
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Mathematics 

2022 

Hamiltonian approach to modelling interfacial internal waves over Hamiltonian approach to modelling interfacial internal waves over 

variable bottom variable bottom 

Rossen Ivanov 

Calin Martin 

Michail Todorov 

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart 

 Part of the Mathematics Commons 

This Article is brought to you for free and open access by 
the School of Mathematics at ARROW@TU Dublin. It has 
been accepted for inclusion in Articles by an authorized 
administrator of ARROW@TU Dublin. For more 
information, please contact arrow.admin@tudublin.ie, 
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 4.0 License 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatart
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatart?utm_source=arrow.tudublin.ie%2Fscschmatart%2F339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=arrow.tudublin.ie%2Fscschmatart%2F339&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Physica D 433 (2022) 133190

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Hamiltonian approach tomodelling interfacial internal waves over
variable bottom
Rossen I. Ivanov a,∗, Calin I. Martin b, Michail D. Todorov c

a School of Mathematical Sciences, Technological University Dublin, City Campus, Grangegorman Lower, Dublin, D07 ADY7, Ireland
b Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
c Department of Differential Equations, Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8 Kliment Ohridski
Boulevard, 1000 Sofia, Bulgaria

a r t i c l e i n f o

Article history:
Received 31 July 2021
Received in revised form 21 December 2021
Accepted 1 February 2022
Available online 11 February 2022
Communicated by Micheal Jolly

Keywords:
Internal waves
KdV equation
Solitons
Dirichlet–Neumann operators
Soliton fission
Shear current

a b s t r a c t

We study the effects of an uneven bottom on the internal wave propagation in the presence of
stratification and underlying non-uniform currents. Thus, the presented models incorporate vorticity
(wave–current interactions), geophysical effects (Coriolis force) and a variable bathymetry. An example
of the physical situation described above is well illustrated by the equatorial internal waves in the
presence of the Equatorial Undercurrent (EUC). We find that the interface (physically coinciding with
the thermocline and the pycnocline) satisfies in the long wave approximation a KdV–mKdV type
equation with variable coefficients. The soliton propagation over variable depth leads to effects such
as soliton fission, which is analysed and studied numerically as well.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is well known that ocean wave dynamics displays very complex features, partly due to the effects of the bottom topography which
quite often deviates from the convenient scenario of a flat bed. Waves over variable bottom are an active area of research, and various
scales, geometries and approximations have been examined. For a survey of results we refer the reader, for example, to the review by
Kirby [1], the book by Dingemans [2] and the references therein. The best known nonlinear wave models have been extended for fluids
with uneven bottom as well: we recall here the KdV equation for long waves, for example, which has been generalised and studied
thoroughly by Johnson [3], and the NLS equation for modulated waves, treated by Djordjević and Redekopp [4].

The appreciable body of studies handling free surface and/or internal water wave propagation over variable depth covers situations
like waves in channels (Rosales and Papanicolaou) [5], non-hydrostatic topographic effects [6], rapidly varying topographies [7,8],
surface waves over internal waves [9] and currents [10], and even tsunami generation [11]. Higher order nonlinearities and dispersion
as well as intermediate long wave propagation regimes have been examined by Choi and Camassa [12–14]. Internal waves over variable
bottom have been studied extensively as well [4,12,15–20].

While most of the studies of internal waves involve irrotational flow, shear background currents have been included as well [20–27].
However, the combined effects of a variable bottom topography, sheared currents and stratification on the arising internal waves are
rather less investigated. We attempt to bring our contribution toward filling this gap by a derivation of a model equation (with variable
coefficients) of KdV type which describes the interface in a flow with a variable depth and a flat surface in the presence of currents,
density stratification and geophysical effects. A significant part in our endeavour is played by a variational approach based on the
Zakharov’s Hamiltonian formulation [28], the subsequent developments such as [29–31] as well as other irrotational scenarios, like
surface and internal waves [32] or variable bottoms [33,34]. We advance here another feature of ocean dynamics: the presence of
(non-uniform) underlying currents modelled by a specific choice of vorticity function.

The Hamiltonian formulation in our approach makes an extensive use of the Dirichlet–Neumann operators (DNO) [32,33,35] and
provides a convenient setting for incorporating a series of features like interacting fluid layers, topography effects, stratification and
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Fig. 1. The system under study involving the two domains of different density (2.2), (2.1) and the four layers of different vorticity (2.5). The flat surface is y = h1 ,
the elevation of the internal wave corresponds to the curve y = η(x, t) and the variable bottom corresponds to y = −h + β(x). The current profile (2.5) (for the
special case of undisturbed interface η = 0) is given as well, the magnitude U is oriented along the horizontal axis, and the vertical dashed line corresponds to
U = 0.

underlying currents. In the presented study we illustrate the derivation and application of the Hamiltonian framework based on DNO
for the case of uneven bottom. The illustrative example concerns internal wave propagation in the equatorial region in the presence
of the Equatorial Undercurrent. The equatorial internal waves are special, in a sense, due to the effect of the Coriolis force. This effect
keeps the waves propagating along the Equator like in a wave guide. Some further details could be found for example in [23,24]. We
would like to note also the recent study by Guyenne [36] who proposed a numerical model for nonlinear surface waves in the presence
of a vertically sheared current utilising a Hamiltonian formulation combined with a series expansion of the DNO.

The rest of the paper is organised as follows. In Section 2 we formulate the model from the governing equations of the fluid
mechanics. In Section 3 we describe the Hamiltonian representation of the evolution equations and then in Section 4 we present a
long wave approximation which reduces to a KdV equation with variable coefficients which represents a generalisation of the flat
bottom scenario. The effects on the solitons such as fission due to the variable depth are studied in Section 5. A special case with small
or vanishing coefficient of the quadratic nonlinearity, taking into account the cubic nonlinearity, is analysed in Section 6. The analogues
of the basic conserved quantities are given in Section 7. The Dirichlet-Neumann operators for the lower layer which is bounded by an
uneven bottom are derived in Appendix A. The numerical scheme for the finite-difference implementation of KdV-type equation with
variable coefficients is outlined in Appendix B.

2. Equations of motion for an internal wave

We consider a two-dimensional water flow, moving under the influence of gravity, such that the x-axis is oriented along the
horizontal direction and the y-axis is pointing vertically upwards. The time variable will be denoted with t . The flow is composed of two
domains, Ω and Ω1, consisting of water with different constant densities and separated by a common interface, denoted y = η(x, t),
which represents an interfacial internal wave. More specifically, we assume that, adjacent to the bed, the lower water domain is given
as

Ω(η, β) := {(x, y, t) : x ∈ R, t ∈ R, B(x) := −h + β(x) < y < η(x, t)}, (2.1)

being situated below the near-surface region

Ω1(η) := {(x, y, t) : x ∈ R, t ∈ R, η(x, t) < y < h1}, (2.2)

where β(x) is some given function, indicative of the unevenness of the bottom, while h and h1 are positive constants, such that y = h1
is the flat surface, and y = −h is the average depth of the seafloor, cf. Fig. 1. Moreover, we assume that the internal wave has the
properties

lim
|x|→∞

η(x, t) = 0,
∫
R
η(x, t)dx = 0,

the last one related to the fact that the average depth of the interface is at y = 0.1 Taking into account the Equator’s peculiar feature
of behaving like a wave-guide we will look at two-dimensional inviscid and incompressible fluid motion confined near the Equator by
the action of the Coriolis forces.

We would like to point out that most of the physical variables that we employ here (like the density, the generalised velocity
potentials or the components of the velocity field) display discontinuities across the interface y = η(x, t) that separates the two fluid
regions. To make the reader observant of this aspect, we use the index 1 as a label for the upper layer. Whenever we refer to the overall
physical variable without specification of the layer, we shall use bold face symbol.

1 Since the average depth involves division by the length of the interval (which is infinity, the interval is the whole real axis) the average depth will be the same
if
∫
R η(x, t)dx is a finite constant.
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Therefore, denoting with (u(x, y, t), v(x, y, t)) the velocity field, the equations of motion are Euler’s equations{
ut + uux + vuy + 2ωv = −

1
ρ
Px,

vt + uvx + vvy − 2ωu = −
1
ρ
Py − g,

(2.3)

where P = P(x, y, t) denotes the pressure, ω is the rotational speed of Earth, g is the gravitational acceleration and ρ denotes the
density of the fluid which is assumed to be piece-wise constant being distributed as

ρ(x, y) =

{
ρ1(x, y) for (x, y) ∈ Ω1,

ρ(x, y) for (x, y) ∈ Ω,
(2.4)

with the understanding that we look at a stable stratification, that is ρ > ρ1. Throughout the paper we will consider rotational water
flows, and moreover, we presuppose that the vorticity is given as

γ := uy − vx = U ′(y),

where U (y) represents the background shear current and has the following profile: the current is piece-wise linear with respect to y
with the exception of the layer near the bottom where it decays to zero. More specifically, we introduce five layers as follows :

U (y) =

⎧⎪⎪⎨⎪⎪⎩
γ1y + κ, when η(x, t) ≤ y ≤ h1,

γ y + κ, when −l ≤ y ≤ η(x, t)
U(y) when −m ≤ y ≤ −l
0 when −h + β(x) ≤ y ≤ −m.

