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Abstract
The detection of bacterial antibiotic resistance phenotypes is important when carrying out clinical decisions for patient treatment. Conventional
phenotypic testing involves culturing bacteria which requires a significant amount of time and work. Whole-genome sequencing is emerging as
a fast alternative to resistance prediction, by considering the presence/absence of certain genes. A lot of research has focused on determining
which bacterial genes cause antibiotic resistance and efforts are being made to consolidate these facts in knowledge bases (KBs). KBs are
usually manually curated by domain experts to be of the highest quality. However, this limits the pace at which new facts are added. Automated
relation extraction of gene-antibiotic resistance relations from the biomedical literature is one solution that can simplify the curation process.
This paper reports on the development of a text mining pipeline that takes in English biomedical abstracts and outputs genes that are predicted
to cause resistance to antibiotics. To test the generalisability of this pipeline it was then applied to predict genes associated with Helicobacter
pylori antibiotic resistance, that are not present in common antibiotic resistance KBs or publications studying H. pylori. These genes would
be candidates for further lab-based antibiotic research and inclusion in these KBs. For relation extraction, state-of-the-art deep learning models
were used. These models were trained on a newly developed silver corpus which was generated by distant supervision of abstracts using the
facts obtained from KBs. The top performing model was superior to a co-occurrence model, achieving a recall of 95%, a precision of 60% and
F1-score of 74% on a manually annotated holdout dataset. To our knowledge, this project was the first attempt at developing a complete text
mining pipeline that incorporates deep learning models to extract gene-antibiotic resistance relations from the literature. Additional related data
can be found at https://github.com/AndreBrincat/Gene-Antibiotic-Resistance-Relation-Extraction

Introduction
The increasing prevalence of antibiotic-resistant bacteria is
one of the greatest challenges humanity is currently facing (1).
With the discovery of one of the first antibiotics—penicillin,
antibiotics became a huge breakthrough that prevented mil-
lions of deaths caused by pathogenic bacteria. However, these
weapons of choice against multiple bacterial infections are
becoming less reliable due to the lack of progress in the devel-
opment and discovery of new classes of antibiotics, coupled
with the emergence of antibiotic-resistant bacteria. Bacteria
that are sensitive to antibiotics can acquire antibiotic resis-
tance through changes in their DNA. A gene is a specific region
of DNA that encodes for a specific protein or part of a protein.
Mutations in genes are one way of changing the way proteins
operate. When these proteins are target sites for antibiotics or
involved in the mode of action of an antibiotic, this can cause
resistance (2). Another way to develop antibiotic resistance is
through what are known as mobile genetic elements. These
are genes that can confer antibiotic resistance (e.g. by produc-
ing proteins that inactivate antibiotics) that are acquired from
other bacteria or the environment (3).

One such bacterial pathogen that is seeing an alarming
increase in antibiotic resistance is Helicobacter pylori. This
organism is estimated to infect the stomachs of more than half

of the world’s human population and is seen to be very com-
mon in developing countries, having a prevalence of up to
80% (4). In certain cases, various gastroduodenal complica-
tions may arise from this infection that puts a patient’s life at
risk (5). The only way to eradicate an H. pylori infection is
to treat with antibiotics since the bacterium is well adapted
to remain propagating throughout the whole lifetime of an
individual (6). However, the emergence of antibiotic resistant
H. pylori strains is becoming a major roadblock that is caus-
ing failure in the first-line treatment regimens that are used
(7).

The detection of antibiotic resistance phenotypes is impor-
tant when carrying out clinical decisions for patient treatment.
Unfortunately, conventional phenotypic testing for antibiotic
resistance involves culturing bacteria which takes a signifi-
cant amount of time. Whole-genome sequencing and geno-
typing methods are emerging as a fast alternative to drug
resistance prediction, by considering the presence or absence
of certain genes (8). Databases such as the Comprehensive
Antibiotic Resistance Database (CARD) provide manually
curated antibiotic-gene associations from the biomedical lit-
erature and are available online (9). In an ideal scenario, such
databases would be both, exhaustive and up to date, with
the latest research, which unfortunately is rarely the case.
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The manual process of curation makes updates to the
databases slow and cumbersome especially considering the
large amount of biomedical literature that is constantly being
published. To help in curation, CARD employs text mining
algorithms to help prioritize literature for manual reviewing
(10). A text mining system that incorporates deep learn-
ing models has the potential to further improve the curation
process by automatically extracting gene-antibiotic resistance
relations from the biomedical literature, reducing manual
reviewing.

To this endwe report on the development of a methodology
to automatically extract gene-antibiotic resistance relations
from biomedical literature abstracts. This was then applied
to extract genes related to antibiotic resistance in the bac-
terium H. pylori. The main contributions of this paper are as
follows:

• We developed a novel pipeline that incorporates freely
available online data in the form of English biomedical
abstracts and knowledge bases, that are processed to out-
put predicted gene-antibiotic relations that can aid in the
manual curation process.

• A novel silver standard corpus dataset was developed
that contains positive and negative examples of genes-
antibiotic resistance relations which can be used for
the development of future supervised models for gene-
antibiotic resistance relation extraction.

• We compared the performance of two state-of-the-art
(SOTA) models, BioBERT and PCNN, using subsets of
the silver standard corpus composed of single-entity and
multi-entity training dataset configurations.

• We propose potentially novel genes for metronidazole
resistance inH. pylori using the developed pipeline. These
genes were found to be linked with metronidazole resis-
tance in other bacterial species and are candidates for
further lab-based testing involving H. pylori.

The is organized as follows: Section 2 presents a litera-
ture review of related works; Section 3 outlines the developed
pipeline in detail; Section 4 and 5 present and discuss the
results respectively and lastly, Section 6 presents the conclu-
sions of the paper.

Related work
Relation extraction (RE) is a task of interest in natural lan-
guage processing (NLP) that studies automated extraction of
relations from text. Relations can be defined as triplets con-
sisting of two entities, and an association or property that
links them together (11). Entities are any words or phrases
in the text that usually refer to real-world objects or con-
cepts that are of special interest to the problem under study.
Biomedical RE (BioRE) is then the extraction of relations from
the biomedical domain from sources such as peer-reviewed
journal publications. An example of BioRE involving two
entities would be RE of protein–protein interactions, which
has been extensively studied. Other than relations between
entities (entity mentions), the BioRE literature also tack-
les relations involving either action phrases or verbs (event
mentions). Here we will only focus on BioRE between two
entities which can be defined as binary (e.g. an interaction

that is present or absent between two proteins) or multi-class
(e.g. type of interaction in drug–drug interactions).

