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a b s t r a c t

This paper introduces a novel technique for optimal distribution system (DS) planning with distributed
generation (DG) systems. It is being done to see how active and reactive power injections affect the
system’s voltage profile and energy losses. DG penetration in the power systems is one approach that
has several advantages such as peak savings, loss lessening, voltage profile amelioration. It also intends
to increase system reliability, stability, and security. The main goal of optimal distributed generation
(ODG) is a guarantee to achieve the benefits mentioned previously to increase the overall system
efficiency. For extremely vast and complicated systems, analytical approaches are not suitable and
insufficient. Therefore, several meta-heuristic techniques are favored to obtain better performance from
were convergence and accuracy for large systems. In this paper, an Improved Wild Horse Optimization
algorithm (IWHO) is proposed as a novel metaheuristic method for solving optimization issues in
electrical power systems. IWHO is devised with inspirations from the social life behavior of wild
horses. The suggested method is based on the horse’s decency. To assess the efficacy of the IWHO,
it is implemented on the 23 benchmark functions Reliability amelioration is the most things superb
as a result of DGs incorporation. Thus, in this research, a customer-side reliability appraisal in the DS
that having a DG unit was carried out by a Monte Carlo Simulation (MCS) approach to construct
an artificial history for each ingredient across simulation duration. For load flow calculations, the
backward Forward Sweep (BFS) technique has been employed as a simulation tool to assess the
network performance considering the power handling restrictions. The proposed IWHO method has
been measured on IEEE 33 69 and 119 buses to ascertain the network performing in the presence of
the optimal DG and the potential benefits of the suggested technique for enhancing the tools used by
operators and planners to maintain the system reliability and efficiency. The results proved that IWHO
is an optimization method with lofty performance regarding the exploration–exploitation balance and
convergence speed, as it successfully handles complicated problems.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nowadays, there is a global unanimity that incorporating re-
newable energy sources (RESs) as distributed generators (DG)
is crucial to facing the rising electricity need and reducing the
overall carbon dioxide footprint. It is one of the most successful
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and realistic planning methods for enhancing the network’s relia-
bility and power quality as demand increases. The DG penetration
strategy in the DS is becoming more common as demand load
increases, pollutant emissions are reduced, and the electrical
power market is deregulated (Elattar and Elsayed, 2020). The
leverage of DG performance is more closely related to the types,
locations, and sizes of the DG units used, where the best choice
will maximize the benefits of the DG units while avoiding their
downsides for the system, such as voltage volatility, increased
system loss and increased operating costs (Oree et al., 2017;
Huda et al., 2017). The effects of including DG units into the
system vary depending on whether the system is in steady-state
or transient mode. Some issues occur in the steady-state, such

https://doi.org/10.1016/j.egyr.2021.12.023
2352-4847/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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Nomenclature

Ii The injected current at bus i
Vi The injected voltage at bus i
Si Apparent power injections at the bus i
Z(i,i+1) The impedance of line i, i + 1
Ri The ith line resistance
Pi Active power injections at the bus i
Qi Reactive power injections at the bus i
θij The admittance angle of line i − j
δj The voltage angle at bus j
δi The voltage angle at bus i
N Number of buses
Vmin
i Minimum voltage at bus i

Vmax
i Maximum voltage at bus i

Ili The line current flow of line i
Iratedli The rated line current capacity at line i
L Energized number of branches
Ui The annual outage time
Ni The number of customers at load point i
Li The average load connected to load

point i
it Iteration
maxit Maximum number of iterations
Γ Gama function
Pmin
DG Minimum active power of DG capacity

PDG Active power of DG capacity
Pmax
DG Maximum active power of DG capacity

Qmin
DG Minimum reactive power of DG capacity

QDG Reactive power of DG capacity
Qmax
DG Maximum reactive power of DG capac-

ity
RDS Radial distribution system
λ Failure rate
U Yearly unavailability
r Outage time
ASAI Average service availability index
CAIDI Customer average interruption duration

index
ENS The energy not supplied index
hr Hour
MTTR Mean time to repair
SAIFI System average interruption frequency

index
SAIDI System average interruption duration

index
STD Standard deviation
TTR Time to repair
TTF Time to failure
yr Year

Abbreviation

AEO Artificial ecosystem-based optimization
ALOA Ant Lion Optimization Algorithm
AR Automatic recloser

as extreme energy losses, reverse current flow, fluctuations in
voltage, managing reactive power, malfunction in the protective
system, and weak power quality (Baran et al., 2011; Dugan and

BA Bat Algorithm
BFS Backward Forward Sweep
BSOA Backtracking search optimization algo-

rithm
CSA Cuckoo search algorithm
CBs Circuit breakers
CPLS Combined power loss sensitivity
DS Distribution system
DG Distributed generation
EA Efficient analysis approach
ESDA Electrostatic Discharge Algorithm
GA Genetic algorithm
GS Gauss-seidel
GWO Gray Wolf Optimizer
HHO Harris Hawks Optimizer
HGSO Henry gas solubility optimization
HSSA Hybrid Salp Swarm Algorithm
IA Improved Analytical
IWHO An improved wild horse optimization

algorithm
LSF Loss sensitivity factor
LSIPSO Hybrid Loss Sensitivity Index and SA
MINLP Mixed-integer nonlinear programming
MODE Multi-objective differential evolution
MCS Monte Carlo Simulation
NR Newton raphson
OF Objective function
ODG Optimal distributed generation
PSO Particle swarm optimization
PV Photovoltaics
QOCSOS Quasi-Oppositional Chaotic Symbiotic

Organisms Search
RDG Renewable distribution generation
RDN Radial distribution network
RESs Renewable energy sources
ROA Rider optimization algorithm
SA Simulated annealing
SAA Simplified Analytical Approach
SAPSO Hybrid SA and PSO
SAMPSO Hybrid SA and modified PSO
SOA Seagull Optimization Algorithm
SSA Salp Swarm Algorithm
TSA Tunicate Swarm Algorithm
WOA Whale optimization algorithms
WT Wind turbine

