
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles

2022-05-20

Graph-based Heuristic Solution for Placing Distributed Video Graph-based Heuristic Solution for Placing Distributed Video

Processing Applications on Moving Vehicle Clusters Processing Applications on Moving Vehicle Clusters

Kanika Sharma
South East Technological University, kanika.sharma@waltoninstitute.ie

Bernard Butler
South East Technological University, bernard.butler@setu.ie

Brendan Jennings
Technological University Dublin, brendan.jennings@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/creaart

 Part of the Digital Communications and Networking Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
K. Sharma, B. Butler and B. Jennings, "Graph-based Heuristic Solution for Placing Distributed Video
Processing Applications on Moving Vehicle Clusters," in IEEE Transactions on Network and Service
Management, doi: 10.1109/TNSM.2022.3173913.

This Article is brought to you for free and open access by
ARROW@TU Dublin. It has been accepted for inclusion in
Articles by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License
Funder: Science Foundation Ireland

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/creaart
https://arrow.tudublin.ie/creaart?utm_source=arrow.tudublin.ie%2Fcreaart%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=arrow.tudublin.ie%2Fcreaart%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=arrow.tudublin.ie%2Fcreaart%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=arrow.tudublin.ie%2Fcreaart%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

1

Graph-based Heuristic Solution for Placing
Distributed Video Processing Applications on

Moving Vehicle Clusters
Kanika Sharma (Member, IEEE), Bernard Butler (Member, IEEE), and Brendan Jennings (Member, IEEE)

Abstract—Vehicular fog computing (VFC) is envisioned as an
extension of cloud and mobile edge computing to utilize the
rich sensing and processing resources available in vehicles. We
focus on slow-moving cars that spend a significant time in urban
traffic congestion as a potential pool of onboard sensors, video
cameras, and processing capacity. For leveraging the dynamic
network and processing resources, we utilize a stochastic mobility
model to select nodes with similar mobility patterns. We then
design two distributed applications that are scaled in real-time
and placed as multiple instances on selected vehicular fog nodes.
We handle the unstable vehicular environment by a), Using real
vehicle density data to build a realistic mobility model that helps
in selecting nodes for service deployment b), Using community-
detection algorithms for selecting a robust vehicular cluster using
the predicted mobility behavior of vehicles. The stability of the
chosen cluster is validated using a graph centrality measure, and
c), Graph-based placement heuristics is developed to find the
optimal placement of service graphs based on a multi-objective
constrained optimization problem with the objective of efficient
resource utilization. The heuristic solves an important problem of
processing data generated from distributed devices by balancing
the trade-off between increasing the number of service instances
to have enough redundancy of processing instances to increase
resilience in the service in case of node or link failure, versus
reducing their number to minimize resource usage. We compare
our heuristic to a mixed integer program (MIP) solution and
a first-fit heuristic. Our approach performs better than these
comparable schemes in terms of resource utilization and/or has
a lesser service latency when compared to an edge computing-
based service placement scheme.

Index Terms—Fog Computing, Vehicular Fog Computing
(VFC), Vehicular Cloud Computing, Intelligent Transport Sys-
tems, Flexible Service Model, Internet of Things, Service Place-
ment, Resource Allocation.

I. INTRODUCTION

The increasing amount of data generated from Internet
of Things (IoT) devices has resulted in isolated sources of
data that are not fused with other data sources and hence
are not fully utilized. On the other hand, the emergence
of powerful machine learning and deep learning algorithms
requires large amounts of data to make accurate inferences.
Most of the surveillance carried out on roads or other public
places is through static cameras that send the collected data

K. Sharma and B. Butler are with the Walton Institute for Information
and Communication Systems Science, Waterford Institute of Technology,
Ireland.E-mail: kanika.sharma@waltoninstitute.ie, bbutler@ieee.org

B. Jennings is with Technological University Dublin (TU Dublin),
Ireland.E-mail:brendan.jennings@tudublin.ie

K. Sharma, B. Butler and B. Jennings are with SFI CONNECT Research
Centre for Future Networks and Communications, Ireland

to the backend server [1]. This approach leads to increasing
operational costs in deploying dedicated hardware as well as
using expensive bandwidth to send this data to the cloud
through dedicated links.

The concept of vehicular fog computing (VFC) [2] is
derived from using the available and under-utilized vehicular
resources, like in-built sensors, processors, dashboard cameras,
advanced onboard units (OBUs), etc., for both crowdsens-
ing and processing data. The VFC paradigm aims to make
computation more efficient by leveraging the processing and
communication capacity of the vehicles, instead of offloading
computation to the edge servers or the cloud [3]. VFC extends
the intelligence of mobile edge computing [4], [5] and fog
computing [6] to the vehicular network, in an attempt to
increase the processing capacity to meet the resource require-
ments for vehicular and infotainment applications. This novel
system of distributed service deployment reduces the traffic
at the core network, saves the network bandwidth in sending
local and contextual data to the cloud, and also reduces end-
to-end latency [7], [8].

VFC also reduces the need for installing infrastructure to
facilitate Intelligent Transport Systems, for improving vehic-
ular flows and reducing congestion, for recording data for
road condition monitoring to detect potholes, accidents, etc.,
and increasing commuter safety, which has been theorized for
more than a decade but has not been implemented [9]. The
use of Roadside Units (RSUs) or edge servers for meeting
the demands of vehicular applications has also been explored,
but it has limitations due to the mobility of vehicles. These
RSUs have limited coverage on the highways and have limited
sojourn time with moving cars. Thus, provisioning services
on RSUs can increase the control cost of service migration
between different RSUs. On the other hand, the OBUs on
self-driving cars have evolved in their processing capability
and their ability to communicate with neighboring vehicles
and keep open connections with edge or cloud servers. These
vehicles also have a full System on a chip (SOC), for example,
a Tesla car has 4 LPDDR4 RAM chips, with complete
redundancy to have failure resistance for any system on board
[10].

Many recent studies on VFC have focused on latency-
sensitive applications that are safety-critical [11], [12]. In this
study, we look at a very novel use-case of making opportunis-
tic vehicle clusters in urban sections of the city and leveraging
the resources on these vehicles to collect and process data.
Most of the existing works on VFC either use very simplistic

2

mobility models [13], like considering a straight road segment
with constant speed or consider only parked vehicles [3].
Many works also consider taxis and buses as potential fog
nodes as their trajectories are more predictable [14]. We,
however, want to focus on using the embedded sensors on any
vehicle whose owner is willing to contribute the data. Another
problem is that many existing works on VFC consider a static
and composite service template, which is not suitable for the
dynamic vehicular environment. We introduce distributed and
flexible services that can be adapted according to the resource
requirement, are suitable for the heterogeneous and distributed
resources on vehicles, and can be reconfigured easily. Instead
of optimizing only computation or communication resources,
we jointly optimize both link and processing costs. To select
vehicular nodes that are more probable to stay together, we
introduce a vehicular node selection scheme and a mobility-
aware service placement heuristic.

For this system to operate properly, we first introduce a
distributed, graph-based service model where each component
or task can be scaled to multiple task instances based on the
amount of data collected. We also leverage the mobility pattern
of vehicles, stuck in high density/congested traffic to estimate
the ongoing availability of these vehicles to perform tasks.
The distributed services we propose are scaled in real-time and
deployed on the vehicle cluster such that we get a robust initial
placement with less need to reconfigure services. Our model
can support many applications including sensing applications
like pedestrian detection to understand human engagement
with coffee shops, gas stations, and other locations. The
collected data can also be used to detect congestion and study
usage patterns of roads, as part of building Smarter cities[15].

In this paper, the following contributions are made to
introduce a distributed and scalable service model that can
be effectively placed on a group of closely moving vehicles
by leveraging their historic mobility patterns:

• A mathematical formulation leveraging the mobility-
awareness of infrastructure and a novel and distributed
service model is introduced. The scaling and placement
of the services are modeled as a bi-objective, constrained
optimization problem with an objective of efficient com-
munication and computation resource utilization.

• Instead of focusing on widely researched latency-
sensitive applications, we introduce a novel use case of
initiating opportunistic clusters to collect and process
data, using just macroscopic vehicular density data. We
study how traffic reaches congestion levels at different
occupancy rates and other traffic patterns. We then cal-
ibrate our microscopic mobility model using the real
vehicle density data. The mobility model is built from
our extensive work on studying predictability of vehicular
flows and estimating computation and communication
capacity of vehicle clusters in our previous work [16].

• We introduce a service model where each application is
made of inter-related tasks and each task can also be
scaled to multiple task instances, to increase resilience
in the service in case of node or link failures. Two such
applications are profiled in the paper to understand the
resource usage of such applications.

• We then leverage a community-detection-based node
selection scheme to study the collective availability of
vehicular nodes in a cluster. We then introduce an effec-
tive graph-theory-based heuristic that promotes placing
task instances optimally within the vehicle clusters. Our
approach outperforms an MIP, and a baseline, first-fit ap-
proach. Our approach also results in lesser service latency
compared to mobile edge computing-based placement.

