in the source domain must be
identified and disentangled using some form of data analysis.
Yi et al. [8] propose the use of distance-based cluster methods
(e.g., k-means, PCA, spectral clustering) to identify and extract
separate components (i.e., clusters) from the source domain. They
then use a sample of labelled examples from the target domain
to train a separate Mahalanobis distance-based transfer metric
for each component. Each of these transfer metrics can be used
in conjunction with the data points within the corresponding
component to generate predictions for the sample of labelled
target domain samples by using it as the distance metric for a
kNNmodel. An ensemble model can then be created that averages
over the predictions made by each component’s kNN model. The
training of a transfer metric for a component involves learn-
ing weights for each of the data points within the component
(cluster) the transfer metric is associated with and adjusting the
covariance matrix of the components Mahalanobis distance met-
ric to reduce the prediction error on the labelled target domain
samples. Moon & Carbonell [9] is another example of research
that use pre-clustering on the source domain to avoid negative
transfer in transfer learning. Similar to Yi et al. [8] they ultimately
create a single model that weights (in this case using an attention
mechanism within a deep network) the information from each of
the separate clusters of source data to make predictions in the
target domain.

Zhang et al. [10] is a recent example of work that addresses the
multi-source challenge within transfer learning in the context of
time series anomaly detection in cloud services. As a result, it is
potentially the most directly relevant paper to the current work.
Similar to the Moon & Carbonell [9], and Yi et al. [8] they apply
clustering methods (specifically k-means) to the source dataset
to identify distinct subsets of samples. They use the concept of
a sub-source domain to refer to identified clusters: a sub-source
domain in Zhang et al. [10] has a similar meaning to a component
in Yi et al. [8]. Indeed, they motivate the definition and use of
sub-source domains in transfer learning as follows:

In transfer learning, we should guarantee that the source and
target domain come from similar fields (such as similar monitor-
ing data) or own similar characteristics (such as trend or period)
[10, pg. 6]

Once these sub-source domains are identified the labelled data
within each sub-source domain is used to train an anomaly detec-
tion model for that sub-source domain. Where Zhang et al. [10]
is distinctive relative to previous work in multi-source trans-
fer learning is that they do not merge the sub-source domain
classifiers into a single model. Instead, each target domain data
point is assigned to a single sub-source domain based on its

proximity in the feature space to the sub-source centroids and
is then processed by the anomaly detection model trained using
the sub-source domain data.

All of the research reviewed in this section highlights the
importance of disaggregating multi-source datasets to reduce
negative transfer. In Christodoulidis et al. [7] this disaggrega-
tion was achieved by separating the source dataset based on
the original datasets that were combined to create it. Whereas,
in the other examples of research [8–10] clustering was used
to identify component/sub-source domains. However, clustering
processes can identify sub-domains based on many different per-
spectives: normal versus anomalous points, distinctions between
types of anomalies (e.g., point, contextual, or collective [11]),
data points with similar values, and so on. Consequently, the
type of sub-domains identified through a clustering process may
have a significant impact on the downstream performance of the
anomaly detection system. In the next section, we will review the
use of clustering in time series anomaly detection and distinguish
between its use as a direct method for anomaly detection versus
its use for the identification and definition of sub-domains.

3. Clustering as anomaly detector versus sub-domain identifi-
cation

Within the literature, on anomaly detection, there is a tra-
dition of research that use clustering techniques to perform
anomaly detection. Ahmed et al. [12] identify three assumptions
that are generally made when clustering techniques are used to
directly carry out anomaly detection:

1. It is possible to create clusters of only normal data and so
new anomalous data points can be identified as points that
do not fit existing clusters

2. If clusters contain both normal and anomalous points then
normal points are more centrally located within a clus-
ter relative to the anomalies and so anomalies can be
identified based on the distance to the cluster centroid

3. Where the clustering algorithm generates clusters of differ-
ent sizes than smaller clusters are considered to primarily
contain anomalies and so points belonging to these small
clusters are considered as anomalies

For example, Münz et al. [13] used k-means clustering for
anomaly detection in network traffic data. Specifically, k-means
clustering was used to segment unlabelled data into distinct clus-
ters with the assumption that normal and anomalous data will
naturally form different clusters. The resulting clusters are then
categorised as normal or anomalous clusters using a combination
of heuristic rules and manual eyeballing. For their experiments
Münz et al. set k = 2 and so they created one normal and
one anomalous cluster. Once the clusters have been created and
labelled as normal or anomalous new data points are then pro-
cessed and identified as anomalous if: (a) the distance between

3

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

the point and the centroid of the normal cluster was greater
than a pre-specified threshold, or (b) a point was closer to the
centroid of the anomalous cluster than the normal cluster. This
combination of rules covered the possibility that a point could
be inside the distance threshold to the normal cluster but still be
closer to the centroid of the anomalous cluster than the normal
cluster. Münz et al. separated their data into different predefined
service classes (e.g. TCP, UDP, or ICMP traffic) and ran a separate
clustering process for each service class. Splitting the data in this
way can be understood as defining separate sub-domains within
which anomaly detection using clustering is performed.

More recently, Syarif et al. [14] carried out a benchmarking of
five different clustering algorithms (k-Means, improved k-Means,
k-Medoids, EM clustering, and distance-based outlier detection)
for network anomaly detection. Their results indicated that the
distance-based outlier detection algorithm had the best perfor-
mance with an accuracy of 80.15%, however, all the algorithms
had a high false positive rate (> 20%). Syarif et al. used the NSL-
KDD intrusion dataset for their experiments which was made
available as part of the KDD Cup 1999. This dataset contains TCP
data from a single local-area network, so it can be considered to
be from a single domain.

In contrast with the above work, in a cloud service setting
time series data streams are generated from multiple differ-
ent components [10]. What is more, cloud architectures can be
dynamically configured with new components added to the ar-
chitecture. In these contexts, cloud services data sets can be
considered multi-source and so clustering can be applied to iden-
tify and disentangle different sub-domains/components within
the data. However, as the work in Münz et al. [13] and Syarif
et al. [14] demonstrates clustering can result in distinctions be-
tween normal and anomalous points being identified, rather than
identifying sub-domains/components based on underlying data
distributions.

Fig. 2 illustrates a multi-source time series anomaly detection
scenario where clustering results in normal and anomalous clus-
ters. In this figure the source dataset is composed of data streams
from 4 different data generation processes: P1, P2, P3 and P4.
P1 samples data from a normal distribution, P2 from a cyclical
distribution, P3 from a uniform distribution, and P4 from a normal
distribution. Each of these processes contributes five data points
to the multi-source dataset, within the figure the source of each
data point is visually encoded using different shapes and the
anomalies within each data stream are marked using X. The clus-
tering process defines 3 clusters (i.e., subdomains) one containing
all the anomalies and two others that contain mixtures of non-
anomalous data points from different sources. Fig. 3 illustrates the
same multi-source time series anomaly detection scenario as that
shown in Fig. 2. However, in this instance, the clustering process
has identified that the data points generated from processes P1
and P4 are similar in that they are both sampled from a similar
normal distribution and so the clustering process had defined a
sub-domain that combines the data points from these two data
sources.