Price, 2002; Walling et al., 2008). The consequences in the tran-
sitional state are, on the other hand, caused by the separating
DG units and the unexpected outputs of the DG units, such as
fluctuations in wind speed and solar radiation (Liu et al., 2008).
The acuity of these effects is based on the placement of DG
units, the DG penetration levels, and the sort of DG. Furthermore,
due to renewable DG units’ nature, simultaneous DG generation
fluctuations for providing the demand load might lead to a down
or overvoltage. The implications of such events may be altered by
the placement of DG units and weather conditions, as mentioned
previously (Eltawil and Zhao, 2010). Additionally, the system per-
formance is enhanced at the particular penetration levels of the
DG units, while the system was in contrast degraded by substa-
tion and feeder load, voltage deviations, and higher power losses
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beyond this level. As a result, the ODG allocation problem has re-
cently piqued the interest of many researchers to achieve various
goals, including minimizing real power loss, enhancing voltage
profile, boosting power quality, and mounting the distribution
system’s reliability and efficiency. As a result, many ways to ad-
dress these issues have been proposed in the literature. A mixing
of analytical approach and heuristic search has been suggested for
optimal placement of DGs in the DS for minimizing power loss in
Kansal et al. (2016). An efficient analysis (EA) approach to prop-
erly deploy multiple DG units is presented to reduce power loss
in distribution systems (Mahmoud et al., 2015). A novel approach
for determining the optimum size and the location of DG was
presented in Essallah et al. (2019) to reduce the power loss and
ensure the system’s voltage stability. In Kadir et al. (2019), the
authors used an enhanced gravitational search algorithm to learn
the location and dimensions of photovoltaics (PV) based DGs to
reduce overall expenditures. In Truong et al. (2020), the authors
presented a technique that would increase the global seeking
ability, called Quasi-Oppositional Chaotic Symbiotic Organisms
Search (QOCSOS). The goal of this work is to curb the power
loss, enhance the voltage profile, and raise the voltage stability
in the radial distribution networks (RDNs). Mixed-integer non-
linear programming (MINLP) technique has been utilized in Kaur
et al. (2014) to identify the best size and position of DGs with
power loss curtailment. In Khasanov et al. (2019), the Electrostatic
Discharge Algorithm (ESDA) was utilized to resolve the problem
of DG assignment to augment the voltage stability and limit the
power losses. To optimize the allocation of DGs in the DS con-
cerning reducing annum power losses, the authors are introduced
an artificial ecosystem-based technique (Khasanov et al., 2020).
To decrease power loss in DS, a simplified analytical technique
was presented for optimum DG amalgamation in Sa’ed et al.
(2019). The aim of Kamel et al. (2019) is for an ODG allocation
in the typical IEEE 33-bus system to promote voltage stability
and minimize total power loss. This is based on the Gray Wolf
optimization method with loss sensitivities. The Ant Lion Opti-
mization Algorithm (ALOA) is presented in Ali et al. (2016) and Li
et al. (2018) for ODG allocation of RDG sources in diverse RDNs. In
Abdel-mawgoud et al. (2019), the authors offer a hybrid approach
based on the combined power loss sensitivity (CPLS) and Salp
Swarm Algorithm (SSA) to merge PV and wind turbines (WT)
in the DS for boosting voltage, reducing losses, and expanding
system capacity. The purpose of Samala and Kotapuri (2020) is
to resolve the best allocation of the DGs in a RDN, diminish
the overall operational costs and voltage indexes variations, and
ensure a more flexible solution of the hybrid fuzzy logic controller
technique and the particle swarm optimization (PSO) with the
ALOA. The authors utilized the LSF in Ali et al. (2020b,a) to locate
the elected bus. To mend the voltage profile and decrease the
power loss of the RDN, simulated annealing (SA) and PSO were
used to set the optimal position and size of DG. The SAPSO
approach to banning the SA & PSO shortage by two methods was
introduced and produced the finest solutions in a short time. This
article (Khasanov et al., 2021; Hassan et al., 2020a) provides an
application for optimal sizing and positioning of RDGs, including
WT, PV, and biomass in DS. The goal of the study in Ref. Hassan
et al. (2020b) was to find the best position and size for DGs to
reduce power loss and increase voltage stability.

To epitomize, an improved wild horse optimization algorithm
(IWHO) is suggested as a novel population-based algorithm to
compete with state-of-the-art and neoteric optimization algo-
rithms. It should be evident that the intended algorithm provides
the poise between exploration and exploitation. This feature en-
ables IWHO to solve a complicated optimization issue with mul-
tiple locally optimal solutions because it retains several answers
and explores a broad area to pinpoint the global solution. Finally,

the IWHO is the greatest and most innovative approach for op-
timizing problems because of loud fineness and soft calculations.
To sum up, this research’s key contributions are:

The benchmark functions of various types of unimodal, multi-
modal, and fixed-dimensional composite functions is utilized to
evaluate the proposed improved wild horse optimization algo-
rithm (IWHO) efficiency.

Introduce for the first time in the power system a devised ap-
proach to augment search quality and shun an early convergence
to a local minimum.

Proposed the optimal option of the ODG allocation (size &
position) considering the constraints of the RDN. Standard IEEE
33, 69 and 119 bus networks are hired to check the leverage of
the suggested IWHO algorithm.

Demonstrated the efficacy of the outcomes of this approach in
terms of lowering losses and meliorative the voltage profile.

Verified the methodology’s performance proposed using typ-
ical test systems to detect its superiority for handling the prob-
lems and compared to other published approaches.

An artificial history for each component in the test system is
generated using MCS instead of an analytical method for highly
efficient reliability assessment.

This paper was structured as follows: Section 2 depicts the
BFS algorithm. The mathematical description of the optimization
problem is described in Section 3. Section 4 focuses on the IWHO
algorithm. Section 5 transact with the simulation results for the
test systems and discussion. Finally, in Section 6, the suggested
work’s inference is provided.

2. Backward forward sweep algorithm

Load flow is a crucial tool for the design and operation of
power systems to guarantee reliability, stability, and economy.
Classical methods as Gauss–Seidel (GS) and Newton Raphson (NR)
might be inappropriate for the DS and diverge because of Ali et al.
(2020a):

• Radial formation.
• R/X value is higher.
• Running lopsided.
• DGs.

Backward/Forward Sweep (BFS) is chosen for fit planning ow-
ing to:

• The poor nature of RDS.
• Accurate load flow results rely on convergence, simula-

tion time, and the convergence rate.

This technique is carried out through two phases: rear and
front sweep using the demand and streak data as follow:

2.1. Forward sweep

In essence, a voltage decline is calculated through branch
currents. Node voltages are updated from the first bus to the
most distant bus. The fore scanning aims to identify the node
voltage for all buses starting from the origin node. The primary
bus voltage is set to 1pu, and the current in reverse propagation
is firm.

2.2. Backward sweep

It is mainly a voltage upgraded by a load flow computa-
tion. It moves from the furthest lines to the head node. In the
rear-prevalence count, the updated current flows are achieved
utilizing the bus voltage of the previous rounds. It implies that
the voltage values obtained are not changed during the rear
prevalence computations in the front prevalence.
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The BFS algorithm steps are listed below:

• Set the injected current (Ii = 0)
• Set all nodes voltage (Vi = 1pu)
• Compute the node current (Ii =

S∗i
V∗
i
)

• Evaluate current of the lines (backward sweep)

I(i,i+1) = Ii+1 +

∑
(branches current at node i + 1)

• Modernizing the voltage of buses (Vi = Vi+1 +
(
Z(i,i+1)∗

I(i,i+1)
)
)

• Until the criteria are terminated.