The paper is organized as follows: Section §2 highlights
the related research undertaken on task offloading in VFC
and vehicular crowdsensing (VCS). Section §3 introduces the
terminology used in the paper and gives a detailed system
model. In section §4, we specify the two distributed application
types considered in this work. We then give details on the
network topology and distributed service model along with
the notations used for the mathematical modeling. Section
§5 covers the service scaling and placement constraints and
the infrastructure constraints. The section also details the
mobility model and the objective function of the constrained
optimization problem. Section §6 describes the community-
detection-based node selection for cluster formation and the
graph-based service placement heuristics. Section §7 has a
detailed evaluation of the introduced technique compared to
the MIP and first-fit solution. We also show the performance of
our schemes through service time and the state of the selected
nodes in a cluster over time. The paper is concluded in section
§8 where future work has also been suggested.

II. RELATED WORKS

We discuss the existing task offloading and service place-
ment schemes in VFC models. We highlight the challenges
in implementing task offloading in a dynamic vehicular envi-
ronment and discuss existing schemes addressing these chal-
lenges.

A. Task offloading in Vehicular Fog Computing

Task offloading schemes in VFC are widely researched and
are designed to minimize processing latency [17], without
compromising the quality-of-service (QoS) [18] also focusing
on efficient resource allocation [19]. Most of these works focus
on utilizing the available mobile edge computing infrastructure
for carrying out compute-intensive tasks. Liu et al. [20] have
introduced a three-layer service architecture for offloading ve-
hicular applications in vehicular fog, fog server, and the central
cloud. To solve the Probabilistic Task Offloading problem
they introduce an alternating direction method of multipliers
(ADMMs) and particle swarm optimization (PSO), to divide
the problem into multiple unconstrained sub-problems that
iteratively reach an optimal solution.

Liang et al. [21] suggest the use of public transport facilities
like buses and taxis as fog nodes to reduce the randomness
of vehicle movement with fixed bus trajectories. To solve the
interruption problem caused by vehicle mobility as well as the
problem of delay and reliability loss, they introduced a low-
latency information distribution scheme for VFC. They study
network topology dynamics to evaluate and predict connection
status between fog nodes and the adjacent vehicles. Qiao et al.

3

[22] takes advanced driver assistant systems and autonomous
driving as the use case for a distributed and collaborative task
offloading scheme with a guarantee of low communication
and computation latency. They work on removing redundant
computation tasks based on task similarity and computation
capacity. Vehicles are partitioned into the task computing sub-
cloudlet to provide underutilized communication and com-
putation resources. Vehicles with lesser similarities are par-
titioned into the task offloading sub-cloudlet to assign their
computation tasks to edge infrastructures. In our previous
work, we first introduced the problem of service mapping
and service placement in vehicular networks as an Integer
Linear Program (ILP) with an objective of efficient network
bandwidth utilization [23]. We have built on our previous work
to introduce a more realistic mobility model, utilised a more
complex service model, differentiating between tasks based on
their functionality, and focused on specific applications in this
paper.

Lee et al. [3] introduced a reinforcement learning-based
resource allocation model for the continuous and high di-
mensional action-space in a VFC environment. They use a
simple vehicular mobility model for parked vehicles and a
realistic mobility model based on Zurich traffic traces [24] to
determine vehicles arriving and departing from parking lots.
Iqbal et al. [25] developed a blockchain-based, distributed
reputation ledger to identify malicious vehicles. They then
propose a framework to handle peak workloads using nearby
fog vehicles and the RSUs. The reputation score is awarded to
the vehicles upon task completion to enable a decision model
for task assignment.

B. Crowdsensing in vehicular networks

VCS utilizes the available sensing capability of vehicles and
their mobility pattern to accomplish sensing tasks. The aim of
a VCS system is different from a VFC system but has common
challenges like modeling vehicular mobility and the need for
an incentive mechanism for the VCS system. Zhao et al. [26]
derived a long-term strategy to build a deep reinforcement
learning-based incentive mechanism. They model the vehicle
dynamics via a dynamic radio channel with a selection of sine,
piece-wise linear, and Markov-chain channel models. Edge
devices are also used for detecting parking space availability.
Grassi et al. [27] presented the feasibility of deploying image-
based, machine learning techniques at the network edge.
They use smart cameras placed on dashboards to capture
information related to parking availability without any human
intervention. Zhu et al. [28] focuses on the challenging task
of finding parking availability for autonomous vehicles. They
collect parking information from crowdsensing and use VFC
to estimate parking availability and inform client vehicles.
Zhu et al. [29] also introduced a context-aware task alloca-
tion scheme to jointly optimize Quality of Information and
processing latency.

C. Role of VFC and VCS

As pointed out in this section, there is a lot of active research
in the field of VFC and VCS for many different application

Preferred cluster
trajectory

Rejected cluster
trajectory

Cluster
Initiation

Cluster Re-
initiation

Fig. 1: Vehicle Clusters form, but membership changes over time.
Clusters accept service chain placement requests from RSUs and
perform service chain scaling and placement.

Type 1 Type 2 Type 3 CN

Type 1 TI

Type 1 TI

Type 1 TI

Type 1 TI

Type 1 TI

Type 2 TI

Type 2 TI

Type 2 TI

Type 2 TI

Type 3 TI

Type 3 TI

Type 4 TI

CN

Type 1 Type 2 Type 4 CN

Scaling

Type graph for two services:

Instance graph:

Fig. 2: Service model depicting tasks and their inter-dependencies.
The Type graph is scaled to the Instance graph based on the resource
state of the vehicle cluster.

profiles and with different performance metrics as an objective.
Many of these works focus on latency-sensitive applications.
Our work focuses on a novel idea of utilizing opportunistic
vehicle clusters for data collection and processing. Instead of
focusing on the vertical scaling of services to the edge or
fog nodes, and to the Cloud, we focus on horizontal scaling
and placement of distributed video collection and object-
detection applications on nearby vehicles. We use very limited
macroscopic vehicular density data to deploy resilient services
with efficient resource utilization.

III. SYSTEM MODEL

This section first introduces the terminology used in the
paper. The section also gives details of the proposed system
model for selecting a well-connected cluster and managing the
placement of the services on the vehicle cluster.

4

A. Terminology

• Vehicle Clusters: As vehicles slow down at intersections
or busy urban routes, we recruit a group of vehicular
nodes that are likely to stay together, based on their
previous mobility pattern. Each vehicular node subscribes
to the service of leasing its resources and has a cluster
cohesion probability (CCP) based on its microscopic
mobility pattern. The vehicle clusters are represented as
undirected graphs. The nodes in the vehicle cluster are
referred to as vehicular nodes or nodes interchangeably
in the paper.

• Control Node (CN): The CN coordinates the vehicle
cluster(s) and routes messages to/from clients/RSUs to
other nodes in the cluster. The CN is selected based on its
betweenness centrality, which is a metric popularly used
in social network analysis. For any node, the betweenness
centrality is calculated as the fraction of the shortest paths
between any pair of nodes in the cluster that pass through
that node. From a network point of view, the node with
the highest betweenness centrality is a critical point of
information flow in a cluster.

• RSUs: The RSUs are edge devices with much higher
resource capacity relative to the vehicle nodes. The RSU
receives requests from clients and initiates a vehicle
cluster at an intersection. The RSU selects both vehicle
cluster and the CN using the historic mobility patterns
of the registered vehicles that is also stored at the RSU.
The CN maintains the state of the cluster and sends the
metadata of unplaced tasks to the RSUs.

• Task: Tasks are the smallest unit of a video processing
service. Based on the application, tasks could have dif-
ferent functionality like data filtering or data compres-
sion. Tasks could also be more complex and processing-
intensive like local object detection. The application types
and the example tasks are described in the application
section (Secion IV-A). Each task is scaled to multiple
task instances (TIs) to handle multiple sources of data
and to process data streams in parallel. The multiple TIs
also increase the resilience of the service against node
failures (when vehicles leave) and link failures (when
connectivity is lost).

• Service: Each service constitutes different types of tasks
with varying functionality. The linear chain of tasks is
called the Type graph. Each task can have multiple TIs
as depicted in Fig.2. We place two different services on
the vehicle cluster, with some shared tasks (Type 2) to
promote the reuse of TIs. This ‘Type graph’is scaled to
an ‘Instance graph’by both the ILP solver and the service
scaling and placement heuristic proposed in this paper.
Instead of the linear chain of tasks, the service model
can also be modeled as a directed acyclic graph (DAG).
Our service placement scheme ensures that the data flow
passes through all tasks and the data is processed before
it reaches the CN or RSU. We ensure this via the in-
network processing constraint (modeled as Eq. 2). The
DAG service model can be used when the data flow does
not need to pass through each task. Theoretically, the

RSU CN Vehicle
ClusterClient

Resource
update

Service
Request

CN
selection

Linear chain of
tasks, min & max

#TIs

Processed data

Resource
request

Actor

[if placement
is successful]

Processed data
& unplaced TIs

Processed data
& unplaced TIs[if placement

is unsuccessful]

Cluster
Selection

Linear chain of
tasks, min & max

#TIs

Processed data

Fig. 3: Sequence diagram depicting the order of interactions between
the client, the RSU, the CN and the vehicle cluster.