Figs. 2 and 3 can be understood as illustrating the ends of
a spectrum of possible outcomes in terms of clustering-based
sub-domain definition. Many clustering processes will result in
some blend of these two possible results. However, one open re-
search question related to these alternative outcomes is how the
pre-processing of the data before clustering affects the resulting
sub-domain definition (if at all)? For example, as we will discuss
in the following section, we may choose to normalise the data in
different ways before clustering and some of these normalisation
processes may make data from different data sources appear
more similar, and/or make anomalous data points more distinct.
If this is the case then the choice of normalisation process may

nudge a clustering process to produce sub-domains definitions
that are more similar to Fig. 2 or Fig. 3. Another very related ques-
tion is whether either of the outcomes illustrated in Figs. 2 and
3 result in better anomaly detection performance, both within a
domain and in the transfer learning context. In the next section,
we introduce the different normalisation options we consider and
following that we present the experiments we have run to answer
these questions.

4. Feature normalisation and clustering methods

Fig. 1 illustrates a standard data handling process for time
series data where a feature extraction process is applied to the
raw time series data resulting in each data point in a time series
being represented by a vector of features. The feature engineering
process helps us to identify the underlying information from the
time series which sometimes is not obvious from the raw data,
such as the underlying temporal and spatial trends within the
locality of the data point within the time series. The features
are extracted from fixed-length moving windows which help to
preserve the temporal information embedded in the data and the
processing over it to create feature vectors enhances the hidden
information such as moving average, variance, trend, seasonality
etc. Previously there have been multiple works on extracting
useful information from the time series for performing multi-
ple tasks, see for example [15,16]. Agrahari et al. [17] report
a set of experiments that assessed different feature represen-
tations for instanced-based cross-domain anomaly detection in
cloud services based on univariate time series data. These exper-
iments indicate that the Catch22 feature set proposed by [16]
augmented with two extra features (i.e., moving average and
moving variance) had the best performance. Consequently, we
use the extended feature set in this work and refer to it as the
Catch24 feature set.

In this paper, however, we are focusing on normalisation
at different stages of feature engineering to understand how
normalisation impacts the identification of sub-domains via clus-
tering and also on anomaly detection performance. The form of
normalisation we consider is standardisation. In standardisation,
the values are centred around the mean with a unit standard
deviation. This means that the mean of the attribute becomes
zero and the final distribution has a unit standard deviation. For
this work, a key advantage of standardisation, as compared with
for example range normalisation, is that standardisation does not
have a bounding range and so outliers within the data are not
affected by the process of standardisation. Eq. (1) defines the
standardisation process where x′ is the standardised value, x is
the original value, µ is the mean and σ the standard deviation of
the original values

x′
=

x − µ

σ
(1)

In the feature extraction process shown in Fig. 1, there are two
places in this process where standardisation can be applied before
clustering these are:

Before feature extraction each time series in a dataset is
standardised to have zero mean and unit standard deviation
before the feature extraction process. It is important to note that
each of the datasets we use in our experiments is composed of
multiple files with each file containing a separate time series
of univariate cloud-service monitoring data. Each of these files
contains a time series from a single source in the cloud service,
e.g. a file might contain a times-series sampled from GPU usage
monitoring data or CPU usage monitoring data but not from
both. Also, within each dataset, there are multiple files from
each source. This structure of the data means that standardising

4

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

Fig. 2. Clustering identifying anomalies and ‘spurious’ subdomains.

Fig. 3. Clustering identifying subdomains based on underlying data distributions.

before feature-extraction results in the data in each file being
standardised relative to the mean and standard deviation of the
data in that file. This form of standardisation may result in data
from different files (and hence from different monitoring ser-
vices) appearing more similar and hence being clustered together
during subsequent clustering. Also, depending on the relative
contribution of anomalous values within a file to the calculation
of the mean and standard deviation for the file, standardising
before feature extraction at the file/time series level may result
in the normal data within a file being pushed closer together and
the anomalous points becoming more salient within the file.

After feature extraction when normalisation is applied after
feature extraction the standardisation process is applied to each
feature column. This means that a separate mean and standard
deviation are calculated for each of the 24 features in our fea-
ture set and the set of values for each feature across the entire
dataset are standardised to have a mean of zero and a standard
deviation of one. Note that in this scenario the set of values
used to calculate a mean and/or standard deviation are sampled
across multiple files/time series and so from data points sampled
from multiple data generation processes within the cloud-service
architecture. As a result, the differences in ranges of values from
different data sources may be indirectly emphasised, with feature
values calculated from time series with similar ranges appearing
more similar.

A third, baseline, alternative is to do no normalisation be-
fore clustering/sub-domain identification. The following sections
report a set of experiments that explore how these different
approaches to normalisation (none, before feature extraction, and
after feature extraction) affect the structure of the sub-domains
created by clustering and the performance of anomaly detection
systems.

5. Experimental design

We explore the interaction between data normalisation, clus-
tering, subdomain analysis and downstream anomaly detection
performance through three experiments. The first experiment
examines which normalisation method results in the best per-
formance on anomaly detection and whether there is a statistical
difference in performance between different normalisation meth-
ods. The second experiment analyses whether differences exist
in the structure of the subdomains created by the clustering
when different forms of normalisation are applied to the data
before clustering. The structure of the domains is analysed in
terms of the distribution of anomalies across clusters and also
the distribution of data points from different time series across
clusters. The third experiment focuses on finding the best perfor-
mance on cross dataset anomaly detection when doing transfer
learning when the source dataset is created by merging multiple
datasets, again checking whether there is a statistical difference
in performance between different normalisation methods and
looking into the impact of the number of clusters.

We use six datasets in our experiments: NAB (AWS and Twit-
ter) [18], Yahoo (Real and Artificial) [19], IOPS KPI,3 and Huawei.4
Each dataset contains multiple files and each file contains one
time series. Table 1 provides summary statistics for each dataset.
Furthermore, following the results reported in [17] we use the
Catch24 feature set in combination with random forest models
for all our experiments. As illustrated in Fig. 1 the conversion
of a time series into the Catch24 feature set involves passing a
sliding window along the time series using a step size of 1, and

3 Available from: https://github.com/NetManAIOps/KPI-Anomaly-Detection.
4 From the 2020 Huawei anomaly detection competition: https://huawei-

euchallenge.bemyapp.com/ireland.