(2.5)

Here γ and γ1 represent constant vorticities in the corresponding sub-domains, κ is a constant component of the current. The choice
of this current is made to model the Equatorial undercurrent which is formed by the winds blowing to the west [22,24,25] so that
the current on the surface is negative. We note that the current is not continuous at y = η, and has a jump when η ̸= 0 (continuous
is only the normal component of the velocity field). Between the other layers U(y) is a continuous function such that U(−m) = 0,
U(−l) = −lγ + κ . In Fig. 1 the current is illustratively shown for the situation of an undisturbed fluid when η ≡ 0. The layer between
depths y = −m and y = −l is with prescribed current shape U(y) which could be chosen, for example, as necessary to match the field
data. It could be shown that the energy per unit length of this layer is constant and thus the layer does not contribute to the equations
on the interface (the pycnocline) [22]. However, the reconstruction of the velocity field in the body of the fluid would, of course, depend
on U(y). The current gradually weakens towards the bottom layer, where it is zero, and there the motion is irrotational.

With respect to the described stratification we have the following notations for the velocity field

u(x, y, t) :=

{
u(x, y, t), in Ω,

u1(x, y, t), in Ω1,
(2.6)

and

v(x, y, t) :=

{
v(x, y, t), in Ω,

v1(x, y, t), in Ω1.
(2.7)

In addition, we have the equation of mass conservation for incompressible fluid

ux + vy = 0 in Ω ∪Ω1. (2.8)

Complementing the equations of motion are the boundary conditions, of which the dynamic boundary condition

P = Patm on y = h1, (2.9)

(with Patm being the constant atmospheric pressure) decouples the motion of the water from that of the air. In addition, the
impermeability of the surface boundary, of the interface and of the bottom, leads to the kinematic boundary conditions. On the surface
and the interface respectively they are

v1 = 0 on y = h1, (2.10)

v1 = ηt + u1ηx on y = η(x, t),
v = ηt + uηx on y = η(x, t), (2.11)

while on the bottom we have the condition

ϕy(x,B(x)) = Bxϕx(x,B(x)), for all x ∈ R, (2.12)

stating that the normal component of the velocity field vanishes.
To ease the notation, in the further developments of the paper, we introduce sub-indices b and s for the evaluations of physical

quantities at the bottom y = B(x) and at the common interface y = η(x, t), respectively. In order to describe propagation of solitary
waves we make the assumption that all considered functions η(x, t), ϕ(x, y, t), ϕ1(x, y, t), β(x) are in the Schwartz class with respect to
the x variable, that is declining fast enough when x → ±∞ (for all values of the other variables), which we denote by η(x, ·) ∈ S(R),
etc.

The equation of mass conservation (2.8) ensures the existence of a stream function

ψ(t, x, y) =

{
ψ(t, x, y) in Ω,

ψ1(t, x, y) in Ω1,

3
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determined up to an additive term that depends only on time, by{
u = ψy, v = −ψx, in Ω,

u1 = ψ1,y, v1 = −ψ1,x, in Ω1.
(2.13)

We will impose the condition that the stream function is continuous on the interface y = η(x, t), condition which can be expressed as

ψ(t, x, η(x, t)) = ψ1(t, x, η(x, t)). (2.14)

The latter condition implies that the normal velocity components equal across the interface y = η(x, t).
We introduce now the (generalised) velocity potential

ϕ =

{
ϕ, in Ω,

ϕ1, in Ω1,

by means of

u = ϕx + U (y), v = ϕy. (2.15)

The kinematic boundary conditions (2.10) and (2.11) can now be written as

(ϕy)b = Bx(ϕx)b, (ϕ1,y)y=h1 = 0 (2.16)

and respectively, as

ηt = (ϕ1,y)s − ηx[(ϕ1,x)s + γ1η + κ],

ηt = (ϕy)s − ηx[(ϕx)s + γ η + κ].
(2.17)

The following notation will be used later on in the paper. Namely, we set

Φ(x, t) = ϕ(x, η(x, t), t),
Φ1(x, t) = ϕ1(x, η(x, t), t),
Φb(x, t) = ϕ(x,B(x), t).

(2.18)

Euler’s equations can be expressed by means of the stream function and of the generalised velocity potential as

∇

[
ϕt +

1
2
|∇ψ|

2
+

P
ρ

− (γ + 2ω)ψ + gy
]

= 0. (2.19)

We have therefore

ϕ1,t +
1
2
|∇ψ1|

2
− (γ1 + 2ω)ψ1 +

P1
ρ1

+ gy = f1(t) in Ω1,

ϕt +
1
2
|∇ψ |

2
− (γ + 2ω)ψ +

P
ρ

+ gy = f (t) for − l ≤ y ≤ η(x, t).

From the condition P = Patm on the top surface and availing also of the Schwartz property of the stream function ψ1 and of the velocity
potential ϕ1 we infer that Patm/ρ1 + gh1 = f1(t) for all t . Moreover, utilising the continuity of the pressure at the interface y = η(x, t)
and making the choice f (t) := ρ1f1(t)/ρ we obtain the Bernoulli type equation

ρ

[
(ϕt )s +

|∇ψ |
2
s

2
− (γ + 2ω)χ + gη

]
= ρ1

[
(ϕ1,t )s +

|∇ψ1|
2
s

2
− (γ1 + 2ω)χ + gη

]
(2.20)

where χ := ψ(t, x, η(x)) = ψ1(t, x, η(x)) is the stream function evaluated at the interface.

3. The Hamiltonian functional and the Hamiltonian formulation

We start this section by indicating the most physical choice for the Hamiltonian functional which is the total energy of the flow.
This functional is then written in terms of the canonical variables: the interface defining function η and a suitable combination of
the velocity potentials ϕ and ϕ1 evaluated on the interface. We then introduce an almost-Hamiltonian formulation of the considered
wave–current system that becomes Hamiltonian in the absence of sheared underlying currents (that is, for γ = γ1 = 0) and Coriolis
force (ω = 0). Lastly, it will be proven that an appropriate change of variables renders the almost-Hamiltonian formulation into a bona
fide Hamiltonian one.

3.1. The Hamiltonian

The outset of this section’s endeavour is the evaluation of the kinetic and of the potential energy for each domain. For the lower
domain the potential energy is

Vl[η] =
ρg
2

∫
Ω

ydydx =
ρg
2

∫
R
(η2 − B2)dx.

Observing that

u2
+ v2 = (ϕx + U (y))2 + ϕ2

y = div(ϕ∇ϕ) + 2ϕxU (y) + (U (y))2 (3.1)

4
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we use Green’s Theorem (Divergence Theorem) and find that the kinetic energy of the lower layer can be calculated as

Kl[η,Φ] =
ρ

2

∫
Ω

div(ϕ∇ϕ)dydx + ρ

∫
Ω

U (y)ϕxdydx +
ρ

2

∫
Ω

U2(y)dydx

=
ρ

2

∫
R
(ϕ∇ϕ)s · ns

√
1 + η2xdx +

ρ

2

∫
R
(ϕ∇ϕ)b · nb

√
1 + B2

xdx

− ρ

∫
R
(γ η + κ)Φ(x, t)ηxdx +

ρ

2

∫
R

∫
−l

−m
U2(y)dydx +

ρ

6γ

∫
R
[(γ η + κ)3 − (−γ l + κ)3]dx, (3.2)

where ns = (−ηx, 1)/
√
1 + η2x is the outward-pointing unit normal vector (with respect to Ω) to the wave surface, while nb =

(Bx,−1)/
√
1 + B2

x is the outward-pointing unit normal vector on the bottom. Since√
1 + B2

x nb · (∇ϕ)b = (Bx,−1) ·
(
(ϕx)b, (ϕy)b

)
= (Bx(ϕx)b − (ϕy)b) = 0,

no bottom-related terms are present. Hence

Kl[η,Φ] =
ρ

2

∫
R
Φ(∇ϕ)s · ns

√
1 + η2xdx − ρ

∫
R
(γ η + κ)Φ(x, t)ηxdx +

ρ

2

∫
R

∫
−l

−m
U2(y)dydx +

ρ

6γ

∫
R
[(γ η + κ)3 − (−γ l + κ)3]dx.

(3.3)

Let us introduce the Dirichlet–Neumann operators Gij(β, η) given by(
G11 G12

G21 G22

)(
Φ

Φb

)
=

(
(∇ϕ)s · ns

√
1 + η2x

(∇ϕ)b · nb
√
1 + B2

x

)
. (3.4)

Therefore

G11Φ + G12Φb = (∇ϕ)s · ns

√
1 + η2x ,

G21Φ + G22Φb = 0, Φb = −G−1
22 G21Φ, (3.5)

and

(∇ϕ)s · ns

√
1 + η2x =

(
G11 − G12G−1

22 G21
)
Φ. (3.6)

The expression (3.3) becomes

Kl[η,Φ] =
ρ

2

∫
R
Φ
(
G11 − G12G−1

22 G21
)
Φdx − ρ

∫
R
(γ η + κ)Φ(x, t)ηxdx +

ρ

2

∫
R

∫
−l

−m
U2(y)dydx

+
ρ

6γ

∫
R
[(γ η + κ)3 − (−γ l + κ)3]dx. (3.7)

Let us denote G(η, β) := G11 −G12G−1
22 G21. This operator depends on the bottom variations through β(x). The details of the computation

of these Dirichlet–Neumann operators are given in Appendix A.
For the upper layer, similarly,

Ku[η,Φ1] =
ρ1

2

∫
R
Φ1G1(η)Φ1dx + ρ1

∫
R
(γ1η + κ)Φ1(x, t)ηxdx +

ρ1

6γ1

∫
R
[(γ1h1 + κ)3 − (γ1η + κ)3]dx, (3.8)

