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Optical fibre based real‑time 
measurements during an LDR 
prostate brachytherapy implant 
simulation: using a 3D printed 
anthropomorphic phantom
P. Woulfe1,3*, F. J. Sullivan4,5, L. Byrne1, A. J. Doyle6, W. Kam1,2, M. Martyn3 & S. O’Keeffe1,2

An optical fibre sensor based on radioluminescence, using the scintillation material terbium doped 
gadolinium oxysulphide (Gd2O2S:Tb) is evaluated, using a 3D printed anthropomorphic phantom for 
applications in low dose-rate (LDR) prostate brachytherapy. The scintillation material is embedded in a 
700 µm diameter cavity within a 1 mm plastic optical fibre that is fixed within a brachytherapy needle. 
The high spatial resolution dosimeter is used to measure the dose contribution from Iodine-125 
(I-125) seeds. Initially, the effects of sterilisation on the sensors (1) repeatability, (2) response as a 
function of angle, and (3) response as a function of distance, are evaluated in a custom polymethyl 
methacrylate phantom. Results obtained in this study demonstrate that the output response of 
the sensor, pre- and post-sterilisation are within the acceptable measurement uncertainty ranging 
from a maximum standard deviation of 4.7% pre and 5.5% post respectively, indicating that the low 
temperature sterilisation process does not damage the sensor or reduce performance. Subsequently, 
an LDR brachytherapy plan reconstructed using the VariSeed treatment planning system, in an 
anthropomorphic 3D printed training phantom, was used to assess the suitability of the sensor for 
applications in LDR brachytherapy. This phantom was printed based on patient anatomy, with the 
volume and dimensions of the prostate designed to represent that of the patient. I-125 brachytherapy 
seeds, with an average activity of 0.410 mCi, were implanted into the prostate phantom under trans-
rectal ultrasound guidance; following the same techniques as employed in clinical practice by an 
experienced radiation oncologist. This work has demonstrated that this sensor is capable of accurately 
identifying when radioactive I-125 sources are introduced into the prostate via a brachytherapy 
needle.

A common treatment option for prostate cancer is low dose rate (LDR) seed brachytherapy, which has been 
shown to have excellent long-term outcomes1. The main advantage of the technique is its use of a higher dose 
of radiation in a more targeted area, compared with external beam radiotherapy2. A real-time intraoperative 
guided trans-perineal LDR prostate brachytherapy technique, popularized by Stone and Stock3, is employed in 
this work. Good technique is required to ensure optimal dosimetry, and acceptable short as well as long term 
outcomes3. Trans-rectal ultrasound (TRUS) guidance is utilised during implantation to visualise the prostate and 
surrounding anatomy, and to guide the insertion of needles, through which brachytherapy seeds are delivered. 
TRUS imaging provides excellent soft tissue visualisation, making it ideal for applications in the treatment of 
prostate cancer. However, due to the limited spatial resolution of ultrasound (US) transceivers, and due to the 
low echogenic nature of metallic seeds, the identification of seed locations is often difficult4. Accurate knowledge 
of implanted seed location is crucial when assessing adherence to the employed dosimetric criteria; ensuring 
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adequate dose to the prostate (D90, V100, V150), while also minimising dose to the organs at risk (D30 urethra, as 
well as D2cc rectum), in line with international guidelines5.

The aim of this study is to perform in vitro measurements using an optical fibre based sensor, in a 3D printed 
anthropomorphic phantom. This work therefore acts as a proof of concept for ultimately employing an opti-
cal fibre based system for real time in vivo dosimetry (RTIVD); enabling treatment interruption if measured 
doses [derived from the photon counting rate (PCR)] differ significantly from the treatment plan. An optical 
fibre based system employed in this way could be used as a radiation protection tool and as a treatment quality 
assurance (QA) tool. Measurements are limited only by the accuracy of the dosimeter and the knowledge of its 
position within the patient6.