5

https://github.com/NetManAIOps/KPI-Anomaly-Detection
https://huawei-euchallenge.bemyapp.com/ireland
https://huawei-euchallenge.bemyapp.com/ireland

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

Table 1
Summary statistics for the datasets used in the experiments.
Dataset # of points % of anomalies # of time series Mean length

Yahoo real 91k 1.76% 64 1415
Yahoo artificial 140K 1.76% 100 1415
IOPS 3M 2.26% 29 105985
AWS 67K 4.57% 17 67740
Twitter 142K 0.15% 10 142765
Huawei 54K 4.19% 6 9056

each time the window is moved one time-step forward a Catch24
feature vector is generated by calculating the 24 features using
the segment of the time series covered by the window. Each
feature vector represents the right-most point in the time series
segment covered by the window, and so the feature vector is
labelled with the same label as this right-most point (i.e., anomaly
= true or false). In our experiments, the width of the sliding
window was set separately for each time series in a dataset to the
periodicity of the time series, as calculated by the AUTOPERIOD
method [20].

In all three experiments, we use k-means as our cluster-
ing method and k-means++ to initialise the centres of k-means
clustering [21]. Our motivation for using k-means is twofold.
First, k-means is the most popular form of clustering method
within the previous literature on anomaly detection and, more
specifically, multi-source transfer learning anomaly detection. For
example, [8–10,13] all use k-means as a clustering method in
their work. Second, k-means time complexity O(nKI) and space
complexity O(n(D + K)) where K is the number of centres, D the
number of dimensions and I the number of iterations to converge)
makes the use of k-means within our experiments appropriate.
We did also consider using other forms of clustering methods
in our experiments. However, hierarchical clustering methods
are not suitable for our task due to the need to calculate and
recalculate full pairwise distance matrices with these methods
which results in a processing time complexity of O(n3) and space
complexity of O(n2). Density-based clustering methods such as
DBSCAN have a better complexity profile (worst case time com-
plexity is O(n2) but in low dimensional data where spatial indexes
work well the average run-time complexity is O(n log n) and
space complexityisO(n)) as compared with hierarchical methods.
However, density-based clustering methods use a global density
when identifying clusters, consequently, variation in densities
across a dataset can cause these methods to merge dense clusters
or miss sparse clusters [22]. Our experiments with fitting DBSCAN
to our datasets suggest that density methods may not be appro-
priate for multi-source datasets due to the variation in density
across the datasets.5

5 In more detail, DBSCAN specifies density through the interaction of two
hyper-parameters: (1) epsilon specifies a radius around a point, and (2) MinPts
specifies the minimum number of points that must be within epsilon of a point
for that point to be considered a core point. Points that are identified as either a
core point or as a point within epsilon of a core point are included in the clusters
identified by the algorithm and all other points are categorised as noise. We ran
a grid search over these two hyper-parameters and observed that when MinPts
was set to the minimum recommended value of 3 the algorithm returned over
2500 clusters with around 5% of the data points considered as noise (i.e., not
included in any cluster), and importantly over 5% of the points labelled as
anomalies in the data were in this noise category. Furthermore, as the MinPts
parameter increases the number of clusters identified by the algorithm rapidly
decreases and the number of points considered to be noise also grew rapidly
with the percentage of noise points that are anomalies growing even more
rapidly (e.g. when MinPts= 8 DBSCAN identified ≈1100 clusters and categorised
over 40% of the data as noise including over 15% of the anomalies in the dataset.
Due to both the large variation in the number of clusters identified as the
hyper-parameters were varied and the disproportionate amount of anomalies
categorised as noise by the algorithm we consider that density-based methods
were not suitable for our work.

Finally, Wu & Keogh [23] recently highlighted the problem
of noise in the labels of several time series anomaly detection
benchmark datasets. To mitigate the effect of this noise on our
results, in our experiments, we use cross-validation and report
the mean of each metric as well as the 95% confidence interval
around this mean.

6. Experiment 1: Which normalisation method gives the best
performance? (within dataset baseline scenario)

The main research questions explored in this experiment were
as follows:

1. Which of the three normalisation options (no normalisa-
tion, normalising before feature extraction, and normalis-
ing after feature extraction) results in the best performance
in anomaly detection?

2. Is there a statistical difference between performances based
on different normalisation methods?

For this experiment, each of the six datasets was kept sep-
arate and the results from the experiments on each of these
datasets are then averaged. As a result, there was no transfer
learning between the different datasets in this experiment. Al-
gorithm 1 lists the process followed in this experiment. Given
the 6 datasets, clustering is done for 9 values of k (2–10) and 5-
fold cross-validation is carried out for each clustering. Then the
average precision, recall and F1 for each form of normalisation
are calculated across 6 * 9 * 5 = 270 values.

Algorithm 1 Experiment 1 Methodology.
for each normalisation type: none, before feat. ext., after feat.
ext. do

for each dataset do
for k in 2 through 10 do

Perform clustering with k-means++ on the dataset
for each fold in a 5-fold cross validation do

Train an anomaly detection model for each cluster
using the training points belonging to that cluster
For each cluster’s anomaly detection model
calculate precision, recall and F1 using the tests
points belonging to that cluster

Calculate an average precision, recall and F1 for each form
of normalisation across all folds, and all values of k and all
datasets.

The results in Table 2 indicate that normalising after feature
extraction results in the best performance in terms of precision,
recall and F1. The improvement in performance achieved with
normalisation after feature extraction as compared with the other
forms of normalisation is not statistically significant in terms of
recall, but it is statistically significant for precision and F1.

7. Experiment 2: Understanding the relationship between sub-
domain structures and normalisation strategies

In this experiment, we analyse how the structure of the sub-
domains that are created by a clustering process changes as the

6

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

Table 2
Average precision, recall and F1 for each type of normalisation across all 6
datasets. Calculated to 95% confidence interval. Population sizes 270.
Data Average Confidence Range

precision (Error margin)

After feature extraction 0.9891 ±0.0010 (0.9881, 0.9901)
Before feature extraction 0.9846 ±0.0018 (0.9828, 0.9864)
No normalisation 0.9847 ±0.0018 (0.9829, 0.9865)

Data Average Confidence Range
recall (Error margin)

After feature extraction 0.9153 ±0.0050 (0.9103, 0.9204)
Before feature extraction 0.8936 ±0.0049 (0.8887, 0.8985)
No normalisation 0.9042 ±0.0062 (0.8979, 0.9104)

Data Average Confidence Range
F1 (Error margin)

After feature extraction 0.9504 ±0.0030 (0.9474, 0.9534)
Before feature extraction 0.9365 ±0.0030 (0.9334, 0.9395)
No normalisation 0.9420 ±0.0038 (0.9382, 0.9458)

normalisation applied to the data before clustering is changed.
Figs. 2 and 3 illustrate the two extremes of the spectrum of
subdomain definitions that we expect: at one extreme (Fig. 2)
the clustering process distinguishes between anomalies and non-
anomalies, and at the other extreme (Fig. 3) the clustering process
is defining sub-domains in terms of similarities between the un-
derlying distributions that the data points are sampled from. Each
of these clustering outcomes can be characterised and contrasted
in terms of the distribution of anomalies across clusters and the
distribution of points from files across clusters. For example, in
Fig. 2 the anomalous points are all grouped in the same cluster,
but the points from individual data generation processes are dis-
tributed across the clusters (e.g., if we include the P1 anomalous
points, the points generated from P1 are distributed across all
three of the clusters). By contrast, in Fig. 3 the anomalous points
in the dataset are distributed across all three clusters and the
points from each data generation process end up in the same
cluster.