Vu[η] =
ρ1g
2

∫
Ω1

ydydx =
ρ1g
2

∫
R
(h2

1 − η2)dx

where G1(η) is defined as

G1(η)Φ1 = −(∇ϕ1)s · ns

√
1 + η2x = −(ϕ1,y)s + (ϕ1,x)sηx. (3.9)

The minus sign is because the outward normal for the domain Ω1 is −ns. Recall that

G(η, β)Φ = (∇ϕ)s · ns

√
1 + η2x = (ϕy)s − (ϕx)sηx. (3.10)

Some of the integrals above are not convergent due to the constant densities at infinity. However, the Hamiltonian is the energy
difference from the unperturbed state, whose energy is the energy of the current (which is infinite due to the infinite domain):

H = Ku[η,Φ1] + Vu[η] + Kl[η,Φ] + Vl[η] − {Ku[0, 0] + Vu[0] + Kl[0, 0] + Vl[0]},

therefore the Hamiltonian will be evaluated from

H[η,Φ,Φ1] =
ρ

2

∫
R
ΦG(η, β)Φdx +

ρ1

2

∫
R
Φ1G1(η)Φ1dx − ρ

∫
R
(γ η + κ)Φ(x, t)ηxdx + ρ1

∫
R
(γ1η + κ)Φ1(x, t)ηxdx (3.11)

+
ργ 2

− ρ1γ
2
1

6

∫
R
η3dx +

g(ρ − ρ1) + κ(ργ − ρ1γ1)
2

∫
R
η2dx.

5
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The function above is not yet the Hamiltonian. As the Bernoulli equation (2.20) suggests, the momentum-type variable, conjugate to
the coordinate-type variable η is [29–31]

ξ := ρΦ − ρ1Φ1 (3.12)

Using (3.10) and (3.9) as well as (2.17) we have{
G(η, β)Φ = −ηx(ϕx)s + (ϕy)s = ηt + (γ η + κ)ηx,
G1(η)Φ1 = ηx(ϕ1,x)s − (ϕ1,y)s = −ηt − (γ1η + κ)ηx

(3.13)

from where

G(η, β)Φ + G1(η)Φ1 = µ := (γ − γ1)ηηx. (3.14)

From (3.12) and (3.14)

ρ1G(η, β)Φ + ρG1(η)Φ = ρ1µ+ G1(η)ξ . (3.15)

Defining

B := ρG1(η) + ρ1G(η, β) (3.16)

we express Φ and Φ1 in terms of ξ and η :{
Φ = B−1

(
ρ1µ+ G1(η)ξ

)
,

Φ1 = B−1
(
ρµ− G(η, β)ξ

)
.

(3.17)

Utilising (3.14), (3.17) and (3.11) we express the Hamiltonian in the form

H(η, ξ ) =
1
2

∫
R
ξG(η, β)B−1G1(η)ξ dx −

1
2
ρρ1

∫
R
µB−1µ dx −

∫
R
(γ η + κ)ξηx dx + ρ1

∫
R
µB−1G(η, β)ξ dx (3.18)

+
ργ 2

− ρ1γ
2
1

6

∫
R
η3dx +

g(ρ − ρ1) + κ(ργ − ρ1γ1)
2

∫
R
η2dx.

This expression formally coincides with the expression for the flat bottom [37], apart from the fact that G(η, β) depends now on the
bottom topography. Considering the case where γ1 = γ and µ = 0 and the Hamiltonian reduces further to

H(η, ξ ) =
1
2

∫
R
ξG(η, β)B−1G1(η)ξ dx −

∫
R
(γ η + κ)ξηx dx +

(ρ − ρ1)γ 2

6

∫
R
η3dx +

(g + κγ )(ρ − ρ1)
2

∫
R
η2dx. (3.19)

3.2. Hamiltonian structure

The Hamiltonian structure for two-layer domains allowing for currents and an internal wave is derived in [38,39] for the case of a
flat bottom. Moreover, the Hamiltonian formulation for the irrotational scenario for surface waves over a rough bottom was derived
in [33], developing the perturbative technique for the Dirichlet–Neumann operators for non-even bottom. The currents in the layer
−m ≤ y ≤ −l do not contribute to the Hamiltonian, as it could be seen from (3.7) and (3.18). Indeed, as noted in [22,26] the motion
of the interface is affected only by the motion in the layers adjacent to the interface, so that the equations of motion of the internal
wave (2.17) and (2.20) can be represented in the (non-canonical) Hamiltonian form{

ηt = δξH
ξt = −δηH + Γ χ

(3.20)

where

Γ := ργ − ρ1γ1 + 2ω
(
ρ − ρ1

)
(3.21)

is a constant and

χ (x, t) = −

∫ x

−∞

ηt (x′, t)dx′
= −∂−1

x ηt (3.22)

is the stream function, evaluated at y = η(x, t), (see [38,40] for details).
Introducing the variable u = ξx one can write down (3.20) in the equivalent form{

ηt = − (δuH)x
ut + Γ ηt = −

(
δηH

)
x .

(3.23)

Remark 3.1. There is a formal transformation of the Eqs. (3.20) into a canonical form{
ηt = δζH
ζt = −δηH

(3.24)

by the following change of one of the variables (cf. [38,39,41])

ξ → ζ = ξ +
Γ

2

∫ x

−∞

η(x′, t) dx′. (3.25)

6
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Therefore, the system (3.20), which could be also represented as⎧⎨⎩
ηt = δξH

ξt = −δηH − Γ
x∫

−∞

δH
δξ (x′)dx

′ (3.26)

is Hamiltonian too [38,39].

The condition
∫
R η(x

′, t)dx′
= 0 ensures that∫ x

−∞

η(x′, t)dx′
∈ S(R)

and hence ζ (x, t) ∈ S(R). We note that

d
dt

H =

∫
R
(δξHξt + δηHηt )dx =

∫
R
δξHΓ χdx = −Γ

∫
R
ηt∂

−1
x ηtdx = −

Γ

2

∫
R

[(∫ x

−∞

ηt (x′, t)dx′

)2
]

x

dx = 0. (3.27)

In what follows we will employ these equations with an approximation for the Hamiltonian functional H .

3.3. Series expansion of the Dirichlet-Neumann operator

The Hamiltonian (3.11) depends on the Dirichlet–Neumann operator

G(η, β) = G11 − G12G−1
22 G21.

This is a self-conjugate operator. Details about Gij at different orders can be found in Appendix A.1. The operator can be expanded over
the powers of η and β . Let us now introduce appropriate scales. The interfacial waves are assumed of small amplitude, relative to h,
i.e. |ηmax|/h = ε ≪ 1. The bottom variations are also considered small, but |βmax|/h of order ϵ̃ ≤ ε1/3. The rationale of this choice will
become evident later (see the expansion (3.28)). We point out that the magnitude of the bottom variations is not fixed by ε, varying
within the described limits, with all derivations being valid for the flat bottom as well. In order to keep terms up to the order of ε we
keep in the expansion η0, η1 and β0, . . . , β3. Therefore, in all expansions we are keeping the contributions from the following entries:

G(0,0)
ij + G(1,0)

ij + G(0,1)
ij + G(0,2)

ij + G(0,3)
ij ,

whose orders are explicitly

G(0,0)
ij + εG(1,0)

ij + ϵ̃G(0,1)
ij + ϵ̃2G(0,2)

ij + ϵ̃3G(0,3)
ij .

The contribution from G(1,1)
ij is of order ϵ̃ε and is neglected.

The next assumption is the assumption of the slow variations of the bottom profile. Mathematically, we assume that β = β(εx).
Then the commutator of β and the differentiation operator D := −i∂x is proportional to εβ ′(εx) which itself is of order ε. Thus, if we
keep only terms of order ε, we can write εaDβ ≈ εaβD (where 0 < a ≤ 1) since the difference εaDβ − εaβD ∼ εa+1

≪ ε and could be
neglected. In other words, with the exception of the leading order term, we can interchange βD and Dβ . The expansion involves also
the long-wave parameter δ = h/λ ≪ 1 where λ is the typical wavelength. Since k = 2π/λ is the wave number, sometimes we write
also symbolically δhk instead of hk to remember the fact that the quantity is of order δ. Moreover, we write δhD, instead of hD since
k is the eigenvalue of D = −i∂x when acting on functions representing plane waves exp(ikx). With these assumptions the truncated
expansion is

G(b, η) = δ2D((h − β) + εη)D − δ4D2
[
1
3
(h − β)3 + εh2η

]
D2

+ δ6
2
15

h5D6
+ O(δ8, εδ6, ε2δ4)

= δ2D(b(X) + εη)D − δ4D2
[
1
3
b3(X) + εh2η

]
D2

+ δ6
2
15

h5D6
+ O(δ8, εδ6, ε2δ4),

(3.28)

where b(X) = h − β(εx) is the local depth and X = εx indicates that the bottom depth varies slowly with x. This of course coincides
with the result from [34] which was obtained following a slightly different approach based on the framework from [33]. Assuming that
O(h) = O(h1), for the operator G1 we have as usual [32]

G1(η) = δ

(
D tanh(δh1D)

)
− εδ2

(
DηD − D tanh(δh1D)ηD tanh(δh1D)

)
+ O(δ8, εδ6, ε2δ4). (3.29)

or with the hyperbolic tangent functions expanded,

G1(η) = δ2D (h1 − εη)D − δ4D2
[
1
3
h3
1 − εh2

1η

]
D2

+ O(δ8, εδ6, ε2δ4). (3.30)

