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An audio processing pipeline for acquiring diagnostic quality heart sounds 
via mobile phone 

Davoud Shariat Panah a,*, Andrew Hines b, Joseph A. McKeever c, Susan McKeever a 

a School of Computer Science, Technological University Dublin, Dublin, Ireland 
b School of Computer Science, University College Dublin, Dublin, Ireland 
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A B S T R A C T   

Recently, heart sound signals captured using mobile phones have been employed to develop data-driven heart 
disease detection systems. Such signals are generally captured in person by trained clinicians who can determine 
if the recorded heart sounds are of diagnosable quality. However, mobile phones have the potential to support 
heart health diagnostics, even where access to trained medical professionals is limited. To adopt mobile phones 
as self-diagnostic tools for the masses, we would need to have a mechanism to automatically establish that heart 
sounds recorded by non-expert users in uncontrolled conditions have the required quality for diagnostic pur-
poses. This paper proposes a quality assessment and enhancement pipeline for heart sounds captured using 
mobile phones. The pipeline analyzes a heart sound and determines if it has the required quality for diagnostic 
tasks. Also, in cases where the quality of the captured signal is below the required threshold, the pipeline can 
improve the quality by applying quality enhancement algorithms. Using this pipeline, we can also provide 
feedback to users regarding the cause of low-quality signal capture and guide them towards a successful one. We 
conducted a survey of a group of thirteen clinicians with auscultation skills and experience. The results of this 
survey were used to inform and validate the proposed quality assessment and enhancement pipeline. We 
observed a high level of agreement between the survey results and fundamental design decisions within the 
proposed pipeline. Also, the results indicate that the proposed pipeline can reduce our dependency on trained 
clinicians for capture of diagnosable heart sounds.   

1. Introduction 

Cardiovascular diseases (CVDs) are currently the leading cause of 
death worldwide. According to the World Health Organization (WHO), 
over 17 million people die of CVDs each year, and it is expected that this 
figure will rise to 23 million by 2030 [1]. While this is a large number, 
the good news is that most cardiovascular diseases are manageable, 
provided that they are diagnosed as early as possible [2]. 

For more than 200 years, cardiac auscultation has been considered a 
cost-effective heart health screening method [3]. In this technique, a 
physician listens to the patient’s heart sounds and analyzes the timing, 
duration, frequency, intensity, and quality of the sounds [4]. Listening to 
the heart sounds in conjunction with performing a general examination 
and taking a clinical history enables trained clinicians to diagnose a 
whole host of CVDs [5]. 

Recently, detecting heart disease through automatic analysis of heart 
sounds has been an active area of research [6–11]. Heart sound signals 
have been utilized to develop data-driven heart abnormality prediction 
systems that are able to classify heart sounds into normal and abnormal 
categories. In some cases, such heart abnormality detection systems 
have achieved acceptable accuracies. However, these systems are deci-
sion support systems, targeted for use by trained clinicians who can use 
digital stethoscopes to capture the heart sounds from the patients and 
consequently verify the validity of such signals for diagnostic purposes. 
This would limit the adoption of such systems in situations where 
trained medical professionals are not available, which is the case in 
underdeveloped regions of the world [12]. At the same time, according 
to WHO, more than 75% of the mortalities that are related to CVDs occur 
in low and middle-income countries [1]. 

In the last decade, the penetration rate of mobile technologies, and in 
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particular smartphones, has been growing rapidly even in underdevel-
oped parts of the world [13]. The current generation of mobile phones is 
generally equipped with different sensors such as microphones, cam-
eras, and accelerometers. Also, they benefit from powerful processors 
that make complex on-device computations feasible. Mobile technolo-
gies have the potential to provide personalized healthcare interventions, 
especially in the areas of the world where access to trained medical 
professionals is limited. Mobile technologies have been successfully 
employed to support the screening of infectious diseases such as 
COVID-19 [14] as well as non-infectious diseases like diabetes [15] and 
cancer [16]. Also, recently they have been employed for the initial 
screening of heart disease. For example, heart sound signals captured 
using smartphones have been used to build data-driven models to detect 
heart disease [17,18]. While such studies have successfully employed 
mobile-based heart sound signals to detect CVDs, the proposed diag-
nostic systems lack any mechanism to establish that the captured signals 
are of diagnosable quality. In other words, such systems should be uti-
lized only by trained medical professionals who have physical access to 
patients to ensure that the captured signals are valid for the diagnostic 
task. This would still hinder the adoption of such mobile phone-based 
systems as self-diagnostics or tele-medicine tools in situations where 
access to trained clinicians is limited. 

The adoption of mobile phones to capture heart sound signals poses 
different data validity and consistency challenges. First, the users of such 
consumer devices are generally non-experts who might not have 
auscultation skills and consequently might not know how to capture 
valid heart sounds for diagnostic purposes. Also, such users would use 
mobile phones as a capture device in uncontrolled environments such as 
their homeplace where different noises and disturbances might corrupt 
the captured signals. Lastly, unlike digital stethoscopes that benefit from 
noise reduction or cancellation technologies [19–21], mobile phones 
might lack such capabilities and, as a result, could be more prone to 
ambient noise. 

