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ABSTRACT
Human-robot studies are expensive to conduct and difficult to con-
trol, and as such researchers sometimes turn to human-avatar in-
teraction in the hope of faster and cheaper data collection that
can be transferred to the robot domain. In terms of our work, we
are particularly interested in the challenge of detecting and mod-
elling user confusion in interaction, and as part of this research
programme, we conducted situated dialogue studies to investigate
users’ reactions in confusing scenarios that we give in both physical
and virtual environments. In this paper, we present a combined
review of these studies and the results that we observed across
these two embodiments. For the physical embodiment, we used a
Pepper Robot, while for the virtual modality, we used a 3D avatar.
Our study shows that despite attitudinal differences and technical
control limitations, there were a number of similarities detected
in user behaviour and self-reporting results across embodiment
options. This work suggests that, while avatar interaction is no true
substitute for robot interaction studies, sufficient care in study de-
sign may allow well executed human-avatar studies to supplement
more challenging human-robot studies.

CCS CONCEPTS
• Human-Computer Interaction → Avatar; • Human-Robot
Interaction→ Social Robot.

KEYWORDS
human-computer interaction, human-robot interaction, confusion
detection, wizard-of-oz, pepper robot, avatar, user engagement

1 INTRODUCTION
Due to the relative ubiquity of computer mediated communication
across different application domains e.g. online learning system
[9], healthcare assistants [10], virtual reality (VR) games [23], and
social VR [4]), the expectations for multimodal interactive systems
have grown in diversity and sophistication in the last decade. This
is true for virtual online agents, but also extends to expectations for
interaction with physical, or more precisely social, robots [9, 28]. A
key trend in the development of communicative systems has been
an assumption of multi-modality, i.e., that our artificial interlocutors
should have access to multiple modalities. However, the research
community is well aware that the multimodal communicative skills
of even state-of-the-art systems are still very limited.
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Whether our interaction partner is a social robot, a 3D avatar, or
even just a chat window, our interaction partners are assumed to
share similar conversational skills and abilities across these embod-
iments. This has benefits in terms of acclimatisation of technology
across interaction partner types, but can also lead to frustration
and disappointment when such alignment is not present in practise.
This though is not just true in terms of users expecting systems
to behave in uniform ways across device type, but may also be
present in the expectations that systems – and their designers –
make in terms of the behaviour and reaction of users to systems
across different embodiment types.

This potential for mismatched expectations is in some case ex-
acerbated by the needs of researchers and industrial developers.
Collecting real world data in HRI studies for the investigation of
particular phenomena is extremely challenging. Experimental hard-
ware systems suffer malfunctions, recruiting participants or users is
challenging and often expensive, and even finding appropriate real
world spaces to perform tasks can be difficult. These problems were
significantly heightened during the COVID-19 pandemic when it
became in many ways unfeasible to perform human-robot interac-
tion studies. For reasons such as these numerous researchers have
over the last four decades frequently turned to human-computer
interaction studies, and particularly the use of avatars and chat
systems, to conduct studies in the hope of bootstrapping studies
of HRI. Invariably these efforts have been based on an assumption
that such data is as ecologically valid in one embodiment type as in
another so long as the same basic interaction modalities are being
used, e.g., speech and cameras. While this assumption may have
been true at one point, due to the relative novelty of all interactive
systems interfaces, the ubiquitous nature of avatars and basic con-
versational systems in contrast with everyday social robotics, has
arguably laid waste to this assumption.

In light of the above argument, in this paper we present a con-
trastive analysis of the reactions of users across the physical robot
and avatar embodiment types in order to investigate if it remains
feasible to leverage human-avatar data for human-robot interaction
when the focus of these studies is on communication rather than
for example physical cooperation. This study has been executed
with respect to our core focus of interest which is the modelling and
mitigation of user confusion in social robotics tasks. For the avatar
virtual embodiment option, we analyse data from a previously pre-
sented 3D avatar study. For the physical robot we present for the
first time our study using a humanoid Pepper robot to execute a
similar multimodal situated conversational study. Our comparison
across these two studies aims to answer the following two ques-
tions: (1) To what extent can we rely on human-avatar interaction
(HAI) studies as a substitute for human-robot interaction (HRI) data
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collection efforts? (2) Does the choice of embodiment type (HAI
vs. HRI) have a significant effect on users perceptions and mental
state with respect to our central challenge of confusion detection?

2 RELATEDWORK
Before presenting details of the studies, we begin with a review of
related work with a brief review of some notable studies on HCI
and HRI, differences seen between embodiment types, and some
work related to our case study on confusion detection.