4. The long wave approximation

We are concerned in this section with the KdV-like long-wave regime which arises when the relation between the scales is ε ∼ δ2,
ξ = O(δ), and then both u and η are of order δ2. Then for the operator B we have

B = δ2D
(
(ρ1b(X) + ρh1) − δ2

1
3
D
(
ρ1b3(X) + ρh3

1

)
D + ε(ρ1 − ρ)η

)
D + O(δ6) (4.1)

7
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which entails that the approximate Hamiltonian whose expansion, including terms of order δ6, is:

H(η, u) =
1
2
δ4
∫
R
u
(
α1(δ2x) + δ2α3(δ2x)η + δ2α2(δ2x)∂2x

)
udx + δ4α5

∫
R

η2

2
dx

+δ4κ

∫
R
ηudx + δ6

1
2

∫
α4(δ2x)η2udx + δ6α6

∫
R

η3

6
dx (4.2)

where, using the notation X = δ2x,

α1(δ2x) =
b(X)h1

ρ1b(X) + ρh1
, α2 =

b2h2
1(ρb + ρ1h1)

3(ρ1b + ρh1)2
, α3 =

ρh2
1 − ρ1b2

(ρ1b + ρh1)2
,

α4 =
γ1ρ1b + γ ρh1

ρ1b + ρh1
, α5 = g(ρ − ρ1) + (ργ − ρ1γ1)κ, α6 = ργ 2

− ρ1γ
2
1 .

(4.3)

The Hamiltonian equations (3.23) for the Hamiltonian (4.2) in terms of η and u = ξx are (note that the equations written with scales
will bring a factor of δ2 for each Hamiltonian variable, which will compensate the overall factor δ4 of the Hamiltonian)

ηt + κηx +

[
α1u + δ2α2uxx + δ2α3ηu +

δ2

2
α4η

2
]
x
= 0,

ut + κux + Γ ηt +

[
α5η +

δ2

2
α3u

2
+ δ2α4uη +

δ2

2
α6η

2
]
x
= 0.

(4.4)

The x-derivatives of αk(X) produce quantities of smaller order. Substituting the explicit form of α5 we have

ηt + κηx + (α1u)x + δ2α2uxxx + δ2(α3(ηu)x + α4ηηx) = 0,

ut + κux + Γ (ηt + κηx) + (ρ − ρ1)(g − 2ωκ)ηx + δ2(α3uux + α4(uη)x + α6ηηx) = 0.
(4.5)

Since ω = 7.3 × 10−5 rad/s, κ ∼ 1 m/s, then g ≫ 2ωκ and the 2ωκ term will be neglected.
In the leading order

ηt + κηx + (α1u)x = 0,
ut + κux + Γ (ηt + κηx) + (ρ − ρ1)gηx = 0.

(4.6)

The monochromatic solutions for η and u can be obtained in the form

η(x, t) = η0eik(x−c(X)t)

u(x, t) = u0eik(x−c(X)t) (4.7)

where c(X) is the wave speed, which depends on the ‘‘slowly varying’’ variable X . From (4.6)–(4.7) it is straightforward to obtain the
following quadratic equation for the wave speed c:

(c − κ)2 + α1Γ (c − κ) − α1(ρ − ρ1)g = 0. (4.8)

The solutions are

c(X) = κ +
1
2

(
−Γ α1(X) ±

√
Γ 2α2

1(X) + 4g(ρ − ρ1)α1(X)
)
. (4.9)

For example, for internal waves in the presence of the EUC, taking the typical values κ = 1 m/s, γ1 = −0.1 s−1, γ = 0.1 s−1 and
depths h1 = 200 m, h = 2000 m densities ρ = 1037 kg/m3, ρ1 = 1026, kg/m3, we have c+ ≈ 5.35 m/s (right running waves)
and c− ≈ −3.39 m/s (left running waves). It is evident also that c(X) is of the same order as κ . Another observation is that the
presence of vorticity does not change considerably the wave speed, which for the irrotational case (γ = 0, γ1 = 0) for example, is
c± ≈ 1 ± 4.37 m/s. In contrast, the wave speed of the surface waves (whose effect is neglected here) depends significantly on the
vorticity near the surface [21].

As in the previous studies, following [3,34,42], in addition to the variable X , we introduce the characteristic variable in the form

θ =
1
ε
R(X) − t, (4.10)

where R(X) is a function such that R′(X) = 1/c(X). The (x, t) coordinate partial derivatives change according to

∂x ≡ R′(X)∂θ + ε∂X =
1

c(X)
∂θ + ε∂X ,

∂t ≡ −∂θ .

(4.11)

The equations then can be transformed from (x, t) variables to the slow variables (θ, X). This way, of course, two sets of equations arise
(for the left and for the right running waves).

The equations (4.4) written in terms of the new variables are

− (c − κ)ηθ + δ2cκηX + α1uθ + δ2c(α1u)X + δ2
α2

c2
uθθθ + δ2 [α3(uη)θ + α4ηηθ ] + O(δ4) = 0 (4.12)

and

− (c − κ)uθ + [(ρ − ρ1)g − Γ (c − κ)]ηθ + δ2cκuX + δ2c[Γ κ + (ρ − ρ1)g]ηX + δ2[α3uuθ + α4(ηu)θ + α6ηηθ ] + O(δ4) = 0.

8
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From the second equation and (4.9)

uθ =
c − κ

α1
ηθ + δ2

κc
c − κ

uX + δ2
c[Γ κ + (ρ − ρ1)g]

c − κ
ηX + δ2

1
c − κ

[α3uuθ + α4(ηu)θ + α6ηηθ ] + O(δ4) = 0. (4.13)

Therefore, in the leading order we have

u =
c − κ

α1
η + O(δ2). (4.14)

Next we substitute (4.13) in (4.12) and then we substitute (4.14) in the terms of order δ2 to obtain the single equation for η

c2[2(c − κ) + α1Γ ]ηX +

[
c2cX − κc(c − κ)

α1,X

α1

]
η +

α2(c − κ)2

α1c2
ηθθθ +

[
3
α3

α1
(c − κ)2 + 3α4(c − κ) + α1α6

]
ηηθ = 0, (4.15)

which is a KdV-type equation [43] with variable coefficients that depend on functions, slowly varying with X . From (4.8) one can
establish a connection between cX and α1,X :

α1,X =
2(c − κ) + α1Γ

g(ρ − ρ1) − Γ (c − κ)
cX = α1

2(c − κ) + α1Γ

(c − κ)2
cX . (4.16)

One possible limit of Eq. (4.15) is the irrotational case where ω = γ = γ1 = 0. Hence, it follows that Γ = α4 = α6 = 0,
c2 = g(ρ − ρ1)α1 and thus, Eq. (4.15) acquires the form

ηX +
bX

4b(X)
ρh1

ρ1b + ρh1
η +

ρb + ρ1h1

6cg(ρ − ρ1)
ηθθθ +

3c(ρh2
1 − ρ1b2)

2g(ρ − ρ1)b2h2
1
ηηθ = 0, (4.17)

which showed up in non-dimensional form in [19] lacking, however, details of its derivation.
The limit of (4.15) to one layer of fluid which coincides to the lower domain Ω (Fig. 7) corresponds to ρ1 = 0. Then Γ = ρ(γ +2ω),

α1 = b(X)/ρ, α2 = b3(X)/(3ρ), α3 = 1/ρ, α4 = γ , α6 = ργ 2 and

c(X) = κ +
1
2

(
−(γ + 2ω)b(X) ±

√
(γ + 2ω)2b2(X) + 4gb(X)

)
. (4.18)

Then Eq. (4.15) becomes

c2[2(c − κ) + b(γ + 2κ)]ηX +

[
c2cX − κc(c − κ)

bX
b

]
η +

b2(c − κ)2

3c2
ηθθθ +

[
3
b
(c − κ)2 + 3γ (c − κ) + bγ 2

]
ηηθ = 0. (4.19)

This situation corresponds to surface waves over one layer of fluid and has been analysed in [21]. Further reduction of (4.19) could be
obtained for the irrotational case with κ = 0, b = c2/g . The equation acquires the form

(2cηX + cXη) +
c2

3g2 ηθθθ +
3 g
c2
ηηθ = 0, (4.20)

which is the equation derived by Johnson [3,42] for one layer of irrotational fluid over variable bottom; we refer the reader to [34] for
its derivation by means of a Hamiltonian approach. Therefore Eqs. (4.15), (4.19) provide generalisations of Johnson’s equation. These
equations resemble the KdV equation, the important distinction being that they exhibit variable coefficients. While the integrability of
KdV type systems is well established in numerous investigations for a long time [44], it seems that these particular models are, for a
general choice of b(X), not integrable [45].

5. Fission of solitons moving over a step-like bottom

We study an example where the step-like bottom is modelled by

b(X) = h
[
1 − α tanh

(
β̃
X
h

)]
.

The constants are taken as the actual values in the SI system of units as follows: h = 2000, h1 = 200, g = 9.81 ρ = 1037, ρ1 = 1026.
The constants α, β̃ are given in each case. First, we study the irrotational case (4.17). The bottom threshold is located at X = 0, the
initial condition is an exact KdV soliton coming from X → −∞ where the depth is b → b0 = h(1+α). When α > 0 the soliton moves
from deep to shallow regions, when α < 0 - from shallow to deep. The depth profile is given in Fig. 2a.