Materials
I‑125 source.  The seeds used in LDR brachytherapy, within our clinical setting, are typically Iodine-125 
(I-125), with a half-life of 59.43 days. Once again, within our clinical setting, typical apparent activities employed 
range from 0.357 to 0.42 mCi, and the typical number of seeds employed range from 60 to 80 seeds, depending 
on the volume of the prostate. Theragenics Co., I-Seed I-125, AgX100 were used in the present study. Source 
dimensions for the AgX100 seeds are detailed in Mourtada et al7. The mean photon energy on the surface of 
an AgX100 seed has been calculated as 27.29 keV in the Carleton Laboratory for Radiotherapy Physics (CLRP) 
TG-43 parameter database, with statistical uncertainties < 0.01%8.

Terbium doped gadolinium oxysulphide optical fibre dosimeter.  The optical fibre sensor, shown in 
Fig. 1a, is constructed by micromachining a cavity in the 1 mm core of a polymethyl methacrylate (PMMA) plas-
tic optical fibre. The cavity, 700 μm in diameter and 7 mm in depth, is filled with a scintillating material, terbium 
doped gadolinium oxysulphide (Gd2O2S:Tb, GOS) and sealed with a Henkel Loctite Hysol M-31CL Medical 
Device Epoxy. The scintillation material fluoresces on exposure to ionising radiation and the resultant emitted 
fluorescent light penetrates the PMMA optical fibre core and propagates along the fibre to a Hamamatsu Multi-
Pixel Photon Counting Module (MPPC) C133669 for monitoring of the optical signal. The data was captured 
using proprietary software of the MPPC with a gate time setting of 100 ms and 0.5 photo-electron threshold. The 
gate time represents the time duration within which the photon counts are integrated, within the MPPC module. 
The data presented in this work is the optical signal captured in the presence of an I-125 seed, minus the dark 
count rate (DCR) captured at near zero light input. The small dimensions of the sensor10,11, with an overall outer 
diameter of 1 mm, allow for it to be guided within existing brachytherapy equipment (e.g. within the brachy-
therapy needle), as shown in Fig. 1b. This will allow the sensor to be located directly within the prostate, using 
techniques the radiation oncologist is already familiar with.

Sterilization.  The STERRAD® NX System12 developed by Advanced Sterilization Products (ASP), a Johnson 
& Johnson company, uses both hydrogen peroxide vapor and low-temperature gas plasma to rapidly sterilize 
the dosimeters. Since the load temperatures do not exceed 55  °C and sterilization occurs in a low moisture 
environment, the STERRAD® NX System is particularly suited to the sterilization of heat and moisture-sensitive 
instruments. The process that occurs is as follows: the dosimeter to be sterilized is placed in the sterilization 
chamber, the chamber is closed, aqueous hydrogen peroxide is delivered to the vaporizer/condenser, and evacu-
ation begins. The overall sterilization process was repeated twice. Figure 1b above depicts the sterilized dosim-
eters packaged for use.

Phantoms.  Two phantoms were utilised during the course of this evaluation. The first, a custom PMMA 
(also known as Lucite, Plexiglas or Perspex) phantom was used to evaluate the effects of the sterilisation process 

Figure 1.   Optical fibre based radiation dosimeter: (a) schematic of sensor design, (b) optical fibre sensor within 
brachytherapy needle in the sterilized packages.

Content courtesy of Springer Nature, terms of use apply. Rights reserved



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11160  | https://doi.org/10.1038/s41598-021-90880-6

www.nature.com/scientificreports/

on the sensor response. The second, an anthropomorphic 3D printed training phantom, was used to validate the 
sensor for RTIVD.