Much of the early BioRE research was based on the extrac-
tion of protein–protein interactions (PPIs), initially using rule-
based approaches that incorporated entity co-occurrences and
pattern matching, as was tackled by Ng and Wong (12).
Methods for automated generation of text patterns to extract
relations were later studied by Huang et al. (13), who incor-
porated part-of-speech tagging to tag sentences containing
PPI relations. These were subsequently used to identify new
PPIs by considering sentences with similar part-of-speech tag
sequences. Similarly, Thomas et al. (14) further improved
upon this by using dependency parsing of phrases contain-
ing PPIs to automatically generate query patterns. Machine-
learning-based methods for REof PPIs quickly started to be
developed as an alternative to rule-based methods due to
their superior performance. Miwa et al. (15) used a corpus
weighted Support VectorMachine (SVM) to outperform other
PPI-RE methods at that time. Muzaffar et al. (16) compared
Naïve Bayes and SVMmodels for extracting disease-treatment
relations and found that when using a mixture of lexical and
sematic features, their SVM model outperformed both the
Naïve Bayes model and other previously developed models
tested on the same corpus.

More recently, deep learning algorithms have become the
dominant approach for BioRE, which achieved SOTA perfor-
mance in various tasks (11). The most common deep learning
model architectures generally consist of an embedding layer
to vectorize the word token inputs, a deep neural network
component which is usually variants of convolutional neu-
ral networks (CNN) or recurrent neural networks (RNN),
and a final fully connected layer that outputs to a Sigmoid
or SoftMax function for binary or multi-class classification
respectively. Word embeddings are word token representa-
tions in the form of low dimensional vectors that capture
both semantic and syntactic information of words. Unsu-
pervised models such as word2vec (17) and ELMo (18) can
be pre-trained on millions of examples from PubMed and
be applied to a wide variety of problems by using a dic-
tionary that maps the word tokens to the trained vector
representations. For BioRE tasks, Zeng et al. (19) found that
concatenating word embeddings with positional embeddings
increases model performance. Positional embeddings capture
the relative distances of the words in a sentence compared
to the entities of interest. The word and positional embed-
dings are then processed by the RNN/CNN-based part of
the models in order to extract useful features. CNN mod-
els have been applied for various BioRE tasks including PPI
(20) and drug–drug interactions (21), achieving good perfor-
mance. Generally speaking, RNN methods perform better
than CNN methods, but on the other hand, CNN methods
are faster to train compared to deep neural networks of similar
parameter size since they can be parallelized (22). Long-short
term memory (LSTM) models, which are an improvement on
RNN have been recently used in various BioRE tasks such
as drug–drug interactions (23) and chemical–protein inter-
actions (24). Recently, the attention mechanism has been
applied to NLP in general and has helped to achieve new
SOTA performance, including when used in RE. Initially,
attention mechanisms were developed for encoder-decoder
neural networks that were applied to language translation
tasks (25). An attention mechanism helps a model to focus
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on important features in sequences of text, allowing it to per-
form better on longer stretches of text. The transformer model
architecture is a recent innovation that uses multiple attention
mechanisms (26). BERT, a model based on 12 transform-
ers, achieved SOTA benchmarks in multiple RE tasks (25).
BioBERT, a variant of BERT trained on biomedical and com-
puter science literature achieved SOTA benchmarks in BioRE
such as in chemical–disease interactions in the ChemProt cor-
pus, where an impressive improvement of 7.58% in F1-score
was achieved from the previous best SOTA (27).

Recent work in BioRE has been involved in the develop-
ment of deep neural network architectures thanks in part to
semi-supervised methods that allow large labelled datasets to
be generated without the need for manual annotation (28).
Progress in the development of supervised BioRE deep learn-
ing algorithms has been limited by the availability of large
manually annotated corpora. Distant supervision techniques
offered a solution to this problem by automatically generating
large datasets with the trade-off of introducing some amount
of noise. The idea of distant supervision for BioRE was first
proposed by Craven & Kumlien (29) and later extended to
RE in general by Mintz et al. (30) who framed the distant
supervision assumption that if two entities are known to have
a relationship, such as in KBs, sentences that contain these
entities ‘might’ express this relation. The simplest applica-
tion of distant supervision would be to label as true relations
sentences that contain the two entities of interest and are
part of a triple in a KB. This naïve approach is prone to
introducing noise in the labelling process, such as in cases
when the relation is not expressed in certain sentences even
though these entities are present. Research later focused on
reducing the noise impact of the datasets generated by dis-
tance supervision. In multi-instance learning (MIL), instances
with the same entity pairs are grouped together into bags
with the assumption that at least one instance in that bag
is expressing the true relation. Zeng et al. (31) implemented
MIL for RE by considering each instance in a bag individu-
ally where the model learns to maximize the probability of
which instance in that bag most likely corresponds to the bag
class label, given the current model parameters during train-
ing. The same authors also developed a novel architecture
known as a piecewise CNN (PCNN) which uses piecewise
max pooling instead of the conventional max pooling. This
was shown to achieve better performance in RE as it bet-
ter preserves important signals by separately pooling three
different segments for a given vectorized sentence encoding,
rather than pooling the whole vectorized sentence encoding
in one go, as what happens in max pooling (31). The MIL
PCNN architecture was later further improved by the inclu-
sion of a selective attentionmechanism by Lin et al. (32). Their
model allows the inclusion of all instances in a bag rather than
the single most representative instance, weighted by an atten-
tion mechanism that increases the weight of relevant instances
in the bag. Beltagy et al. (33) used both a distantly super-
vised dataset and a smaller manually annotated dataset for
their RE task. They noted that the models performed best
when trained on both datasets simultaneously. Q. Dai et al.
(34) took a different approach and used joint learning of two
tasks—knowledge graph completion and RE, by sharing the
attention mechanism between the two models, which resulted
in significant improvements compared to previous approaches
used in a gene-disease BioRE task. Pre-trained language model

approaches, such as BERT have also been applied to MIL by
aggregating the resulting instance-level vector representations
by selective attention to give bag-level representations. Soares
et al. (35) demonstrated that this type of MIL coupled with
the addition of entity markers that encode for directionality
of the relation, achieved better overall performance than the
approach taken, Q. Dai et al. (34) using the same dataset.

Methodology
Pipeline overview
The pipeline developed follows a typical RE pipeline with sep-
arate NLP tasks (refer to Figure 1 for a visual representation
of the whole pipeline). The pipeline can be broken down as
follows:

Data acquisition
The documents used were in the form of English
abstracts obtained from PubMed/PubTator (www.ncbi.nlm.
nih.gov/research/pubtator/). The PubTator Application Pro-
gramming Interface (API) was used to obtain raw abstract
texts from PubMed as well as metadata related to the
publications and annotations of various biomedical enti-
ties. As for the gene-antibiotic resistance facts, these were
obtained from CARD (https://card.mcmaster.ca/) and UniPro-
tKB (www.uniprot.org/).