For this experiment, we used Shannon’s measure of entropy
as a measure of distribution across clusters. Shannon defined
entropy as follows:

H =

k∑
i=1

P(Oi) × log2(P(Oi)) (2)

In Eq. (2) k is the number of possible outcomes and P(Oi) is
the probability of outcome i. Entropy increases as the uncertainty
relating to outcome increases. An entropy of 0 indicates that the
outcome is certain: there is one outcome with a probability of 1
and all other outcomes have a probability of 0. The maximum
value that entropy can take is dependent on the relationship
between the log base that is used and the number of outcomes.
When a log of base 2 is used the maximum entropy for scenarios
with 2 outcomes is 1, however for scenarios with more than 2
outcomes the maximum entropy calculated using log base 2 can
be greater than 1.

For our analysis, the basic definition of an outcome is a data
point of a particular type ending up in a given cluster. So there
are k outcomes when there are k clusters and we use log base 2 in
all our calculations. We analyse the entropy across clusters along
two dimensions: (i) the entropy of anomalies across clusters, and
(ii) the entropy of points within a time series across clusters.

7.1. Entropy of anomalies across clusters

Our motivation for analysing the entropy of anomalies across
clusters is the intuition that the lower the entropy of anoma-
lies across clusters the more the clustering process is sorting

anomalies into specific clusters, or in other words the more the
clustering process is focused on doing anomaly detection (this is
the outcome illustrated in Fig. 2). Conversely, as the entropy for
anomalies increases the more the clustering process is identifying
subdomains based on distinctions other than anomaly versus not-
anomaly (for example, resulting in an outcome more similar to
that illustrated in Fig. 3).

In calculating the entropy of anomalies across clusters an
outcome is defined as an anomaly being allocated to a specific
cluster. For example, if k = 2 there are two clusters and the
entropy of anomalies across clusters would be

H(anomalies, k = 2) = −P(C1) × log2(P(C1)) + P(C2) × log2(P(C2))
(3)

P(Ci) =
number of anomalies in Ci

total number of anomalies in dataset
(4)

We are primarily interested in understanding the interaction
between the type of normalisation applied to the data and the
structure of the resulting subdomains. Consequently, we wish
to control for the number of clusters (the value of k) in our
analysis and to compare the composition of the domains across
values of k. However, Shannon’s measure of entropy is known
to be sensitive to the number of outcomes. This means that
in this scenario it is expected that as the number of outcomes
increases (i.e., as k increases) then the entropy for the distribution
of anomalies will increase. To be able to compare the entropy of
anomalies across different values of k, we normalised the entropy
for each value of k by the maximum entropy for k outcomes

MaxEntropy(k) = −k × (P(
1
k
) × log2(P(

1
k
))) (5)

Consequently, the normalised entropy for anomalies over k clus-
ters is

NormalisedEnt(anomalies, k = i) =
H(anomalies, k = i)
MaxEntropy(k = i)

(6)

Finally, k-means clustering is stochastic (non-deterministic) mean-
ing that each time a k-means clustering process is executed the
composition of the resulting clusters will be different (in some
cases the difference can be very large). To control for this, we
have used the k-means++ algorithm to initialise the centres of
k-means clustering [21]. This ensures that the initialised centres
are consistent across multiple runs on the same data.

Algorithm 2 lists the process followed to analyse the entropy
of the anomalies for different types of normalisation.

Algorithm 2 Experiment 2 Methodology.
for each dataset do

for each type of normalisation do
for each value of k in 2,...,10 do

Run k-means++ clustering
Calculate the normalised entropy of anomalies
across the clusters

Calculate the average normalised entropy across
the values of k

Table 3 lists the mean normalised entropy for anomalies for
each dataset and normalisation type. There is a rank order for the
entropies that holds for most of the datasets where the entropy
for anomalies is lowest when no normalisation is applied and
highest when normalisation is applied after feature extraction:
HNoNormalisation < HBeforeFeatureExtraction < HAfterFeatureExtraction. Low en-
tropy indicates that the anomalies tend to be clustered together
(similar to the scenario in Fig. 2) whereas high entropy indicates
that anomalies tend to be spread across the clusters (tending
towards Fig. 3 scenario).

7

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

Table 3
The mean normalised entropy for anomalies for each dataset across clusters
averaged over different values of k.
Normalisation Mean normalised entropy by dataset

AWS Huawei IOPS Twitter Yahoo

Artificial Real

After feat. Ext. 0.934 0.909 0.808 0.919 0.529 0.919
Before feat. Ext. 0.686 0.429 0.468 0.616 0.572 0.877
No normalisation 0.214 0.639 0.112 0.038 0.434 0.117

7.2. Entropy of points within a time series across clusters

Cloud services are composed of multiple components, and
cloud service datasets combine monitoring data from across these
components. Furthermore, the data stream of monitoring data is
often broken up into multiple files, with each file containing a
separate time series of monitoring data from a single component
of the cloud service. Given this structure within the datasets, it
is to be expected that if a clustering process is focused on distin-
guishing anomalies from non-anomalies it is likely to distribute
data points from the same time series (i.e., file) across multiple
clusters (as illustrated in Fig. 2), whereas if the clustering process
is identifying subdomains that integrate data from components
with similar underlying distributions (the scenario illustrated in
Fig. 3) it is to be expected that the clustering process should gen-
erally keep all the data points from a given time series together
in one cluster (or a small number of clusters). As a result, in
this experiment, we extend the analysis of the structure of the
subdomains generated by the clustering process as a result of
different types of normalisation to consider the average entropy
of the points from times series (files) across clusters. This analysis
is similar in structure to that based on the entropy of anomalies,
and Algorithm 3 lists the steps in the process used to analyse the
entropy of the data points from time series under different types
of normalisation.

