

Technological University Dublin ARROW@TU Dublin

Conference Papers

School of Physics & Clinical & Optometric Science

2021-06-24

What type of soft contact lens works best for reverse piggyback?

Claire E. McDonnell *Technological University Dublin*, claire.e.mcdonnell@tudublin.ie

Emma Chaney Technological University Dublin

Tara Kennedy Technological University Dublin

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/scschphycon

Part of the Optometry Commons

Recommended Citation

Chaney, E, Kennedy T, Farrell A, Mc Donnell C. Which type of soft lens works best for reverse piggyback? Presented at the Coopervision FORCE UK and Ireland final 2021. DOI: 10.21427/bgv1-6e69

This Presentation is brought to you for free and open access by the School of Physics & Clinical & Optometric Science at ARROW@TU Dublin. It has been accepted for inclusion in Conference Papers by an authorized administrator of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License

Authors

Claire E. McDonnell, Emma Chaney, Tara Kennedy, and Aoife Farrell

What type of soft contact lens works best for reverse piggyback?

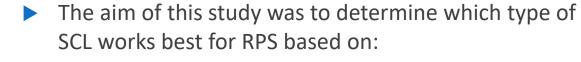
Final Year Research Project

Presented by Emma Chaney

Co-authors: Tara Kennedy, Aoife Farrell

Supervisor: Claire McDonnell

Technological University Dublin


Introduction: Reverse Piggyback

- Reverse piggyback systems (RPS) comprise of a soft contact lens (SCL) worn over an RGP lens.
- Most commonly used to prevent the loss or decentration of an RGP lens during sports.
- Also used to reduce RGP lens intolerance due to lid sensitivity.
- RPS are seldom fitted and are mostly worn on a part time basis.



- 1. Best corrected visual acuity (BCVA)
- 2. Comfort
- 3. Power contribution
- The null hypothesis is that all SCLs work equally well in a RPS.

Objective

- A double-blind randomized trial was conducted.
- Four different types of SCL were assessed in a RPS, in both eyes of 12 subjects.
- For each subject, a researcher inserted an RGP lens into both eyes.
- Then 4 SCLs were inserted over and removed from the RGP lens consecutively.
- Over refraction (OR), BCVA and comfort were measured for each SCL in the RPS, then for the RGP lens alone.

Soft Lenses	Brand	ВС	TD	Material
Acuvue Oasys 1 Day	Johnson & Johnson	8.5	14.3	Senofilcon A
Proclear 1 Day	Coopervision	8.7	14.2	Omafilcon A
1 Day Acuvue Moist	Johnson & Johnson	8.5	14.2	Etafilcon A
Dailies Total 1	Alcon	8.5	14.1	Delefilcon A

Table 1: Details of soft contact lenses used.

Methods

Methods

- All subjects were optometry undergraduates.
- The inclusion criterion was that they had to be able to tolerate SCL wear and RGP lens wear without anaesthetic. A BCVA of 0.5 LogMAR or better was necessary for data analysis.

LISCOIL TEICNEOLAÍOCH

- Comfort was measured using a 10cm visual analogue scale.
- BCVA was measured using a computerized LogMAR chart
- OR was measured using a manual phoropter.
- Results were analysed with respect to change from baseline measurements of RGP lens alone.

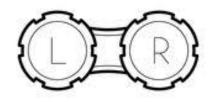
Results: Change in Over Refraction

- ► All SCLs had a power of -0.50D.
- ▶ The OR with the RGP lens alone was subtracted from the OR with the RPS in place.
- The data for etafilcon A was not normally distributed. However the frequency histogram for this SCL was relatively normal, so a one-way ANOVA test was used to analyse the data.
- One-way ANOVA testing showed <u>no statistically significant differences</u> at the p<0.05 significance level between the 4 SCLs for difference in OR (p=0.91).</p>

Results: Change in Over Refraction

- Changes in OR were not expected as it was assumed that low powered SCLs would not contribute power to the optics of a RPS.
- On average a small amount of plus was found.
- Normal test retest variation for refraction has been reported as ±0.50D, and may account for some changes in OR.
- Not all changes in OR can be explained by test-retest variation as a range of -0.75D to +1.25D existed.