DAG service model can be considered for the service
placement model by changing service-level constraints.

The service placement is managed with the coordination of
the cluster’s CN and the RSUs. The RSU receives requests
from clients to deploy services. The client could be a one-off
vehicle node moving along with the cluster or a surveillance
request from traffic authorities. In this paper, we assume that
the service request is received and decomposed by the RSU
in the form of a linear chain of tasks. As depicted in Fig.1,
the RSU detects the presence of vehicles that have previously
subscribed to a brokerage service and hence are prepared to
lease their resources for service provisioning. The RSU also
stores and updates the database of the mobility patterns of
these vehicles. Each vehicle has a probability of taking a
certain trajectory based on its historic mobility pattern. Based
on the preferred trajectories of the cluster, each vehicle node
has a certain probability of following the cluster trajectory.
A weighted graph is created where each link is weighted by
the probability of two nodes staying together for a duration
of time, called the CCP. Based on this graph, the most well-
connected cluster is selected, and the vehicular node with the
highest connectivity is elected as the CN, based on a graph
centrality measure.

Once the vehicle cluster and the CN are selected the process
of service placement begins. The process of service placement
and the order of interactions between the client, the RSU, the
selected CN, and the vehicle cluster is represented in Fig.3.
The RSU sends the linear Type graph to the CN in the form
of docker images. The CN also collects the updated resource
information from the vehicular cluster. Initially, the minimum
number of instances of each task is placed on the cluster, to
process multiple data flows in parallel. Based on the number of

5

Video format
converted, image

enhanced
Sensed data

Sensor data
 captured and

collected
Type 1 Type 2

ROI-based Compression

Type 3

RSU

Video preprocessing

Sensor data
 captured and

collected
Type 1 Type 3 Type 4

RSU

Type 2

Video preprocessing Frame extraction
Pre-trained CNN
local detection

The location and
count of detected
objects is sent to

RSU/CN

Key frame extraction:
Uses frame difference

method to subtract
adjacent frame. Key
frames extracted and

sent for detection

Information
flow of the
application:

Fig. 4: Two types of applications of chain length 3 and 4.

video TIs and the amount of processing required, the heuristic
scales to more processing TIs by requesting TI images from
the CN. If there are no more potential nodes left to place
new TIs, the collected data is sent to the nearest RSU with
the remaining TIs in the linear chain left to be placed for
processing. The RSU can request a re-initiated cluster to place
the remaining processing TIs on it.

IV. MODEL

A. Application Type

We consider a linear chain of video collection and pro-
cessing tasks. We place multiple video collection TIs to
increase the scale of video collection which results in better
accuracy for object detection applications. To process multiple
video streams, we scale all the processing tasks to multiple
TIs, to utilize the limited processing capacity of vehicles.
The multiple TIs also increases the resilience of the service
in a dynamic vehicular network where mobility of vehicles
increases node and link failures. We present two distributed
services that follow our distributed service model:

1) Data Collection service: For this kind of service, an
initiated cluster acts as “moving sensors” and only pre-
processing and compression is carried out at the cluster.
Most of the application-specific processing is carried out
on more powerful edge computing nodes at RSUs. As
an example, we take an application where Type 1 is a
video capturing TI, Type 2 is a video pre-processing TI.
Type 3 is a video compression TI.
To profile this application, at Type 1 TI, we first capture
the video using OpenCV. At Type 2 TI, the video is pre-
processed using Gaussian blur and simple thresholding.
For Type 3 TI, the images are compressed using RoI-
based image compression. The task function, techniques
and commonly-used algorithms are tabulated in Table I
for this data collection application.
This collected data is sent to the mobile edge for an ap-
plication that requires specific data over time like traffic
monitoring and traffic management. Similarly, a large
amount of data can also be collected for applications that
require inference from more sophisticated Deep Neural
Network (DNN) models that demand powerful cloud
computing devices. For example, multiple 3D road maps

TABLE I: TASK FUNCTION, TECHNIQUES AND COMMONLY-USED
ALGORITHMS FOR APPLICATION 1 TASKS

Task Type Task Function Task Techniques Algorithms
Type 1 Real-time video capturing

Type 2 Video preprocessing Image Enhancement,
Noise reduction

Gaussian blur,
Simple thresholding

Type 3 Video compression non RoI-based compression
RoI-based compression, Huffman encoding

TABLE II: TASK FUNCTION, TECHNIQUES AND
COMMONLY-USED ALGORITHMS FOR APPLICATION 2 TASKS

Task type Task function Task techniques Algorithms
Type 1 Video collection

Type 2 Video pre-processing Image enhancement/
Noise reduction

PCA tranformation
Noise removal using
Wiener filter

Type 3 Feature Extraction
Regularization/
Dimensionality
reduction

Independent
Component
Analysis

Type 4 Object detection
Local, pre-trained
model for object
detection

Faster R-CNN, YOLO, tinyYOLO

can be generated from multiple sources of video data.
This kind of application requires real-time and local
information. Our service model sends pre-processed
and compressed data, reducing the overhead of data
transmission, for the data-intensive map generation task
that can then be executed on mobile-edge computing
devices.

2) Object Detection application: The aim of building
this distributed object detection application is to deliver
a prompt and communication-efficient data processing
service leveraging the resources available in moving
vehicles. For this kind of application, all the processing
of the collected data is executed on the vehicle cluster.
Such applications have local context and scope, for
example, using object-detection techniques to identify
vulnerable pedestrians and alerting drivers in the vicin-
ity. The Type 1 TIs for this application are of video
collection type. The Type 2 TIs are the same pre-
processing TI as Type 2 in application I. Type 3 TI is
a frame extraction type that transforms video stream to
images based on an extraction rate. For slow-moving
pedestrians, the extraction rate is low which reduces the
computation intensity of the task. For Type 4 TI, we use
a pre-trained object detector called YOLO [30] which
determines if the object of interest is in the frame, from
a detectable object pool. The task function, techniques
and commonly-used algorithms are summarised in Table
II for this application type.
If the Type 4 TI finds unknown objects, the images can
be transmitted to back-end servers, which can thereby
update the inference model of local detectors, but the
global knowledge and cloud involvement are not in
the scope of the applications we are defining for local
detection.

We use the linear model described in [18] to determine the
memory usage for video streaming. For the case of video
streaming the memory usage ranges between 110-220 MB.
The data size for each frame is given in the range of 2.7-33.7
KB for five different video resolutions (1920 * 1080, 1280
* 960, 960 * 720, 640 * 480, 320 * 240). For the object
detection application, we ran pre-trained YOLOv3 [30] model

6

on an Linux OS system with 8GB RAM and i7-6500U running
at 2.50 GHz and got a processing latency of 7.417 seconds.
The detection has 16-18% of CPU usage. We also ran Tiny
YOLOv3 and got a processing latency of 0.31277 seconds with
lower confidence scores. The detection uses 4-5% of CPU and
can be used on resource constrained on-board units for non-
safety related applications that can afford lower accuracy.

B. Network Topology

The network topology consists of moving nodes that halt
at an intersection and the roadside unit (RSU) that receives
application requests from clients. The cluster is initiated by
selecting nodes based on their mobility pattern and resource
availability. This information of vehicles willing to lease their
resources is stored and updated at the RSU. A vehicle cluster
is initiated by detecting a density of I nodes subscribed
to provide their onboard computing and camera resources.
The RSU represented as IRSU collects mobility and resource
information from the I subscribed nodes. The mobility of each
node is presented as the CCP, represented as pI , which is the
probability of the node staying at a particular road segment in
a time interval from [t1, t2]. We also derive the communication
link probability between two vehicles as the joint CCP for two
vehicles to communicate over a period of time [t1, t2].

The selected cluster of vehicles is represented as a directed
graph G(V,E). Each node of the graph i ∈ V has K resource
types. The available processing capacity, for each resource
type k, is represented as Ck(i). Each node i has a probability
of staying on a road segment for a time period [t1, t2],
represented as P(t1,t2). The CCP of the RSU is equal to 1
as it is stationary and is always available from the viewpoint
of mobility. The available link capacity between two nodes i1
and i2 is represented as B(i1, i2) Kb/s. The joint probability
between two nodes i1 and i2 depicts the probability of both
nodes to stay together in a road segment for a period of time
[t1, t2] and is represented as Pt1,t2(i1, i2). This is crucial for
placing TIs that depend on other TIs for input data for task
completion.

C. Distributed Service Model

The service model is composed of tasks, denoted as sp, each
with a different processing function or type, represented as p.
Due to the limited resource capacity in each vehicle node, a
service is composed in a distributed manner as a linear chain
of tasks. Due to the dynamic nature of the vehicular network,
each task can be scaled to multiple TIs, represented as spj
where p represents the type of each TI and j represents the
number of TIs. The number of TIs for each task sp is Nsp and
the maximum number of allowed TIs for each type is given as
Nsmax

p
. The objective of scaling tasks to instances is to increase

the robustness in the service model, especially because of the
link and node failure due to the wireless connectivity and
vehicle mobility. The resource requirement of type k for each
task type p is represented as Dkp, where k ∈ {1, 2, 3, 4} for
CPU, memory, GPU and video camera. The incoming flow
from task types sp1

to sp2
is given as F (sp1

, sp2
).