3. Problem formulation

The main key for a healthy environment is renewable distribu-
tion generation (RDG), which plays a main role in power systems.
Tentatively, the peril of fuel price swings and political influences
should be decreased by incorporating the RDGs and guaranteeing
that these do not significantly influence public well-being overall.
In such regard, changes to the grid might be necessary due to
modifying the choices of generating sources, which is caused by
a large amalgamation of RDGs. The fluctuation of current and
voltage in the network is increased as a result of DG permeation.
Increasing DG permeation might therefore have a detrimental or
beneficial influence depending on the scale of the system and
the sort of the load, necessitating modeling and emulation to
evaluate its action. If not adequately striped, this may result in
an unforeseen rise in power flow, leading to network crowding
and higher network losses. DGs offer terminus consumers sig-
nificant advantages and technical assistance through increased
reliability, power quality, and cost dilution. Cost cuts and the
pressing requirement to fuse DGs maybe drive energy demand.
Therefore, good system planning is significant for the good run-
ning of the entire system. This concerns the development of
convenient mathematical models and algorithms that allow for
optimum positioning and size of DGs in the system; this is the
issue handled in this study.

3.1. Objective Function (OF)

Its major aim is to identify the best localization and sizing of
DGs to constrict the total losses in light of equity and inequality
restrictions., which can be described as follow:

OF = min (Ploss) = min
L∑

i=1

Ri(
P2
i + Q 2

i

V 2
i

) (1)

3.2. Constraints

The limits ensuring the superior performance of the RDGs
technology are split into operating and technological restrictions
as see:

3.2.1. Operational constraints
These are called the equality restriction and apportioned into:

• Power balance constraints

Pi = |Vi|

N∑
j=1

⏐⏐Vj
⏐⏐ ×

⏐⏐Yij
⏐⏐ × cos

(
θij + δj − δi

)
, ∀i ∈ N (2)

Qi = −|Vi|

N∑
j=1

|Vj| × |Yij| × sin(θij + δj − δi), ∀i ∈ N (3)

3.2.2. Technical constraints
These are called the inequality restriction and apportioned

into:

• Voltage constraints⏐⏐Vmin
i

⏐⏐ ≤ |Vi| ≤
⏐⏐Vmax

i

⏐⏐ , ∀i ∈ N (4)

• Current constraints

Ili ≤ Iratedli , ∀i ∈ L (5)

• DG size constraints

Pmin
DG ≤ PDG ≤ Pmax

DG (6)

Qmin
DG ≤ QDG ≤ Qmax

DG (7)

• DG location constraints

2 ≤ DGlocation ≤ Nbus (8)

where L is the energized number of branches; N is the
number of buses; Yij is the bus admittance of line i-j; θij is
the admittance angle of line i-j;

⏐⏐Vmin
i

⏐⏐; ⏐⏐Vmax
i

⏐⏐ are the limits
of the voltage at the bus i; Ili is the line current flow of line
i; Iratedli is the rated line current capacity at line i.

3.3. Reliability assessment for distribution systems

The measurement of reliability is a crucial agent for the plan-
ning and operation of DS. Based on system configuration and
item’s reliability data, DS reliability evaluation may forecast the
obstruction of a DS at the client end. The primary goal of relia-
bility analysis is to measure, forecast, and compare reliability in-
dicators for multiple network topologies for reliability rising. The
reliability evaluation calculates performance at client load points
while factoring in the stochastic nature of failures incidence and
outage period. The main indicators linked with client points are
failure rate (λ), outage time (r), and yearly unavailability (U),
which may be computed using Eqs. (9)–(10).

λp =

N∑
i=1

λi

(
f
yr

)
(9)

Up =

N∑
i=1

λiri

(
hr
yr

)
(10)

rp =
Up

λp
(hr) (11)

3.3.1. Monte-Carlo Simulation approach
Because a power system is uncertain, the Monte-Carlo simula-

tion approach may be used to provide more exact findings when
evaluating its reliability. Monte-Carlo simulation can be classified
into two types: time-sequential and state sampling methods, but
the time-sequential technique is utilized here.

State of the basic distribution equipment such as branches,
transformers, and protective components such as disconnecting
switches, breakers, and fuses helps for system reliability valua-
tion. In general, line segments and transformers may be depicted
by two states seen in Fig. 1, where the upstate signifies that the
portion is operational and the downstate shows that the portion
is dud.

The time to failure is the period that the item persists in the
upper (TTF ) or failure time (FT ), But the period, while an element
is down, is called a reconquest time and it might be either the
time to repair (TTR) or the time to substitute. The transition from
the up to down is the failure operation, while the transition from
down to up is the restoration operation. Fig. 2 depicts the history
of simulated element operation and repair.
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Fig. 1. Element state transition diagram.

Fig. 2. Component Up/Down history.

TTF and TTR are randomly generated with potentially varying
probabilistic. A universal random number generator can create a
uniform distribution direct, and the resulting random numbers
are transformed into TTF or TTR using these formulas.

TTF =

(
− log

U
λ

)
∗ 8760 (12)

TTR = − logU∗MTTR (13)

where U is a haphazard variable in the range [0, 1].

3.3.2. Load point failures identification
The harshest issue in the emulation is to detect the load

points influenced by the fiasco of an element. A complicated
RDN can be broken down into primary feeders and laterals. The
following is the technique for detecting failing load points and
their operation/restoration histories (Billinton and Wang, 1999):

1. Discover the failure object and its location, as well as the
failed elements number and the lost feeder’s amount to
which the failed element is linked.

2. Identify the impacted load points that are linked to the
failing feeder, as well as their failure intervals, based on
the setup and protection system of the damaged feeder.

3. Determine the downstream feeders linked to the dam-
aged feeder’s sub-feeders and the impact of the damaged
component on the load points linked to these sub-feeders.

4. Repeat steps 2 and 3 for every failing sub-feeder till all
sub-feeders linked to the failing feeder are identified and
analyzed.

5. Find the upstream feeder to which the failing feeder is
linked, as well as the impacts of the failure component on
the load points in the upstream feeder.

6. Reiterate (2) to (5) until the primary feeder is reached and
assessed.

The client obstruction indicators will be used to quantify sys-
tem reliability; the main indicators are the customer average
interruption duration index (CAIDI), the system average interrup-
tion frequency index (SAIFI), the system average interruption du-
ration index (SAIDI), the average service availability index (ASAI),
and the energy not supplied index (ENS). The following equations
are used to compute them (Transmission et al., 2003):

SAIFI =

∑k
i=1 λiNi∑k
i=1 Ni

(14)

SAIDI =

∑k
i=1 UiNi∑k
i=1 Ni

(15)

CAIDI =

∑k
i=1 UiNi∑k
i=1 λiNi

=
SAIDI
SAIFI

(16)

ASAI =

∑k
i=1 8760Ni −

∑k
i=1 UiNi∑k

i=1 8760Ni
(17)

ENS =

k∑
i=1

UiLi (18)

where Ui is the annual outage time, Ni is the number of customers
at load point i, λi is the failure rate, and ‘‘Li’’ is the average load
connected to load point i and 8760 is the number of hours in a
calendar year.