PMMA Phantom.  This PMMA Phantom, shown in Fig. 2a, has a density of 1180 kg  m−3, and was used to 
evaluate the effect of the sterilisation process on the optical fibre sensor. The phantom design has outer dimen-
sions of 80 × 80 × 90 mm3, created from 10 mm thick slabs stacked together, and a central hole to accommodate 
the dosimeter. An array of 13 × 13 holes, each with a diameter of 1 mm, were machined to replicate a prostate 
biopsy template used in LDR Brachytherapy. To provide full scatter conditions, the I-125 source was surrounded 
by a sufficient amount of phantom material13. Thus, during irradiation, the PMMA sheet containing the I-125 
sources and optical fibre were contained between four further sheets of PMMA, resulting in a depth of 4 cm. A 
90 mm thick phantom is considered to offer adequate backscatter for low energy brachytherapy sources as we 
have seen range of detection limited to 30 mm14. During irradiation, the longitudinal axes of both the sensor and 
the I-125 seed are parallel, with their centres aligned.

Anthropomorphic 3D printed training phantom.  This paper also utilises an anthropomorphic, 3D printed train-
ing phantom for LDR brachytherapy for prostate cancer, described by Doyle et al15,16. In contrast to those found 
commercially, this phantom can be used to plan and validate treatment tailored to an individual patient. The 
phantom, shown in Fig. 2b was used as a test bed for the optical fibre sensor. The high-fidelity phantom rep-
licated the soft tissue characteristics of the male pelvis and facilitated needle puncture and the introduction of 
both I-125 seeds and the optical fibre sensor contained within a brachytherapy needle. The sensor is introduced 
through the brachytherapy needle grid to monitor in real-time the photon count rate (PCR) during the proce-
dure.

Methods
Testing was performed at the Radiotherapy Department, Galway Clinic, Galway. The first of these experiments 
was to examine the performance of the dosimeter pre-sterilisation versus post-sterilisation by investigating the 
following: (1) Repeatability, (2) response as a function of angle, and (3) response as a function of distance to 
demonstrate sensitivity. This work was carried out to identify any issues relating to the sterilisation process on 
the sensor performance, prior to the evaluation of the sensor for in vitro measurements using the anthropo-
morphic phantom.

The optical fibre dosimeter was fixed within the central hole of the PMMA Phantom at a depth of 4 cm as 
depicted in Fig. 2a. The brachytherapy seeds were inserted into the PMMA Phantom for a fixed period of time 
and the response of the sensor was monitored. The phantom set-up was designed such that the centres of the 
radiation source and the optical fibre sensor were aligned. The sensor was initially tested for its response to one 
0.410 mCi I-125 seed, for a comparison of optical signal, pre/post-sterilisation. In this particular investigation, 
the repeatability of the sensor was evaluated by removing and re-introducing the sensor over three consecutive 
cycles at a distance of 5 mm (± 1 mm positional uncertainty) from the radiation source. The second investigation 
sought to assess the response of the optical fibre sensor (OFS) as a function of angle with respect to the seed, 
which was again positioned 5 mm from the sensor. Four angles were evaluated, along the plane perpendicular to 
the centre of the sensors longitudinal axis; 0° (Top), 90° (Right), 180° (Bottom) and 270° (Left). Finally, we exam-
ine the sensitivity of the sensor as a function of distance from a single seed, over the range 5–30 mm, in 5 mm 
steps. The dose fall-off with distance from the radiation source can be described using the TG-43 formulism13, 
via the VariSeed (Varian Medical Systems) treatment planning system (TPS) [Version 8.0.2], and compared to 
the photon counting rate (PCR) fall-off measured with the sensor. Each of the investigations described above 
were performed with the sensor pre-sterilisation and post-sterilisation.