Algorithm 3 Experiment 3 Methodology.
for each dataset do

for each type of normalisation do
for each value of k in 2,...,10 do

Run k-means++ clustering
for each file f in the dataset do

Calculate the normalised entropy of points in f
across clusters

Calculate the average entropy for points across
the files in the dataset

Table 4 lists the results generated using this algorithm where
the results are for each dataset and type of data normalisa-
tion. The rank order of entropies by normalisation types for
most of the datasets follows a similar pattern to the rank or-
der for the entropies of anomalies for the different normalisa-
tion types: the entropy for points from files is lowest when no
normalisation is applied and highest when normalisation is ap-
plied after feature extraction: HNoNormalisation < HBeforeFeatureExtraction
< HAfterFeatureExtraction. This result is somewhat surprising as we
had expected that for a given type of normalisation anomalies
and normal points would be distributed differently. However, the
results of this analysis of the entropy of points from a file taken
together with the entropy of anomalies indicate that when no
normalisation is applied anomalies are clustered together and
the majority of points from a file are also clustered together.
However, this does not mean that the anomalies within a file
end up in the same cluster as the normal data points in a file.
It is more likely that anomalies end up in clusters that just
contain anomalies and the normal points in a file get bundled

Table 4
Mean normalised entropy describing the distribution of points from files across
different clusters (averaged over different values of k).
Normalisation Mean normalised entropy by dataset

AWS Huawei IOPS Twitter Yahoo

Artificial Real

After feat. Ext. 0.744 0.764 0.786 0.856 0.899 0.864
Before feat. Ext. 0.393 0.442 0.372 0.576 0.563 0.482
No normalisation 0.085 0.153 0.015 0.013 0.039 0.010

with normal points from other files. In contrast to this, when
normalisation is applied after feature extraction both anomalies
and normal points within a file have relatively high entropy
indicating that they are both distributed across multiple clusters.
This is particularly interesting as the results from Experiment
1 indicate that this process of distributing both anomalies and
normal points across clusters (something that is a blend of the
scenarios shown in Figs. 2 and 3) results in the best performance.

8. Experiment 3: Performance on merged datasets with trans-
fer learning

In this section, we report experiments that use a collection
of labelled source datasets to train an anomaly detection model
for a target dataset, and so in these experiments, we perform
transfer learning. To do this we treat each of the 6 datasets as a
target dataset in turn and a new multi-source dataset is created by
merging the other five datasets. This process of data handling re-
sulted in the following transfer combinations (source → target):
(1) Non-Aws → Aws, (2) Non-Huawei → Huawei, (3) Non-IOPS
→ IOPS, (4) Non-Twitter → Twitter, (5) Non-YahooArtificial →

YahooArtificial, and (6) Non-YahooReal → YahooReal. The IOPS
dataset is significantly larger than the rest of the datasets, so a
5% stratified sample, ensuring the same proportion of anomalies
is present, was taken when it was used as a source dataset. The
full IOPS dataset is used when it is the target dataset.

We report results from two versions of an experiment, the
difference between the versions being that in the first experi-
ment the definition of the sub-domains is done by running a
clustering processing on the source dataset whereas in the second
experiment the definition of the sub-domains is done by running
a clustering process on the target dataset. From the results of
the first experiment (clustering done on the source dataset), we
assess (1) model performance on the test set of the source data
(Section 8.1) and (2) model performance on the test set of the
target data (Section 8.2). From the results of the second exper-
iment (clustering done on the target dataset), we assess model
performance on the test set of the target data when clustering is
performed on the target instead of the source (Section 8.3). Also
by comparing the results of the two experiments we investigate
the impact of the number of clusters (Section 8.4).

A prerequisite of successful transfer learning is that the source
and target datasets are similar. To address this we introduce a
domain adaptation step after clustering (i.e., sub-domain defi-
nition) but before model training. In our experiments, we train
a separate anomaly detection model for each sub-domain. The
anomaly detection model for each sub-domain is trained using
the source data points assigned to that sub-domain, and the
target data points assigned to a sub-domain are classified by
this model. Consequently, within each sub-domain, we wish to
align the source data points to the target data points as this
will likely improve transfer performance by making the marginal
distribution of the training data (source data points) more similar
to that of the test data (target data points). Zhang et al. [10]
used an unsupervised domain adaption method developed by Sun

8

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

et al. [24] called CORAL to increase the similarity between the set
of data points in a source sub-domain and the set of target data
points in the same sub-domain, and we use the same method in
our experiments. However, there is a possibility of an interaction
between the CORAL domain adaptation method and one or more
of the preceding steps in our processing pipeline (feature set
(Catch24), normalisation method (After Feature Extraction, Before
Feature Extraction, or No Normalisation), or clustering method
(k-means++)) that may inadvertently bias our results. To control
for this we also report results when no domain adaptation is
applied and when an alternative unsupervised domain adaptation
method known as Subspace Alignment [25] is applied. Conse-
quently, each analysis presented in this section draws on three
sets of results, one for each form of domain adaptation: none,
CORAL, and subspace alignment. However, for space consider-
ations, we will limit the analysis of the results to F1. CORAL
has the advantage of not requiring any hyper-parameters to be
set. The subspace alignment method integrates does have one
hyper-parameter which specifies the size of the subspaces. For
our experiments, we use the default value of the size of the input
dimensionality, which in our case is 24.

Algorithm 4 lists the process used in this experiment when
the definition of the sub-domains is achieved by clustering on
the source dataset. The only change in the second version of the
experiment is that k-means++ is applied to the target dataset.
Note that in this experiment the number of clusters has been
extended to include a single cluster (i.e., k ranges from 1 to 10).

Algorithm 4 Experiment 4 Methodology.
Select a dataset as the target, merge other datasets to form the
source dataset
Domain adaptation methods = {none, CORAL, Subspace Alignment}
for each type of normalisation do

for k in 1,. . . ,10 do
Fit k-means++ model on the source dataset to identify
k clusters
Use stratified 5-fold sampling to form training and test
sets for both source and target datasets
for each fold in 5-fold cross validation do

Apply k-clustering model to source and target
training/test data
for each domain adaptation method do

for each of k clusters do
Apply domain adaptation to source training
and test data in the cluster to form adapted
source training and test sets
Fit anomaly detection model on the adapted
source training set
Evaluate model on the adapted source and
target test sets

Calculate an average F1 for each combination of domain adap-
tation and normalisation across all folds, and all values of k and
all datasets for the source and target test sets

8.1. Model performance on merged source datasets (no transfer)

The experimental procedure we follow means that for each
transfer pair of datasets we have two test sets, the first is a
fold from the merged source datasets that have been adapted
by applying a domain adaptation transform generated for each
cluster to the data points assigned to that cluster. The second is
the sample of the target dataset that was not used in the domain
adaptation process. In this section, we present the performance
of our models on the first of these test sets—the adapted source
test set. These results do not involve transfer learning because
both the training and test sets are sampled from the same merged

datasets. Consequently, these results enable us to assess whether
there is an interaction between any of the normalisation pro-
cesses and the domain adaptation methods which might disrupt
the distribution of the multi-domain source datasets. Table 5
presents for each of the three domain adaptation conditions and
each normalisation type the mean F1 along with its 95% confi-
dence interval. The set of values used to calculate each of these
averages was the result of combining 6 datasets with 5 folds per
dataset and 10 iterations of clustering per fold (k in the range 1
through 10) resulting in 300 values.

The best overall F1 is obtained when no domain adapta-
tion is applied and using normalisation after feature extraction
F1= 0.9164, and more generally better performance is obtained
when no domain adaptation is applied. The higher performance
for the no domain adapted condition relative to either of the
domain-adapted conditions is statistically significant across all
the normalisation conditions. This can be explained by the fact
that in this experiment both the training and test sets are sep-
arate samples from the same original distribution (the merged
source datasets) and so applying a domain adaptation method
to transform these samples to be more similar to the training
sample from the target distribution may make these two source
samples less similar to each other. Comparing the results between
the two domain adaptation conditions, in general (excluding F1
under the no normalisation condition) using CORAL for domain
adaptation results in higher performance as compared with us-
ing subspace alignment and the difference in performance is
statistically significant.