The objective of this optimization is to find nodes that have
a higher probability of staying together over a period of time.
We then place two services of varying chain lengths (3 and
4), as described above. We model the mobile infrastructural
resource constraints and the constraints required for placing a
flexible and scalable service on the infrastructure. We then
optimize resource usage in the service placement on the
vehicular cluster through node and link cost, which is the sum
of processing resources on vehicles and the communication
cost for the data flow between the distributed tasks. The
resource utilization is normalized to total available resources
and weighted by the CCP to take into account the mobility of
vehicle clusters.

V. SERVICE SCALING AND PLACEMENT CONSTRAINTS

We define the service scaling and placement problem as
a constrained optimization problem. We first define the con-
straints for the distributed service scaling, which are given as:

1) Flow capacity constraint: The processing requirement
for a flow from TI sp1j to sp2j is given as C(F (sp1j , sp2j)).
The constraint 1 ensures that each TI has enough processing
capacity for the incoming flow. The constraint is given as:

∀i2 ∈ {1, . . . , I};∑
∀p1,j;p2;p1 6=p2

M(sp2 , j, i2)C(F (sp1j , sp2j)) ≤ C(sp2j)
(1)

where C(sp2j) is the available processing capacity at TI sp2j .
Here, M(sp2

, j, i2) is a binary mapping variable which is 1
when the TI sp2j is mapped to node i2 and is 0 otherwise.

2) In-network processing constraint: Constraint 2 ensures
that the flow is processed at each TI before being sent to
the CN. To ensure that, we calculate the ratio of incoming
to outgoing flow which should be equivalent to the data
processing factor of each TI. The processing factor is given
for each task type p and is given as αp. The constraint is
presented as:∑

∀p,j;

F (spj , s(p+1)j)αp ≤ F (s(p+1)j , s(p+2)j) (2)

where 0 ≤ αp ≤ 1 . The data processing factor is 1 for
forwarding nodes as it does not process the incoming data
flow. The incoming flow from spj to s(p+1)j is given as
F (spj , s(p+1)j). The outgoing flow from s(p+1)j to s(p+2)j

represents the flow that has to be processed at the TI s(p+2)j .
3) Service Scaling constraint: The constraint 3 ensures

that the TIs are scaled to the maximum number of TI specified
for each task type p. This constraint also ensures that there is
at least one TI for for each task type. This constraint is given
as:

∀p Nspmin ≤ Nsp ≤ Nspmax (3)

where Nsp is the number of TI of task type p. The maximum
allowed TIs for the task type p is given as Nspmax and the
minimum number of TIs for task type p is given as Nspmin

which is set to 1 for our model.

A. Infrastructure constraints
The infrastructure constraints ensure the the node and

link placement meets the resource constraints for the service
placement. The infrastructure constraints are given as:

7

1) Node Resource constraint: The resource requirement
for a TI is represented as Dpk where p is the type of task and
k is the resource type where k = 1 is CPU cycles requirement,
k = 2 is memory capacity requirement, k = 3 is video camera
resource requirement and k = 4 is the GPU availability. A
decision variable M(p, j, i) is used if TI spj is mapped to
node i. The node resource capacity ensures that there is enough
available capacity at a node to support a TI spj . The constraint
is given as:

∀i ∈ {1, . . . , I}, k ∈ {1, . . . ,K},
∑
∀p,j

M(p, j, i)Dpj,k ≤ Ck(i) (4)

where Ck(i) is the available capacity at node i for resource k.
2) Bandwidth constraint: The bandwidth constraint en-

sures that the bandwidth requirement between two TIs, given
as F (spj , s(p+1)j), is less than the available bandwidth ca-
pacity over the entire path between two task instances spj
and s(p+1)j . The path between two nodes i1 and in is
a list of bandwidth of variable length. It stores available
capacity over all forwarding nodes between i1 and in, if there
is no direct link between the two nodes and the available
bandwidth link between the two nodes if they are directly
connected. The bandwidth capacity of the path is represented
as path[B(i1, i2), . . . , B(in−1, in)]. We enable this to support
multihop clusters for cases where nodes might not be con-
nected through a direct path but are connected over multiple
hops. The constraint is given as:

∀i1 ∈ {1, . . . , I}; i2 ∈ {1, . . . , I}; i1 6= i2∑
∀p1,j1;p2,j2;p1 6=p2

M(p1, j1, i1)F (spj , s(p+1)j)M(p+ 1, j2, in)

≤ min(path[B(i1, i2), . . . , B(in−1, in)])

(5)

B. Mobility modeling

Each vehicle node has a certain probability of choosing
a road segment based on its historic mobility pattern. The
mobility history for each vehicle node is stored in the RSU
along with the time stamp. We aim to select vehicles with
the highest probability of staying at the selected road segment
which is RSj in our case, depicted in Fig. 5. A transition
probability matrix stores the mobility probability for different
road segments for all the vehicles registered to lease their
resources and participate in the crowdsourcing service. New
vehicles registering for the first time are also added to the
table.

For discovering participating vehicles for the service de-
ployment, the RSU broadcasts probe messages for partici-
pation requests. If already registered vehicles with known
transition probability responds, they are given a priority over
newer vehicles that want to participate. The newest participants
are given the least confidence score. The confidence score is
not issued according to the performance of the deployed task.
It is a simple measure of updating confidence score if the
vehicles follows its historic mobility trajectory. The confidence
score is updated as the number of times the vehicle followed
a preferred trajectory, over the total number of trips registered
by the vehicle. Once the RSU updates its participants list, the
RSU then runs the community detection-based node selection

algorithm on a group of participants with a confidence score
above a pre-decided threshold value.

We consider each road segment to be a Markov state. The
vehicle transitions in the Markov process when moving from
one road segment to the next. The vehicles follow a Markov
memory-less property, wherein the node transitions from state
n to n+1 and is independent of state n-1. We record the
transition of a vehicle from state RSi to RSj as the number
of times a vehicle transition to segment RSj given the vehicle
was at RSi in its previous state. The probability is given as:

RSi

RSk

RSl

RSj

RSn

RSo

RSm

Fig. 5: Mobility modeling for selected road segments at intersections.

Pt1,t2(i){V Sn+1 = RSj |V Sn = RSi}

=
#(RSitoRSj)

#(RSi)

(6)

where [t1, t2] is the time interval selected based on the
traffic state of the selected road segments. If the traffic is in
a free-flow state, the time is chosen to be a 5-minute interval,
and if there is queuing and the road is congested, the time
interval is taken as 10 minutes. These values are inferred from
our detailed experiments based on studying the predictability
of vehicular flows at the Dublin intersection in our previous
work [16]. To make the microscopic model more realistic, we
use the macroscopic data from Transport Infrastructure Ireland
Traffic Data1 to calibrate the microscopic probabilities for each
vehicle at the selected Dublin intersections, using the SUMO
simulator.

C. Objective Function
We use node and link utilization cost as a measure to

analyze the quality of placement of tasks on mobile vehicle
nodes from the point of view of resource utilization. We aim
to minimize the node and link utilization cost which is defined
as:

1) Obj1 Node Utilization Cost: is defined as the ratio of
total used computational capacity to the total available
computational capacity for the service placement. The
ratio is weighted by the CCP of the node. This considers
mobility of nodes rather than placing tasks on nodes
with high processing capacity but with very low CCP
to stay with the other vehicles in the cluster. The node
utilization cost is given as:

NodeCost(i) =
∑
∀i,j,p;

(1− P(t1,t2)(i)).(Dpj,k/Ck(i)).M(p, j, i)

(7)

1https://trafficdata.tii.ie/publicmultinodemap.asp

8

where P(t1,t2)(i) is the CCP of the node with the TI spj
placed on it. As the CCP of a node increases, the cost
of placing the TI on that node decreases.

2) Obj2 Link Utilization Cost: The link utilization cost is
defined as the ratio of total used link capacity to the
total available link capacity. This ratio is weighted by
the CCP of the link. The CCP of the link defines the
joint probability of two nodes to stay together during the
time window [t1, t2]. The link utilization cost is given
as:

LinkCost(i1, i2) =
∑

∀i1,i2;i1 6=i2

(1− P(t1,t2)(i1, i2)).

(F (p1, p2)/
∑

path[B(i1, i2)])
(
M(p, j1, i1).M(p, j2, i2)

) (8)

where P(t1,t2)(i1,i2) is the joint CCP of two nodes to
stay together and path[B(i1, i2)] is a list of available
bandwidth on the path between two nodes i1 and i2
with placed TIs. The total bandwidth is summed over
the path between nodes i1 and i2.