For the second part of the study, a realistic clinical prostate brachytherapy case was simulated using a 3D 
printed training phantom, this phantom was printed based on patient anatomy with exact volume and dimensions 
of the prostate to represent the patient. One of the authors (FS), an experienced radiation oncologist, performed 

Figure 2.   Phantoms used during sensor evaluation: (a) PMMA Phantom, (b) 3D printed anthropomorphic 
phantom.
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the simulation using exactly the same techniques employed in clinical practice17. A Hitachi Preirus (Hitachi 
Medical Solutions) US system was used to acquire the images of the 3D printed training phantom. Steps involved 
in the simulation process were setting the prostate symmetrically within the grid, identifying the base of the 
prostate on sagittal imaging, identifying the apex of the prostate on both sagittal and axial imaging, determining 
the length and volume of the prostate, and acquiring the images required for treatment planning by using a 5 mm 
stepping device (Civco Inc). Images are captured within the VariSeed TPS via a direct link with the US system. 
During the implant procedure, 3–4 seeds were evenly spaced throughout the length of the simulated prostate 
for each needle (see Fig. 3), to achieve the desired dosimetric coverage (50 peripheral seeds were implanted in 
total). The entire implantation procedure was recorded and a timestamp was assigned to each seed to provide 
accurate time correlation with the real-time photon counting rate (PCR) from the sensor.

Within the VariSeed TPS, shown in Fig. 4, a structure was added at a position corresponding to C2.5 on 
the template grid to represent the position of the sensor (blue cylinder). This cylindrical sensor structure has 
a diameter of 2 mm (accounting for the 1 mm outer diameter of the optical fibre and a positional uncertainty 
of approximately ± 1 mm) and a length of 5 mm (dictated by the 5 mm slice spacing employed during image 
acquisition). Figure 4 also provides a representation of the position and distribution of the implanted I-125 
seeds (green)/needles with respect to the sensor. Using VariSeed the “expected” dose to the sensor structure was 
calculated for each of the 50 seeds that were inserted into the periphery of the prostate. This allows for a rela-
tive comparison of the “accumulated dose” to the sensor structure, within the TPS, and the real-time PCR from 
the sensor, as a function of time. The data presented in this work represent the PCR minus the dark count rate 
(background noise). The objective of this work was to identify if the sensor was capable of accurately identifying 
when radioactive I-125 sources were introduced into the simulated prostate for each peripheral needle (i.e. is 
there a noticeable increase in the PCR per needle).

Results
Sterilisation effects.  The average PCR pre- and post-sterilisation was 1290 and 1307 counts per gate (c.p.g.) 
respectively (above the DCR of approximately 1100 c.p.g); these figures represent the average of the mean PCR 
for each individual measurement, integrated over 170 s. The pooled standard deviation (SD) of the PCR pre- and 
post-sterilisation are 59 and 69 c.p.g. respectively; where the pooled SD is defined as the root mean square of 
the standard deviations for each individual measurement, integrated over 170 s. The response of the sensor as a 
function of angle with respect to the radiation source are presented in Table 1. PCR measurements acquired at 
each angle agree within measurement uncertainty (defined by the SD), both pre- and post- sterilisation.

PCR fall-off as a function of distance was also considered with the results illustrated in Fig. 5. Based on the 
findings of the repeatability measurements, measured data in Fig. 5 represent the average of the PCR signal 
obtained with the sensor both pre and post sterilization, since the sterilization process has been shown to have 
no significant impact on the measurement signal. PCR data were integrated over a period of 130 s, at each given 

Figure 3.   3D anthropomorphic phantom treatment plan in the VariSeed TPS. Post-implant dosimetry analysis 
displaying transverse, longitudinal, and coronal views (without live video signal): I-125 seeds (green), prostate 
(red), urethra (yellow), and isodose lines are displayed.

Content courtesy of Springer Nature, terms of use apply. Rights reserved
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distance, for both the pre and post sterilization measurements. The vertical error bars on the measurement data 
represent the pooled SD of the PCR (multiplied by two for 95% confidence), integrated over a period of 130 s, 
at each distance. The horizontal error bars on the measurement data represent a ± 1 mm positional uncertainty. 
The expected dose fall-off rate was calculated using the VariSeed TPS, for the AgX100 seed, with anisotropy cor-
rection performed using anisotropy factors (geometry factor point source approximation). These TPS settings 

Figure 4.   (a) Coronal view of structures/sources in VariSeed TPS: sensor (blue cylinder), prostate (red), 
urethra (yellow), and I-125 seeds (green). (b) Transverse view of structures / sources with needle numbers also 
identified.