Addressing the challenges mentioned above would be the first step 
towards developing a self-diagnostics or tele-medicine system based on 
mobile phones for heart disease screening. In this regard, our broad goal 
is to enable non-expert users to capture diagnostic quality heart sounds 
using mobile phones. In order to solve this problem, two questions must 
be answered: First, how to capture the heart sounds independently from 
clinicians using mobile phones, and second, how to process the captured 
sounds to deliver a signal with the necessary fidelity for use in a data- 
driven classification model. This study focuses on the second question. 
We should note that the placement of the mobile phone at different 
auscultation sites and collecting multiple heart sounds is a separate 
important problem that is out of the scope of this study. We assume that 
the guidance will be provided to the users regarding the correct place-
ment of the device. This study focuses on the quality of the heart sound 
capture, as opposed to addressing the challenges involved in active 
capturing of the heart sounds. Therefore, the precision of the placement 
of the capture will not be addressed in this study. 

In this paper, we propose a heart sound quality assessment and 
enhancement (QAE) pipeline for mobile-based heart sound signals. The 
QAE pipeline includes mechanisms to evaluate the quality of the heart 
sound signals captured using mobile phones and apply signal quality 
enhancement algorithms adaptively. This pipeline also allows us to 
provide feedback to users regarding the validity of the recorded heart 
sounds and guide them towards an acceptable signal capture. We con-
ducted a survey of a group of clinicians to fill in the gaps we found in the 
literature regarding the characteristics of a diagnosable heart sound 
signal and used the results of this survey to inform and validate the 
design decisions within the QAE pipeline. 

The remainder of the paper is structured as follows: Section 2 pro-
vides an overview of the related work on quality assessment and 
enhancement of heart sounds. In Section 3, the QAE pipeline is pre-
sented. In Section 4, the details of the QAE pipeline validation, including 
the dataset generation process and survey, are presented. Results are 

provided in Section 5. In Section 6, the results are discussed. Conclusions 
and future directions are presented in Section 7. 

2. Related work 

2.1. Clean heart sounds 

To characterize a clean heart sound recording that would be valid for 
diagnostic purposes, we reviewed clinical and non-clinical sources. 

In terms of the minimum number of heartbeats needed in a 
recording, there is no consensus among non-clinical sources. For 
example, some studies [10,11,22] have utilized short-length heart sound 
segments (around 1 s) to develop data-driven models. According to 
Ref. [11], an average heartbeat cycle is 0.8 s long. As a result, a 1-s heart 
sound segment would contain at least one heartbeat cycle. Other studies 
have used longer segments. Three seconds [6,7,9,23], 4 s [8], 5 s 
[24–28], and 10 s [29] are all different values mentioned for the length 
of the heart sound segments in non-clinical sources. However, according 
to a clinical source [30], listening to any spot on the chest should take at 
least 5 s. This figure aligns with the length of the longer heart sound 
segments employed in non-clinical studies. 

Regarding the impact of noise on heart sounds, non-clinical studies 
have emphasized the destructive impact of noise and mentioned that 
noise in heart sound data could cause data-driven heart abnormality 
detection systems to misclassify heart sounds [31–35]. Such noises can 
be broadly categorized as internal noise like digestive and respiratory 
noise, ambient noise like background speech, and noise due to move-
ment like body movement [32]. Clinical sources have also pointed out 
the harmful impact of noise and interference on the accuracy of 
auscultation. In Ref. [36], it has been emphasized that ambient noise 
must be minimized at the time of auscultation. Coviello [37] has noted 
the destructive impact of the movement noise, and [38] pointed out that 
respiratory noises can also be disturbing in some cases. 

2.2. Heart sound quality enhancement 

This section reviews the different heart sound processing techniques 
that have been employed in literature to enhance the equality of the 
recordings and consequently decrease the possibility of misclassification 
of heart sounds by a classifier. 

Various methods have been proposed in the literature to reduce or 
eliminate noise in heart sound recordings. Filtering is the simplest 
technique that has been frequently employed. Low-pass [39,40] and 
band-pass [41–43] filters with different cut-off frequencies have been 
employed to eliminate noise from heart sound recordings. The main 
disadvantage of this approach is that in some cases, the frequency range 
of noise and disturbances might overlap with the frequency range of 
heart sounds, and as a result, such filtering techniques would not be able 
to reduce the noise effectively [44]. 