	Senofilcon A	Omafilcon A	Etafilcon A	Delefilcon A
Mean	+0.25D	+0.17D	+0.16D	+0.21D
Standard Deviation	±0.40D	±0.45D	±0.47D	±0.45D
Range	-0.75 to+1.00D	-0.50 to +1.25D	-0.50 to +1.00D	-0.50 to +1.00D


Table 2: Change in over refraction with each SCL.

Results: Change in BCVA

- The BCVA with the RGP lens alone was subtracted from the BCVA with the RPS in place.
- One-way ANOVA testing could not be carried out as the data was not normally distributed and the frequency histogram did not resemble a normal distribution.
- Instead, a Kruskal-Wallis test was carried out, which showed <u>no statistically</u> <u>significant differences</u> at the p<0.05 significance level between the 4 SCLs for BCVA (p = 0.68).

F P т ΟZ LPC

Results: Change in BCVA

- On average, all SCLs caused a loss of approximately half a line of LogMAR BCVA.
- ▶ The difference in BCVA ranged from a loss of 16 letters to a gain of 13 letters.
- Reductions in BCVA may be explained by an originally lid-attached RGP lens losing its lid attachment with the addition of a SCL.
- > The loss of lid attachment may cause decentration of the RGP lens, reducing BCVA.

	Senofilcon A	Omafilcon A	Etafilcon A	Delefilcon A
Mean	-0.05 (loss of 2.5 letters)	-0.04 (loss of 2 letters)	-0.04 (loss of 2 letters)	-0.06 (loss of 3 letters)
Standard Deviation	±0.1	±0.09	±0.09	±0.1
Range	-0.18 to +0.24	-0.20 to +0.22	-0.32 to 0.16	-0.22 to +0.26

Table 3: Change in BCVA with each SCL.

Results: Comfort

The difference in comfort between the RGP lens alone and the RPS was calculated and ranked for the 4 SCLs. LLSCOIL TEICNEOLAÍOCHT

- According to research by Papas, a change in comfort of <5 units does not represent a true clinical difference.
- Friedman analysis showed <u>no statistical difference</u> at the p<0.05 significance level between the 4 SCLs for comfort (p=0.15).

Results: Comfort

- ▶ The addition of a SCL demonstrated an increase in comfort for most subjects.
- Improvements in comfort may be due to the SCL reducing lid interaction with the RGP lens.
- Reduced comfort may have been caused by air bubbles under the SCL or due to the SCL being inside out.

	Senofilcon A	Omafilcon A	Etafilcon A	Delefilcon A
Mean	2.22	2.84	2.19	2.89
Standard Deviation	±1.0	±0.95	±1.01	±0.198

 Table 4: Change in comfort with each SCL.

Conclusion

- No clinically significant differences were identified in the performance of the 4 SCL types in a RPS system.
- Our project suggests any of the 4 SCLs tested could be successfully used in a RPS.
- However, a SCL must be assessed in a RPS as it may cause reductions in comfort and BCVA, as well as changes to OR.

LSCOIL TEICNEOLAÍOCH

- The reductions in comfort and BCVA may be due to an originally lid-attached RGP lens losing its lid attachment with the addition of a SCL.
- The loss of lid attachment may cause decentration of the RGP lens and reduce the stability of the fit.

Limitations

- ► The sample size was not large enough to eliminate random variation.
- ▶ The subjects were not adapted RGP wearers and the RGPs were not all the optimum fit.
- SCLs were inserted simultaneously, rather than consecutively, which may have biased comfort grading.
- A longer settling time should have been given (>3mins) for the RGP lens alone and the RPS, particularly for assessment of comfort.
- A higher powered SCL would be required to fully ascertain the power contribution from a SCL in a RPS.
- Slit lamp examination of the RPS would have been useful to determine whether all the uncomfortable RPS and/or RPS that produced reduced BCVA were due to breaking RGP lid attachment.
- SLE would also allow inside-out lenses to be removed and reinserted the right way around.