3) Obj3 Chain length/hop count: The number of hops for
the distributed service can have a significant impact on
both communication overhead and service reliability. To
keep the hops between two placed TIs to the minimum,
we make sure to minimize the length of path between
two nodes i1 and i2 with placed TIs. The network
distance between two placed TIs is given as:

∀i1 ∈ {1, . . . , I′(pj)((p+1)j)}; i2 ∈ {1, . . . , I′(pj)((p+1)j)}; i1 6= i2

H(i1, i2) =
∑
∀p1,p2

M(p, j, i1),M((p+ 1), j, i2)

len(path[B(i1, i2)]),
(9)

where H(i1, i2) is the hop count between two nodes i1,
i2 with placed TIs. To minimize the service transmis-
sion latency, one can minimize the latency directly by
calculating its value or minimizing the number of hops
in the transmission path as a proxy indicator. The pro-
posed model has been generalized for any application,
with different latency requirements. To keep the model
independent of the nature of the application, instead of
latency, the number of hops in the transmission path
is used as a proxy indicator. In our model we assume
the cost per hop is the same for all services, steering
clear from specific components of end-to-end latency
like decoding time, encoding time, processing time at
the entry or exit of the path.

The multi-objective function aims to minimize Obj1, Obj2,
and Obj3. Each objective is weighted by λ1, λ2 and λ3
such that λ1 + λ2 + λ3 totals to 1 and each objective is
weighted equally (but this can be changed to reflect operational
requirements). The objective function is given as:

min
∑

∀i1,i2;i1 6=i2

λ1H(i1, i2) + λ2LinkCost(i1, i2) + λ3NodeCost(i1)

(10)
where H(i1, i2) is the hop count between two nodes i1, i2
with placed TIs.

VI. MOBILITY PATTERNS OF VEHICLES IN HIGHLY
CONGESTED URBAN AREAS

Even though it is known that vehicular congestion is a
major problem in both urban sections of the cities and busier
freeways, it is crucial to study the mobility patterns of vehicles
to decide in which sections of the city can vehicular clusters
be initiated for data collection and processing. Our service
model requires vehicles to be closely spaced to each other to
deploy the distributed data-dependent applications. Hence, we
strictly focus on very slow-moving vehicles as a high-speed
vehicle cluster would lead to more service failures and require
many service re-configurations, increasing the management
overhead. The traffic congestion is estimated using either
the density or the occupancy of a road segment. Density is
a measured, spatial quantity that represents the number of
vehicles averaged over a spatial distance(per lane or mile),
whereas occupancy is an observed value collected by detectors
[31]. Occupancy is calculated as the percentage of time in
which the vehicles are passing over the detector. We chose
occupancy as a measure to see how closely spaced vehicles are
and at what occupancy do the vehicles become slow-moving
or reach a complete breakdown condition.

0
2 0
4 0
6 0
8 0

0 2 0 4 0 6 0 8 00
2 0
4 0
6 0
8 0

0 2 0 4 0 6 0 8 0

 A v e r a g e
 P W L 2

 L a n e 2
 P W L 2

Sp
ee

d (
mp

h)

 L a n e 4
 P W L 2

O c c u p a n c y (%)

 L a n e 6
 P W L 2

Fig. 6: Speed versus occupancy graph for a detector on the I-405
freeway for seven consecutive days. The data is taken from the
Caltrans dataset [31].

The speed versus flow (number of vehicles passing a detec-
tor) and the occupancy versus flow graphs are standard traffic
theory plots that are commonly used in transport research.
However, we plot the speed versus occupancy graphs to un-
derstand the correlation between how closely spaced vehicles
are and if there is a threshold speed at which vehicles come
to a halt. We take the data from the California Department
of Transport (Caltrans) dataset from detectors on the I-405
freeway, known to be one of the busiest freeways in California
[31]. We plot the speed versus occupancy graphs from a
detector on the freeway. As can be seen in Fig.6, the speed of
vehicles tends to zero for lane 6 from 20% to 40% occupancy,
whereas for lane 4, the speed gets at 10 mph after 50%
occupancy. Similarly, for lane 2, the speed gets lower than
10 mph after 40 % occupancy. We do piece-wise fitting for
the speed and can see a breaking point after which vehicular
speeds stabilizes to slower speeds for all lanes. This highlights
that there are enough vehicles that are closely spaced in busier
road segments, moving at very slow speeds. This also helps
in identifying where and when clusters can be initiated based

9

on the available vehicular occupancy. However, the threshold
speed of vehicles slowing down and congesting is different for
different road sections.

VII. HEURISTIC-BASED SOLUTION

Algorithm 1 Service Placement
Input: LG Linear type graph, Vehicle cluster graph
Input: (ULTypei+1 , LLTypei+1): Upper and lower limit

for number of Type i+1 TI
Output: Successful/Unsuccessful service placement

1: procedure SERVICEMAPPING(LG, V C). The g.c.d. of a and b
2: while Type1 do . For all Type 1 instances
3: for (Type1, CN) ∈ TI pairs do
4: for i ∈ TI pairs(Type1, CN) do . Ensures

placement of full chain for each Typei+1 instance
5: TI placement(i,VC,(ULTypei+1 , LLTypei+1))
6: if placement is successful then
7: Success
8: procedure TI PLACEMENT(i,VC,((ULTypei+1 , LLTypei+1)))
9: while (i) do . for all available Type1 TCI

10: for (Typei,Typei+1) ∈ i do
11: node1 ← location of Typei
12: if Typei+1 instances exist on VC then . To re-use

instances
13: node2 ← List of location of Typei+1

14: for j in node2 location list do
15: if resource at j ≥ resource required for

Typei+1 then
16: pathtonode2 ← Get path from Typei to

Typei+1

17: sortedpath ← sorts path based on path length
18: for k in sortedpath do
19: if required datarate ≤

min(k path datarate(i, j)) then
20: place Typei+1 on node2
21: return TI Typei+1 placed
22: break
23: else
24: if length(node2 location list) ≥ ULTypei+1

then
25: return Not enough resources on vehicle clus-

ter
26: else
27: CNlocation ← location of CN
28: paths ← weighted path from Typei+1 to CN
29: sorted paths ← sort paths from highest to

lowest path weight
30: for i in sorted paths do
31: if requireddatarate ≤

min(i path datarate(x, y)) then
32: while nodes available in i do
33: v ← next node on i
34: if resource on v ≥ resource re-

quired by Typei+1 then
35: Place Typei+1 on v
36: break
37: if no node available on

path(Typei,CN) then
38: return Unable to place TI on

cluster

Due to the nature of vehicular networking, it is required to
scale services and find efficient service placement in a very
short time, compared to the time required to solve the full
MIP. Consequently, we propose a node selection and service

placement heuristic solution. We first leverage the historic
mobility patterns of vehicles to select a group of vehicles that
are more probable to stay together for a period of time using
the principles of community detection.

The mobility of vehicle nodes is constrained by the under-
lying road topology. We model the available vehicle cluster
as a graph with their joint CCP as the edge weight for each
edge, depicting how probable are two nodes to stay together in
the next time segment. The use of community detection using
mobility behavior helps in identifying the most connected
vehicular nodes that play a crucial role in the successful
deployment of our service model with data-dependent TIs.
Due to the mobility of nodes, the services can fail because
of link and node failures due to vehicles leaving the cluster.
The identification of communities helps in reducing service
failures and subsequent service reconfiguration, by selecting a
group of closely connected vehicles. Even if nodes or links fail
within the selected community, there will be alternate paths
available within the community. The chances of a complete
breakdown between any two nodes in the community are low.

A. Vehicular Node Selection
The first step of the service placement problem, requires se-

lecting vehicular nodes that are more probable to stay together
for a certain period of time. This is quantified using the CCP
of the vehicles. At this stage, the scheme does not consider the
available computation or communication capacity. We aim to
find a sub-group of vehicles that have similar mobility patterns
and follow a similar trajectory. We use community detection,
which is the process of discovering cohesive groups or clusters
in a network, to determine vehicular nodes that have better
connectivity between them than the rest of the network. Using
community detection algorithms, we partition the vehicular
network graph into communities and, the biggest community
is chosen for service placement. Due to the data-dependency
between TIs in the service model, all TI’s are promoted to be
placed in the same community of nodes. Even if nodes leave
or link fails within the selected community, there are alternate
paths available in a well-connected community.

We analyze two community detection algorithms for se-
lecting a vehicular cluster for the service placement. We
use vehicular nodes and nodes interchangeably in the text
We first use the modularity score-based Louvain algorithm
[32] that initially starts with |V | communities where each
vehicular node is considered to be a community in the first
iteration. Modularity is defined as the density of edges inside
the community with respect to edges outside the community.
In each iteration, every node is moved to its neighboring
community and the gain in modularity is calculated. If the
gain is positive, the node does not return to its previous
community. The iterations of the heuristic stop when the
modularity gain, between any two iterations, does not exceed
a specified threshold value. The algorithm has the complexity
of O(V logV) where V is the number of nodes in the graph.
In our experiment, the modularity obtained in a cluster of 30
vehicles was 0.1428.