The developed flow chart of the computer program to deter-
mine the distribution system reliability indices consists of the
following steps: (see Fig. 3).

4. Mathematical model of optimization techniques

4.1. Wild horse optimizer (WHO)

For addressing optimization issues, the wild horse optimizer
(WHO) technique mathematically simulates and duplicates the
social life behavior of these wild horses in nature (Naruei and
Keynia, 2021). Horses predominately live in herds with a stallion
and many foals and mares. They exhibit a variety of behaviors, in-
cluding mating and grazing, pursuing, dominating, commanding.
Five steps for the WHO algorithm are listed below:

4.1.1. Generating an initial population and formation horse groups
and choosing leaders

First, the initial population is divided into numerous groups. N
is the number of the population and G is the number of groups in
the algorithm. Each group has a leader (stallion), so the number
of stallions in the algorithm equals G, and (N–G) is the remaining
population (Foals and mares) are distributed similarly among
these groups. Fig. 4 presents how the stallions and foals have been
chosen from the initial population to produce various groups.

4.1.2. Grazing behavior
The following equation was proposed to simulate the grazing

behavior:

X j
i,G = 2Z cos (2πRZ) ×

(
Stallionj

− X j
i,G

)
+ Stallionj (19)

where X j
i,G denotes the current location of the foal or mare group

member, Stallionj is the stallion position, R is a uniform stochastic
number from the range [−2,2], and Z is the adaptive mechanism
calculated from the following equation:

P =
−→
R1 < TDR; IDX = (P == 0) ;

Z = R2ΘIDX +
−→
R3Θ(∼ IDX) (20)

where P is a vector consisting of 0 to 1,
−→
R1 and

−→
R3 are a random

number from the range [0,1], R2 is a uniform random number
from the range [0,1]. TDR is an adaptive parameter that starts with
1 and decreases until it reaches 0 at the end of the implementa-
tion of the algorithm according to the following equation:

TDR = 1 − it × (
1

maxit
) (21)

where it is the current iteration and maxit is the maximum
number of iterations.
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Fig. 3. Flowchart for Monte Carlo simulation.
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Fig. 4. Formation of groups from the original population.

4.1.3. Horse mating behavior
To implement the mating behavior of horses, a foal goes from

group i to a temporary group while a foal goes from group j to a
temporary group. To simulate the mating behavior of horses, the
Crossover operator of the mean type was proposed as follows:

XP
G,K = Crossover

(
Xq
G,i, X

z
G,j

)
i ̸= j ̸= k, p = q = end,

Crossover = Mean (22)

4.1.4. Group leadership
In the WHO algorithm, the Stallions (group leaders) lead the

group to the water hole. The Stallions compete for this water hole
so that the domination group can employ this water hole firstly
and then other groups can use the water hole. The following
equation was recommended for this step of the algorithm:

StallionGi =

⎧⎪⎪⎨⎪⎪⎩
2Z cos (2πRZ) ×

(
WH − StallionGi

)
+WH if R3 > 0.5
2Z cos (2πRZ) ×

(
WH − StallionGi

)
−WH if R3 ≤ 0.5

(23)

where StallionGi is the next position of the leader. WH is the
location of the water hole.

4.1.5. Leaders interchange and selection
In the following stages, leaders are chosen according to fitness.

The leader position and the relevant member will change based
on this equation:

StallionGi =

{
XG,i if cos t(XG,i) < cos t(StallionGi )
StallionGi if cos t(XG,i) > cos t(StallionGi )

(24)

Fig. 5 presents the flow chart of WHO algorithm.

4.2. Improved Wild horse optimizer (IWHO)

The Improved Wild horse optimizer (IWHO) is based on the
cuckoo search (CS) algorithm (Gandomi et al., 2013). During the

iteration of the proposed algorithm, the new solution is generated
using the Levy flight as the following equation:

Xi,G = Xi,G − γ
(
Xi,G − Xg

)
⊕ Levy (λ) = Xi,G +

0.01u
|v|

1/λ

(
Xi,G − Xg

)
(25)

where Xi,G is the ith position of the group member, γ denotes
the step scaling size, Xg denotes the global best solution, the ⊕

refers to the process of element-wise multiplications, λ refers to
the Levy flight exponent, while u and v are defined as:

u ∼ N
(
0, σ 2

u

)
, v ∼ N

(
0, σ 2

v

)
(26)

The standard deviations σu and σv are expressed as:

σu =

[
sin

(
λπ
2

)
.Γ (1 + λ)

2(λ−1)λ.Γ ( 1+λ
2 )

]1/λ

, σv = 1 (27)

where Γ is the Gamma function, the new candidate solution
is generated, and Eq. (21) is applied. The principal advantage
of this improvement is the ability of the proposed technique
to balance global exploration and local exploitation (Long et al.,
2020). Finally, it has the same concept as in Ref. Zhang et al.
(2015) that to address the issue of faster convergence by using
a mutation strategy based on the GA. Fig. 6 shows the flow chart
of the IWHO algorithm.

5. Simulation results and discussion

5.1. Mathematical validation

To evaluate the robustness of the suggested IWHO algorithm,
it was run separately on all 23 OFs for the maximum iterations
number of 1000 and the agents’ number of 50. To assess the
algorithm’s performance, this research uses both quantitative and
qualitative measures. Fig. 7 shows the qualitative metrics for
some of the benchmark functions, including 2D views of the func-
tions, search histories, mean fitness histories, and convergence
curves.
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Fig. 5. The flow chart of WHO algorithm.
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Fig. 6. The flow chart of IWHO algorithm.
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Fig. 7. Qualitative metrics on some benchmark functions: 2D views of the functions, search history, mean fitness history, and convergence characteristics curve.
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Table 1
Parameter sets of the chosen algorithms.
Algorithms Parameters setting

Common settings Population size: nPop = 50
Maximum iterations : Max_iter = 1000
Number of separate runs: 20

SOA b = 1
IWHO PS = 0.2; % Stallions percentage
WHO PC = 0.13; % Crossover percentage

Also, the suggested IWHO was tested for its ability to pro-
vide a quasi-suitable solution on a collection of 23 objective
functions of various types of unimodal, multi-modal, and fixed-
dimensional composite functions (Dehghani et al., 2021). The
obtained results are compared with three recent algorithms Gray
Wolf Optimizer (GWO) algorithm (Mirjalili et al., 2014), Tunicate
Swarm Algorithm (TSA) (Kaur et al., 2020), and Seagull Optimiza-
tion Algorithm (SOA) (Dhiman and Kumar, 2019), as well as the
original WHO. The parameter setting of the chosen algorithms is
shown in Table 1. Each optimization technique was executed in
20 independent runs; the optimization results are presented as
the best, worst, average, and the standard deviation (std) of the
preferable solutions, respectively.