2.1 Embodied Interaction
While Human-Computer Interaction (HCI) covers a vast number of
physical system types as well as different goals of interaction, we are
particularly interested in situated interaction where a user commu-
nicates with an embodied agent which is typically a physical robot,
but can also be embodied virtually in our study. In recent years,
avatars have begun to become quite prominent as a mechanism in
intelligent virtual environments [26]. Compared to other means
of interaction, the avatar is presumed to be a more natural com-
munication mechanism which can evoke strong agent-as-partner
style interactions through their use of human-like facial features
and expression [16], vivid body language, and even specific per-
sonalities. Moreover, the avatar has remarkable benefits over a
speech-to-text-only interaction [16].

In the case of developing human-robot interaction, the challenge
of combining multiple modalities in addition to the purely spoken
channel has been long recognised. A social robot should have the
ability to recognise affect, emotion, or engagement by observing
the behaviour of the interlocutor, such as tracking the gaze, the
head pose, facial expressions, gestures, or biological behaviours
(e.g. heartbeat, electroencephalography activity (EEG) and body
temperature) [1, 7, 11, 12, 24]. Indeed, increasing the affordance of
human-like conversation in HRI has in particular been the subject
of increased research over the last two decades [5, 6].

Multiple studies have commented on the relative properties of
communication with physical robots versus other types of agents.
Generally, it has been observed that people have more interactions
with physical robots than with virtual agents or telecommunication
agents in a number of different application areas [19, 34]. Mean-
while, McNamara and Kirakowski [25] revealed that customers
or users can be affected to varying degrees in their overall user
experience, due to perception of different levels of social presence
across HCI and HRI. In Herath et al. [15]’s study of social pres-
ence, they approached HCI and HRI experiments with the same
conversational engine but with keyboard and monitor used for the
HCI studies, and a Nao robot used for the HRI studies. In post-
questionnaires of participants, in particular, the “UTAUT” (Unified
Theory of Acceptance and Use of Technology Questionnaire [14]),
it was shown that HRI trended more strongly with the measures of
animacy and likeability than with the HCI, while on the measure
of usefulness and trust, the HCI experience was rated higher than
in the HRI case. The authors believed that the HCI performance
is better than the HRI performance in specific tasks or domains,
but that the HRI performance was better than the HCI for the ex-
ploratory and open-ended conversation domains. Also of note, in
a cooperative blockstick HRI / HCI task, participants were found

to be more engaged and better enjoyed playing with a physically
embodied robot compared to playing with a virtual embodied ani-
mated avatar as the physical robot was informative and creditable
[17]. On the contrary, Kidd and Breazeal [17] also found that, such
as verbal and role-playing tasks, there is no significant difference
in user attitudes between users who interact directly with a robot
and who play with the robot video-displayed remotely in different
room.

2.2 Confusion Detection
For HRI to become more natural, it is essential that systems be
tuned to adapt to the user’s mental state during task progression.
Confusion is a mental state that is characterised by bidirectional
emotion, which means it can be a positive engagement in a con-
versation prior to a learning event, but it can also be correlated
with negative states (such as boredom or disengagement) in an
interaction [8, 21]. This more negative view on confusion looks on
it as an epistemic emotion [22] which is associated with blockages
or impasses in the learning process when trying to learn something
new or trying to clarify problems. There have been multiple formal
definitions of confusion within the HCI and psychology literature
[2, 20, 32], and within the HCI literature there have been multiple
studies into confusion detection [13, 18, 36]. However, the majority
of study in this area has concerned online learning systems, and
little work has focused on general engagement or task-orientated
interaction in HRI.

Building on a newly defined framework for confusion study, Li
et al. [21] conducted a study specifically to investigate the manifes-
tation and detection of confusion states in the context of HAI. For
this HAI confusion detection study, a web application framework
was developed; this framework includes a real-time web application
and an avatar application based on that presented by Sloan et al.
[33]. Data were gathered from 19 participants (8 males, 11 females)
from six countries. The study used a three-task design in which
users were presented with confusing or non-confusing variants
of particular tasks and were assessed using video analysis, speech
analysis, and assessment of feedback forms.

3 STUDY AND DATA
Studies discussed in Section 2 show that physical robots may have
greater social attribution and enjoyment than artificial virtual avatars
[3], but that there is little systematic investigation of differences in
performing experiments across different embodiments. Given this
and our particular focus on the challenge of confusion detection
in interaction, we have built on our earlier study by conducting
a follow-up HRI study with similar study goals and methods to
investigate the cross embodiment differences observed. Here, we
present an overview of the methods used for conducting the HRI
study, and in the following section a systematic companion of our
study results across the two modalities.