Another denoising approach that researchers have widely employed 
is wavelet-based denoising [32,34,35,45–47]. According to Messer et al. 
[35], wavelet coefficients of heart sounds are much larger than those 
due to noise. Therefore, the coefficients that are smaller than a partic-
ular threshold are considered as noise and disregarded. In their work, 
Kumar et al. [46] proposed an algorithm based on Q-wavelet transform 
and signal second difference to remove short duration distortions (ar-
tifacts) from heart sound recordings. They evaluated their method using 
four different murmur heart sounds contaminated with different arti-
facts and achieved an average accuracy of 96.13%. Gradolewski et al. 
[32] have proposed an adaptive denoising algorithm for heart sound 
signals recorded using mobile devices in noisy environments that com-
bines wavelet transform with a time-delay neural network. Like their 
previous work [45], they evaluated the performance of their algorithm 
on various intensities of pink and white noise. Pink noise is common in 
biological systems and is characterized by the noise power decreasing 
inversely with signal frequency, while in the case of white noise, the 
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noise power is constant in different frequency intervals. It must be noted 
that color noise is only one of the noise types that could corrupt mobile 
phone-based heart sound recordings in noisy environments, and the 
aforementioned studies have not evaluated the performance of their 
methods using heart sounds corrupted with a variety of noise types. 

In addition to the approaches mentioned above, some researchers 
have tried to identify the parts of the heart sound signal that might be 
noise-free or less corrupted by noise. Kumar et al. [48] have used the 
periodicity characteristic of heart sounds to detect a small part of the 
signal that is not noisy and used that as a reference to distinguish noise 
from heart sounds. Li et al. [49] proposed a method to select the sub-
sequence of heart sound with the least noise based on the cyclosta-
tionary property of heartbeat events, meaning that parts of the signal 
less corrupted by noise have a greater periodicity. The main issue with 
these techniques is that they assume there is a part of the signal in a 
heart sound recording that is either noise-free or nearly clean. However, 
this assumption may not always be valid, especially in cases where 
strong continuous noise is present. 

The studies presented rely on enhancing the heart sound signals 
irrespective of their noise content. Enhancement presents overall noise 
reductions but it also adds artifacts and corruption. This will lead to 
increased information loss in cases where enhancement was not 
required. 

2.3. Heart sound quality classification 

As an alternative to noise reduction and elimination, recently, some 
researchers have tried to assess the quality of heart sounds by devel-
oping rule-based or data-driven signal quality assessment systems 
[50–56]. In other words, the quality of the signals is evaluated using a 
quality assessment system, and signals with an acceptable level of 
quality are used for further processing. Springer et al. [54] defined nine 
signal quality features and trained a logistic regression model to classify 
heart sound recordings into good- and poor-quality categories. Their 
model was able to classify mobile phone recordings with an accuracy of 
82.2%. In Ref. [55], Das et al. proposed device-agnostic features to 
automatically identify the quality of heart sound recordings in 
near-real-time. Some of these features were derived from the autocor-
relation waveform and others from the signal spectrum. They used 
PhysioNet dataset [57] to train their quality assessment model and 
tested it using data collected by a low-cost smartphone-based stetho-
scope, achieving an accuracy of 75%. Grooby et al. [52], proposed a 
data-driven signal quality assessment system for neonatal heart and lung 
sounds. They extracted over 180 features from heart and lung sounds 
and trained different classification models, including SVM, KNN and 
Decision tree. Their model achieved an accuracy of 93% in classifying 
heart sounds into high- and low-quality categories. In their recent work, 
Tang et al. [56] annotated the samples of a large dataset with more than 
7800 recordings in terms of their quality. They extracted ten different 
features, including but not limited to kurtosis, energy ratio and degree of 
periodicity and trained a binary SVM to classify signals into acceptable 
and unacceptable categories. Their model achieved an accuracy of 
94.3% in 10-fold cross-validation. 

Although some of the data-driven signal quality assessment systems 
mentioned above achieved acceptable accuracy, it is worth noting that 
training such models requires a large amount of labeled data that could 
be hard to obtain, especially in the case of mobile phone-based heart 
sounds. In addition to this, it has been shown that data-driven heart 
sound classification models can be biased towards the sensors employed 
to collect the data used to train such systems [58]. As a result, heart 
sound quality classification models built using datasets collected by 
different sensors could potentially suffer from such bias. In addition, in 
comparison to rule-based systems, such heart sound quality classifica-
tion systems provide less information regarding the type and level of 
noise in the signals and may not generalize well in cases where heart 
sounds are contaminated with new forms of noise. Also, as mentioned 

earlier, heart sound quality classification systems try to categorize re-
cordings into acceptable and unacceptable classes and discard 
low-quality recordings. However, capturing heart sounds with an 
acceptable level of quality might not be possible in noisy environments, 
especially when heart sounds are recorded using mobile phones. As a 
result, applying the quality enhancement algorithms to heart sound 
signals would be inevitable in such cases. 

3. QAE pipeline 

In this section, we present the proposed quality assessment and 
enhancement pipeline. Fig. 1 illustrates the QAE pipeline design. As 
shown in this diagram, the pipeline includes six stages of quality 
assessment (QA1-QA6). Also, it includes three stages of processing, out 
of which two are quality enhancement stages (QE1 and QE2). This 
design also enables us to give feedback to users regarding the cause of 
the signal rejection at four different decision points in the pipeline 
(F1–F4). 