We also considered the hierarchical clustering-based Girvan
and Newman algorithm [33] which derives a community tree

10

or a dendrogram with a specified depth [34]. The connectivity
of a community increases as the depth of the derived dendro-
gram increases. The method first removes the edge with the
highest edge betweenness centrality. The edge betweenness
centrality is the sum of the fraction of the shortest paths that
cross the edge. Each iteration splits every existing community
into two new communities. The disconnected sub-graphs un-
dergo the same procedure until the entire graph is split into
isolated nodes. The complexity of the algorithm is O(E2V),
where E is the edges of the graph and V represents the nodes.
The modularity score for the same graph using this method
is 0.00186. We, therefore, prefer the Louvain method as it
results in a higher modularity score, which is more useful in
this context, and Louvain’s computational complexity is also
lower. Thus, the strongest selected community is the vehicle
cluster that is used for the service placement problem.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Louvain method

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Girvan and Newman method

Fig. 7: Using two different method for community/cluster detection.

B. Service placement heuristic

After the vehicle cluster is selected based on the CCP of
nodes using the community detection method, we then place
the TIs by utilizing a graph-based heuristic. We first give as
input, 1) the selected vehicular cluster which is the strongest
detected community, 2) the linear type graph to be placed
and 3) the upper (ULTypei) and lower limit (LLTypei) for the
number of TIs of each type to be placed. The LL for all the
tasks is 1 as we want to make sure at least one TI of each
type is placed. The UL for each TI is equal to the number
of video sources or Type 1 TIs, ensuring each stream gets
one processing TI, in case the available processing capacity at
individual nodes is very low.

TI 1 CN

0.5 0.5 Total CCP: 0.5 * 0.5 = 0.25

TI 1 CN
0.2 0.05 0.9

Total CCP: 0.2 * 0.05 * 0.9 = 0.009

Path 1

Path 2

Path 3 TI 1 CN
0.5 0.07

Total CCP: 0.5 * 0.07 = 0.035

Fig. 8: Joint CCP-based path selection for service placement.

We modify a heuristic algorithm inspired by the work of
[35], where VNFs are placed along the shortest path with
the smallest bottleneck value. Instead of placing TIs on the
shortest path, we consider the joint CCP of the path from a
source TI (of Type 1) to the CN, as depicted in Fig.8. We then

TABLE III: OPTIMALITY GAP PERCENTAGE FOR THE LINK UTI-
LIZATION COST FOR DIFFERENT NUMBER OF TYPE 1 TIs

Number of
Type 1 instances

Optimality
gap (%)

1 0
2 0
3 11.03
4 13.05
5 10.997
6 17.83

place TIs along the path with the highest joint CCP. As we
intend to place a long chain of TIs along this path, choosing a
longer chain increases the possibility of placing most TIs on
the path to the CN. The heuristic may also randomly choose
the shortest path, in terms of hop count, if the combined CCP
of the path is the highest. From the three example paths shown
in Fig.8, the heuristic will choose path 1 as it has the highest
combined CCP, even though it is shorter than path 2. Choosing
path 2 will result in placing TI on two nodes linked by very
low CCP, 0.05 in this case. Path 3 is the same length as Path
1 but has lower joint CCP in comparison.

The heuristic is described as Algorithm 1. Similar to [35],
we place TIs in a pairwise way, as the service model has
dependent TIs. In our model, every TI of any type has a
common endpoint as the CN. In line 3, we iterate over all
TI pairs from Type 1 to the CN. In line 5, each TI pair
is sent to the TI PLACEMENT function along with the UL
and LL for the TI. In line 11, the location of the Type 1
instance is detected. On line 12 it is checked if the next TI,
of type Typei+1, exists on the vehicle cluster. If it exists,
say at node j, and the resource capacity at node j meets the
capacity constraint for TI Typei+1, all the paths from Typei
to Typei+1 are stored in the list sortednode2. In line 18, all
the available paths are iterated over and the bottleneck edge
capacity for each path is compared to the required available
capacity between the two TIs. If the constraint is met, Typei+1

TI is reused for the flow. If Typei+1 does not exist on the
cluster, it is checked if the upper limit for the TI type is met
(on line 24).

If the upper limit is not reached, all the paths are explored
from Typei to CN of the cluster. All the paths are sorted
based on the path weight, which in our case is the total
CCP of the path. In line 31, all the paths are iterated over,
and the bandwidth capacity requirement is checked for the
path. If the bandwidth requirement is met and the resource
capacity requirement for the node is met, then Typei+1 is
placed on the node v. If there are no more available nodes
on the path to the CN, a failed placement is registered. Thus,
this approach aims to send the collected data to the CN and
tries to place processing TIs in-network when possible. An
example of the service placement heuristic has been added to
the github repository2.

VIII. EVALUATION

In this section, we evaluate the performance of the MIP, the
proposed heuristic, and the first-fit approach through resource

2https://github.com/kannonical/graph-based-service-placement

11

1 2 3 4 5 6 7
Number of Type 1 instances

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
To

ta
l n

od
e

ut
iliz

at
io

n
co

st
Optimized
Heuristic
First-fit

(a) 3 task chain: Total node utilization cost

1 2 3 4 5 6 7
Number of Type 1 instances

0.00

0.05

0.10

0.15

0.20

0.25

To
ta

l l
in

k
ut

iliz
at

io
n

co
st

Optimized
Heuristic
First-fit

(b) 3 task chain: Total link utilization cost

1 2 3 4 5 6 7
Number of Type 1 instances

0

500

1000

1500

2000

2500

To
ta

l o
bj

ec
tiv

e
va

lu
e

Optimized
Heuristic
First-fit

(c) 3 task chain: Comparison of the total objective
value

1 2 3 4 5 6 7
Number of Type 1 instances

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
ta

l n
od

e
ut

iliz
at

io
n

co
st

Optimized
Heuristic
First-fit

(d) 4 task chain: Total node utilization cost

1 2 3 4 5 6 7
Number of Type 1 instances

0.00

0.05

0.10

0.15

0.20

0.25

0.30

To
ta

l l
in

k
ut

iliz
at

io
n

co
st

Optimized
Heuristic
First fit

(e) 4 task chain: Total link utilization cost

1 2 3 4 5 6 7
Number of Type 1 instances

0

500

1000

1500

2000

2500

3000

3500

To
ta

l o
bj

ec
tiv

e
va

lu
e

Optimized
Heuristic
First-fit

(f) 4 task chain: Comparison of the total objective
value

Fig. 9: Total node utilization cost, total link utilization cost and total objective value for task chain of lengths 3 and 4.

utilization metrics for bandwidth (link) and processing (node).
We also compare the MIP, the first-fit, and the heuristic for the
total optimal value. We then evaluate the average chain length
and the total instances that the heuristic scales to analyze the
performance of the heuristic in terms of not overprovisioning
resources. We then use total response time as a QoS measure
and compare our placement approach to a static mobile-edge
computing approach, which does not use task replication in
the form of multiple instances of the same task. We also
evaluate the performance of the selected vehicular cluster
using centrality measures. We use vehicular mobility on a
Fog-computing-based simulator, to study the evolution of the
selected cluster through its lifetime.

We first use Gurobi, a standard MIP solver to solve the
multiple objectives, constrained optimization problem. The
configuration of the computing capacities ranges between three
resource profiles: 1) Large node type: 5 CPUs, 500Mb disk,
6MB/s bandwidth; 2) Medium node type: 3 CPUs, 250Mb
disk, 4MB/s bandwidth; and 3) Small node type: 2 CPUs,
100Mb disk, 2MB/s bandwidth. Vehicular OBUs may have
higher computation capacity, but in our model, we assume that
vehicles would lease only part of their resources, in return for
some incentive, for over-the-top services. We used Veins-LTE
to simulate the data collection application, described in section
IV on page 5. VeinsLTE is a vehicular network simulator
based on two simulators: Omnet++, an event-based network
simulator, and SUMO, a road traffic simulator.

We find an optimal solution for placing both service types
of different chain lengths on a selected vehicle cluster. We
evaluate the solution for the node utilization cost, link utiliza-
tion cost, and the total objective value for placing multiple
applications of chain lengths 3 and 4. We vary the number of

video instances from 1 to 7 to evaluate the scalability of the
experiment. The applications are defined in Section III, where
the ‘data collection application’ type is rich in data flow and
has low processing requirements, whereas the ‘object detec-
tion’ application type is more compute-intensive and has less
bandwidth requirement. The applications are of variable chain
length. We use the first fit approach as the baseline approach.
It sorts all the available paths from the data collecting TI to
the CN and sorts them based on the highest available resource
capacity. It then places TIs on all the available vehicle nodes
on that path.

We first place two applications of the first type on the
selected vehicular cluster. For the case of the 3 task chain,
our heuristic gives better node utilization cost as compared to
both optimal and first-fit solutions, as shown in Fig.9a. Our
heuristic gives comparable link utilization cost in comparison
to the optimal solution for 1-3 Type 1 TIs, but it becomes
less efficient for a higher number of Type 1 TIs, as shown in
Fig.9b. This is due to prioritizing paths with higher CCP which
may result in selecting longer routes between dependable TIs.