4 STUDY DESIGN
In our earlier HAI study, we made use of aWizard-of-Oz (WoZ) [29]
mechanism to conduct user studies and collect data, which we later
subjected to a series of manual, semiautomatic, and fully automatic
methods to analyse the behaviour of participants [21]. As with the
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Figure 1: HRI Laboratory Setup

HAI study, for our HRI study, we used a semi-spontaneous one-to-
one WoZ conversation between the Pepper robot and a participant.
Each participant took less than 15 minutes in total, with 5 minutes
for the task-centred part of the conversation. At the beginning of
each experiment, participants received consistent instructions and
consent forms as with the HAI study. The study itself consisted of
three tasks that the participant had to try to complete – these could
be presented in confusing or non-confusing configurations. After
completing the tasks, these participants were asked to complete a
post-questionnaire. At the end of the experiment, each participant
was invited for a 3-minute interview with the researcher.

Regarding the dialogue design, two conditions are defined for
the corresponding appropriate stimuli. Condition A is related to
confusion of the stimuli, while condition B is that the stimuli were
designed so that participants could complete straightforward tasks.
We designed a set of conversations with three tasks for the two
studies: task 1 was a logical problem; task 2 was a word problem;
while task 3 was a maths problem. For each task, we designed
two conversations with the two conditions with four patterns [21]
(complex-simple information, contradictory-consistency informa-
tion, insufficient-sufficient information, and feedback).

For the HRI experimental design, we prepared two experiment
rooms (see Figure 1): the experiment room and the wizard room.
Only the Pepper robot and a participant are in the experiment
room. There are two HD webcams setup: Webcam 1 was used to
record high quality views of the participant’s facial expression;
while Webcam 2 is further back, but again behind the Pepper ro-
bot to record participants’ body language. The left picture shows
the actual laboratory setup of the experiment. We also provided
additional lighting for the participants to ensure high-quality video
was collected. In the wizard room, the researcher controlled the
robot using a WoZ4U platform [30], which is an open source web
application that provides a graphical user interface (GUI) for the
wizard to control the Pepper robot. We integrated our experiment
scripts and the Pepper robot behaviours on the WoZ4U. For ex-
ample, participants can scan a feedback QR code on the Pepper
tablet; designed conversation scripts with the animated speech of
the Pepper robot (e.g., happy, embarrassed, wave, etc.).

5 DATA ACQUISITION AND ANALYSIS
In the HRI study, there were 29 participants (16 males, 12 females, 1
not stated) with different educational and ethnic backgrounds. The

total HRI dataset includes audio data that were recorded from the
Pepper’s microphone, two facial videos, one from the Pepper robot’s
camera, and another one Webcam 1, and another posture video.
The current analysis mirrors the approach taken with the earlier
HAI study. Specifically, frame data were extracted only from facial
video data. The post-study questionnaire included 10 questions
using a 5-level Likert scale. Three questions were about the three
tasks, including confusion scores for the two conditions. The other
three questions were specific positive feedback and the other three
questions were toward negative feedback. The last question is about
whether the participants would abandon interactions with the robot.
Generally, we found that there were minimal data collection issues
in the HRI study compared to our earlier HAI study, since the
researcher controls all variables in the HRI setup.

We applied several feature analysis algorithms to facial frame
data and survey feedback to investigate the different behaviour
of participants between Condition A and Condition B, and subse-
quently analysed the results of these variables between the current
HRI study and the previous HAI investigation. From the facial
frame data, we extracted indicators of emotion, eye gaze, and head
pose. For emotion detection, we used a visual emotion detection
algorithm [31] that was used to estimate 7 target classes (Neutral,
Happy, Sad, Surprise, Fear Anger, and Disgust). For eye gaze esti-
mation, a state-of-the-art eye gaze estimation model was applied.
This algorithm is trained on more than one million high-resolution
images with different gazes in extreme head poses [35]. For head-
pose estimation, we applied the model presented by Patacchiola
and Cangelosi [27]; This work uses CNNs, dropout and adaptive
gradient methods trained on three novel datesets [21].

6 RESULTS
To usefully compare the results of the HAI and HRI, we repeat
relevant portions of the results of the HAI study here in addition to
our new HRI results. In the case of emotions detected, in the HAI
experiment, the predicted results in Condition A corresponding
to the four classes of negative emotions (anger, disgust, fear, and
sadness) are stronger than in the case for these classes in Condition
B. In contrast, the number of predicted results for the two positive
emotions (happiness and surprise) in Condition A is less than in
Condition B. In the HRI experiment, we can see that the results of
the five main predicted emotions are slightly similar to the HAI ex-
periments, except for the two special surprise and neutral emotions
(see Table 1).

Considering gaze estimation, through an independent-samples
t-test of results from the HAI and HRI studies, we found that there
is a significant difference in the sum of absolute values of pitch
and yaw across the two conditions for HAI and HRI experiments,
respectively. In the case of head pose, the independent-samples
t-test result shows there is a significant relationship between the
sum of absolute values of three angles (pitch, yaw, and roll) and two
conditions for the HAI study; while there is no significant difference
between the sum of absolute values of these three angles and two
conditions for the HRI study.