Fig. 1. Signal quality assessment and enhancement (QAE) pipeline. This 
pipeline includes six stages of quality assessment (QA1-QA6), two stages of 
quality enhancement (QE1 and QE2), and four feedback decision 
points (F1–F4). 
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As shown in Fig. 1, the first step in the pipeline is audio capture. In 
this step, a heart sound signal is captured using a mobile phone. Then, 
this audio signal is pre-processed in the second step, which includes 
resampling and amplitude normalization. Microphones of different 
mobile phones might have different digital sampling rates; thus, we 
down-sample the recordings to 2000 Hz to standardise the data to a level 
that maintains salient heart sound information and removes non-salient 
higher frequency data using a polyphase anti-aliasing filter, as in 
Ref. [54]. Also, in order to minimize the variation in amplitudes across 
recordings, amplitude normalization is performed, using the following 
equation (as in Ref. [44]): 

Snorm (t) =
S(t)

max(|S|)
(1)  

where S(t) is the value of the signal at time t, and max(|s|) is the 
maximum of the absolute value of the signal at time t. 

After the pre-processing step, the audio signal goes through multiple 
quality assessment and enhancement stages (if needed). Following, we 
explain the role and function of these QAE stages. 

3.1. Signal quality assessment 

The pipeline includes six stages of quality assessment (QA1-QA6): 
QA1: The duration of the captured audio signal is computed. Signals 

longer than or equal to 8 s can pass this stage, and those shorter than 8 s 
are rejected. This length of heart sound recording was chosen in 
accordance with the values employed in previous studies, as discussed in 
Section 2.1. 

QA2: Using three features, including the degree of periodicity [59], 
frequency band ratio, and energy ratio [55], we aim to determine if a 
captured audio signal meets a minimum quality threshold for heart 
sound diagnostics. This quality assessment stage rejects signals that do 
not contain any heart sounds early in the pipeline. The degree of peri-
odicity shows how periodic the signal is. As stated in Ref. [59], a heart 
sound signal with a lower noise level has a greater degree of periodicity. 
As a result, we can use this feature to detect non-periodic signals. The 
frequency band ratio and energy ratio represent the ratio of the energy 
concentration in the lower frequency range (between 24 Hz and 200 Hz) 
and the total energy of the signal. Unlike noise with a wide frequency 
range, heart sounds are generally low-frequency sounds [56]. As a 
result, these two features can give an indication of the level of noise in 
the signal. We determined the thresholds for these three features 
empirically by analyzing multiple heart sound and noise signals from the 
Pascal dataset [60]. This dataset contains heart sounds and noise signals 
that were captured using mobile phones. Using the thresholds 
mentioned above, we could accurately detect recordings containing 
heart sounds with an accuracy over 95%. In the case the values of the 
features computed for the captured signal were higher than predefined 
thresholds, the signal will pass this stage. Otherwise, it will be rejected. 
A signal is classified as acceptable if one or both of the following con-
ditions holds:  

● Degree of Periodicity ≥ 1.6 AND Energy Ratio ≥ 0.4 AND Frequency 
Band Ratio ≥ 0.3  

● Degree of Periodicity ≥ 3 AND Energy Ratio ≥ 0.4 AND Frequency 
Band Ratio ≥ 0.2 

In all other cases, the signal is rejected. Fig. 2 illustrates the 
phonocardiogram of an acceptable heart sound signal and Fig. 3 shows 
the phonocardiogram of a rejected audio signal. 

QA3: This quality assessment stage determines whether the signal is 
clean enough to be used in a data-driven heart abnormality detection 
model. It calculates the signal-to-noise ratio (SNR) and an SNR greater 
than or equal to 10, is considered clean. Otherwise, the signal will go 
through quality enhancement stages. This threshold was determined by 
analyzing multiple heart sounds from healthy and pathologic subjects 
available in the Pascal dataset. In fact, we estimated the SNR values for 
different heart sounds with different noise levels. Then we determined 
this threshold by calculating the average SNR values of the recordings 
with the required quality. Fig. 4 shows the phonocardiogram of a clean 
heart sound signal with an SNR equal to 15, and Fig. 5 illustrates a signal 
with an SNR equal to 5 that is passed towards quality enhancement 
stages. SNR is calculated using the following equation (as in Ref. [45]): 

SNR = 10 × log
​ signal ​ power ​

noise ​ power
(2)  

Where signal power is the power of the heart sound signal, and noise 
power represents the power of the noise in the signal, calculated by 
comparing the original and noisy heart sound signals. Algorithm 1 
shows the pseudocode for SNR calculation. 

Algorithm 1. SNR calculation 

QA4: like QA2, the purpose of this stage is to compute the length of 
the heart sound recording with the difference that the signals longer or 
equal to 6 s are kept, and shorter signals are rejected. QA5 and QA6: in 
these two stages, SNR is computed (similar to QA3). 

3.2. Signal quality enhancement 

This section provides the details of the quality enhancement stages 
(QE1 and QE2) of the pipeline. 

QE1: In this stage of quality enhancement, an artifact removal al-
gorithm is applied to the signal. According to Ref. [46], artifacts are 
short-duration transient distortions in the signal. Thus, the artifact 
removal algorithm aims to remove such transient noises from the signal. 