Named entity recognition and named entity normalization
PubTator was used to extract gene and species mentions from
the documents. A custom-built dictionary of gene identifiers
and antibiotic terms was also used to increase the number of
entities detected. NENwas done by linking genes to UniRef50
IDs, antibiotics to MeSH term IDs and bacterial species to
NCBI taxonomic identifiers.

Dataset generation
A silver standard corpus was generated using distant supervi-
sion which was later used to produce training, validation and
prediction datasets. An additional manually annotated test-
ing (holdout) dataset was also produced for evaluation of the
final models.

RE
RE was carried out using deep-learning models. Once trained,
the models were evaluated on the holdout dataset.

Prediction of resistance genes
The best performing model was applied on abstracts contain-
ing H. pylori gene and antibiotic mentions. This was used to
further validate the prediction outputs.

Study datasets
Abstracts
English abstracts were obtained by querying PubMed
(https://pubmed.ncbi.nlm.nih.gov/) using: ‘((“drug resistance
bacterial”[MeSH Major Topic]) NOT (“review”[Publication
Type])) AND (antibiotic OR antibacterial OR antimicro-
bial AND gene and resistance NOT Review[ptyp]) AND
(Drug Resistance, Microbial[Mesh] AND “Bacteria/genetics”
[Mesh] NOT (Review[ptyp]))’. Additionally, all literature

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/2022/2022/baab077/6520791 by TU

 D
ublin user on 15 June 2022

https://www.ncbi.nlm.nih.gov/research/pubtator/
https://www.ncbi.nlm.nih.gov/research/pubtator/
https://card.mcmaster.ca/
https://www.uniprot.org/
https://pubmed.ncbi.nlm.nih.gov/


4 Database, Vol. 2022, Article ID baab077

Figure 1. Complete flowchart of the developed pipeline which is divided as data acquisition on the left and data processing on the right.

PMIDs—PubMed IDentifiers; NER—Named Entity Recognition; NEN—Named Entity Normalization.

referenced in CARD and all publications mentioning genes
linked to the Gene Ontology (GO) (http://geneontology.org/)
term for ‘response to antibiotic’ in UniProtKB using the query
‘goa:(“response to antibiotic [46 677]”) taxonomy: “Bacteria
[2]”’ were included. The obtained list of publication iden-
tifiers (PMIDs) was then used to obtain a total of 61 219
abstracts from PubTator.

Knowledge bases
The CARD and the UniProt KBs were used to obtain all
known gene/protein–antibiotic resistance relations. All entries
in CARD are manually reviewed and are of high quality.
UniProtKB contains both manual (Swiss-Prot) and automat-
ically annotated (TrEMBL) gene entries. Moreover, UniPro-
tKB is linked to several other biomedical databases including
the GO. Linking to GO terms can occur both through man-
ual curation and automated inferences. For the scope of this
paper, all manual and automated entries were included in
order to increase recall of known genes with responses to
different antibiotics at the cost of including false relations.
However, only those genes that explicitly stated which antibi-
otics were involved in their resistance were kept, which helped
to keep possible false relations to a minimum. This informa-
tionwas obtained from the ‘Function [CC]’ field of UniProtKB
which often contains references linking to publications stating
those assertions.

Dictionaries
The NER system developed was based on dictionary searches
of all known gene identifiers and antibiotics. A list of bacte-
rial gene identifiers (gene symbols, ordered locus names and
open reading frame codes) was generated from UniProtKB
which resulted in 31 146 310 unique entries. The dictionary
of antibiotics was generated by extracting all antibiotic terms
found in CARD. Several additional antibiotic entities were
manually added by the additional of plurals (e.g. carbapenem
giving carbapenems), and the addition of other terms of rele-
vance such as ‘multidrug’ and ‘multi-drug’, which themselves
are not antibiotics but are terms used to refer to resistance to

multiple types of antibiotics. These amounted to a total of 405
antibiotic entities.

Generation of a silver standard corpus
NERwas carried out by using the annotated output of PubTa-
tor using a custom dictionary-based approach for genes and
antibiotics. Genes were normalized to their UniRef50 clus-
ter IDs which refer to clusters where the protein sequences
of each gene member in that cluster have a 50% sequence
identity with the seed sequence of the cluster. By using the
UniRef50 IDs, genes that are highly similar in their sequence
(and consequently functionality) and that could have been
referred to with different gene identifiers in the literature, can
still be grouped together. For example, the gene rdxA found
in Helicobacter acinonychis is also found in H. pylori where
it is referred to as HP_0954. By using their UniRef50 ID
‘UniRef50_O25608’, both homologous genes can be linked
together. Similarly, in order to reduce the granularity of
antibiotics in downstream tasks, these were linked to their
respective main antibiotic category as found in CARD. For
instance, the antibiotic ‘carbapenem’ was normalized to ‘beta-
lactams’ since it forms part of this group. All sentences
with a gene and antibiotic mention were extracted using the
rule-based sentence segmentation ‘sentencizer’ in the spaCy
v.2.3.2 python package (https://spacy.io/). A total of 29 935
unique sentences were obtained that had at least one gene
and one antibiotic mention. To increase the dataset quality,
both short sentences having character lengths of less than
25 and long sentences with character lengths of more than
600 were removed. From these sentences, 81 889 candidate
gene-antibiotic relations were extracted. Extracted candidate
relations that were present in the KBs were labelled as ‘rela-
tion’ while those that were not present in the KBswere labelled
as ‘NA’. It is reasonable to assume that not all possible gene-
antibiotic resistance facts are present in the KBs used. This has
the implication that multiple gene-antibiotic relations that are
true but not present in the KBs will be incorrectly labelled as
‘NA’ (false negatives). To reduce incorrectly labelling these
cases in the training datasets, only those candidate relations
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Table 1. Description of the different dataset subsets used for model training

Dataset code Dataset description
Training counts (% positive
labels)

Validation counts
(% positive labels)

SINGLE Candidate relations from sentences containing only a single
candidate relation

8828 (89 %) 1528 (88 %)

MULTI Candidate relations from sentences containing only multiple
candidate relations

37 002 (69 %) 8351 (54 %)

MULTI_LIMITED Candidate relations from sentences containing multiple relations
with the genes belonging to a maximum of 2 UniRef50 cluster
IDs and the antibiotics belonging to a maximum of 2 different
antibiotic groups

28 961 (87 %) 4712 (81 %)

FULL All candidate relations from all sentences 45 830 (73 %) 9879 (60 %)

having gene entities present in the KBs were considered for
labelling, while the rest were removed. Additional filtering
was required to prevent several false negatives. While in the
literature the term ‘multidrug’ (which is detected as an antibi-
otic entity in the developed NER module) can be used to
refer to resistance to several antibiotics, this proved difficult
to link in KBs where an explicit relation of a gene-multidrug
resistance was not present. Thus, candidate relation pairs
extracted from texts having genes paired to ‘multidrug’ were
removed since a number of them could possibly be labelled
incorrectly as ‘NA’. The only exceptions were cases where a
candidate relation containing ‘multidrug’ was explicitly found
in the KBs, which usually were found in UniProtKB. These
were kept and labelled as ‘relation’.