Regarding subjective self-reporting scores on 48 participants, we
analysed the self-estimated confusion scores of each participant,
and the user attitude towards the embodiment option (avatar vs.
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Table 1: The Result of emotion estimation grouped by two conditions in HAI and HRI

Modality Condition Anger Disgust Fear Sadness Happiness Surprise Neutral Overall

HAI A 262 282 136 677 702 65 1799 3923
B 77 165 57 480 858 95 1502 3234

HRI A 40 62 1511 59 91 67 92 1922
B 19 46 1503 57 151 48 102 1926

social robot). For both HAI and HRI options, a significant difference
was found between confusing and non-confusing tasks only in the
case of Task 3 (maths problems). There was no significant correla-
tion in the confusion scores for task 1 (logic problems) and task 2
(word problems) for conditions A and B in the HAI or HRI studies.
However, what is more interesting is in the analysis of the user ex-
perience questions: this included an examination of whether there
is a significant difference between the average scores of negative
feedback of the user’s experiences in the two studies; an exami-
nation of whether there is a significant relationship between the
average scores of positive feedback of the users’ experiences in the
two studies; and finally, an examination of whether there is a sta-
tistically significant relationship between the score of participants
wanting to abandon these conversations and these two studies.

We found that there is a significant difference between the av-
erage negative feedback scores in the two studies (𝑀 = 2.77, 𝑆𝐷 =

0.85 avatar,𝑀 = 1.91, 𝑆𝐷 = 0.62 robot), 𝑡 (88) = 5.5547, 𝜌 − 𝑣𝑎𝑙𝑢𝑒 <

0.05. Regarding the second question, there is a significant differ-
ence between the average positive feedback scores of user ex-
periences and the two modalities (𝑀 = 3.33, 𝑆𝐷 = 0.92 avatar,
𝑀 = 4.09, 𝑆𝐷 = 0.54 robot), 𝑡 (88) = −4.72, 𝜌 − 𝑣𝑎𝑙𝑢𝑒 < 0.05.
Lastly, the result indicated that there is also a significant difference
between the scores for which participants want to abandon the
conversations with the two studies (𝑀 = 3.21, 𝑆𝐷 = 1.34 avatar,
𝑀 = 1.34, 𝑆𝐷 = 0.62 robot), 𝑡 (88) = 8.35, 𝜌 − 𝑣𝑎𝑙𝑢𝑒 < 0.05.

7 DISCUSSION
Based on these results, we observed that when participants are
confused, the changes in their emotions and gaze movements after
stimuli from the different conditions of the HAI study are similar
to those of the HRI study, but that the changes in the range of head
pose angles with different stimuli from the different conditions of
the HAI study are different from those of the HRI study. Further-
more, participants prefer to engage in interaction with the robot
platform rather than with the avatar in this research study and are
more willing to continue to interact with the robot platform than
with the avatar in this research study.

While these basic observations can be made, it is very notable
that, while we attempted to unify our studies across embodiment
types, it is hard in practise to achieve this. At a very technical
level, our human-avatar studies were less controlled as users could
participate from home – unlike in the case of our human-robot
studies. Generally, there was a very low abandonment rate for the
HRI study, and we can also ensure the same quality of the dataset
that we collected.

Meanwhile, it should be mentioned that during the 3-minute
post-task interview, in the HAI experiment, the expectation of
interaction from many participants was found to be much higher

relative to the actual capabilities of the avatar. However, from the
feedback of the participants in the HRI experiments, they felt fresh
and curious talking to the robot, so most of them enjoyed and
engaged in this HRI experiment. Also, they were surprised that
the Pepper robot has high-tech social interaction skills when the
Pepper robot vividly interacts with them.

8 CONCLUSION
In this paper, we present a brief overview of a human-robot interac-
tion study that we conducted to compliment and validate an earlier
human-avatar interaction study that we conducted with equivalent
tasks and feedback mechanisms. Although we attempted to ensure
that experimental conditions held well across the avatar and robotic
setup, in practise this was challenging to ensure. This, combined
with post-interview discussions which suggested that users had
relatively speaking greater disappointment with the avatar than
robot, should suggest that these two platforms for interaction are
not compatible when it comes to behaviour and data collection.
Nevertheless, we found that there are similarities between the HAI
and HRI studies based on the analysis results in the multimodal
dataset that we collected: the different behaviour of the participants
when they are confused or not confused is somewhat consistent in
the HAI and HRI experiments in the eye-gazing estimation, emo-
tion estimation, and self-reported confusion scores with induced
confusion states. Therefore, we can see that the HAI and HRI em-
bodiments have their own strengths and weaknesses; and that these
two embodiments can potentially replace each other for the case
study of confusion detection subject to high levels of control to
bridge the gap between interfaces.
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