Fig. 2. Phonocardiogram of a signal that is detected as a heart sound signal in the QA2 stage of the pipeline (periodicity = 9.5, energy ratio = 0.90, frequency band 
ratio = 0.36). 
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Algorithm 2 shows the pseudocode of the artifact removal algorithm. 
After applying this algorithm, the length and the SNR are calculated 
respectively (QA4 and QA5 stages), and if they were higher than the 
required thresholds (as discussed in Section 3.1) signal will be consid-
ered clean. Otherwise, it will go through the second quality enhance-
ment stage (QE2). 

Algorithm 2. Artifact removal 

QE2: in this stage, a continuous noise removal algorithm based on 
wavelet analysis is applied to the heart sound signal. Table 1 shows the 
parameters of the wavelet-based denoising algorithm. We followed the 
wavelet parameters in Ref. [45]. As for the wavelet decomposition level, 
we used the software library’s scale levels 2–10, where 2 is a low but 
perceptible level of noise reduction and increases gradually to level 10 if 
needed. This minimizes the amount of heart sound signal data that is 

removed from the recording. Algorithm 3 shows the pseudocode of the 
wavelet-based continuous noise removal algorithm. 

Algorithm 3. Continuous noise removal 

3.3. User feedback 

The QAE pipeline allows us to give feedback to users regarding the 
quality of the captured audio signal at four different feedback points 
(F1–F4). Following, we provide the details of the feedback given at each 
of these feedback points. 

F1: the captured signals that are shorter than 8 s are rejected at the 
QA2 stage. Therefore, at this point of the pipeline, the user can be 
informed that the captured signal is short, and a longer signal must be 
captured. 

F2: noise signals that do not contain heart sounds are rejected at the 
QA3 stage. This could happen in cases where the user places the 
microphone sensor on an area of the chest that is not close enough to the 
heart. Consequently, the user can be informed that the microphone 
sensor is in a wrong place, and no heart sound was detected in the signal. 

F3: heart sound signals that are shorter than 6 s are rejected at the 

Fig. 3. Phonocardiogram of an audio signal that is classified as noise signal and rejected in the QA2 stage of the pipeline (frequency band ratio = 0.08).  

Fig. 4. Phonocardiogram of a heart sound signal that is classified as clean (SNR = 15) in the QA3 stage of the pipeline. This Signal is classified as clean.  
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QA4 stage. If we had a signal shorter than 6 s at this point of the pipeline, 
it would mean that at least 25% of the captured signal was removed in 
the artifact removal stage (QE1). This is because only signals that are at 
least 8 s long can pass the first stage of quality assessment (QA1). 
Therefore, the user can be informed that the heart sound signal is cor-
rupted with a large amount of transient noise. 

F4: heart sound signals with an SNR lower than 10 are rejected at the 
QA5 stage. Given that both artifact removal and continuous noise 
removal algorithms are applied before this stage of quality assessment, a 
low SNR value at this stage would mean that neither of these quality 
enhancement algorithms could considerably decrease the noise level of 
the signal. As a result, the user can be informed that a strong continuous 
or transient noise is present in the signal. 

4. Pipeline validation 

In this section, we overview the QAE pipeline validation process. In 
order to validate the QAE pipeline, we conducted a survey of a group of 
clinicians. This survey includes a subjective listening test with 20 heart 
sound recordings with a variety of noise types and intensities. The re-
sults of this survey is used to inform and validate the design decisions 
within the QAE pipeline. Following, we first explain the data generation 
process and provide the details of the synthetic heart sound dataset we 
used in our survey. Then, the details of the survey will be provided. 

4.1. Dataset generation 

We generated a synthetic heart sound dataset by adding different 
noise types with different intensities to clean heart sound recordings. 
This dataset was utilized in a subjective listening test that is described in 
Section 4.2. Table 2 summarizes the heart sound types, noise types, and 
SNRs that have been used to generate the dataset. 

As shown in Table 2, five different clean heart sound recordings were 
used, including one normal, two murmurs, and two extra heart sounds. 
Some of these clean heart sounds were chosen from Pascal dataset and 
some others from available recordings on YouTube. Then eleven noise 
types (as summarized in Table 2) with different intensities were added to 
these clean heart sound recordings. The noises that were added to clean 
signals can be categorized into four classes: color, internal, movement, 
and ambient noise. Color noises were generated through simulation. 
Internal and ambient noises were collected from various publicly 
available datasets, and movement noises were captured using a mobile 
phone from the body surface. These noises were added to the clean heart 
sound signals in five different SNR levels: -5, 0, 5, 10, and 15. 

Table 3 summarizes the heart sound type, noise type, noise category, 
SNR, and length of each recording available in the dataset. Using the 
procedure mentioned above, we generated eleven noisy heart sound 
recordings (Recordings 2–7 and 9–13). We fed these recordings into the 
QAE pipeline. Some were classified as clean, a few were rejected, and 
quality enhancement algorithms of the QAE pipeline were applied to 
seven recordings. In addition to the eleven noisy recordings that are 
summarized in Table 3, we also used these seven recordings in our 
subjective listening test (Recordings 14–20). Lastly, we added two clean 
recordings to the dataset, including a short-length normal heart sound 
and a murmur recording (Recordings 1 and 8). 