Generation of additional datasets
Several extracted sentences contained more than one antibi-
otic and gene candidate relation. These sentences were
expected to be more difficult for the models to learn mean-
ingful patterns from than sentences with a single candidate
relation. To test this, several different training and validation
sets were produced to study the impact of the different types
of data subsets used on the models’ performances. Table 1
describes the different datasets generated to train the models.

The train/validation split was achieved by keeping all
sentences extracted from abstracts published in the period
2018–20 as part of the validation sets, and the rest as the
training sets. An additional testing (holdout) dataset wasman-
ually annotated by an expert in antibiotic resistance using
the prodigy (https://prodi.gy/) annotation toolkit, using 600
randomly selected candidate relations obtained from unique
sentences not present in the training and validation datasets,
of which 541 were used following further manual inspec-
tion. When grouped by gene-antibiotic entity pairs (using the
gene UniRef50 ID and the antibiotic main group ID) the test-
ing dataset consisted of 186 bags with the ‘relation’ label
and 235 bags with the ‘NA’ label (see Table 2). To validate
the predicted outputs, a prediction dataset was generated by
obtaining a list ofH. pylori genes fromUniProtKBwhich were
then used to extract all sentences having genes with the same
UniRef50 IDs as the H. pylori genes. To discover new rela-
tions, only candidate relations that were not present in the
KBs were kept in the final prediction dataset. This amounted
to a total of 4976 candidate relations.

RE methods
The implementations of the deep learning models in the Open-
NRE v0.1 (https://github.com/thunlp/OpenNRE). python

Table 2. Summary of holdout dataset

Dataset grouping Relation NA

Single-instance 235 (43 %) 306 (57 %)
Multi-instance (bags) 186 (48 %) 203 (52 %)

Table 3. Summary of deep learning models used

Model code Model type

PCNN Piecewise Convolutional Neural Network (PCNN)
with pretrained word2vec word vectors

BIOBERT BioBERT uncased base model with pretrained
weights with entity markers

BAG_PCNN Multi-instance learning PCNN using pretrained
word2vec word vectors and with instances having
the same entity pairs grouped in bags.

BAG_BIOBERT Multi-instance learning BioBERT uncased base
model with pretrained weights and with instances
having the same entity pairs grouped in bags.

package were used for this task. A total of 4 different model
configurations were used (see Table 3). Refer to Supple-
mentary Appendix A for additional details of the model
parameters used.

The PCNN models are based on the implementations
of Zeng et al. (31) with piecewise max pooling that
showed increased performance for RE tasks compared to
conventional max-pooling, while the pretrained BioBERT
(https://github.com/dmis-lab/biobert) model was based on the
implementation of Soares et al. (35) that uses additional entity
markers to help the model increase attention on the entities of
interest. Both multi-instance and single-instance models were
tested to compare their performance on the different datasets
since multi-instance models are known to generally perform
better in noisy datasets. The output layer of all models was a
fully connected layer that outputs a single value using a sig-
moid function to normalize the result between 0 and 1. This
score was then used to label examples based on the thresh-
old of 0.5 where examples are labelled relation if the score
was≥0.5 and NA if the score was < 0.5.

The PCNN neural networks required word vectors as
inputs from the texts. To this end, the word2vec pretrained
embeddings of Zhang et al. (22) were used. Since these word
embeddings are very large and did not fit in memory with the
hardware available, the pretrained embeddings were reduced
to include only the top 1millionmost frequent tokens. The use
of both the pretrained word2vec word embeddings and the
pretrained BioBERT model weights allowed the introduction
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Figure 2. Single-instance vs multi-instance RE.

Figure 3. Number of publications related to antibiotic resistance till Q1 of 2020.

of additional rich information that would have otherwise not
been included by simply using the limited datasets obtained
from the generated silver standard corpus.

Evaluation
Evaluation of the trained models was done on the holdout
dataset at the bag-level, to directly compare both the multi-
instance and single-instance level models. Since the single-
instance models do not output a label for a bag, this was
indirectly obtained by first obtaining predictions of all the
instances in a bag and then using the top-scoring prediction
in that bag to specify the bag label, which was the same
approach used by Ray and Craven (36). The evaluation met-
rics used were recall, precision and F1-score. For selecting the
best model, the F1-score was favoured as it incorporates both
precision and recall into a single metric and is robust to label
class imbalance.

Figure 2 shows a representation of model predictions in
single-instance vs multi-instance learning with the former giv-
ing a prediction for each instance and the latter grouping
instances (in bags) with the same entity pairs (genes and

antibiotics) and giving a single prediction for each bag. Dur-
ing training, bags are labelled as ‘relation’ if there is at least
one positive instance, and ‘NA’ if all instances are labelled as
NA.

Results
Silver standard corpus
Initially a total of 60 490 abstracts related to antimicrobial
resistance were obtained from PubTator using the PubMed
IDs obtained from the PubMed queries, the majority of which
have been published in the last 2 decades. The number of
publications related to antibiotic resistance has seen a large
increase throughout the years (see Figure 3).

From the 60 490 abstracts obtained, 22 915 (38%) con-
tained sentences with both a gene and antibiotic mention.
Sentences containing both entities are sentences that poten-
tially express a relation between the genes and antibiotics
mentioned. This study only considered sentence-level rela-
tions, at the cost of missing any gene-antibiotic relations
which are expressed between multiple sentences. In fact, an
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Table 4. Summary of the abstracts obtained from PubMed related to
antibiotic resistance

Description Statistic

No. of abstracts 60 490
No. of abstracts with sentences having
both gene and antibiotic mentions

22 915 (38 %)

Mean no. of unique genes per abstract 3.6 (± 2.9 SD)
Mean no. of unique antibiotics per
abstract

3.5 (± 2.9 SD)

Mean no. of characters in the abstracts’
text

1485.8 (± 596.1 SD)

Mean no. of tokens in the abstracts’ text 209 (± 85.4 SD)

Table 5. Summary of the sentences having both gene and antibiotic
mentions

Description Statistic

No. of unique sentences 29 935
Mean no. of tokens in sentences 26.9 (± 11.4 SD)
Mean no. of unique gene mentions per
sentence

1.5 (± 1.1 SD)

Mean no. of unique antibiotic mentions per
sentence

1.4 (± 1.0 SD)

Figure 4. Top five gene identifiers and antibiotic combinations found in
sentences.

additional 20 349 (34%) abstracts contained gene and antibi-
otic mentions without ever occurring in the same sentences.
Table 4 below gives a summary of the abstracts obtained with
associated statistics.