Switching the focus to the effect of normalisation on per-
formance, both no domain adaption and CORAL normalisation
after feature extraction performs the best and both normalisa-
tion methods perform better than no normalisation. Furthermore,
these differences in performance are statistically significant both
between the two normalisation methods and between the two
normalisation methods and no normalisation. However, when
subspace alignment domain adaptation is applied the results
are mixed across the normalisation methods, normalisation after
feature extraction has the lowest F1 and normalisation before fea-
ture extraction has the best F1 but the difference in performance
between normalisation before feature extraction and no normal-
isation is not statistically significant. Overall we interpret these
results as suggesting that normalisation after feature extraction
generally produces the best results (best F1 by a statistically
significant margin for both the no domain adaptation and CORAL
conditions).

8.2. Model performance on target datasets (transfer learning)

Table 6 presents the average F1 scores for our models when
evaluated on the test sets from the target domain datasets of
each domain transfer pair when different domain adaptation
methods are applied to the source training data in each cluster.
As was the case in the previous experiment the best overall F1
is obtained when no domain adaptation is applied and using
normalisation after feature extraction F1= 0.4052. However, as
this max F1 highlights there is a significant drop in performance
when compared with the performance on the adapted source
domain test sets, this is not surprising as this experiment now
involves transfer learning and so the task is intrinsically more dif-
ficult. Furthermore, although the max overall F1 score is obtained
when no domain adaptation method is used, domain adaptation
does appear to help. In particular, CORAL domain adaptation in
combination with normalisation after feature extraction achieves
the next highest overall F1 score of 0.2943, and in combination
with normalisation before feature extraction achieves the third
highest overall F1 score of 0.2414.

9

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

Table 5
For each domain adaptation condition (none, CORAL and subspace alignment)
the mean F1 for each type of normalisation is calculated across the six source
test sets (one test set from each of the transfer pairs of datasets) along with
the calculated to 95% confidence interval for each metric mean. Population size
300.
No domain adaptation Average Confidence Range

F1 (Error margin)

After feature extraction 0.9164 ±0.0016 (0.9148, 0.9179)
Before feature extraction 0.9010 ±0.0018 (0.8992, 0.9029)
No normalisation 0.8945 ±0.0018 (0.8927, 0.8963)

CORAL Average Confidence Range
F1 (Error margin)

After feature extraction 0.8670 ±0.0033 (0.8637, 0.8703)
Before feature extraction 0.8521 ±0.0032 (0.8489, 0.8852)
No normalisation 0.7375 ±0.0060 (0.7315, 0.7435)

Subspace alignment Average Confidence Range
F1 (Error margin)

After feature extraction 0.7390 ± 0.0065 (0.7324, 0.7455)
Before feature extraction 0.8068 ± 0.0034 (0.8034, 0.8102)
No normalisation 0.8036 ± 0.0036 (0.8, 0.8071)

Table 6
For each domain adaptation condition (none, CORAL and subspace alignment)
the mean F1 for each type of normalisation is calculated across the six target
domain test sets (one test set from each of the transfer pairs of datasets) along
with the calculated to 95% confidence interval for each metric mean. Population
size 300.
No domain adaptation Average Confidence Range

F1 (Error margin)

After feature extraction 0.4052 ± 0.0262 (0.379, 0.4314)
Before feature extraction 0.2225 ± 0.0050 (0.2176, 0.2275)
No normalisation 0.0947 ± 0.0091 (0.0857, 0.1038)

CORAL Average Confidence Range
F1 (Error margin)

After feature extraction 0.2943 ±0.0163 (0.2780, 0.3106)
Before feature extraction 0.2414 ±0.0108 (0.2306, 0.2522)
No normalisation 0.1502 ±0.0092 (0.1411, 0.1594)

Subspace alignment Average Confidence Range
F1 (Error margin)

After feature extraction 0.2055 ± 0.0121 (0.1934, 0.2175)
Before feature extraction 0.1541 ± 0.0077 (0.1464, 0.1618)
No normalisation 0.1147 ± 0.0077 (0.107, 0.1224)

Finally, in terms of normalisation strategies, across the three
domain adaptation conditions, normalisation after feature extrac-
tion is the best performing by a statistically significant margin
compared to both normalisation before feature extraction and
no normalisation. Furthermore, when compared to performance
on the adapted source test sets (i.e., the results reported in
Section 8.1) the difference between F1 scores with normalisation
after feature extraction and before feature extraction is wider for
each of the three domain adaptation conditions. This may sug-
gest that normalisation after feature extraction better identifies
subdomains allowing transfer learning to work better.

8.3. Model performance on target datasets: Clustering on target

The majority of research on transfer learning that deals with
multi-source transfer learning focuses on identifying sub-domains
within the source dataset. However, multiple sub-domains may
exist within the target domain. To explore this we ran a second
version of our experiment where we ran the clustering (sub-
domain definition) process on the training portion of the target
dataset, rather than on the source dataset. Apart from this mod-
ification the rest of the experimental procedure was the same as
that described in Algorithm 4. Table 7 presents the results for this
version of the experiment.

Table 7
For each domain adaptation condition (none, CORAL and subspace alignment)
the mean F1 for each type of normalisation calculated across the six target
domain test sets (one test set from each of the transfer pairs of datasets) when
clustering (sub-domain definition) is based on the training samples from the
target domain, along with the calculated to 95% confidence interval for each
metric mean. Population size 300.
No domain adaptation Average Confidence Range

F1 (Error margin)

After feature extraction 0.4002 ± 0.0284 (0.3718, 0.4286)
Before feature extraction 0.2226 ±0.0050 (0.2176, 0.2275)
No normalisation 0.1069 ±0.0097 (0.0972, 0.1166)

CORAL Average Confidence Range
F1 (Error margin)

After feature extraction 0.4136 ±0.0247 (0.3889, 0.4383)
Before feature extraction 0.2643 ±0.0118 (0.2525, 0.2761)
No normalisation 0.1286 ±0.0108 (0.1179, 0.1394)

Subspace alignment Average Confidence Range
F1 (Error margin)

After feature extraction 0.3067 ±0.0250 (0.2817, 0.3317)
Before feature extraction 0.1393 ±0.0068 (0.1325, 0.1461)
No normalisation 0.1325 ±0.0073 (0.1252, 0.1398)