When κ = 0, considering right-moving waves, we have

c(X) =
1
2

(
−Γ α1(X) +

√
Γ 2α2

1(X) + 4g(ρ − ρ1)α1(X)
)
, (5.1)

and

cX = −
αβ̃ρα1

[2c(X) + α1Γ ] b2 cosh2 (β̃ X
h

) [c(X)]2 . (5.2)

The initial condition is the soliton that satisfies the unperturbed KdV equation with b = b0 = h(1 + α) :

c20 [2c0 + α1,0Γ ]ηX +
α2,0

α1,0
ηθθθ +

[
3
α3,0

α1,0
c20 + 3α4,0c0 + α1,0α6

]
ηηθ = 0 (5.3)

9
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where all quantities with sub-index 0 are evaluated with b = b0 = h(1 + α), including c0 = [c(X)]b=b0 :

c0 =
1
2

(
−Γ α1 +

√
Γ 2α2

1 + 4g(ρ − ρ1)α1

)
b=b0

. (5.4)

Writing the previous KdV Eq. (5.3) in the form

ηX + A0ηηθ + B0ηθθθ = 0, (5.5)

where A0 = (A)b=b0 , B0 = (B)b=b0 ,

A :=

3 α3
α1

[c(X)]2 + 3α4c(X) + α1α6

[c(X)]2[2c(X) + α1Γ ]
, B :=

α2
α1

[c(X)]2[2c(X) + α1Γ ]

are constants, we note that it is well known that it has an one-soliton solution

η(X, θ ) =
12B0

A0
·

K 2

cosh2 [K (θ − θ0 − 4K 2B0X)
] , (5.6)

where K , θ0 are arbitrary constants. Therefore, we can take an initial condition at X = X0 < 0 (ideally modelling a soliton coming from
X → −∞) which is an exact solution of the equation for X → −∞:

η(X0, θ ) =
12B0

A0
·

K 2

cosh2 [K (θ − θ0 − 4K 2B0X0)
] . (5.7)

Actually for the choice of X0 it is sufficient that tanh(β̃X0/h) ≈ −1, (e.g. |β̃X0/h| > 2.5) noting that X plays the role of a ‘‘time’’ variable.
The initial soliton profile is given in Fig. 2b.

The explanation of the soliton fission when the initial soliton (5.7) reaches the threshold at X = 0 follows from the Quantum
Mechanical theory of the Pöschl–Teller potential sech2(Kθ ), cf. [46]. The Lax operator for the KdV-equation has the form of a Schrödinger
equation type spectral problem for the eigenfunction ψ(θ ) with potential η(θ, 0) = EK 2sech2(Kθ ), see the details for example in [44].
Then, since the spectral problem is iso-spectral, that is X-independent, we note the following. The eigenfunction ψ corresponds to a
potential (KdV-solution) with N discrete eigenvalues if E = −N(N + 1)/2. This corresponds also to an N-soliton KdV solution. Let us
now take an initial condition at X0 such that η(θ, X0) is the one-soliton (N = 1) solution for X0 → −∞, and N > 1 soliton solution for
X → ∞. Then taking into account the constant coefficients of the corresponding KdV equations in the two situations, (when X → ±∞)
we have an equality of the coefficient in front of the sech2- potential, which is X-independent,

1(1 + 1)
2

(
12B
A

)
b=h(1+α)

K 2
=

N(N + 1)
2

(
12B
A

)
b=h(1−α)

K 2 (5.8)

therefore
N(N + 1)

2
=

(
B
A

)
b=h(1+α)

/

(
B
A

)
b=h(1−α)

. (5.9)

Some more details are available for example in [34].
Introducing the notation b∗

= h(1 − α) in the irrotational case (4.17) we have

N(N + 1)
2

=
b0
b∗

·
ρ1h1 + ρb0
ρ1h1 + ρb∗

·
ρ1b0 + ρh1

ρ1b∗ + ρh1
·
ρh2

1 − ρ1(b∗)2

ρh2
1 − ρ1b20

. (5.10)

This formula gives N = 2.07 while in reality we observe at least 3 solitons.
The numerical solution is presented at Fig. 3. Actually, formula (5.10) could be improved by noticing that with an integrating factor,

introducing F (θ, X) =
√
c(X)η(θ, X) Eq. (4.17) transforms into an equation for F in an exact KdV form. Since

√
c(X) ∼ [α1(X)]1/4 the

formula (5.10) acquires an extra factor(
[α1(X)]1/4

)
b=b0

/
(
[α1(X)]1/4

)
b=b∗

then we obtain the formula

N(N + 1)
2

=

(
b0
b∗

)5/4
ρ1h1 + ρb0
ρ1h1 + ρb∗

(
ρ1b0 + ρh1

ρ1b∗ + ρh1

)3/4
ρh2

1 − ρ1(b∗)2

ρh2
1 − ρ1b20

. (5.11)

which also appears in [19] where it is obtained from the arguments of Johnson [3], see also [34]. In particular, for our data it gives
N = 2.14. The discrepancy could be due to the fact that the derivation of (5.8) is based on the equality of the KdV-amplitudes at the
moment of the hitting of a step-like threshold. The threshold in our case however is not sharp, it is modelled by the smooth tanh
function. In addition, over the region of the obstacle the equations are not exactly KdV equations, since their coefficients depend in
general on the bottom variations in the region of the smooth threshold. Moreover, at the obstacle there is always a reflected wave,
which is not taken into account. So the formula for N should be considered only as an estimate.

Next, we study numerically the situation with nonzero vorticities. We take γ = 0.1, γ1 = −0.1 and ω = 0, being very small
in comparison to the other vorticities. The depth b(X)-profile is the same as in Fig. 2a however when K = 0.002, the amplitude of
depression of the initial condition rises to 100 m (which is not unusual for internal waves) as shown in Fig. 5a. The soliton fission is
less pronounced giving two solitons, as it could be seen from Figs. 4 and 5b.
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Fig. 2. Sketch of the local depth and the soliton profile of the initial condition, K = 0.002.

Fig. 3. Soliton fission under the conditions in Figs. 2a and 2b, −1000 < X < 6000, ω = γ = γ1 = 0. The horizontal axis is for the variable θ . The waterfall plot
corresponds to increasing values of the variable X .

Fig. 4. Soliton fission with nonzero vorticity: α = 0.7, β̃ = 10, γ = 0.1, γ1 = −0.1, K = 0.002, −1000 < X < 11000.

Fig. 5. Soliton fission with nonzero vorticity: the initial and final stages of the process from Fig. 4.

The approximate ratio (5.9) gives N ≈ 1.98, which is in an agreement with the results. One could hope for an improved formula like
in the irrotational case, however the integration factor is apparently not in a simple form and we are going to limit ourselves with the
approximation (5.9). We provide the dependence of the ratio (5.9) on the step magnitude α in Figs. 6a and 6b. It is evident that in both
cases the maximum of the ratio is reached for α ≈ 0.7 which is already quite an extreme value. In the rotational case the ratio N(N+2)/2
barely reaches the value of 3 which corresponds to just two solitons, which are actually observed in the numerical experiments. The
findings show that the solitons of the internal waves are quite robust (in comparison to those of the surface waves, [21,34]) and remain
stable for relatively mild bottom variations.
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Fig. 6. The dependence of the ratio (5.9) on α, giving N(N + 1)/2 as a function of the threshold magnitude α.

Fig. 7. The domain of the lower layer.

In the case α < 0, as predicted from the theory, no soliton fission is observed, the initial soliton very slowly decays loosing its energy
through waves of radiation in the region X > 0.

6. Special case when the coefficient of the nonlinear term is of smaller order or vanishing

There is a particular case when the coefficient

3
α3

α1
(c − κ)2 + 3α4(c − κ) + α1α6 (6.1)

of the ηηθ term in (4.15), is of order of ε or smaller. In fact, there are situations with values of X and the parameters such that this
coefficient could be zero or very closed to zero, so that the main nonlinearity term is η2ηθ . This could be seen immediately in the
irrotational case (4.17) when ρ1b2 = ρh2

1.
In this section we explore the situation with small or vanishing coefficient (6.1). Since the dispersive term ηθθθ matches the order

of the nonlinear term η2ηθ , this indicates that the scaling is η and u of order δ, that is ε and δ of the same order. Since we have taken
X = δ2x, where the scale of the wave variations is over δx, we have now X = ε2x. The variable changes to the characteristic variables
like in (4.10), (4.11) become

θ =
1
ε2

R(X) − t, ∂x ≡
1

c(X)
∂θ + ε2∂X , ∂t ≡ −∂θ .