After segmenting the abstracts into different sentences, a
total of 29 935 unique sentences were obtained that contained
both gene and antibiotic mentions. On average, these sen-
tences had more than one unique gene and antibiotic mention
(see Table 5).

Several sentences contained combinations of the same
genes and antibiotics. These represented well-studied genes
that are known to cause antibiotic resistance. Figure 4 illus-
trates the top five gene identifiers and antibiotic combinations
found in these sentences, all of which are known to be true
relations of genes that cause resistance to the specified antibi-
otics in CARD. This is no surprise since genes and antibi-
otics which co-occur multiple times in different sentences
and publications would be expected to have some sort of
relation.

All possible combinations of gene and antibiotic men-
tions found in the different sentences were all candidate
relations. Each sentence could have multiple candidate rela-
tions depending on the number of possible combinations of
gene and antibiotic entities present. The example below was

Table 6. Summary of candidate relations obtained from sentences con-
taining both gene and antibiotic entities

Metric Score

Precision 0.87
Recall 0.63
F1-score 0.73

Table 7. Evaluation of the rule-base method used for generating the silver
standard corpus using the holdout dataset

Description Statistic

No. of candidate relations 81 889
No. of unique candidate relations 11 625
No. of candidate relations related to H. pylori
genes

4976

No. of unique candidate relations related to H.
pylori genes

1434

obtained from PubTator and illustrates a sentence having two
candidate relations which in this case were positive relations.

PMID: 32335280
Sentence: OBJECTIVES: This study aimed at identifying and
characterizing oxazolidinone resistance genes cfr and optrA in
Enterococcus isolates.
Entities: (crf—Gene), (optrA—Gene), (oxazolidinone—Antibiotic)
Candidate relations: <crf, oxazolidinone>, < optrA, oxazolidi-
none >

A total of 81 889 candidate relations were obtained from
all sentences, out of which 4976 were identified as being
related to H. pylori. Table 6 contains summary statistics for
the extracted candidate relations.

The quality of the silver standard corpus was evalu-
ated using the manually annotated holdout dataset (refer to
Table 7). A degree of false-positives was expected to be found
since this dataset was automatically generated, but the cost
of introducing false-positives was balanced by the huge ben-
efit of achieving a larger dataset that would not have been
possible by manual annotation, since the process is very time-
consuming and labour-intensive. The silver standard corpus
contained only already known relations that are found in
KBs. The supervised models developed improved upon this by
learning patterns from examples in the silver standard corpus
that were applied to detect novel relations that are currently
not present in the KBs used to generate the silver standard
corpus.

KB
Known gene-antibiotic relations (facts) were obtained from
the CARD and UniProt KBs. These amounted to 42 380
unique facts when considering all gene identifiers and antibi-
otic names, and 2455 unique facts when considering Gene
UniRef50 IDs and antibiotic groups (refer to Table 8).

Model evaluations
Table 9 shows the evaluation metrics for the different deep-
learning models trained on the different training datasets.
The single-instance models (BIOBERT and PCNN) were eval-
uated on bag-level predictions to be directly comparable
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Table 8. Summary of knowledge bases composition of genes, antibiotics
and associated facts

Description Statistic

No. of unique facts (gene identifier and
antibiotic name)

42 380

No. of unique facts (gene UniRef50 ID and
antibiotic group)

2455

Gene identifiers
‘No. of unique gene identifiers’ 35 905
‘Mean no. of associated antibiotics with

each gene identifier’
1.2 (± 0.5 SD)

‘Mean no. of associated antibiotic groups
with each gene identifier’

1.1 (± 0.4 SD)

UniRef50 Clusters
‘No. of unique UniRef50 Clusters’ 2147
‘Mean no. of associated antibiotics with

each Uniref50 Clusters’
1.6 (± 1.2 SD)

‘Mean no. of associated antibiotic groups
with each Uniref50’ ‘Clusters’

1.1 (± 0.6 SD)

Antibiotics
‘No. of unique antibiotics’ 121
‘No. of unique Antibiotic groups’ 35

to the multi-instance models. Overall, the BIOBERT mod-
els achieved the highest F1-scores for all datasets except
for the model trained on the SINGLE dataset, where the
BAG_BIOBERT model achieved a slightly higher F1-score
than the other models trained on the same dataset. The
rest of the models trained on the SINGLE dataset failed to
achieve a meaningful decision boundary and simply classified
all examples as ‘relation’, achieving the equivalent F1-score of
a co-occurrencemodel. BERT-basedmodels are well known to
achieve SOTA performance in various tasks and are also seen
to perform generally better than PCNN based models for this
task. The multi-instance models achieved slightly higher pre-
cision scores than the single-instance models, which in turn
achieved higher recall scores. Moreover, the single-instance
models performed better than the multi-instance models in
all cases (when excluding the models trained on the SINGLE
dataset). The best performing multi-instance model was the
BAG_BIOBERT model trained on the SINGLE dataset with
an F1-score of 0.68. The BIOBERT model trained on the
MULTI dataset achieved the highest F1-score of 0.74 which
was 0.01 points higher than that of the same model trained
on the FULL dataset and was the best performing model
overall having achieved 0.09 points higher than the baseline
co-occurrence model.