4.2. Survey 

In order to inform and validate the design decisions within the QAE 
pipeline, we designed a survey that includes a subjective listening test. 
We will use the results of the survey to evaluate the fundamental design 
decision in the pipeline. This survey was developed using the Go Listen 
platform [61] and is available online.1 Before the actual survey, we 
conducted a pilot study with a group of non-clinicians to verify that the 
answers returned were suitable in terms of structure and granularity. 
Thirteen clinicians with auscultation skills and experience participated 
in the actual survey. These include one general practitioner, one cardi-
ologist, and eleven consultants with different specialties. 

Six multiple choice questions were presented in the survey and are 
reproduced in Appendix 1 (Table 8). The survey starts with a question 
regarding the profession of the respondents (Question 1). Then, the re-
spondents were asked to listen to 20 heart sound recordings (as sum-
marized in Table 3) and determine if each recording was clear and long 
enough to be used as part of a diagnostic exercise (Question 2). After the 
listening test, the respondents answered four questions regarding the 
criteria they used to form their heart sound quality judgments (Ques-
tions 3–6). One of these questions is about the minimum number of 
heartbeats, and the other ones were asked to determine the impact of 
different noise types on auscultation. 

The survey follows three goals: first, by asking clinicians to rate the 
quality of the heart sound recordings, we try to find out what types and 
intensities of noise could make heart sounds undiagnosable. This will 
help us to determine the characteristics of a good quality heart sound 
that could be used for diagnostic purposes and consequently utilized in a 

Table 1 
Parameters and their corresponding values for wavelet-based denoising algo-
rithm (adapted from Ref. [45]).  

Wavelet Parameter Value 

Wavelet Coeif5 
Threshold selection Minimaxi 
Type of thresholding Hard thresholding 
Rescaling function Multiple Level Noise estimate (MLN) 
Decomposition level From 2 to 10  

Table 2 
Clean heart sounds, noise types, and SNRs used to generate synthetic noisy heart 
sound recordings.  

Heart Sound Noise Type SNR 

Normal, Murmur (2 
types), Extra Heart 
Sound (S3, S4) 

Color Noise (white, pink, red), Internal 
Noise (deep breathing, fast breathing, 
coughing, digestive sounds), Movement 
Noise (sensor movement, body 
movement), Ambient noise (speech, 
music) 

− 5, 0, 5, 
10, 15  

Fig. 5. Phonocardiogram of a heart sound signal that is classified as noisy (SNR = 5) in the QA3 stage of the pipeline and passed towards quality enhancement stages.  

1 https://golisten.ucd.ie/task/ab-test/6151d187b9536a2771028510. 
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data-driven classification system. Second, comparing the respondents’ 
ratings with the outputs of the quality assessment stages of the QAE 
pipeline will let us find out whether our threshold of quality is accurate 
or not. Lastly, by asking respondents to rate both the original and pro-
cessed recordings, we can find out if the quality enhancement algo-
rithms applied to recordings change the clinicians’ opinions regarding 
the recordings’ quality. This will enable us to determine the impact of 
the quality enhancement algorithms of the QAE pipeline on the diag-
nosability of the heart sound recordings. 

5. Results 

5.1. Heart sound quality ratings 

Fig. 6 depicts the subjective quality ratings of the 20 heart sound 
recordings (R1-R20). Blue and red colors show the proportions of the 
respondents who selected “No” and “Yes”, respectively. 

5.1.1. Quality ratings and noise categories 
Table 4 summarizes the average quality ratings and standard de-

viations for four different noise type groupings. As shown in Table 4, 
recordings contaminated with ambient noise have a very low average 
quality rating. In fact, the majority of the respondents believed that 
those recordings do not have the required quality. Heart sounds with 
color noises received an average quality rating of 0.46. In the case of 
color noise, all respondents determined the recording with the red noise 
(recording 6) as a good quality heart sound, while recordings with white 
and pink noise (recording 4 and 12) have pretty low average quality 
ratings. Internal and movement noise groupings have roughly similar 
average quality ratings with 0.56 and 0.58, respectively. 

5.1.2. Quality ratings and noise duration 
We categorized the recordings into two groups in terms of the noise 

duration: heart sounds contaminated with short-duration noises, 
including movement noise, digestive sounds, and coughing, and the 

ones that have long-duration noises, including color noise, ambient 
noise, fast breathing, and deep breathing. Table 5 summarizes the 
average quality ratings and standard deviations for recordings with 
short- and long-duration noises. As shown in Table 5, the average quality 
rating for heart sound recordings with long-duration noises is roughly 
half of those with short-duration noises. 

5.1.3. Quality enhancement impact 
As we mentioned in Section 4.1, quality enhancement algorithms 

were applied to seven noisy heart sound recordings. Recordings number 
14 to 20 are the outputs of denoising algorithms (as summarized in 
Table 3). Table 6 shows the average quality ratings and SNRs of those 
recordings before and after applying the denoising algorithms. All of the 
recordings that quality enhancement algorithms were applied to have 
SNR values between − 5 and 5. 