Table 1.   Mean and SD of the PCR for each angle considered.

Angle

Pre-sterilisation Post-sterilisation

Mean (c.p.g.) SD (c.p.g.) SD (%) Mean (c.p.g.) SD (c.p.g.) SD (%)

Top—0° 1323 61 4.6 1368 60 4.4

Bottom—180° 1274 62 4.9 1239 70 5.6

Right—90° 1294 58 4.5 1232 60 4.9

Left—270° 1294 70 5.4 1229 71 5.8

y = 79321x-2.279

R² = 1
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Figure 5.   Average PCR measurement data (black circles) as a function of distance from a single I-125 seed 
obtained pre- and post-sterilisation. Theoretical data generated using the VariSeed TPS (red circles) are 
normalised to the PCR measurement value at 10 mm. The dashed red line represents a power trendline fit to the 
theoretical data, with the equation of the line shown in the top right corner of the graph in red text.
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reflect those employed clinically in the Galway Clinic. Figure 5 shows a comparison of sensor measurements 
with TPS expectation.

3D phantom LDR Brachy simulated implant.  Accumulated dose to the sensor structure, calculated 
in the VariSeed TPS, and the real-time PCR data from the sensor, as a function of time are presented in Fig. 6. 
Accumulated dose values represent the mean dose to the sensor structure in VariSeed, per implanted seed, with 
“error bars” in this case simply illustrating the minimum and maximum dose values within said structure. The 
minimum and maximum dose values are displayed in this way to give the reader a representation of the steep 
dose gradients involved in brachytherapy dosimetry and to illustrate the effect that positional uncertainty can 
have on measured photon counts.

Discussion
During the repeatability study, repeated measurements required the sensor to be removed from the phantom 
prior to each individual measurement, introducing an element of variability due to the repositioning of the sensor 
on re-insertion within the phantom, relative to the I-125 seed. However, results obtained in this study demon-
strate that the output response of the sensor, pre- and post- sterilisation are within the acceptable measurement 
uncertainty ranging from a maximum standard deviation of 4.7% pre and 5.5% post respectively, indicating 
that the low temperature sterilisation process does not damage the sensor or reduce performance. Furthermore, 
analysis of sensor measurements obtained at four angles with respect to the radiation source agree within meas-
urement uncertainty, indicating sensor response uniformity.

Figure 5 shows that the rate of change of the PCR, as a function of distance, is well described by the TG-43 
formulism, via the VariSeed TPS, within measurement uncertainty. Within the range of distances considered in 
this work, the PCR fall-off is dominated by the inverse square law. Furthermore, Fig. 5 illustrates the impact of 
positional uncertainty on the accuracy of the acquired output measurement, particularly as distance decreases, 
due to the steep dose gradient. This represents a key challenge when it comes to accurately measuring the dose 
distribution close to brachytherapy sources. Future work and further development of the optical fibre based 
system and measurement processes will aim to continue to reduce this positional uncertainty, so as to address 
this challenge. For example, for the purposes of optical fibre sensor characterisation, replacing the solid PMMA 
phantom with a watertank would allow for more precise positioning of the sensor with respect to the radiation 
source. Furthermore, when considering the ultimate goal of transferring this technology to the clinical setting 
for in vivo patient measurements, it is envisaged that an external tracking system could be implemented, which 
would allow for precise localisation of implanted sensors within the patient.