5.1.1. Evaluation of the objective functions findings for unimodal
The suggested algorithm’s exploitative capacity may be as-

sessed and evaluated using the unimodal test functions. Table 1
displays the best values achieved using the proposed and well-
known optimization algorithms for these benchmark functions. It
can be noticed that the IWHO technique provides better results
on all unimodal functions except F7 which the original WHO
reaches only for the best answer while the proposed algorithm
achieves the best values for it in the worst, mean, and std.
The suggested IWHO method produces better results than ex-
isting approaches for all unimodal test functions. Fig. 8 depicts
the convergence characteristics curves of the introduced IWHO
approach, including well optimization techniques for unimodal
benchmark functions. For more analysis to confirm the perfor-
mance of the recommended technique, a boxplot of outcomes for
each technique and OF is demonstrated in Fig. 9.

5.1.2. Evaluation of the objective functions findings for multi-modal
Six objective functions of multi-modal functions, including F8

to F13, were chosen to evaluate the performance of the proposed
IWHO technique in presenting the best solutions. The results
of the implementation of the IWHO algorithm and three other
optimization algorithms as well as the conventional WHO algo-
rithm on this type of objective function, are displayed in Table 2.
The emulation results prove that the IWHO performs better and
more competitively in tackling this sort of optimization issue.
Fig. 10 displays the convergence curves of IWHO and other rival
methods. Fig. 11 presents the box plot for the proposed IWHO and
other concurrent algorithms on multi-modal functions. According
to the results, the proposed IWHO technique is the greatest
optimization technique for the majority of the evaluation metrics.

5.1.3. Evaluation results on composite objective functions
Ten objective functions of composite functions, including F14

to F23, were chosen to assess the performance of the proposed
IWHO in providing optimal solutions. Table 3 presents the best
optimum solutions found by all algorithms, including the best,
worst, average, and STD. Fig. 12 displays the convergence curves
of the proposed IWHO technique and other techniques achieved
in the multiple benchmark functions. Fig. 13 displays the box-
plots for F14 to F23. It can be seen that the boxplots of the
proposed IWHO when compared to other techniques, are highly
tight for the majority of these functions with the lowest values
(see Table 4).

Table 2
Benchmark function outcomes for unimodal.
Function WHO IWHO GWO TSA SOA

F1

Best 2.6E−115 8.2E−121 1.6E−72 2.82E−55 4.76E−30
Worst 9.5E−106 1.4E−108 3.42E−07 3.45E−17 5.06E−10
Mean 1.1E−106 6.9E−110 1.71E−08 1.72E−18 2.53E−11
Std 2.8E−106 3.1E−109 7.65E−08 7.71E−18 1.13E−10

F2

Best 1.53E−65 1.18E−66 5.52E−29 6.19E−27 1.3E−17
Worst 1.03E−59 2.14E−61 4.4E−08 7.35E−13 4.26E−08
Mean 2E−60 1.49E−62 2.39E−09 3.68E−14 2.15E−09
Std 3.17E−60 4.81E−62 9.81E−09 1.64E−13 9.52E−09

F3

Best 1.95E−77 3.99E−83 2.22E−14 6.22E−12 4.12E−16
Worst 6.75E−64 3.47E−68 1.200307 195.9186 0.54897
Mean 4.99E−65 1.75E−69 0.175247 24.31458 0.039322
Std 1.63E−64 7.76E−69 0.401434 60.03018 0.124825

F4

Best 4.83E−46 6.5E−50 1.7E−13 0.004211 1.88E−08
Worst 4.2E−41 1.16E−42 0.123216 21.22892 1.489819
Mean 4.68E−42 7.93E−44 0.012534 3.538218 0.21736
Std 1.18E−41 2.63E−43 0.037861 6.441649 0.523316

F5

Best 23.62242 23.06539 26.41102 27.10919 27.20026
Worst 28.53885 24.57677 28.93196 28.92147 28.93044
Mean 24.46879 24.07834 27.85099 28.38438 28.54089
Std 1.000308 0.415118 0.799818 0.675004 0.57121

F6

Best 2.19E−18 1.78E−18 0.249992 2.596274 2.507228
Worst 2.92E−14 2.84E−15 6.754946 6.30706 6.133702
Mean 2.04E−15 4.52E−16 2.39919 4.176579 4.253747
Std 6.58E−15 7.79E−16 1.752866 1.013975 1.034333

F7

Best 6.26E−05 9.83E−05 0.000439 0.005675 0.000389
Worst 0.00123 0.00078 0.008863 0.052199 0.024776
Mean 0.000421 0.000293 0.00327 0.014535 0.006081
Std 0.00027 0.000162 0.002825 0.010611 0.006765

The best values obtained are in bold.

Table 3
Benchmark function outcomes for multi-modal.
Function WHO IWHO GWO TSA SOA

F8

Best −10331.3 −10867.3 −6876.85 −6687.08 −5688.53
Worst −8811.26 −8909.96 −2040.64 −3353.87 −3025.17
Mean −9512.65 −9654.44 −5363.86 −5404.01 −4662.31
Std 377.1542 469.3701 1298.089 964.0392 721.2641

F9

Best 0.00E+00 0.00E+00 0.00E+00 101.0783 0.00E+00
Worst 0.00E+00 0.00E+00 10.64299 312.5106 19.6612
Mean 0.00E+00 0.00E+00 1.088214 196.4102 2.489027
Std 0.00E+00 0.00E+00 2.989658 51.77915 5.370562

F10

Best 8.88E−16 8.88E−16 2.22E−14 1.51E−14 19.95954
Worst 4.44E−15 4.44E−15 4.94E−07 2.891204 19.96677
Mean 3.2E−15 3.02E−15 2.56E−08 0.545612 19.96242
Std 1.74E−15 1.79E−15 1.1E−07 1.123192 0.001919

F11

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Worst 0.00E+00 0.00E+00 0.034439 0.151418 0.11477
Mean 0.00E+00 0.00E+00 0.003728 0.029085 0.013796
Std 0.00E+00 0.00E+00 0.009503 0.052147 0.033163

F12

Best 8.23E−20 2.12E−20 0.035117 0.478781 0.237936
Worst 0.103669 0.207317 1.373427 18.46794 1.633411
Mean 0.010367 0.020732 0.253217 6.960091 0.619033
Std 0.031909 0.063811 0.394467 5.091209 0.411038

F13

Best 1.2E−18 1.1E−17 0.569956 1.889159 1.854413
Worst 0.109867 0.175786 2.764004 3.467599 2.898385
Mean 0.019212 0.034458 1.354047 2.824032 2.29935
Std 0.028468 0.050856 0.672746 0.437644 0.298225

The best values obtained are in bold.