As shown in Table 6, in the case of four recordings (Recordings 2, 3, 
4, and 10), applying the quality enhancement algorithms increased the 
average quality ratings. As for the other three recordings, the average 
quality ratings decreased (Recordings 6, 11, and 13). Also, we can see 
that applying denoising algorithms led to an increase in the SNR values 
of all recordings, although in some cases, like recordings 11 and 13, this 
increase is marginal. 

5.2. Number of heartbeats 

Fig. 7 illustrates the proportions of respondents who selected 
different ranges for the minimum number of heartbeats needed in a 
heart sound recording to be diagnosable. As we can see, most of the 
respondents (76%) believe that they need to listen to at least 6 to 10 
heartbeats at one location on the chest before using the heart sound 
towards a diagnostic. This range is aligned with the figures that we used 
in the quality assessment stages of the QAE pipeline for the minimum 
duration of the heart sound recordings. 

5.3. Noise impact 

This section provides the details of the responses to the last three 
questions of the survey. Fig. 8 shows the proportions of the survey re-
spondents who rated the internal, movement, and ambient noise cate-
gories in terms of the disruptiveness. 

As shown in Fig. 8, respondents believe that all these three categories 
of noise are, to some extent, disruptive. Most respondents determined 
internal and movement noises as somewhat disruptive, and a minority 
selected the limited disruption option. However, compared to the in-
ternal noise category, a larger majority (85%) of the respondents found 
movement noises as somewhat disruptive. We can see a similar pattern 
for the ambient noise category, with the difference being that 31% of the 
respondents believe that ambient noises are very disruptive. It is worth 
noting that the responses given to the last three questions of the survey 
are aligned with the average quality ratings of heart sounds with 
different noises, as reported in Section 5.1.1. 

5.4. Quality ratings and pipeline outputs 

In this section, we draw a comparison between the average quality 
ratings of the recordings in the listening test and the outputs of the QAE 
pipeline. To do so, we categorized the recordings into acceptable and 
unacceptable groups based on their average quality ratings. Heart sound 
recordings that over 50% of the respondents determined as good quality 
were considered acceptable and the other recordings were placed in the 
unacceptable category. 

As shown in Table 7, in eight out of twenty cases, the subjective 
quality ratings are aligned with the outputs of the QAE pipeline, and in 
tweleve cases, they contradict. Out of these, the QAE pipeline recog-
nized eight recordings as noisy due to a lower than threshold SNR, while 
respondents determined those as good quality heart sounds. In the 

Table 3 
Details of the heart sound recordings available in the dataset used in subjective 
listening test.  

Recording 
# 

Heart Sound 
Type 

Noise Type Noise 
Category 

SNR Length 
(sec) 

1 Normal - - 35 2 
2 S3 Body 

movement 
Movement 5 10 

3 S3 Coughing Internal − 5 10 
4 S3 Pink Color 0 10 
5 S4 Music Ambient 10 10 
6 S4 Red Color 5 10 
7 S4 Speech Ambient 15 10 
8 Murmur 1 - - 35 10 
9 Murmur 1 Fast 

breathing 
Internal 10 10 

10 Murmur 1 Sensor 
movement 

Movement 0 10 

11 Murmur 2 Digestive 
sound 

Internal 0 10 

12 Murmur 2 White Color 15 10 
13 Normal Deep 

breathing 
Internal 5 10 

14 S3 Body 
movement 

Movement 14 7.6 

15 S3 Coughing Internal 3 9.8 
16 S3 Pink Color 3 8.4 
17 S4 Red Color 6.5 8 
18 Murmur 1 Sensor 

movement 
Movement 16 8 

19 Murmur 2 Digestive 
sound 

Internal 1 10 

20 Normal Deep 
breathing 

Internal 6 9.5  
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quality assessment stages of the pipeline, the recordings with an SNR 
below 10 are either passed towards quality enhancement stages or 
rejected. However, as we can see, in some cases, such recordings were 
determined as good-quality signals by respondents. One example of this 
is a recording that is contaminated by cough noise (Recording 3). While 
the SNR of this recording is − 5, the respondents found it as a good 
quality heart sound. 

There are also four cases where the signals were classified as clean by 
the QAE pipeline while survey respondents found them as low-quality 
heart sounds. An example of this is a recording with speech noise 
(Recording 7). While this signal has an SNR equal to 15, which is higher 
than the threshold, the respondents identified it as a low-quality 
recording. 

The last column of Table 7 summarizes the feedbacks given when the 
captured signals are rejected. There are five cases where feedbacks are 
provided to users. Out of these, in three cases, feedbacks were accurate 
(Recording 1, 19, and 20), and in two cases (Recordings 15, 17), users 

were asked to recapture the heart sound while survey respondents found 
those signals as good quality heart sounds. 