The extended Hamiltonian with terms of leading order ε2 up to order ε4 could be obtained from (3.18) and the expansions (3.28) and
(3.30) with δ = ε

H(η, u) =
1
2
ε2
∫
R
u
(
α1(ε2x) + εα3(ε2x)η + ε2α2(ε2x)∂2x

)
udx + ε2α5

∫
R

η2

2
dx + ε2κ

∫
R
ηudx + ε3

1
2

∫
α4(ε2x)η2udx

+ε3α6

∫
R

η3

6
dx − ε4

1
2

∫
R
β1(ε2x)η2u2dx − ε4

∫
R
β2(ε2x)η3udx − ε4

1
2

∫
R
β3(ε2x)

η4

4
dx, (6.2)

12
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where the new terms of order ε4 are with coefficients

β1(ε2x) =
ρρ1(b(X) + h1)2

(ρ1b(X) + ρh1)3
, β2 =

ρρ1(γ − γ1)(b + h1)
3(ρ1b + ρh1)2

, β3 =
ρρ1(γ − γ1)2

ρ1b + ρh1
, (6.3)

The two Hamiltonian equations lead to the analogues of (4.12) and (4.13), however with extra terms, arising from the contributions
of the terms with β1, β2 and β3 in the Hamiltonian:

−(c − κ)ηθ + α1uθ + ε

(
α3uη + α4

η2

2

)
θ

+ ε2cκηX + ε2c(α1u)X + ε2
α2

c2
uθθθ − ε2(β1η

2u + β2η
3)θ + O(ε3) = 0, (6.4)

uθ =
c − κ

α1
ηθ + ε

1
c − κ

(
1
2
α3u

2
+ α4ηu +

1
2
α6η

2
)
θ

+ ε2
κc

c − κ
uX + ε2

cα5

c − κ
ηX

−ε2
1

c − κ

(
β1ηu

2
+ 3β2η

2u +
1
2
β3η

3
)
θ

+ O(ε3) = 0. (6.5)

From (6.5) we have the following relation in the leading order

u =
c − κ

α1
η + O(ε), (6.6)

and from (6.5) and (6.6) we obtain

u =
c − κ

α1
η + ε

(
α3(c − κ)

2α2
1

+
α4

α1
+

α6

2(c − κ)

)
η2 + O(ε2). (6.7)

We substitute (6.5) in (6.4) and then in the so obtained equation we eliminate u with the help of (6.7), thus obtaining the following
equation for η :

ε2c2[2(c − κ) + α1Γ ]ηX + ε2
[
c2cX − κc(c − κ)

α1,X

α1

]
η + ε2

α2(c − κ)2

α1c2
ηθθθ + ε

[
3
α3

α1
(c − κ)2 + 3α4(c − κ) + α1α6

]
ηηθ

+ε2
[
(2α3(c − κ) + α1α4)

(
α3(c − κ)

2α2
1

+
α4

α1
+

α6

2(c − κ)

)
−

2β1(c − κ)2

α1
− 4β2(c − κ) −

α1β3

2

]
(η3)θ = 0, (6.8)

Finally, if the order of the coefficient (6.1) itself is of order ε or smaller, we observe that all terms are of the same order, hence giving
a mKdV-type equation

c2[2(c − κ) + α1Γ ]ηX +

[
c2cX − κc(c − κ)

α1,X

α1

]
η +

α2(c − κ)2

α1c2
ηθθθ +

[
3
α3

α1
(c − κ)2 + 3α4(c − κ) + α1α6

]
ηηθ

+

[
(2α3(c − κ) + α1α4)

(
α3(c − κ)

2α2
1

+
α4

α1
+

α6

2(c − κ)

)
−

2β1(c − κ)2

α1
− 4β2(c − κ) −

α1β3

2

]
(η3)θ = 0, (6.9)

Eq. (6.9) generalises (4.15). Indeed, it works in the scaling used in the derivation of (4.15) as well, because in this scaling the term
with η3 could be neglected. Other authors also suggest the mKdV-type equation as a suitable generalisation avoiding the problem with
the vanishing term in front of the η2-coefficient, [15,17]. Finally we point out that the mKdV equation with constant coefficients is
integrable, [44] so that, one can embark on developing soliton perturbation theory for (6.9).

7. Conserved quantities

With an integrating factor

I(X) =
1

c2[2(c − κ) + α1Γ ]
exp

⎛⎝∫ X

−∞

[
c2cX − κc(c − κ) α1,X

α1

]
c2[2(c − κ) + α1Γ ]

dX ′

⎞⎠ (7.1)

Eq. (6.9) acquires the following form

EX + [P̃(X)Eθθ + Q̃ (X)E2
+ R̃(X)E3

]θ = 0, (7.2)

for the quantity

E(X, θ ) := I(X)c2[2(c − κ) + α1Γ ]η(X, θ ) = η(X, θ ) exp

⎛⎝∫ X

−∞

[
c2cX − κc(c − κ) α1,X

α1

]
c2[2(c − κ) + α1Γ ]

dX ′

⎞⎠ . (7.3)

We note that for Γ = κ = 0, the above relationship is just E =
√
c(X)η. The conserved quantity (mass conservation) from (7.2) is∫

R
E(X, θ )dθ := m0 = const, (7.4)

Hence∫
R
η(X, θ )dθ = m0 exp

⎡⎣−

⎛⎝∫ X

−∞

[
c2cX − κc(c − κ) α1,X

α1

]
c2[2(c − κ) + α1Γ ]

dX ′

⎞⎠⎤⎦ . (7.5)

13
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The interpretation of this type of results is not straightforward — see the comments in the variable bottom section of the Johnson’s
book [42]. The mass conservation makes sense for the full system and not just for the solution describing the pycnocline. Multiplying
(7.2) by E leads further to(

E2

2

)
X

+

[
P̃(X)EEθθ − P̃

E2
θ

2
+

2Q̃ (X)
3

E3
+

3R̃(X)
4

E3

]
θ

= 0, (7.6)

and therefore we obtain an analogue of the ‘‘energy’’ conservation, which reads as
1
2

∫
R
E2(X, θ )dθ = const. (7.7)

8. Conclusions

The main achievement of this paper is the derivation of a KdV type equation (4.15) which describes the propagation of interfacial
internal waves in two-layer domains bounded below by a variable bottom and above by a flat surface. Our analysis includes the
shear currents in the two domains and hinges on a consistent derivation of the Dirichlet–Neumann (DN) operators in the Boussinesq
approximation. While the final result for the bottom-dependent DN operator (3.28) recovers the one from Craig et al. [33], the setup of
its derivation opens up new possibilities towards an application to a multi-layer system of fluids, which will be explored in forthcoming
publications. The bottom-dependent DN operator allows the application of the ‘‘nearly’’-Hamiltonian formulation, developed for the
configuration of two fluid layers in [37,39] following the DN approach of Craig et al. [32].

An example for a possible realistic situation are the equatorial waves and currents in the equatorial Pacific Ocean, where the so-called
Equatorial Undercurrent resides and where the abyssal hills are the most abundant seabed structures near the equator. These Pacific
Ocean hills are typically 50–300 m in height, with a width of 2–5 km and a length of 10–20 km [47]. Other seabed structures are the
seamounts which are higher, but with horizontal dimensions of the same order, that is, bottom structures with horizontal diameters
of 2–20 km are typical. Since the bottom length scale over wavelength ratio is of order ∼ 1/δ, which could be a factor of 2–10, the
modelling setup is a realistic scenario for waves of 0.5–5 km wavelength.

The general equation (4.15) in various limits leads to several known simplified cases with variable bottom, like the irrotational case
(4.17), the single layer case with background current (4.19) and without current (4.20), which goes back to the well-known work of
Johnson [3]. In addition, it has been noted that for some values of the parameters the coefficient of the nonlinear term of the model
equation might be close to zero, rendering the next order term η2ηθ of increased significance. The scaling for this special case is
identified and a model equation of mKdV type is derived (6.9), utilising the Hamiltonian method.

Wave-breaking of solitary waves is another very significant and interesting topic [48]. However, its analytical studies will require
modelling beyond the KdV and Boussinesq-type models.
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Appendix A

A.1. Dirichlet-Neumann operators for variable bottom

In this section we derive the set of Dirichlet–Neumann operators for the lower layer, which is bounded below by a variable bottom.
Recalling that the bottom is given as y = −h + β(x) = B(x) we define(

G11 G12

G21 G22

)(
Φ

Φb

)
=

(
(∇ϕ)s · ns

√
1 + η2x

(∇ϕ)b · nb
√
1 + β2

x

)
, (A.1)

where ns = (−ηx, 1)/
√
1 + η2x and nb = (βx,−1)/

√
1 + β2

x are the outward unit normal vectors corresponding to the interface and to
the bottom, respectively. Therefore, the last equality is written as(

G11 G12

G21 G22

)(
Φ

Φb

)
=

(
(∇ϕ)s · (−ηx, 1)

−(∇ϕ)b · (−βx, 1)

)
. (A.2)
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In what follows we work with a fixed wave number k and a special associated harmonic function ϕk(x, y) = (a(k)eky +b(k)e−ky)eikx. The
corresponding values on the surface and at the bottom are2

Φk(x) = (aekη(x) + be−kη(x))eikx, Φb,k(x) = (ae−k(h−β(x))
+ bek(h−β(x)))eikx.

Expanding we have (summation over j ≥ 0)

Φk =

∑ 1
j!
ηjkj(a + (−1)jb)eikx (A.3)

and

Φb,k =

∑ 1
j!
β jkj(ae−kh

+ (−1)jbekh)eikx. (A.4)

Since ϕk(x, y) = (aeky + be−ky)eikx it follows that

(∇ϕk)s · (−ηx, 1) =

[
−ikηx(aekη + be−kη) + k(aekη − be−kη)

]
eikx =

[
−ikηx

∑ 1
j!
(a + (−1)jb)(kη)j + k

∑ 1
j!
(a − (−1)jb)(kη)j

]
eikx.