Prediction of H. pylori genes associated with
antibiotic resistance
To further validate the pipeline, we applied it to extract
gene-antibiotic relations for H. pylori. From the 4976 candi-
date relations, 3369 were predicted to contain true relations
(67.7%). All these candidate relations were not present in
the KBs used at the time of writing. The number of unique
gene-antibiotic relations amounted to 956 out of which 750
(78.5%) were not found in sentences obtained from abstracts
of publications studying H. pylori, suggesting that these
relations have not been directly studied in association with
H. pylori. However, this was still limited by mentions in
the abstracts and does not exclude the possibility of these

Table 9. Holdout dataset metrics of all models tested on different datasets

Dataset and
model used for
training Precision Recall F1-score

Co-occurrence
(bag level)

0.48 1.00 0.65

FULL
BAG_BIOBERT 0.62 0.55 0.58
BAG_PCNN 0.65 0.56 0.60
BIOBERT 0.59 0.95 0.73
PCNN 0.55 0.98 0.70
MULTI
BAG_BIOBERT 0.61 0.62 0.62
BAG_PCNN 0.62 0.63 0.63
BIOBERT 0.60 0.95 0.74
PCNN 0.56 0.97 0.71
MULTI_LIMITED
BAG_BIOBERT 0.65 0.66 0.66
BAG_PCNN 0.61 0.66 0.63
BIOBERT 0.56 0.94 0.70
PCNN 0.52 0.99 0.68
SINGLE
BAG_BIOBERT 0.55 0.88 0.68
BAG_PCNN 0.48 1.00 0.65
BIOBERT 0.48 1.00 0.65
PCNN 0.48 1.00 0.65

relations being mentioned in the main body of other publi-
cations studying H. pylori.

Most relations obtained were associated with beta-lactam
antibiotics, followed by peptide and aminoglycoside antibi-
otics (see Figure 5). The relations that were not extracted
from studies involving H. pylori were mostly obtained from
those studyingEscherichia coli—a highly researched organism
that is used for a multitude of different experiments, including
antibiotic resistance experimentation (see Figure 6).

The predicted relations can be represented as a network
graph (see Figure 7). In such a graph the nodes represent
genes and antibiotic groups. An edge between the two repre-
sents a predicted antibiotic resistance relation. The antibiotic
groups had several different edges connecting them to indi-
vidual genes. In turn, each gene could be connected to several
different antibiotics groups if it confers resistance to multi-
ple antibiotic groups. The average degree of edges connected
to the antibiotic group nodes was found to be 24.2 with the
highest degree of 151 achieve by the beta-lactam antibiotic
node and the lowest of 1 by the pleuromutilin and the pro-
thionamide antibiotic groups. For individual antibiotic group
subgraphs refer to Supplementary Appendix B.

Negations
Associations between genes and antibiotic resistance occurred
either as absence of genes that cause resistance (associa-
tion via absence) or presence of genes that cause resistance
(association via presence). In either case, an association is
present. Frommanual reviewing of sentences, whenever nega-
tion occurred, it was used to indicate cases of association
via absence or complete lack of an association. Using the
python package negspaCy v.1.0.0 we obtained estimates for
the prevalence of negations in the training dataset as being
7.6% and 5.0% for positive (relation) and negative (NA)
samples respectively and in the case of the prediction dataset

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/2022/2022/baab077/6520791 by TU

 D
ublin user on 15 June 2022



Database, Vol. 2022, Article ID baab077 9

Figure 5. Number of predicted gene-antibiotic resistance associations linked to H. pylori for the top 10 antibiotic groups.

Figure 6. Top 10 bacterial species which were the main organism understudy in publications mentioning genes linked to H. pylori.

as being 9.7% and 8.2% for positive (relation) and nega-
tive (NA) samples respectively. Thus, the negation prevalence
estimates in both the training and predictions were low. In
the case of the predictions, certain negated sentences were
incorrectly predicted as having an association such as:

PMID: 16953176
Prediction: relation
Text: ‘… we discovered no relationships between iceA geno-
types and functional dyspepsia or duodenal ulcer, nor between
clarithromycin resistance and iceA genotypes.’

However, other negation sentences were also correctly
predicted as having no relation:

PMID: 28328947
Prediction: no relation (NA)
Text: ‘Although it was not resistant to ciprofloxacin, the kdsD
mutant shared many phenotypic characteristics with the CipR
mutant…’

Moreover, cases of negation expressing association via
absence were correctly predicted:

PMID: 28533243
Prediction: relation
Text: ‘Synergistic effects were observed in strains harboring no
ramR gene and a mutated tet(A), with an 8-fold increase in the
tigecycline MIC…’

Analysis of results
While RE has been studied for various biomedical tasks it
has not been investigated in the field of antibiotic resistance
research. Instead, several studies take a different approach by
utilizing gene/protein sequence data obtained from genomic
sequencing, with more recent approaches employing machine
learning and deep learning to predict similar genes that have
the same antibiotic resistance phenotype (37). RE of gene-
antibiotic resistance relations has unique challenges. First and
foremost, there is a lack of gold standard corpora of annotated
datasets that can be used to train and evaluated high-quality
models. In this study this problem was tackled using distant
supervision which produced an automatically labelled silver
standard corpus dataset. Fortunately, there are a few KBs
that contain gene-antibiotic relations that can be used for such
purpose. However, distant supervision introduces noise in the
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Figure 7. Network graph of all predicted gene-antibiotic group relations for antibiotic resistance in H. pylori, with blue nodes represent the antibiotic
groups and red nodes represent the individual genes.

labelling process. Several different RE approaches and models
have been proposed throughout the last decade to tackle the
noise problem in distant supervision, such as multi-instance
learning (MIL) that uses bags as model inputs instead of sin-
gle instances. From the results obtained, the MIL models
used in this study performed poorly during evaluation (see
Table 9). In fact, the multi-instance models (BAG_BIOBERT
and BAG_PCNN) obtained lower holdout dataset F1-scores
on all training datasets, compared to the single-instance mod-
els (when excluding the SINGLE dataset). One possible reason
why these models performed worse could be due to the rela-
tively small dataset sizes used. A small dataset is challenging
for a complex model to learn from, such as the relatively
more complex multi-instance models, especially when consid-
ering that SOTA performance of these models was observed in
datasets with hundreds of thousands to millions of examples
(e.g. see 34).

To further reduce the impact of noise, several different sub-
sets of the original full dataset were used to train different
models to see if any subset would perform better. This was
driven by the assumption that certain examples in the dataset,
such as sentences containing multiple gene and antibiotic enti-
ties, were more likely to be mislabelled via distant supervision
than sentences with a single mention of a gene and an antibi-
otic entity. Sentences with multiple different antibiotic and
gene entities were highly prevalent (see Table 1 MULTI vs
SINGLE dataset sizes) which made the task of RE signifi-
cantly harder. For instance, in the example below, there are a
total of 14 candidate pairs out of which 10 were true relations
and four are false relations. The best model used (BIOBERT
trained on the MULTI dataset) classified all as ‘relations’ in
this case, erroneously labelling an additional four relations as
true.