5.2. Test systems

The described algorithm was employed and validated on IEEE
33 and 69-bus networks to ensure its usefulness. The starting
node voltage is assumed to be 1pu, and all loading buses are
considered viable installation options. MATLAB 2020b software
was used to perform the suggested technique utilizing Intel(R)
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Fig. 8. The convergence curves of all algorithms for unimodal benchmark functions.

Fig. 9. Boxplots for all algorithms for unimodal benchmark functions.
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Fig. 10. The convergence curves of all algorithms for multi-modal benchmark functions.

Fig. 11. Boxplots for all algorithms for multi-modal benchmark functions.
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Table 4
Results of composite benchmark functions.
Function WHO IWHO GWO TSA SOA

F14

Best 0.998004 0.998004 0.998004 0.998004 0.998004
Worst 5.928845 2.982105 12.67051 12.67051 12.67051
Mean 1.294247 1.14691 5.686485 7.493557 4.423671
Std 1.113224 0.485651 4.930301 4.617822 4.324715

F15

Best 0.000307 0.000307 0.000308 0.000314 0.000312
Worst 0.020363 0.001223 0.120459 0.088541 0.00143
Mean 0.001485 0.000399 0.007588 0.010089 0.001171
Std 0.004459 0.000282 0.026933 0.020407 0.000273

F16

Best −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Worst −1.03163 −1.03163 −0.99999 −0.99999 −1.00018
Mean −1.03163 −1.03163 −1.03002 −1.0253 −1.03005
Std 1.25E−16 1.76E−16 0.007069 0.012979 0.007032

F17

Best 0.397887 0.397887 0.397887 0.397887 0.397889
Worst 0.397887 0.397887 0.39789 0.397983 0.398107
Mean 0.397887 0.397887 0.397888 0.397908 0.397927
Std 0.00E+00 0.00E+00 5.33E−07 2.77E−05 5.14E−05

F18

Best 3 3 3 3 3
Worst 3 3 3.000023 30.00016 3.000026
Mean 3 3 3.000004 8.400019 3.000003
Std 6.28E−16 4.78E−16 5.43E−06 11.0806 5.99E−06

F19

Best −3.86278 −3.86278 −3.86278 −3.86278 −3.86262
Worst −3.86278 −3.86278 −3.8549 −3.86269 −3.85477
Mean −3.86278 −3.86278 −3.86173 −3.86275 −3.85527
Std 2.28E−15 2.28E−15 0.002504 2.27E−05 0.001731

F20

Best −3.322 −3.322 −3.32199 −3.3214 −3.13591
Worst −3.2031 −3.2031 −3.13491 −2.43163 −2.06108
Mean −3.26255 −3.26849 −3.24315 −3.19273 −3.00309
Std 0.060991 0.060685 0.077104 0.197413 0.227568

F21

Best −10.1532 −10.1532 −10.1532 −10.1119 −10.1351
Worst −2.68286 −2.63047 −5.05519 −2.61588 −0.35065
Mean −8.89864 −9.14865 −9.64539 −7.14247 −4.32683
Std 2.632293 2.494251 1.562102 3.341539 4.57182

F22

Best −10.4029 −10.4029 −10.4029 −10.3678 −10.4004
Worst −10.4029 −2.7659 −10.4023 −2.70045 −0.90807
Mean −10.4029 −9.42345 −10.4026 −8.34157 −7.69481
Std 2.61E−15 2.423101 0.000173 3.074106 3.963887

F23

Best −10.5364 −10.5364 −10.5363 −10.4781 −10.5232
Worst −2.87114 −2.87114 −10.5358 −2.41561 −0.94448
Mean −9.8181 −9.38662 −10.5361 −8.56594 −7.46184
Std 2.216446 2.808152 0.000159 3.314441 3.716296

The best values obtained are in bold.

Table 5
The algorithm parameters and operative restrictions.
Parameters Value

Number of population 30
Maximum iteration numbers 100
Stallions percentage 0.2
Crossover percentage 0.13
Base MVA 100 MVA
Base kV 12.66 kV
Node system voltage constraints 0.9 pu ≤ Vi ≤ 1.1 pu
DG’s power generation constraints 0 MW ≤ PDG ≤ 3 MW

Core(TM) i7-8550U CPU @ 1.80 GHz 1.99 GHz, 16 GB RAM, 64-bit
operation system (see Table 5).

Figs. 14 and 15 clarify a single-line schematic of these sys-
tems (Pothapragada et al., 2020). Real and reactive power con-
sumption for the 33-bus test system is 3715 kW and 2300 KVAR,
respectively. The test system’s initial power loss is 210.0794 kW,
and its minimum voltage is 0.9042 pu. While 69-bus test sys-
tem’s active and reactive power demands are 3802 kW and 2695
KVAR, respectively. The 69-test system’s initial power loss is
238.1455 kW, and its minimum voltage is 0.9046 pu. In addi-
tion, the IEEE 119-bus test system (11 kV distribution system)

with 118 lines (Ali et al., 2020c) has been chosen to check the
scalability of the proposed algorithm.

5.2.1. IEEE 33-bus system
Fig. 16 depicts the voltage profile before and after DG in-

sertion. Bus 18 is the furthest endpoint from the substation;
therefore, its voltage is the least in the reference scenario (DG
absence), and its value is 0.90421 pu. Without DG, buses 6 to 18
and 26 to 33 have the lowest voltage, whereas introducing DG
results in a considerable voltage profile improvement within lim-
itations (approved). Furthermore, the usage of DG yields superior
outcomes in terms of power loss alleviation.

Table 6 displays the outcomes of the suggested approach for
determining the best size, site, and power factor of DG units in a
33-bus system. According to this table, the proportion of power
loss depression in the DS is 70.81 percent. Minimum voltages
raised from 0.9042 to 0.967 pu as a result.