Table 7 shows similar results to Table 6 with normalisation
after feature extraction remaining the best performing strategy,
and there are significant differences between the respective nor-
malisation strategies, with normalisation after feature extraction
resulting in significantly better performance. Furthermore, the
beneficial effect of adapting the source training data to the target
domain is particularly apparent in these results with the best
performance for all three types of normalisation being achieved
when some form of domain adaptation is applied (as compared
with both Tables 5 and 6 where the best performance was ob-
tained when no domain adaptation was applied). This suggests
that there is a beneficial interaction between clustering on the
target for sub-domain definition and domain adaptation to the
target. Moreover, clustering on the target also appears to improve
overall performance when compared to clustering on the source
dataset. The overall max F1 score in Table 7 is 0.4136, as com-
pared with an overall max F1 of 0.4052 in Table 6. Admittedly
the margin of difference between these two max F1 scores is
not statistically significant at the 95% confidence level, however
comparing across the normalisation strategies and the two tables
there does appear to be a trend where clustering on the target
leads to improved performance. Across the 9 F1 scores reported
in each table in six instances the F1 score obtained by clustering
on the target is higher than the corresponding F1 obtained when
clustering on the source, and in four of these instances the margin
of difference is statistically significant at the 95% confidence level.
This result is somewhat surprising as we had expected that clus-
tering on the larger merged source datasets would identify better
subdomains, assuming the large source datasets would contain
more distinct subdomains. However, it is possible that clustering
on the merged source dataset may identify subdomains that are
not present in the target dataset, resulting in unused training
data. Conversely, clustering on the target data may result in all
clusters being relevant to the target data and hence utilising more
of the source data.

8.4. Model performance with number of clusters

In this experiment, we look at the best performing normalisa-
tion strategy and domain adaptation combination (after feature
extraction and CORAL) and investigate how the number of clus-
ters impacts model performance. We do this analysis for both
clustering on the source and the target training data. Table 8 lists
for clustering on the training sample from the source domain

10

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

Table 8
Using the clustering on training sample from the merged source domain datasets
to define relevant sub-domains: For each transfer pair of datasets the max F1
achieved across the different values of k used in clustering, the k value that
resulted in the max F1 value, the average F1 and standard deviation across
values of k.
Cluster on source Max Best Average Standard
Test on target F1 k F1 deviation

Non-AWS→AWS 0.2990 1 0.2242 0.0296
Non-Huawei→Huawei 0.3290 1 0.2667 0.0418
Non-IOPS→IOPS 0.3406 6 0.3276 0.0102
Non-Twitter→Twitter 0.1291 4 0.1231 0.0050
Non-YahooArtificial → YahooArtificial 0.7418 1 0.2887 0.1632
Non-YahooReal → YahooReal 0.5818 1 0.5364 0.0228

Table 9
Using the clustering on training sample from the target domain dataset to define
relevant sub-domains: For each transfer pair of datasets the max F1 achieved
across the different values of k used in clustering, the k value that resulted in
the max F1 value, the average F1 and standard deviation across values of k.
Cluster on source Max Best Average Standard
Test on target F1 k F1 deviation

Non-AWS→AWS 0.3080 1 0.2770 0.0236
Non-Huawei→Huawei 0.4845 9 0.4055 0.0642
Non-IOPS→IOPS 0.3468 3 0.3347 0.0098
Non-Twitter→Twitter 0.1346 9 0.1283 0.0040
Non-YahooArtificial → YahooArtificial 0.8429 5 0.7619 0.1597
Non-YahooReal → YahooReal 0.6061 6 0.5748 0.0204

for each transfer dataset pair the max F1 value achieved across
the different values of k used in clustering, the corresponding k
value that resulted in the max value, the average F1 and standard
deviation calculated across the different values of k for that
clustering strategy and transfer pair. Table 9 lists the same data
for when clustering is applied to the sample of training data from
the target dataset.

The results in Tables 8 and 9 reinforce that there are benefits
in clustering on the target. Model performance improves not only
the average performance but also the max F1. When clustering on
the source data most of the time the best performance is without
clustering or one cluster. The two exceptions IOPS and Twitter
have the lowest variation in the F1, and so clustering has the
least effect on their performance. The fact that clustering appears
to have a stronger impact when applied to the target dataset
(i.e., the value of k affects performance and more often than not
the best performance occurs with k>1) indicates that clustering
on the target identifies more relevant sub-domains.

9. Conclusions

This paper explored the interaction between data normali-
sation and clustering in the definition of sub-domains within
multi-source transfer learning for time series anomaly detection.
Our results suggest that normalisation after feature extraction
gives the best performance. Furthermore, our analysis found that
normalisation after feature extraction tends to result in the high-
est entropy in terms of both the distribution of anomalies within
a dataset but also the distribution of points from a file. Taken
together these results indicate that a normalisation and clustering
combination that results in both anomalies within the dataset
and points from files being distributed across clusters tends to
result in better performance. This may indicate that normali-
sation after feature extraction results in clustering identifying
sub-domains/components based on underlying (latent) similar-
ities across points within a dataset as opposed to distinctions
based on either normal versus anomalous data points or the data
process that generates data points.

Concerning transfer learning our results suggest that when
performing transfer learning normalising before clustering im-
proves model performance (either before or after feature ex-
traction) compared to not normalising, and again we find that
normalisation after feature extraction gives the best performance
and that this is statistically significant in terms of F1. Further-
more, of the two unsupervised domain adaptation methods we
used in our experiments we find CORAL is more effective than
subspace alignment. Perhaps most surprisingly, however, we find
that clustering on the target dataset and identifying subdomains
in the target data can result in improved model performance
compared to the standard approach of identifying sub-domain in
the source dataset. The best overall performance for multi-source
transfer learning is obtained using normalisation after feature
selection combined with clustering on the target and applying
CORAL for domain adaptation. However, a lower but statistically
similar performance is also obtained if we do no domain adapta-
tion and cluster on either the source or the target, so long as we
apply normalisation after feature extraction.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research was funded by Huawei Research Ireland, and by
the ADAPT Centre which is funded under the SFI Research Centres
Programme (Grant 13/RC/2106_P2) and is co-funded under the
European Regional Development Funds.

References

[1] N. Görnitz, M. Kloft, K. Rieck, U. Brefeld, Toward supervised anomaly
detection, J. Artificial Intelligence Res. 46 (2013) 235–262.

[2] J.D. Kelleher, Deep Learning, MIT Press, 2019.
[3] S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data

Eng. 22 (10) (2009) 1345–1359.
[4] K. Weiss, T.M. Khoshgoftaar, D. Wang, A survey of transfer learning, J. Big

Data 3 (1) (2016) 1–40.
[5] M.T. Rosenstein, Z. Marx, L.P. Kaelbling, T.G. Dietterich, To transfer or not

to transfer, in: NIPS 2005 Workshop on Transfer Learning, Vol. 898, 2005,
pp. 1–4.

[6] W. Zhang, L. Deng, L. Zhang, D. Wu, Overcoming negative transfer: A
survey, 2020, arXiv preprint arXiv:2009.00909.

[7] S. Christodoulidis, M. Anthimopoulos, L. Ebner, A. Christe, S. Mougiakakou,
Multisource transfer learning with convolutional neural networks for lung
pattern analysis, IEEE J. Biomed. Health Inf. 21 (1) (2016) 76–84.