PMID: 15722450
Text: The G262S point mutation distinguishing the metallo-beta-
lactamase IMP-1 from IMP-6 has no effect on the hydrolysis
of the drugs cephalothin and cefotaxime, but significantly
improves catalytic efficiency toward cephaloridine, ceftazidime,
benzylpenicillin, ampicillin, and imipenem.
True relations: <IMP-1, cephaloridine >, <IMP-1, ceftazidime
>, <IMP-1, benzylpenicillin >, <IMP-1, ampicillin >, <IMP-1,
imipenem >, <IMP-6, cephaloridine >, <IMP-6, ceftazidime
>, <IMP-6, benzylpenicillin >, <IMP-6, ampicillin >, < IMP-6,
imipenem >
False relations: <IMP-1, cephalothin>, <IMP-1 cefotaxime >,
<IMP-6, cephalothin>, <IMP-6 cefotaxime >

The dataset sizes were also suspected to be limiting the
models’ performance. For instance, the BIOBERT model
trained on the SINGLE dataset failed to produce any mean-
ingful decision boundary and simply classified every instance
as a true relation (like the co-occurrence model). The largest
dataset used for training, which was the FULL dataset, con-
tained 55 709 instances. In the field of deep learning this is still
considered as a small dataset size. In fact, in other BioRE tasks
such as protein–protein interactions Hong et al. (38) obtained
480K instances through distant supervision. Unfortunately,
this is simply a function of the number of publications pub-
lished on the topic tackled for the RE task, which in this case
is much higher for protein–protein interactions than antibi-
otic gene resistance. The effect of the small dataset sizes was
attempted to be mitigated using pre-trained models and word
embeddings. The fact that nearly all models trained on the
FULL dataset performed slightly worse than those trained
on the MULTI dataset shows that the instances in the SIN-
GLE dataset were being detrimental to model performance,
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since the FULL dataset was simply a combination of both
datasets. It is possible that there was a higher proportion of
noisy labels in the SINGLE dataset compared to the MULTI
dataset.

H. pylori genes related to antibiotic resistance—the
case of metronidazole
To assess the output of the best performing model and its
usefulness in uncovering potentially novel genes associated
with antibiotic resistance, we choose the bacterium H. pylori
for testing the model’s output. All H. pylori genes (includ-
ing genes from other species that are similar in sequence)
that were predicted by the model to be associated with
resistance to the antibiotic group nitroimidazole were man-
ually reviewed. This group was chosen because one of its
members, metronidazole, is a very important antibiotic for
the treatment of H. pylori. Metronidazole resistance can
arise from various mechanisms and while various resistance-
causing genes have been investigated, certain studies ascer-
tain the possibility of other unknown genes contributing to
resistance (39).

Figure 8 shows all predicted genes which were associ-
ated with nitroimidazole resistance, with the edge thickness
being proportional to the number of times this association
was predicted. While some of these genes are well known
to cause antibiotic resistance in the literature, they were
not represented in the KBs used at the time of writing.
The gene frxA has the highest number of predicted rela-
tions with this antibiotic group and in fact is well known
to be associated with metronidazole resistance in the litera-
ture (40). Other well-known genes associated with metron-
idazole resistance are cagA, recA, hefA and vacA all of
which have experimental evidence to indicate this (40). PPI
which in most studies refers to ‘proton pump inhibitor’
and PGM which was used as an abbreviation for metron-
idazole in one study, were incorrectly identified as gene
entities.

The katA gene was extracted from a sentence expressing a
negation in the relation and was also wrongly predicted to be
associated with metronidazole resistance:

Figure 8. Subgraph of the nitroimidazole antibiotic group with predicted
gene relations where the edge thickness is proportional to the number of
times this association was predicted.

PMID: 10543743
DNA transformation, PCR-based restriction analysis, and DNA
sequencing collectively showed that the metronidazole resis-
tance of this strain was due to mutation in rdxA (gene HP0954
in the full genome sequence of H. pylori 26695) and that resis-
tance did not depend on mutation in any of the other genes
that had previously been suggested: catalase (katA), ferredoxin
(fdx), flavodoxin (fldA), pyruvate:flavodoxin oxidoreductase
(porgammadeltaalphabeta), RecA (recA), or superoxide dismutase
(sodB).

Similarly, the def gene was also wrongly predicted to be
associated with metronidazole resistance:

PMID: 21575176
Large divergence was seen in genes related to antibiotics: frxA
(metronidazole resistance), def (peptide deformylase, drug target),
and ftsA (actin-like, drug target).

The rest of the genes all had a single predicted associa-
tion. Manual reviewing of the literature showed that these
genes are mentioned in the main text of publications evaluat-
ing H. pylori metronidazole-resistance but were not detected
in their abstracts (4, 40–47), apart from uvrA, tcdA, porA.
These three remaining genes were found in sentences express-
ing an association with metronidazole in studies concerning
other bacteria:

uvrA

PMID: 2194230
Species under study: Bacteroides fragilis
Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid
pMT100 which made E. coli AB1157 and uvrA, B, and C mutant
strains more resistant to metronidazole, but more sensitive to far
uv irradiation under aerobic conditions.

tcdA

PMID: 26048022
Species under study: Clostridium difficile
All of the metronidazole-resistant strains belonged to tcdA +/tcdB
+ genotype with triple or quintuple drug resistance phenotypes.

PorA

PMID: 15150173
Species under study: Bacteroides fragilis
Mutant strains lacking the genes for flavodoxin and PorA were
less susceptible to metronidazole than the sensitive parent, and
a double flavodoxin/PorA mutant had even less susceptibility
but none of the mutants were as resistant as the spontaneous
metronidazole-resistant strain.

Since these genes have not yet been described to be associ-
ated with H. pylori antibiotic resistance in the literature but
are known to participate in resistance in other species, they are
potential candidates for further lab-based studies involving
H. pylori to verify whether they also cause similar resistance
in H. pylori. Associations do not mean casual relationships,
especially in cases of single studies, but they are drivers of
further investigations. Additional predicted relations can be
viewed in Supplementary Appendix B for the other antibiotic
groups. This case study shows that our pipeline works well in

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/2022/2022/baab077/6520791 by TU

 D
ublin user on 15 June 2022



12 Database, Vol. 2022, Article ID baab077

a real-world scenario by uncovering potentially overlooked
antibiotic resistance genes that have been published in the
literature. While the high false-positive rate does incur addi-
tional work to manually review and filter out, our pipeline
was still able to label several NA relations correctly, which
is still a significant improvement over the alternative of using
a simple co-occurrence model or manual curation, while also
maintaining a relatively high recall rate.