It is observed that the innovative algorithm results in the
least total power loss when compared to those achieved us-
ing EA (Mahmoud et al., 2015), Hybrid approach (Kansal et al.,
2016), Hybrid Salp Swarm Algorithm (HSSA) (Abdel-mawgoud
et al., 2019), PSO (Ali et al., 2020b), SA (Ali et al., 2020b), Im-
proved Analytical (IA) (Kaur et al., 2014), MINLP (Kaur et al.,
2014), Hybrid Loss Sensitivity Index and SA (LSISA) (Ali et al.,
2020b), Hybrid Loss Sensitivity Index and PSO (LSIPSO) (Ali et al.,
2020b), Hybrid SA and PSO (SAPSO) (Ali et al., 2020b), Rider Op-
timization Algorithm (ROA) (Khasanov et al., 2021), Harris Hawks
Optimizer (HHO) (Khasanov et al., 2020), Henry gas solubility
optimization (HGSO) (Khasanov et al., 2020), whale optimiza-
tion algorithms (WOA) (Veera Reddy, 2018), Genetic algorithm
(GA) (Hassan et al., 2017), Gray wolf optimizer (GWO) (Kamel
et al., 2019), Simplified Analytical Approach (SAA) (Sa’ed et al.,
2019), Backtracking search optimization algorithm (BSOA) (El-
Fergany, 2015), ALOA (Ali et al., 2016) and Artificial ecosystem-
based optimization (AEO) (Khasanov et al., 2020). Fig. 17 de-
picts the convergence curves of the two techniques (i.e., WHO
and IWHO). The findings demonstrate that the IWHO method
smoothly accelerates to a correct decision and has stable faster
convergence when compared to the WHO algorithm. The IWHO
algorithm’s invention and notability have been proved and con-
firmed by identifying the best choice to attain global minima in
a short period.

5.2.2. IEEE 69-bus system
While bus 27 is the furthest end of the 69-bus system from

the supply node, bus 65 have the lowest voltage value 0.9046 pu
because bus 61, which is linked to it, is a strongly loaded point.
So, it was chosen as the location for the DG unit. Fig. 18 displayed
a significant improvement in the voltage profile.

Table 7 shows the outcomes of the suggested approach for
determining the best size, site, and power factor of DG units in
a 69-bus system. According to this table, the proportion of power
loss depression in the DS is 90.26 percent. Minimum voltages
raised from 0.9046 to 0.9725 pu as a result.

According to Table 7, the suggested algorithm has the lowest
power loss when compared to the Bat Algorithm (BA) (Khasanov
et al., 2019), EA (Mahmoud et al., 2015), Hybrid approach (Kansal
et al., 2016), HSSA (Li et al., 2018), PSO (Ali et al., 2020b),
Modified PSO algorithm (Ali et al., 2020a), SA (Ali et al., 2020b),
IA (Kaur et al., 2014), Mixed Integer Non-Linear Programming
(MINLP) (Kaur et al., 2014), Hybrid SA and MPSO (SAMPSO) (Ali
et al., 2020a), Rider Optimization Algorithm (ROA) (Khasanov
et al., 2021), HHO (Khasanov et al., 2020), HGSO (Khasanov
et al., 2020), WOA (Veera Reddy, 2018), GA (Veera Reddy, 2018),
SAA (Sa’ed et al., 2019), ALOA (Ali et al., 2016), Cuckoo Search al-
gorithm (CSA), Standard GA (Tan et al., 2012) and Multi-objective
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Fig. 12. The convergence curves of all algorithms for composite benchmark functions.

Table 6
The performance analysis of different algorithms in the IEEE-33 bus test system.
Methods Power

losses (kW)
Loss
reduction

Min voltage (pu)
& Bus number

DG location DG size
P (KW) & Q (KVAR)

Itr

Base case 210.0794 – 0.90421 18 – – – –
SA 70.1894 66.6% 0.95904 18 6 2935.6 1554.8 58
PSO 67.8228 67.7% 0.95862 18 6 2528.3 1747.9 50
LSI-SA 67.8118 67.7% 0.96041 18 6 2556.7 1750.0 28
LSI-PSO 67.8113 67.7% 0.96010 18 6 2658.8 1619.6 33
SA-PSO1 67.8123 67.7% 0.95872 18 6 2557.7 1748.4 10
SA-PSO2 67.8113 67.7% 0.95896 18 6 2511.9 1530.5 18
GA 72.68 64.32% – – 6 2831 930.5 –
SAA 67.75 67.89% – – 6 2540.84 1737.19 –
GWO 67.87 67.86% – – 6 2571.3 1794.77 20
BSOA 82.78 60.76% 0.9549 18 8 1857.4968 1296.54 –
ALOA 71.75 65.99% 0.9528 18 6 1947.756 1103.84 –
HHO 69.443 66.9% 0.95579 18 26 2510.01 1555.56 28
HGSO 68.1743 67.5% 0.9586 18 6 2653.27 1644.345 –
AEO 68.1698 67.55% 0.95830 18 6 2637.42 1634.526 –
HSSA 67.86 67.69% – – 6 2547.06 1777.858 –
WOA 78.4337 62.65% – – 30 1746.297 845.77 –
EA 67.937 67.66% – – 6 2528 1764.55 –
Hybrid 67.9 67.82% 0.9569 18 6 2482.96 1733.11 –
ROA 67.83 67.83% 0.95 18 6 2588.4 1785.77 17
IA 68.157 67.82% – – 6 2547.74 1778.33 –
MINLP 67.854 67.7% – – 6 2558 1765.55 –
WHO 61.3147 70.81% 0.967 18 6 2541.4727 1742.9416 15
IWHO 61.3147 70.81% 0.967 18 6 2541.4727 1742.9415 6
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Fig. 13. Boxplots for all algorithms for composite benchmark functions.

Fig. 14. Standard IEEE-33 bus test system.
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Fig. 15. Standard IEEE-69 bus test system.

Fig. 16. Voltage profile for IEEE-33 bus test system.

differential evolution (MODE) (Behera and Panigrahi, 2019). Fig. 19
depicts the convergence curves of the two techniques (i.e., WHO
and IWHO). The findings demonstrate that the IWHO method
smoothly accelerates to a correct selection and has stable faster
convergence when compared to the WHO algorithm. The IWHO
algorithm’s invention and notability have been proved and con-
firmed by identifying the best option to attain global minima in
a short period after 3 iterations.

5.2.3. IEEE 119-bus system
Fig. 20a portrays the voltage profile before and after insertion

of one DG unit. It fails to maintain the system voltage within

the minimum permissible limits; therefore, two units of DG is
used to maintain the system voltage, as illustrated in Fig. 20b,
and its minimum value is 0.924 pu at bus 119. Without DG,
buses 68 to 78 and 101 to 114 have the lowest voltage, whereas
introducing DG results in a considerable voltage profile improve-
ment within limitations (approved). Furthermore, the usage of DG
yields superior outcomes in terms of power loss alleviation (see
Table 8)

Table 9 shows the outcomes of the suggested approach for
determining the best size, site, and power factor of DG units in a
119-bus system. According to this Table, the modified algorithm
has the lowest power loss and enhancement voltage profile when
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Fig. 17. Convergence curve of the IEEE 33-bus system.

Fig. 18. Voltage profile for IEEE-69 bus test system.