Likewise,

(∇ϕk)b · (−βx, 1) =

[
ikβx

∑ 1
j!
(ae−kh

+ b(−1)jekh)(kβ)j − k
∑ 1

j!
(ae−kh

− (−1)jbekh)(kβ)j
]
eikx,

therefore, from (A.2)(
G11 G12

G21 G22

)( ∑ 1
j!η

jkj(a + (−1)jb)eikx∑ 1
j!β

jkj(ae−kh
+ (−1)jbekh)eikx

)

=

⎛⎝ [
−ikηx

∑ 1
j! (a + (−1)jb)(kη)j + k

∑ 1
j! (a − (−1)jb)(kη)j

]
eikx[

ikβx
∑ 1

j! ((−1)jae−kh
+ bekh)(kβ)j − k

∑ 1
j! (ae

−kh
− (−1)jbekh)(kβ)j

]
eikx

⎞⎠ .
(A.5)

We assume that each entry Gmn could be written as an infinite series

Gmn =

∑
p≥0,q≥0

G(p,q)
mn (η, β),

where G(p,q)
mn (η, β) is a homogeneous expression of its arguments in a sense that for any two constants C1, C2

G(p,q)
mn (C1η, C2β) = Cp

1C
q
2G

(p,q)
mn (η, β).

The coefficients a(k) and b(k) in the expressions above are arbitrary, therefore we can equate the corresponding coefficients in (A.5)
and we have

G(0,0)
11 + G(0,0)

12 e−kh
= k

G(0,0)
11 + G(0,0)

12 ekh = −k,
(A.6)

which implies that

G(0,0)
11 = D coth(hD), G(0,0)

12 = −D csch(hD).

Similarly, we get that

G(0,0)
21 + G(0,0)

22 e−kh
= −ke−kh

G(0,0)
21 + G(0,0)

22 ekh = kekh,
(A.7)

that delivers the solution operators

G(0,0)
21 = −D csch(hD), G(0,0)

22 = D coth(hD).

Thus, the homogeneous component of order zero of G is

G(0,0)
=

(
D coth(hD) −D csch(hD)

−D csch(hD) D coth(hD)

)
. (A.8)

We proceed to compute now the operator G(1,0), that is the one which exhibits powers of type η1 and β0. First, we have

G(0,0)
11 (ηk)(a − b)eikx + G(1,0)

11 (a + b)eikx + G(1,0)
12 (ae−kh

+ bekh)eikx = [−ikηx(a + b) + k(a + b)ηk]eikx. (A.9)

Hence

G(1,0)
11 + G(1,0)

12 e−kh
= −ikηx + ηk2 − G(0,0)

11 ηk

G(1,0)
11 + G(1,0)

12 ekh = −ikηx + ηk2 + G(0,0)
11 ηk,

(A.10)

2 The coefficient b(k) is not related to the function b(X) from the previous sections.
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from where we get

G(1,0)
11 eikx =

[
−ikηx + ηk2 − G(0,0)

11 (ηk) coth(kh)
]
eikx,

which means that

G(1,0)
11 = DηD − D coth(hD)ηD coth(hD).

Likewise

G(1,0)
12 eikx = G(0,0)

11 (ηk)
1

sinh(kh)
eikx,

that is

G(1,0)
12 = D coth(hD)(ηD) csch(hD).

Furthermore

G(1,0)
21 + G(1,0)

22 e−kh
= −G(0,0)

21 (ηk)

G(1,0)
21 + G(1,0)

22 ekh = G(0,0)
21 (ηk),

(A.11)

which implies that

G(1,0)
22 = G(0,0)

21 (ηk)
1

sinh(kh)
,

G(1,0)
21 = −G(1,0)

22 cosh(kh).
(A.12)

Thus, in operatorial form we have

G(1,0)
22 = −D csch(hD)(ηD) csch(hD),

G(1,0)
21 = D csch(hD)(ηD) coth(hD).

(A.13)

Summarising, we have

G(1,0)
=

(
DηD − D coth(hD)ηD coth(hD) D coth(hD)(ηD) csch(hD)

D csch(hD)(ηD) coth(hD) −D csch(hD)(ηD) csch(hD)

)
. (A.14)

We proceed with G(0,1). First we have

G(0,1)
11 (a + b) + G(0,1)

12 (ae−kh
+ bekh) + G(0,0)

12 (βk)(ae−kh
− bekh) = 0, (A.15)

that implies

G(0,1)
11 + G(0,1)

12 e−kh
= −G(0,0)

12 (βk)e−kh

G(0,1)
11 + G(0,1)

12 ekh = G(0,0)
12 (βk)ekh.

(A.16)

Hence,

G(0,1)
12 = −D csch(hD)(βD) coth(hD)

G(0,1)
11 = D csch(hD)(βD) csch(hD).

(A.17)

Now we use

G(0,1)
21 (a + b) + G(0,0)

22 (βk)(−ae−kh
+ bekh) + G(0,1)

22 (ae−kh
+ bekh) = ikβx(ae−kh

+ bekh) − k(ae−kh
+ bekh)βk, (A.18)

that delivers

G(0,1)
21 + G(0,1)

22 e−kh
=

(
−G(0,0)

22 βk + ikβx − βk2
)
e−kh

G(0,1)
21 + G(0,1)

22 ekh =

(
G(0,0)
22 βk + ikβx − βk2

)
ekh.

(A.19)

It follows from above that

G(0,1)
22 = G(0,0)

22 (βk) coth(kh) − DβD = D coth(hD)(βD) coth(hD) − DβD. (A.20)

Likewise, we have G(0,1)
21 (ekh − e−kh) = −2G(0,0)

22 (βk), that is

G(0,1)
21 = −G(0,0)

22 (βD)
1

sinh(hD)
= −D coth(hD)(βD) csch(hD). (A.21)

Summarising, we have

G(0,1)
=

(
D csch(hD)(βD) csch(hD) −D csch(hD)(βD) coth(hD)

−D coth(hD)(βD) csch(hD) coth(hD)(βD) coth(hD) − DβD

)
. (A.22)

To compute G(0,2) we notice that

G(0,2)
11 (a + b) + G(0,2)

12 (ae−kh
+ bekh) + G(0,1)

12 (βk)(ae−kh
− bekh) + G(0,0)

12 (
1
2
β2k2)(ae−kh

+ bekh) = 0 (A.23)
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from where it follows that

G(0,2)
11 + G(0,2)

12 e−kh
= −G(0,1)

12 (βk)e−kh
− G(0,0)

12 (
1
2
β2k2)e−kh

G(0,2)
11 + G(0,2)

12 ekh = G(0,1)
12 (βk)ekh − G(0,0)

12 (
1
2
β2k2)ekh.

(A.24)

Solving the above we find that

G(0,2)
11 sinh(kh) = −G(0,1)

12 (βk)

G(0,2)
12 = G(0,1)

12 (βk) coth(kh) − G(0,0)
12 (

1
2
β2k2),

(A.25)

so that, in operatorial form we have

G(0,2)
11 = csch(hD)(Dβ)(D coth(hD))(βD) csch(hD)

G(0,2)
12 = −D csch(hD) [(βD) coth(hD)]2 + D csch(hD)

(
1
2
β2D2

)
.

(A.26)

Furthermore,

G(0,2)
21 (a + b) + G(0,2)

22 (ae−kh
+ bekh) + G(0,1)

22 (βk)(ae−kh
− bekh) + G(0,0)

22 (
1
2
β2k2)(ae−kh

+ bekh)

= ik2ββx(ae−kh
− bekh) − k3β2(ae−kh

− bekh),

that is,

G(0,2)
21 + G(0,2)

22 e−kh
=

(
−G(0,1)

22 (βk) − G0,0
22 (

1
2
β2k2) + ik2ββx −

k3β2

2

)
e−kh

G(0,2)
21 + G(0,2)

22 ekh =

(
G0,1
22 (βk) − G0,0

22 (
1
2
β2k2) − ik2ββx +

k3β2

2

)
ekh.

(A.27)

From the above system we derive

G(0,2)
21 =

(
G(0,1)
22 (βk) + iββxk2 −

β2k3

2

)
csch(kh)

G(0,2)
22 =

(
−G(0,1)

22 (βk) − iββxk2 +
β2k3

2

)
coth(kh) − G(0,0)

22 (
1
2
β2k2).

(A.28)

We would like to note now that the operator corresponding to iββxk2 −
β2k3

2 is

i∂x

(
β2

2

)
· D2

−
β2D3

2
= −D

(
β2

2
D2
)

+
β2

2
D3

−
β2

2
D3

= −
1
2
D
(
β2D2) .

Hence, we have

G(0,2)
21 =

(
−D(coth(hD)(βD))2 + D(βD)2 −

1
2
D
(
β2D2)) csch(hD)

G(0,2)
22 =

(
D(coth(hD)(βD))2 − D(βD)2 +

1
2
D
(
β2D2)) coth(hD) − D coth(hD)(

1
2
β2D2).

(A.29)

Availing of the identity

D(βD)2 =
1
2
(D(β2D2) + D2(β2D))

we obtain that

G(0,2)
21 =

(
−D(coth(hD)(βD))2 +

1
2
D2(β2D)

)
csch(hD) = −[coth(hD)(Dβ)]2D csch(hD) +

1
2
D2β2D csch(hD) (A.30)

and

G(0,2)
22 =D[coth(hD)(βD)]2 coth(hD) −

1
2
D2(β2D) coth(hD) − D coth(hD)(

1
2
β2D2)

= coth(hD)(Dβ)[D coth(hD)](βD) coth(hD) −
1
2
D2(β2D) coth(hD) − D coth(hD)(

1
2
β2D2).