Limitations of the study and future work
Future work needs to tackle the shortcomings mentioned in
the previous sections, namely the development of novel man-
ually annotated gold standard corpora for validating models
and increased dataset sizes used for training. Moreover, there
is a need for developing models better suited for this domain
rather than simply utilizing models that have shown success
in other domains. From the results obtained it appears that in
certain cases there was not enough information conveyed in
the sentences to differentiate between true and false relations
of this type. Since it appears that from the sources used in this
project, the number of training examples is limited to less than
60K, additional information outside the text at the sentence
level is necessary to further improve models’ performance.
One such solution would be to include additional informa-
tion in the form of KB embeddings of the gene and antibiotic
entities. KB embeddings have recently been studied and used
within RE frameworks (34). The Gene Ontology reposi-
tory is a freely accessible KB that contains annotations for
gene functions. By using KB embedding algorithms, the rich
information captured by the KB embedding for a particular
gene and antibiotic could help evaluate whether an antibiotic
resistance relation between the two is possible by consider-
ing the gene’s function and the antibiotic’s mode of action.
Additionally, gene/protein sequence data could also be incor-
porated. The genes and proteins themselves are composed
of nucleotide and amino acid sequences respectively. Many
of these sequences are freely accessible through many online
repositories such as NCBI and UniProtKB. In this project, we
utilized the UniRef50 cluster IDs in order to indirectly capture
additional associations by sharing the associations of individ-
ual gene members with all the members of the cluster. It is
well known that genes that have the same functionality (e.g.
antibiotic resistance) across different species can be homologs
of each other and thus have a degree of sequence similar-
ity. The UniRef50 cluster IDs clusters genes with a sequence
similarity threshold of 50% or greater. Studies have shown
that lower thresholds may be required in the case of genes
conferring antibiotic resistance (37). Moreover, models that
automatically adjust the sequence similarity thresholds to be
used depending on the type of gene/protein sequences have
been already developed and shown promising results (37).
Research in merging sequence models with RE models could
potentially create pipelines with better predictions.

Since the datasets obtained were of relatively small size,
using just English biomedical abstracts as a source, the next
stepwould be to also utilize full publications from theMedline
PMC repository which should significantly increase the size
of the datasets obtained through distant supervision. More-
over, a larger manually annotated dataset would also help
in developing better-performing models. Studies have shown
that training a model on a combined distantly annotated and
manually annotated dataset can increase performance (33).

These larger datasets would also benefit from an additional
exploratory analysis of the distribution of sentence structures
and similarities, that would provide further insights to help
filter sentences with true relations and improve the quality
of the silver standard corpus. Furthermore, while the final
holdout set was manually annotated, this study relied on a
distantly annotated validation set to monitor model perfor-
mance during the actual training. Using a manually annotated
validation set would have allowed for more reliably tuned
and optimized models since a manually annotated validation
set would have resembled real-world examples much more
than the noisy distantly annotated one. Finally, the lack of
past research that could be used for comparison and evalua-
tion of our method is a limiting factor of this study. Through
this work and the generation of the silver standard corpus,
we hope to inspire further studies on this particular REtask
and the creation of online tools similar to that Ren et al.
(48) that would be beneficial for future research and curation
efforts.

Conclusion
To the best of our knowledge, this paper presented the first
attempt of applying BioRE for genes that are associated with
antibiotic resistance using biomedical abstracts. We developed
a newNLP pipeline for biomedical RE of gene-antibiotic resis-
tance relations, that included data acquisition via PubMed
and PubTator, NER using PubTator complimented with cus-
tom dictionaries and RE through distant supervision using
current SOTA models. Since no pre-annotated corpora of
gene-antibiotic relations were available, a silver standard cor-
pus was developed by using the facts present in the CARD and
UniProt KBs. Multiple models were then trained using differ-
ent subsets of this dataset. Multi-instance learningmodels that
are known to perform well in other domains when using dis-
tant supervision were shown to perform underwhelmingly for
the task of gene-antibiotic resistance RE. Shortcomings and
future improvements to model performance were discussed.
Nevertheless, the BioBERT model, trained on the MULTI
dataset subset of the silver standard corpus, was found to
perform well having an F1-score of 0.74, being 0.09 points
higher than the baseline co-occurrence model. To further test
the generalisability of this pipeline and the model’s output,
the best performing model was used to predict whether can-
didate gene-antibiotic resistance relations of H. pylori which
were not previously present in the KBs, were true or false
relations. Using the nitroimidazole antibiotic group as a case
study, the predicted genes related to this antibiotic group
were manually reviewed. Out of a total of 28 unique genes,
2 were NER errors, 23 were found in studies concerning
H. pylori that should be included in KBs and 3 genes were
found to be studied for metronidazole resistance in other
organisms only, making them good candidates for further lab-
based experimental studies. From this case study, the pipeline
showed great potential for aiding in the curation process for
KBs/databases such as CARD. Further studies in this direction
are perceived to have the potential to improve upon the results
of this paper.

Supplementary data
Supplementary data are available at Database online.
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Antibiotic resistance mechanisms of clinically important bacteria.
Medicina, 47, 19.

3. Partridge,S.R., Kwong,S.M., Firth,N. et al. (2018) Mobile genetic
elements associated with antimicrobial resistance. Clin. Microbiol.
Rev., 31, e00088–17.

4. Hu,Y., Zhang,M., Lu,B. et al. (2016) Helicobacter pylori and
antibiotic resistance, a continuing and intractable problem. Heli-
cobacter, 21, 349–363.

5. Alsaimary,I., Al-Sadoon,M., Jassim,A. et al. (2009) Clinical find-
ings and prevalence ofHelicobacter pylori in patients with gastritis
B in Al-basrah governorate. Oman Med. J., 24, 208–211.

6. Lauener,F.N., Imkamp,F., Lehours,P. et al. (2019) Genetic deter-
minants and prediction of antibiotic resistance phenotypes in
Helicobacter pylori. J. Clin. Med., 8, 53.

7. Malfertheiner,P., Megraud,F., O’Morain,C.A. et al. (2012) Man-
agement of Helicobacter pylori infection—the maastricht IV/ flo-
rence consensus report. Gut, 61, 646–664.

8. Tshibangu-Kabamba,E., Ngoma-Kisoko,P.D.J., Tuan,V.P. et al.
(2020) Next-generation sequencing of the whole bacterial genome
for tracking molecular insight into the broad-spectrum antimi-
crobial resistance of Helicobacter pylori clinical isolates from the
Democratic Republic of Congo. Microorganisms, 8, 887.

9. Alcock,B.P., Raphenya,A.R., Lau,T.T.Y. et al. (2020) CARD 2020:
antibiotic resistome surveillance with the comprehensive antibiotic
resistance database. Nucleic Acids Res., 48, D517–D525.

10. Jia,B., Raphenya,A.R., Alcock,B. et al. (2017) CARD2017: expan-
sion and model-centric curation of the comprehensive antibiotic
resistance database. Nucleic Acids Res., 45, D566–D573.
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