References

- McDonnell C. Piggyback Contact Lenses. Optometry Today. 2011. http://works.bepress.com/claire_mcdonnell/2/. Accessed November 5, 2019.
- Gasson A, Morris J. The Contact Lens Manual: A Practical Guide to Fitting. Butterworth/Heinemann; 2010: 8-9.
- Mistry V. Case Report: Piggyback and Other Solutions for Keratoconic RGP Intolerance; 2013. https://pdfs.semanticscholar.org/8fd0/0facf8ba75a6937be867b0b0420cfe035a7d.pdf. Accessed November 6, 2019.
- Romero-Jiménez M, Santodomingo-Rubido J, González-Meijóme JM, Flores-Rodriguez P, Villa-Collar C. Which soft lens power is better for piggyback in keratoconus? Part II. Contact Lens and Anterior Eye. 2015;38(1):48-53. doi:10.1016/j.clae.2014.09.012
- Michaud L, Brazeau D, Corbeil ME, Forcier P, Bernard PJ. Contribution of soft lenses of various powers to the optics of a piggy-back system on regular corneas. Contact Lens and Anterior Eye. 2013;36(6):318-323. doi:10.1016/j.clae.2013.02.005
- Pritchard N, Young G, Coleman S, Hunt C. Subjective and objective measures of corneal staining related to multipurpose care systems. Contact Lens and Anterior Eye. 2003;26(1):3-9. doi:10.1016/S1367-0484(02)00083-8
- Papas EB, Keay L, Golebiowski B. Estimating a just-noticeable difference for ocular comfort in contact lens wearers. Investigative Ophthalmology and Visual Science. 2011;52(7):4390-4394. doi:10.1167/iovs.10-7051
- Jalbert I, Golebiowski B, Stapleton F. Measuring Contact Lens Discomfort. Current Ophthalmology Reports. 2015;3(2):106-110. doi:10.1007/s40135-015-0070-z
- O'Donnell C, Maldonado-Codina C. A hyper-Dk piggyback contact lens system for keratoconus. Eye and Contact Lens. 2004;30(1):44-48. doi:10.1097/01.ICL.0000104596.50832.7F
- Giasson CI, Perreault N, Brazeau D. Oxygen tension beneath piggyback contact lenses and clinical outcomes of users. Contact Lens Association of Ophthalmologists Journal. 2001;27(3):144-150. http://www.ncbi.nlm.nih.gov/pubmed/11506439. Accessed November 6, 2019.
- Bokinni Y, Shah N, Maguire O, Laidlaw DAH. Performance of a computerised visual acuity measurement device in subjects with age-related macular degeneration: Comparison with gold standard ETDRS chart measurements. *Eye*. 2015;29(8):1085-1091. doi:10.1038/eye.2015.94
- Elliott D. Clinical Procedures in Primary Eye Care. Elsevier Ltd; 2007: 40.
- Laerd Statistics. One-way ANOVA in SPSS Statistics. https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php. Published 2018. Accessed January 8, 2020.
- Singh G. A Simple Introduction to ANOVA (with applications in Excel). https://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/. Published 2018. Accessed January 8, 2020.
- Stats StackExchange.com. Can I trust ANOVA results for a non-normally distributed DV? Cross Validated. https://stats.stackexchange.com/questions/5680/can-i-trust-anova-results-for-a-non-normally-distributed-dv. Published 2011. Accessed January 8, 2020.
- StasticsSolutions.com. Kruskal-Wallis Test Statistics Solutions. https://www.statisticssolutions.com/kruskal-wallis-test/. Published 2019. Accessed January 8, 2020.
- Laerd Statistics. Friedman Test in SPSS Statistics. https://statistics.laerd.com/spss-tutorials/friedman-test-using-spss-statistics.php. Published 2018. Accessed January 8, 2020.
- Zadnik K, Mutti DO, Adams AJ. The repeatability of measurement of the ocular components. Investigative Ophthalmology and Visual Science. 1992;33(7):2325-2333.
- Canadian Agency for Drugs and Technologies in Health. Ranibizumab (Lucentis): Visual Impairment Due to Choroidal Neovascularization Secondary to Pathologic Myopia. Canadian Agency for Drugs and Technologies in Health; 2015.