For the total objective value, our heuristic performs as well
as the optimal solution for the 1-5 Type 1 TIs, as shown in
Fig.9c. For more number video TIs (Type 1), our heuristic
under-performs when compared to the optimal solution. The
optimality gap percentage has been summarised for the case
in Table III. The worst-case optimality gap is 17.83% for the
case of 7 Type 1 TIs. The first-fit algorithm performs poorly for
any number of Type 1 TI, irrespective of the scale. In terms of
execution time, the MIP solves the problem in 1 second for 1
Type TIs, whereas the heuristic solution takes 0.1154 seconds.
Each run is being performed on the same hardware, an Intel
i7-6500U running at 2.50 GHz, not optimised for performance.

12

For the case of 7 Type 1 TIs, the MIP solution takes 15.60
seconds whereas the heuristic solution takes 1.235 seconds.

For the second case, we place both applications of chain
length 3 and 4 TIs for both services. The MIP solver fails
to give a solution in a reasonable time for applications with
a longer chain length. We get a solution from the solver in
seconds for 1-2 Type 1 TIs. But as the number of Type 1
TIs increases, the solver does not converge to a solution even
after hours. We, therefore, compare our heuristic solution to
the baseline approach. Our heuristic performs better than the
baseline approach for any number of Type 1 TIs (from 1 to
7), as shown in Fig.9d. The baseline approach outperforms
the heuristics solution for the link utilization cost for the
second case, as shown in Fig.9e. This is due to choosing
paths that have higher joint CCP, to increase the robustness
of the service placement. This results in more bandwidth
utilization as a tradeoff to selecting more robust paths. Our
approach outperforms in minimizing the total objective value
as compared to the first-fit approach, as depicted in Fig.9f.
The baseline approach fails in minimizing the total objective
for the higher number of Type 1 TIs.

As our heuristic solution does not select the shortest path
but the most reliable path, it might select very long paths
with multiple hops between the Type 1 and the CN TIs. We
present both the aggregate hop count and the total number
of scaled processing TIs (of Type 2, 3 and 4) corresponding
to the number of Type 1 TI, presented in Fig.10a. For any
number of TIs, the hop count of all the paths between Type
1 TI and CN ranges between 5 and 6. The total number of
processing TIs for each placement is also plotted in the same
figure and it ranges from 4 to 15.

To compare the number of scaled processing TI’s, we run
the optimization problem with the objective of minimizing
the number of processing TIs, to analyze the least number of
processing TIs required for meeting the application demands.
We calculate the minimum number of Type 2, 3, and 4 TIs
required for a successful service placement without any TI
being rejected a placement on the vehicular cluster in Fig.10b.
We compare this to the number of TIs scaled by our heuristic,
plotted in Fig.10c. As shown, our heuristic scales are close to
the minimum number of required TIs. It places 2-4 more TIs
in comparison to the least number of required TIs. But the
heuristic chooses more reliably connected nodes to place the
TIs.

A. Comparison of placement techniques in terms of service
time

We have evaluated our placement approach from a resource
utilization point of view. We now look at a QoS-based metric
to compare our approach to a mobile-edge computing-based
solution. The service demands are still generated by moving
vehicles, but the mobile-edge computing approach places all
the TIs on static edge servers. For the real-time performance
of the vehicle cluster, we use a fog computing simulator called
Yet Another Fog Simulator (YAFS) [36] for modeling the
mobility and estimating the real-time performance of the se-
lected cluster. YAFS is a python-based discrete event simulator

that supports resource allocation policies in fog, edge, and
cloud computing. The simulator has a distributed data flow
application model that could be easily adapted to our use case.
The simulation provides dynamic service selection, placement,
and replacement of services that we have customized for our
requirements. The support of mobility of nodes, which can also
be treated as processing nodes makes the simulator a good fit
for our case.

We consider the service time as the total time it takes
for a service to execute, including both processing and link
latency. We observe the minimum and maximum service time
for the two services of different chain lengths for the mobile-
edge placement versus our approach of placing multiple TIs
on a moving vehicle cluster. We observe that the minimum
service time is significantly less for the cloud placement,
in comparison to our approach, in Fig.10d. Our approach
places multiple TIs on different vehicles, thus the delay in the
execution of one TI can result in a significant delay in service
execution time. For the case of maximum service time, as can
be seen in Fig.10e, the mobile-edge placement is significantly
high. This is because of the delay in sending all the collected
data from moving vehicles to the edge server or RSU. The
service time is also higher for the chain length of 4 for the
mobile edge placement approach. In comparison, our approach
approximately takes the same time for a chain length of 3 or
4 in the worst-case scenario as the minimum service time in
Fig.10d. Thus, even if an optimal placement is not achieved,
on average our approach performs better in terms of service
time, in comparison to the mobile-edge placement approach.

B. Evaluation of the selected cluster over time
We also analyze the performance of the selected cluster by

evaluating the number of nodes in the cluster that stay together
over a period of time. For the two community detection-based
node selection approaches, out of the 20 selected nodes, 12 to
14 nodes make it till the end of the simulation, as depicted in
Fig.10f.

We then evaluate the quality of the selected cluster in terms
of the nodes that stay till the end of the simulation by using
a resilience score. We use the betweenness centrality as a
measure to check the importance of a node, in terms of con-
nectivity in the graph. The betweenness centrality calculates
the shortest weighted path between every pair of nodes in a
graph. Each node gets a betweenness centrality score (BCS)
based on the number of shortest paths that pass through the
node. The resilience score is calculated as the total BCS for all
the nodes that made it till the end of the service time upon the
total BCS of all the nodes in the selected cluster. The higher
resilience score shows that nodes with higher BCS stayed with
the cluster, thereby reducing the need for rerouting flows or re-
configuring service chains due to the absence of a forwarding
node or a path between two data-dependent TIs. We evaluate
the communities detected for two community sizes, of 15 and
30, using the Girvan-Newman and the Louvain approaches. We
observe a higher resilience score for the Louvain approach for
communities of either size, as depicted in Fig.11.

We observe a higher resilience score for the bigger cluster,
of 30 nodes, as we observe more number of nodes with higher

13

of Type 1 TIs

1 2 3 4 5 6 7 8 Tot
al #

 of
pro

ces
sin

g T
I

4
6

8
10

12
14

Ag
gr

eg
at

e
ho

ps

0
1
2
3
4
5
6

(a) Comparison of total number of scaled, process-
ing TIs and aggregate hops for the 3 TI chain
placement corresponding to the number of Type
1 TIs

1 2 3 4 5 6 7
of Type 1 TIs

0

2

4

6

8

10

12

14

of

 p
ro

ce
ss

in
g

in
st

an
ce

s

TI types

Type 2
Type 3
Type 4

(b) Minimum number of required processing TIs to
meet the service demand corresponding to number
of Type 1 TIs

1 2 3 4 5 6 7
of Type 1 TIs

0

2

4

6

8

10

12

14

of

 p
ro

ce
ss

in
g

in
st

an
ce

s

TI types

Type 2
Type 3
Type 4

(c) Total number of processing TIs scaled by our
heuristic corresponding to the number of Type 1
TIs

3 4
Service Chain Length

2000

4000

6000

8000

10000

12000

14000

M
ax

 se
rv

ice
 ti

m
e

Edge placement
Moving node placement

(d) Minimum service time for different chain length

3 4
Service Chain Length

20000

40000

60000

80000

100000

M
ax

 se
rv

ice
 ti

m
e

Edge placement
Moving node placement

(e) Maximum service time for different chain length

0 50 100 150 200 250 300
Simulation time (seconds)

12
13
14
15
16
17
18
19
20

Nu
m

be
r o

f v
eh

icl
es

 in
 a

 c
lu

st
er Louvain

Girvan-Newman

(f) Cluster state through the simulation

Fig. 10: Different performance metrics to evaluate the performance of the proposed heuristics, service time comparison for the proposed
approach with edge placement and evaluation of the cluster state throughout the states of the simulation.

15 30
Cluster size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
sil

ie
nc

e
Sc

or
e

Girvan-Newman Louvain

Fig. 11: Calculated betweenness centrality score for the two
community-detection approaches.

BCS stay with the cluster till the end of the simulation time.
However, this might not always be the case. A bigger cluster
may not always end up being more resilient than a smaller
cluster. The resilience score depends on the BCS, which is
based on the importance or the role of a node in the graph in
terms of the flow of communication. For example, the BCS
of any vertex in a complete graph is zero since no vertex lies
on the shortest path, as every node is connected to the other
by a unique edge.

IX. CONCLUSION AND FUTURE WORKS

The paper aims to solve the problem of placing video
collection and object-detection applications on moving ve-

hicle clusters. The first application executes pre-processing
tasks on the vehicle cluster whereas the second application
executes a pre-trained local object-detection service, which is
computation-intensive. We then model the problem as a multi-
objective, constrained optimization problem. We introduce a
vehicular node selection and service placement problem with
the novelty of placing scalable and distributed services on
mobile infrastructure.