From Fig. 6, it is clear that the output signal from the sensor and the expected dose calculated by the TPS ini-
tially rise quickly (Needles 1–3), followed by a period of relatively slow increase in PCR/absorbed dose (Needles 
4–12), before finally showing a sharp rise again for the final peripheral needle (Needle 13). This behaviour can 
be explained when one considers the position of the radiation sources (I-125 seeds) with respect to the position 
of the sensor. As shown in Fig. 5, the PCR falls off quickly with distance.
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real-time PCR data are displayed as black dots, expected absorbed dose readings from the TPS are displayed as 
solid red circles (one per implanted seed), and vertical grey lines represent each of the 13 peripheral needles.
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What can also be seen in Fig. 6 is that in the regions of the steepest dose gradients, the measured PCR seems 
to under-estimate the expected accumulated dose to the sensor position. It is hypothesised that the observed 
disagreement between real-time PCR and accumulated dose in these regions is likely due to the angular depend-
ence of the sensor along the longitudinal plane (i.e. the sensor geometry is cylindrically symmetrical so changes 
in response along the longitudinal plane can be expected) and/or anisotropy in the dose distribution along the 
longitudinal plane. Future work will consider further characterisation of angular dependence for both polar 
and azimuthal angles.

For the purposes of this work, however, the objective was to identify if the sensor was capable of accurately 
identifying when radioactive I-125 sources were introduced into each peripheral needle. When the needles are 
close to the sensor (≤ approximately 20 mm) it is clear from Fig. 6 that this objective is fulfilled; where sharp rises 
in PCR are observed at points which correlate with timestamps for the implantation of seeds in a new needle 
(Needles 1–3 and Needle 13). Where needles are further away from the sensor however, relative increases in the 
PCR are much smaller, making it difficult to discern the implantation of seeds through a new needle (needles 
4–12). This result suggests that future work may consider the implantation of multiple sensors to overcome this 
limitation. The authors suggest using multiple sensors, as opposed to moving a single sensor for example, since 
the precision with which the position of the sensor(s) are known is critical to the overall accuracy of the system. 
Therefore sensors will be positioned and localised at the beginning of a procedure and will remain in position 
throughout the clinical case, to ensure positional uncertainties are minimised.

Future work will consider characterisation of any energy dependence for the sensor employed in this study 
and its influence on the conversion process from PCR (c.p.g.) to dose rate (cGy h−1). It is worth noting however 
that previous Monte Carlo modelling work by Meigooni et al18 and Weaver et al19 have demonstrated that changes 
in the energy spectra for Iodine 125 are small over the distance range considered, indicating that a correction 
for energy as a function of distance may not be necessary. The finding presented in this work, is that the fall-off 
in the PCR as a function of distance agrees with expectation from the TG-43 formulism, seems to be in agree-
ment with this indication.

Conclusion
Results obtained in this study demonstrate that the output response of the sensor, pre- and post- sterilisation is 
within the acceptable measurement uncertainty, indicating that the sterilisation process does not damage the 
sensor or reduce performance. A real time intraoperative LDR prostate brachytherapy treatment in a simulated 
prostate, using a novel 3D printed anthropomorphic phantom, was performed. Optical fibre measurements 
demonstrated that the system is capable of accurately identifying when radioactive I-125 sources are introduced 
into a needle, when the needles are close to the sensor (≤ approximately 20 mm). Future work and areas for 
further development have also be identified and discussed in this study (e.g. minimising positional uncertainty, 
further characterisation of angular dependence, and the possible use of a multi-sensor configuration for in vivo 
measurements, and characterisation of energy dependence).

In the opinion of the authors this study demonstrates the potential of this GOS based optical fibre dosimetry 
system to be employed as an RTIVD tool, during an LDR prostate brachytherapy implantation procedure. It is 
minimally invasive, providing additional valuable dosimetry information which will aid the radiation oncolo-
gist, ensuring optimum seed placement and good long term clinical outcomes. We believe this system has the 
potential for further investigation in clinical brachytherapy practice.
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