(A.31)

It is now evident that G(0,2)
12 and G(0,2)

21 are conjugate to each other and G(0,2)
11 and G(0,2)

22 are self-conjugate operators.
To compute the G(0,3) terms we write first

G(0,3)
11 (a + b) + G(0,1)

12 (
1
2
β2k2)(ae−kh

+ bekh) + G(0,2)
12 (βk)(ae−kh

− bekh)

+ G(0,3)
12 (ae−kh

+ bekh) + G(0,0)
12

(βk)3

6
(ae−kh

− bekh) = 0,
(A.32)
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from which we conclude

G(0,3)
11 + G(0,3)

12 e−kh
=

(
−G(0,2)

12 (βk) − G(0,1)
12 (

1
2
β2k2) − G(0,0)

12
(βk)3

6

)
e−kh

G(0,3)
11 + G(0,3)

12 ekh =

(
G(0,2)
12 (βk) − G(0,1)

12 (
1
2
β2k2) + G(0,0)

12
(βk)3

6

)
ekh,

(A.33)

that implies

G(0,3)
12 = G(0,0)

12
(βD)3

6
coth(hD) − G(0,1)

12 (
1
2
β2D2) + G(0,2)

12 (βD) coth(hD),

G(0,3)
12 = −D csch(hD)[βD coth(hD)]3 + csch(hD)(Dβ)

[(
1
2
βD2β −

1
6
β2D2

)
D coth(hD) +

1
2
D coth(hD)β2D2

]
. (A.34)

and

G(0,3)
11 = −

(
G(0,2)
12 (βD) +

1
6
G(0,0)
12 β3D3

)
csch(hD),

G(0,3)
11 =D csch(hD)(βD)[coth(hD)β coth(hD)](Dβ)(D csch(hD)) − D csch(hD)

(
1
2
β2D2β −

1
6
β3D2

)
D csch(hD). (A.35)

Although it is not obvious, the operator 1
2β

2D2β −
1
6β

3D2 is self-conjugate, see the identity (A.43), thus G(0,3)
11 is a self-conjugate

operator.
To find the entries in the second row of the matrix G(0,3) we write

G(0,3)
21 (a + b)+G(0,1)

22 (
1
2
β2k2)(ae−kh

+ bekh) + G(0,2)
22 (βk)(ae−kh

− bekh) + G(0,3)
22 (ae−kh

+ bekh) + G(0,0)
22 (

β3k3

6
)(ae−kh

− bekh)

= ikβx(βk)2
ae−kh

+ bekh

2
− k(βk)3

ae−kh
+ bekh

6
.

(A.36)

Hence,

G(0,3)
21 +G(0,3)

22 e−kh
=

(
−G(0,1)

22 (
1
2
β2k2) − G(0,2)

22 (βk) − G(0,0)
22 (

β3k3

6
) +

ikβx(βk)2

2
−

k(βk)3

6

)
e−kh,

G(0,3)
21 +G(0,3)

22 ekh =

(
−G(0,1)

22 (
1
2
β2k2) + G(0,2)

22 (βk) + G(0,0)
22 (

β3k3

6
) +

ikβx(βk)2

2
−

k(βk)3

6

)
ekh,

(A.37)

G(0,3)
21 = −

(
G(0,2)
22 (βD) + G(0,0)

22 (
β3D3

6
)
)
csch(hD) (A.38)

G(0,3)
21 = −[coth(hD)(Dβ)]3D csch(hD) +

[
D coth(hD)

(
1
2
β2D2

−
1
6
β3D2 1

β

)
+

1
2
D2β2D coth(hD)

]
βD csch(hD), (A.39)

with the identity (A.43) we obtain

G(0,3)
21 = −[coth(hD)(Dβ)]3D csch(hD) +

[
D coth(hD)

(
1
2
βD2β −

1
6
D2β2

)
+

1
2
D2β2D coth(hD)

]
βD csch(hD). (A.40)

We observe that G(0,3)
21 is conjugate to G(0,3)

12 .
Finally, noting that(

ikβx(βk)2

2
−

k(βk)3

6

)
eikx = −

1
6
Dβ3D3eikx

we obtain

G(0,3)
22 = G(0,0)

22
1
6
β3D3 coth(hD) − G(0,1)

22 (
1
2
β2D2) + G(0,2)

22 (βD) coth(hD) −
1
6
Dβ3D3, (A.41)

G(0,3)
22 = coth(hD)(Dβ) coth(hD)(DβD) coth(hD)(βD) coth(hD)

−
1
2
D2β2D coth(hD)βD coth(hD) −

1
2
D coth(hD)βD coth(hD)β2D2

−
1
2
D coth(hD)

[
β2D2β −

1
3
β3D2

]
D coth(hD) +

1
2
D
[
βDβ2D −

1
3
β3D2

]
D.

(A.42)

The operators in the square brackets above are self-conjugate. This could be checked using identities like (A.43), (A.44). Hence, both
operators G(0,3)

11 and G(0,3)
22 are self-conjugate, (G(0,3)

12 )∗ = G(0,3)
21 and the whole matrix-valued operator G(0,3) is self-conjugate.
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A.2. Identities

The conjugation of an operator A is with respect to the inner product

(f , g) =

∫
R
f̄ (x)g(x)dx.

The definition of A∗ is (A∗f , g) = (f ,Ag) for any choice of f , g ∈ S(R). We note that the physically meaningful variables are real and
the operators, involved in the Hamiltonian description are invariant under complex conjugation.

We have the following identities which show that the corresponding operators are self-conjugate:

β2D2β −
1
3
β3D2

= βD2β2
−

1
3
D2β3 (A.43)

βDβ2D −
1
3
β3D2

= Dβ2Dβ −
1
3
D2β3 (A.44)

The proof of these identities relies on the fact that the commutator between D and a function like β(x) is Dβ − βD = −iβx.

Appendix B

B.1. Finite-difference implementation of KdV-type equation with variable coefficients

In this appendix we describe briefly the numerical scheme for solving the main KdV-type equation with variable coefficients (4.15)
for the function η = η(X, θ ) :

Ã(X)ηX + B̃(X)η + C̃(X)ηθθθ + D̃(X)ηηθ = 0 (B.1)

with X-dependent variable coefficients

Ã(X) = c2[2(c − κ) + α1Γ ], B̃(X) =

[
c2cX − κc(c − κ)

α1,X

α1

]
, (B.2)

C̃(X) =
α2(c − κ)2

α1c2
, D̃(X) =

[
3
α3

α1
(c − κ)2 + 3α4(c − κ) + α1α6

]
.

We assume an initial condition of the form of one-soliton solution (5.7).
We consider a uniform mesh in the interval [−L1, L2] θi = (i − 1)∆θ , spatial step ∆θ = (L1 + L2)/(N − 1), and Xn

= n∆X , where
N is the total number of grid points in the interval and ∆X is the time increment. Respectively, ηni and ηn+1

i denote the value of η at
the ith spatial point and ‘‘time’’ stages Xn and Xn+1 correspondingly. We construct the following nonlinear difference scheme which is
convergent:

Ãn

∆X
(ηn+1

i − ηni ) +
B̃n

2
(ηn+1

i + ηni ) +
C̃n

4(∆θ )3
(−ηn+1

i−2 + 2ηn+1
i−1 − 2ηn+1

i+1 + ηn+1
i+2 − ηni−2 + 2ηni−1 − 2ηni+1 + ηni+2)

+
D̃n

8(∆θ )

(
(ηn+1

i+1 )
2
− (ηn+1

i−1 )
2
+ (ηni+1)

2
− (ηni−1)

2)
= 0. (B.3)

Such a scheme is stable when time-stepping with respect to the physical time, provided the iterative procedure to resolve the
nonlinear terms is convergent. Since the scheme given by (B.3) cannot be implemented directly, because it is nonlinear, we follow the
idea of [49] to introduce internal iterations, namely

Ãn

∆X
(ηn+1,k+1

i − ηni ) +
B̃n

2
(ηn+1,k+1

i + ηni ) +
C̃n

4(∆θ )3
(−ηn+1,k+1

i−2 + 2ηn+1,k+1
i−1 − 2ηn+1,k+1

i+1 + η
n+1,k+1
i+2 − ηni−2 + 2ηni−1 − 2ηni+1 + ηni+2)

+
D̃n

8(∆θ )

(
η
n+1,k+1
i+1 η

n+1,k
i+1 − η

n+1,k+1
i−1 η

n+1,k
i−1 + (ηni+1)

2
− (ηni−1)

2)
= 0. (B.4)

This way, for the current iteration of the unknown function (superscript n+1; k+1) we have an implicit system with five-diagonal
band matrix. We begin from an initial condition ηn+1,0

= ηn and conduct the internal iterations (repeating the calculations for the same
time step (n + 1) with increasing value of the superscript k) until convergence occurs.

Note that the initial condition is a very good guess which is within O(∆X) of the sought solution for η. This makes the convergence
of the internal iterations very fast. We have performed the numerical experiments to verify this fact. Even for very large values of the
time increment ∆X we have not encountered any instability of the internal iterations. In each case under consideration we selected ∆X
such that no more than six internal iterations were required to reach the precision of 10−12. After the internal iterations converge, one
gets the solution of the nonlinear scheme by setting ηn+1

≡ ηn+1,k+1. In such a way we have fully implicit, nonlinear and conservative
scheme. For the inversion of the five-diagonal N×N matrix we use a generalised algorithm based on Gaussian elimination with pivoting
(for details see [50–52]).

The scheme was thoroughly validated through the standard numerical tests involving halving the spacing and time increment. The
global truncation error of time approximation was verified as by Runge principle and confirmed the second order of accuracy in time.
In a similar fashion we found that the global spatial truncation error is also second-order, O((∆θ )2).
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