Table 7
The performance analysis of different algorithms in the IEEE-69 bus test system.
Methods Power

losses (kW)
Loss
reduction

Min voltage (pu)
& Bus number

DG location DG size
P (KW) & Q (KVAR)

Itr

Base case 238.1455 – 0.9046 65 – – – –
SA 26.2583 88.97% 0.9727 27 61 1904.7 1571.9 39
MPSO 23.2358 90.24% 0.9724 27 61 1814.1 1293.3 77
SAMPSO 23.2378 90.24% 0.9738 27 61 1807.0 1295.3 3
GA 38.458 82.9 – – 61 2047.82 673.085 –
CSA 52.6 76.6 – – 61 2254 457.694 –
SGA 64.4 71.37 – – 61 2548 517.39 –
SAA 23.18 89.7 – – 61 1818.357 1311.74 –
HHO 34.65 85% – – 61 1879.41 1311.83 12
HGSO 35.71 85% – – 60 1695.9 1360.589 36
BA 52.5 76.67% – – 61 2100 426.42 65
PSO 52.5 76.67% – – 61 2100 426.42 75
EA 23.26 90.23% – – 61 2290 1598.429 –
IA 23.24 90.24% – – 61 1839 1283.629 –
Hybrid 23.19 89.7% – – 61 1814.4 1313.6 –
MINLP 23.31 90.21% – – 61 1828 1299.698 –
MODE 23.20 89.7% – – 61 1814.8 1290.314 –
WOA 27.9649 87.57% – – 61 1995.66 966.54 –
ROA 23.17 90.27% – – 61 1828.47 1304.78 37
WHO 23.178 90.26% 0.9725 27 61 1814.0767 1293.2988 10
IWHO 23.178 90.26% 0.9725 27 61 1814.0767 1293.2988 3
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Fig. 19. Convergence curve of the IEEE 69-bus system.

Fig. 20. Voltage profile & convergence curve of the IEEE 119-bus system.

Table 8
The performance analysis of the original and modified algorithms in the IEEE-119 bus test system.
DG type WHO IWHO

Location DG size
(Kw) (KVAR)

Ploss
(kW)

Vmin
(pu)

Location DG size
(Kw) (KVAR)

Ploss
(kW)

Vmin
(pu)

Base case – – – 1235.4 0.81 – – – 1235.4 0.81
One DG 74 2281 1783.5 819.5 0.82 72 2484 1814 814.5 0.83

Two DGs 111 1333 4518 763 0.924 112 2243 2871 695.8 0.9366 6117 4128.5 67 7550 3933

compared to the original algorithm. Fig. 20c illustrates the con-
vergence curves of the two techniques (i.e., WHO and IWHO).
The findings demonstrate that the IWHO method smoothly ac-
celerates to a correct selection and has stable faster convergence
when compared to the WHO algorithm. The IWHO algorithm’s
invention and notability have been proved and confirmed by
identifying the best option to attain global minima in a short time.

5.3. Reliability analysis

The DG incorporation can improve system reliability as DG
can be actively involved in system restoration. The reliability
improvement can be maximized if DG units are appropriately al-
located with automatic recloser (AR). AR is a safeguard device that
can identify a defect and open it for a pre-programmed period
before shutting automatically and without the intervention of a
human aspect. Figs. 21 and 22 show the modified IEEE 33 & 69
bus test models, including DG and AR. Automatic reclosers/CBs

must be used when installing a DG in the DS; otherwise, there’d
be no avail because the fault would undoubtedly prevent the DG
units from connecting during outages.

A five reliability indicators CAIDI , SAIFI , SAIDI , ASAI , and ENS
are used here to assess the system reliability. Tables 9 and 10
explain the reliability indices for IEEE 33 & 69 bus systems in
the base case after applying automatic recloser and applying a
dual AR and DG. By comparisons: SAIFI is decreased, SAIDI is
decreased, CAIDI is decreased, ASAI is increased and ENS is de-
creased, which means that the test systems reliability is improved
as indicated in Figs. 23 & 24.

6. Conclusions

An effective optimizer called IWHO has been developed here
to mend the performance of the original WHO, which was re-
cently published and applied for the optimal site and size of
DGs to slash the operational losses, boost the voltage profile, and
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Fig. 21. A modified IEEE 33 bus test.

Fig. 22. A modified IEEE 69 bus test.
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Fig. 23. Comparative results of IEEE-33 system reliability.

Table 9
Reliability indices for IEEE-33 bus system.
Scenario SAIFI SAIDI CAIDI ASAI ENS

BASE 19.576 9.6957 0.49529 0.99889 36019.6509
AR 12.7202 6.3171 0.49662 0.99928 23490.4653
AR+DG 8.2069 3.9625 0.48283 0.99955 14724.8236

Table 10
Reliability indices for IEEE-69 bus system.
Scenario SAIFI SAIDI CAIDI ASAI ENS

BASE 19.609 57.7215 2.9436 0.99341 215927.917
AR 18.1781 52.7577 2.9083 0.99398 197296.905
AR+DG 10.4966 30.5274 2.9023 0.99652 116230.165

raise the system reliability. The IWHO is created to defeat the
weaknesses of the traditional WHO by meliorative the poise be-
tween the reconnoitering and utilization and hurry the algorithm
convergence. The performance of the developed IWHO algorithm
has been verified using 23 benchmark functions, including uni-
modal, multi-modal, and fixed-dimensional composite functions
and it outperformed the four recent algorithms such as Gray Wolf
Optimizer (GWO) algorithm, Tunicate Swarm Algorithm (TSA),
Sea-gull Optimization Algorithm (SOA), and the original WHO.
Also, the effectiveness of the proposed algorithm has been proved
using various standards of the IEEE 33-bus and IEEE 69-bus test

systems and compared with some meta-heuristic methods to
discover its notability. From the findings, it can be seen that the
IWHO algorithm lessened the objective function better than other
comparative metaheuristic techniques. The simulated results con-
firm that the IWHO outperforms other compared techniques for
solving ODGs problems with optimal power factors in terms of
robustness and effectiveness. Lastly, the reliability evaluation is
a vital component of distribution system design and planning,
and the developed procedure is mainly designed to replicate the
random nature of the system and power failure. The acquired
findings demonstrate that the technique can guess the probabil-
ity density function (PDF) of several reliability indices with the
necessary precision for systems in the presence and absence of
DGs. Because the DG units may actively participate in system
recuperation, incorporation of them raises the system reliability.
The reliability improvement can be maximized if DG units are
appropriately allocated.

The proposed methodology could be used in the integrated
planning of smart active distribution networks (ADNs) that face
substantial uncertainty from both the generation and load sides
in the future study. In addition, our future step work will explore
how to handle ADN uncertainties throughout the optimization
process by using hybrid energy storage systems, as this allows the
produced planning strategies to be more dedicated to actuality.
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Fig. 24. Comparative results of IEEE-69 system reliability.
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