[8] C. Yi, Y. Xu, H. Yu, Y. Yan, Y. Liu, Multi-component transfer metric learning
for handling unrelated source domain samples, Knowl.-Based Syst. 203
(2020) 106132, http://dx.doi.org/10.1016/j.knosys.2020.106132, URL https:
//www.sciencedirect.com/science/article/pii/S0950705120303877.

[9] S. Moon, J.G. Carbonell, Completely heterogeneous transfer learning with
attention-what and what not to transfer, in: IJCAI, Vol. 1, no. 1, 2017
pp. 1–2.

[10] X. Zhang, Q. Lin, Y. Xu, S. Qin, H. Zhang, B. Qiao, Y. Dang, X. Yang,
Q. Cheng, M. Chintalapati, Y. Wu, K. Hsieh, K. Sui, X. Meng, Y. Xu, W.
Zhang, F. Shen, D. Zhang, Cross-dataset time series anomaly detection for
cloud systems, in: 2019 USENIX Annual Technical Conference, USENIX ATC
19, USENIX Association, Renton, WA, 2019, pp. 1063–1076, URL https:
//www.usenix.org/conference/atc19/presentation/zhang-xu.

[11] T.-Y. Kim, S.-B. Cho, Web traffic anomaly detection using C-LSTM neural
networks, Expert Syst. Appl. 106 (2018) 66–76.

[12] M. Ahmed, A.N. Mahmood, J. Hu, A survey of network anomaly detection
techniques, J. Netw. Comput. Appl. 60 (2016) 19–31.

[13] G. Münz, S. Li, G. Carle, Traffic anomaly detection using k-means clustering,
in: GI/ITG Workshop MMBnet, 2007, pp. 13–14.

[14] I. Syarif, A. Prugel-Bennett, G. Wills, Unsupervised clustering approach for
network anomaly detection, in: International Conference on Networked
Digital Technologies, Springer, 2012, pp. 135–145.

11

http://refhub.elsevier.com/S0950-7051(22)00987-X/sb1
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb1
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb1
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb2
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb3
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb3
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb3
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb4
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb4
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb4
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb5
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb5
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb5
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb5
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb5
http://arxiv.org/abs/2009.00909
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb7
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb7
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb7
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb7
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb7
http://dx.doi.org/10.1016/j.knosys.2020.106132
https://www.sciencedirect.com/science/article/pii/S0950705120303877
https://www.sciencedirect.com/science/article/pii/S0950705120303877
https://www.sciencedirect.com/science/article/pii/S0950705120303877
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb9
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb9
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb9
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb9
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb9
https://www.usenix.org/conference/atc19/presentation/zhang-xu
https://www.usenix.org/conference/atc19/presentation/zhang-xu
https://www.usenix.org/conference/atc19/presentation/zhang-xu
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb11
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb11
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb11
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb12
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb12
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb12
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb13
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb13
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb13
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb14
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb14
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb14
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb14
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb14

M. Nicholson, R. Agrahari, C. Conran et al. Knowledge-Based Systems 257 (2022) 109894

[15] B.D. Fulcher, N.S. Jones, hctsa: A computational framework for automated
time-series phenotyping using massive feature extraction, Cell Syst. 5 (5)
(2017) 527–531.

[16] C.H. Lubba, S.S. Sethi, P. Knaute, S.R. Schultz, B.D. Fulcher, N.S. Jones,
catch22: Canonical time-series characteristics, Data Min. Knowl. Discov.
33 (6) (2019) 1821–1852.

[17] R. Agrahari, M. Nicholson, C. Conran, H. Assem, J.D. Kelleher, Assessing
feature representations for instance-based cross-domain anomaly detection
in cloud services univariate time series data, IoT 3 (2022) 123–144, http:
//dx.doi.org/10.3390/iot3010008.

[18] A. Lavin, S. Ahmad, Evaluating real-time anomaly detection algorithms–The
numenta anomaly benchmark, in: 2015 IEEE 14th International Conference
on Machine Learning and Applications, ICMLA, IEEE, 2015, pp. 38–44.

[19] N. Laptev, S. Amizadeh, I. Flint, Generic and scalable framework for
automated time-series anomaly detection, in: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2015, pp. 1939–1947.

[20] M. Vlachos, P. Yu, V. Castelli, On periodicity detection and structural peri-
odic similarity, in: Proceedings of the 2005 SIAM International Conference
on Data Mining, SIAM, 2005, pp. 449–460.

[21] D. Arthur, S. Vassilvitskii, k-means++: The Advantages of Careful Seeding,
Tech. Rep., Stanford, 2006.

[22] C.C. Aggarwal, Data Mining: The Textbook, Springer, 2015.
[23] R. Wu, E. Keogh, Current time series anomaly detection benchmarks are

flawed and are creating the illusion of progress, IEEE Trans. Knowl. Data
Eng. (2021) 1, http://dx.doi.org/10.1109/TKDE.2021.3112126.

[24] B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation,
in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30,
no. 1, 2016.

[25] B. Fernando, A. Habrard, M. Sebban, T. Tuytelaars, Subspace alignment for
domain adaptation, 2014, CoRR, abs/1409.5241, arXiv:1409.5241.

12

http://refhub.elsevier.com/S0950-7051(22)00987-X/sb15
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb15
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb15
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb15
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb15
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb16
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb16
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb16
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb16
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb16
http://dx.doi.org/10.3390/iot3010008
http://dx.doi.org/10.3390/iot3010008
http://dx.doi.org/10.3390/iot3010008
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb18
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb18
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb18
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb18
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb18
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb19
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb19
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb19
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb19
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb19
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb19
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb19
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb20
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb20
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb20
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb20
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb20
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb21
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb21
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb21
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb22
http://dx.doi.org/10.1109/TKDE.2021.3112126
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb24
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb24
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb24
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb24
http://refhub.elsevier.com/S0950-7051(22)00987-X/sb24
http://arxiv.org/abs/1409.5241

	The interaction of normalisation and clustering in sub-domain definition for multi-source transfer learning based time series anomaly detection
	Recommended Citation
	Authors

	The interaction of normalisation and clustering in sub-domain definition for multi-source transfer learning based time series anomaly detection
	Introduction
	Multi-source transfer learning related work
	Clustering as anomaly detector versus sub-domain identification
	Feature normalisation and clustering methods
	Experimental design
	Experiment 1: Which normalisation method gives the best performance? (within dataset baseline scenario)
	Experiment 2: Understanding the relationship between sub-domain structures and normalisation strategies
	Entropy of anomalies across clusters
	Entropy of points within a time series across clusters

	Experiment 3: Performance on merged datasets with transfer learning
	Model performance on merged source datasets (no transfer)
	Model performance on target datasets (transfer learning)
	Model performance on target datasets: Clustering on target
	Model performance with number of clusters

	Conclusions
	Declaration of competing interest
	Acknowledgements
	References