We also evaluate the performance of the service placement
heuristic using other resource utilization measures like the
number of scaled TIs and the average hop-count for plac-
ing the distributed services. We then consider a QoS-level
parameter called service time to analyze how our approach
performs compare to a mobile-edge placement approach. We
also emulate the service placement using a Fog simulator. We
analyze how the node selection approach performs in terms
of the life of the selected cluster. We introduce a betweenness
centrality-based resilience score to evaluate the performance
of the chosen cluster, in terms of the quality of nodes that
make it to the end of the execution time.

Whilst the MIP delivers an optimal solution it requires
significant computational resources; on the other hand, the
heuristic delivers near optimal solutions using less resources,
making it viable for deployment in a real system. Our ap-
proach also outperforms the baseline first-fit solution, because
the mobility-aware strategy ensures that the cluster cohesion
is higher, increasing the resilience of the system. We also
compared our vehicular fog computing approach to edge

14

computing-based placement. Our placement technique results
in better worst-case performance, with much lower maximum
service time that is a measure of the time taken in service
execution, including both processing and link latency.

In future work, we plan to extend our theoretical treatment
of mobile service placement on vehicles in urban traffic by
collecting data from a smart city testbed and analysing how
well our algorithm performs in practice. We also intend to
consider service migration and not just the initial service
placement problem. We intend to add the role of multiple
RSUs to manage the life-cycle of both the CN and the vehicle
cluster.

REFERENCES

[1] M. M. Rathore, A. Paul, S. Rho, M. Khan, S. Vimal, and S. A. Shah,
“Smart traffic control: Identifying driving-violations using fog devices
with vehicular cameras in smart cities,” Sustainable Cities and Society,
vol. 71, p. 102986, 2021.

[2] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: Enabling
real-time traffic management for smart cities,” IEEE Wireless Commu-
nications, vol. 26, no. 1, pp. 87–93, 2019.

[3] S. S. Lee and S. Lee, “Resource allocation for vehicular fog computing
using reinforcement learning combined with heuristic information,”
IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10450–10464, 2020.

[4] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing
in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 7944–7956, 2019.

[5] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[6] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289 – 330, 2019.

[7] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-
latency tradeoff for dynamic computation offloading in vehicular fog
computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12,
pp. 14198–14211, 2020.

[8] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski, “Fog following
me: Latency and quality balanced task allocation in vehicular fog
computing,” in 2018 15th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON), pp. 1–9, 2018.

[9] A. Thakur and R. Malekian, “Fog computing for detecting vehicular
congestion, an internet of vehicles based approach: A review,” IEEE
Intelligent Transportation Systems Magazine, vol. 11, no. 2, pp. 8–16,
2019.

[10] “Teslas new hw3 self-driving computer its a beast.”
https://cleantechnica.com/2019/06/15/teslas-new-hw3-self-driving-
computer-its-a-beast-cleantechnica-deep-dive/. Accessed: 2021-10-19.

[11] I. W. Ho, S. C. Chau, E. R. Magsino, and K. Jia, “Efficient 3d road map
data exchange for intelligent vehicles in vehicular fog networks,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3151–3165,
2020.

[12] H. Du, S. Leng, F. Wu, X. Chen, and S. Mao, “A new vehicular fog
computing architecture for cooperative sensing of autonomous driving,”
IEEE Access, vol. 8, pp. 10997–11006, 2020.

[13] Z. Zhou, H. Liao, X. Wang, S. Mumtaz, and J. Rodriguez, “When
vehicular fog computing meets autonomous driving: Computational
resource management and task offloading,” IEEE Network, vol. 34, no. 6,
pp. 70–76, 2020.

[14] S. Ge, M. Cheng, and X. Zhou, “Interference aware service migration in
vehicular fog computing,” IEEE Access, vol. 8, pp. 84272–84281, 2020.

[15] C. M. Kanaka Sri Shalini, Y. M. Roopa, and J. S. Devi, “Fog computing
for smart cities,” in 2019 International Conference on Communication
and Electronics Systems (ICCES), pp. 912–916, 2019.

[16] K. Sharma, B. Butler, and B. Jennings, “Scaling and placing distributed
services on vehicle clusters in urban environments,” IEEE Transactions
on Services Computing, to appear, 2022.

[17] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular
edge computing networks: A load-balancing solution,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 2, pp. 2092–2104, 2020.

[18] C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and A. Ylä-
Jääski, “Folo: Latency and quality optimized task allocation in vehicular
fog computing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4150–
4161, 2019.

[19] F. Lin, Y. Zhou, G. Pau, and M. Collotta, “Optimization-oriented
resource allocation management for vehicular fog computing,” IEEE
Access, vol. 6, pp. 69294–69303, 2018.

[20] Z. Liu, P. Dai, H. Xing, Z. Yu, and W. Zhang, “A distributed algorithm
for task offloading in vehicular networks with hybrid fog/cloud comput-
ing,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
pp. 1–14, 2021.

[21] J. Liang, J. Zhang, V. C. Leung, and X. Wu, “Distributed information
exchange with low latency for decision making in vehicular fog com-
puting,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[22] G. Qiao, S. Leng, K. Zhang, and Y. He, “Collaborative task offloading
in vehicular edge multi-access networks,” IEEE Communications Mag-
azine, vol. 56, no. 8, pp. 48–54, 2018.

[23] K. Sharma, B. Butler, B. Jennings, J. Kennedy, and R. Loomba, “Opti-
mizing the placement of data collection services on vehicle clusters,” in
2018 IEEE 29th Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), pp. 1800–1806, 2018.

[24] M. . Kuran, A. Carneiro Viana, L. Iannone, D. Kofman, G. Mermoud,
and J. P. Vasseur, “A smart parking lot management system for schedul-
ing the recharging of electric vehicles,” IEEE Transactions on Smart
Grid, vol. 6, no. 6, pp. 2942–2953, 2015.

[25] S. Iqbal, A. W. Malik, A. U. Rahman, and R. M. Noor, “Blockchain-
based reputation management for task offloading in micro-level vehicular
fog network,” IEEE Access, vol. 8, pp. 52968–52980, 2020.

[26] Y. Zhao and C. H. Liu, “Social-aware incentive mechanism for vehicular
crowdsensing by deep reinforcement learning,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–12, 2020.

[27] G. Grassi, K. Jamieson, P. Bahl, and G. Pau, “Parkmaster: An in-
vehicle, edge-based video analytics service for detecting open parking
spaces in urban environments,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, SEC ’17, (New York, NY, USA),
Association for Computing Machinery, 2017.

[28] C. Zhu, A. Mehrabi, Y. Xiao, and Y. Wen, “Crowdparking: Crowd-
sourcing based parking navigation in autonomous driving era,” in 2019
International Conference on Electromagnetics in Advanced Applications
(ICEAA), pp. 1401–1405, 2019.

[29] C. Zhu, Y.-H. Chiang, Y. Xiao, and Y. Ji, “Flexsensing: A qoi and
latency-aware task allocation scheme for vehicle-based visual crowd-
sourcing via deep q-network,” IEEE Internet of Things Journal, vol. 8,
no. 9, pp. 7625–7637, 2021.

[30] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[31] “An Introduction to the Calfornia Department of Transportation Per-
formance Measurement System (PeMS).” https://pems.dot.ca.gov/, Feb
2020. [Online; accessed 05-April-2022].

[32] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, p. P10008, Oct 2008.

[33] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E,
vol. 70, p. 056131, Nov 2004.

[34] I. Lera, C. Guerrero, and C. Juiz, “Availability-aware service placement
policy in fog computing based on graph partitions,” IEEE Internet of
Things Journal, vol. 6, no. 2, pp. 3641–3651, 2019.

[35] S. Dräxler and H. Karl, “Specification, composition, and placement
of network services with flexible structures,” International Journal of
Network Management, vol. 27, no. 2, p. e1963, 2017. e1963 nem.1963.

[36] I. Lera, C. Guerrero, and C. Juiz, “Yafs: A simulator for iot scenarios
in fog computing,” IEEE Access, vol. 7, pp. 91745–91758, 2019.

https://cleantechnica.com/2019/06/15/teslas-new-hw3-self-driving-computer-its-a-beast-cleantechnica-deep-dive/
https://cleantechnica.com/2019/06/15/teslas-new-hw3-self-driving-computer-its-a-beast-cleantechnica-deep-dive/
https://pems.dot.ca.gov/

	Graph-based Heuristic Solution for Placing Distributed Video Processing Applications on Moving Vehicle Clusters
	Recommended Citation

	Introduction
	Related works
	Task offloading in Vehicular Fog Computing
	Crowdsensing in vehicular networks
	Role of VFC and VCS

	System Model
	Terminology

	Model
	Application Type
	Network Topology
	Distributed Service Model

	Service scaling and placement constraints
	Flow capacity constraint
	In-network processing constraint
	Service Scaling constraint

	Infrastructure constraints
	Node Resource constraint
	Bandwidth constraint

	Mobility modeling
	Objective Function

	Mobility patterns of vehicles in highly congested urban areas
	Heuristic-based Solution
	Vehicular Node Selection
	Service placement heuristic

	Evaluation
	Comparison of placement techniques in terms of service time
	Evaluation of the selected cluster over time

	Conclusion and Future Works
	References