6. Discussion 

6.1. Signal quality assessment 

As we discussed in Section 3.1, the QAE pipeline includes six stages 
of signal quality assessment. Out of these, in two stages (QA1 and QA4), 
the duration of the signal is computed to determine if the signal contains 
a minimum number of heartbeats, and if a captured signal does not meet 
this quality threshold, it will be rejected. In Section 5.2, we showed that 
over 90% of the survey respondents stated they need to listen to at least 
six heartbeats at a particular auscultation site before they can use the 
heart sounds for diagnostics (Fig. 7). In other words, from the point of 
view of most respondents, a diagnosable heart sound must contain at 
least six heartbeats. As we discussed in Section 2.1, different durations of 
heart sound signals have been utilized by researchers to develop data- 
driven classification models. The findings from our survey confirm 
that a diagnosable heart sound recording is at least around 5 s long, 
which aligns with the studies that employed longer duration signals such 
as [24–28]. Also, 10 s length has been reported as sufficient by most 
clinicians who participated in our survey, which is in line with the 
approach taken in Ref. [29]. 

At four stages of the QAE pipeline (QA2, QA3, QA5, and QA6), the 
captured signal is analyzed for noise corruption. The subjective heart 
sound quality ratings (Section 5.1) show that clinicians determined 8 out 
of 20 recordings as undiagnosable. In other words, only 60% of the re-
cordings were found clean enough for diagnostic tasks. These results 

Fig. 6. The subjective heart sound quality ratings. Blue and red colors show the proportions of the respondents who chose “No” and “Yes”, respectively. 20 re-
cordings are mapped along the horizontal axis and the vertical axis shows the number of respondents who chose any of the two options. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 4 
Average quality ratings and standard deviations for each category of noise.  

Recording # Noise Category Ratings Mean Ratings std 

4, 6, 12 Color 0.46 0.48 
3, 9, 11, 13 Internal 0.56 0.13 
2, 10 Movement 0.59 0.20 
5, 7 Ambient 0.04 0.06  

Table 5 
Average quality ratings and standard deviations for recordings with long- and 
short-duration noise.  

Recording # Noise Duration Ratings Mean Ratings std 

2, 3, 10, 11 Short 0.60 0.11 
4, 5, 6, 7, 9, 12, 13 Long 0.35 0.36  

Table 6 
Average quality ratings and SNRs of seven heart sound recordings before and 
after applying the denoising algorithms.  

Noisy 
Recording 
# 

Denoised 
Recording # 

Average 
Quality 
Rating 
Before QE 

Average 
Quality 
Rating After 
QE 

SNR 
Before 
QE 

SNR 
After 
QE 

2 14 0.46 0.77 5 14 
3 15 0.69 0.77 − 5 3 
4 16 0.08 0.38 0 3 
6 17 1.00 0.62 5 6.5 
10 18 0.69 0.77 0 16 
11 19 0.54 0.23 0 1 
13 20 0.62 0.54 5 6  

Fig. 7. The proportions of the respondents who selected four different ranges 
for the minimum number of heartbeats. 
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indicate that it is necessary to estimate the quality of the captured sig-
nals in terms of noise contamination in the quality assessment stages of 
the pipeline and enhance or reject the signals that do not meet a specific 
threshold of quality. 

Analysis of the heart sound quality ratings in Section 5.1 shows that 
the heart sounds with ambient noises received the lowest quality ratings 
from survey respondents compared to recordings contaminated by other 
noise types. The answers to questions regarding the impact of the 
different noise groupings on the heart sound quality in Section 5.3 also 
confirm that ambient noises were more disrupting compared to the other 
noise groupings (Fig. 8). Also, a considerably lower average quality 
rating for the heart sounds with long-duration noises indicates that long- 
duration noises have a more detrimental effect on the heart sounds’ 
quality than short-duration ones. These findings are in agreement with 

the hypothesis that the duration and type of a noise corruption on the 
heart sound signal are indicators of signal quality. Previous studies 
[31–35] highlighted that data-driven heart anomaly detection systems 
could potentially misclassify heart sounds due to noise corruption. While 
minimizing ambient noise is recommended [36] and Coviello [37] 
highlighted the destructive impact of movement noise, internal noises 
(e.g. digestive and respiratory sounds) cannot be mitigated through 
environmental setups. The survey results are in agreement with the 
literature that all classes of noise can cause disruption but highlight that 
ambient noise was more disruptive. 

Comparison of the average quality ratings of the recordings with the 
pipeline outputs in Section 5.4 shows that in twelve out of twenty cases, 
the pipeline’s quality assessment disagreed with the opinions of the 
clinicians. In eight of those cases, the pipeline rejected signals that cli-
nicians found of diagnosable quality and, in four of the cases, the signals 
were categorized as clean while the survey respondents deemed those as 
low-quality heart sounds. We should note that in this study, our goal is to 
understand the types and intensities of noise that cause clinicians to 
reject heart sounds due to their low quality. Ultimately, this will enable 
us to align the QAE pipeline with the clinician’s opinions, which will 
lead to a lower chance of presenting undiagnosable heart sounds to the 
classification model. 

As we discussed in Section 3.1, in three stages of the QAE pipeline 
(QA3, QA5, and QA6), the quality of the heart sound signal is estimated 
by calculating the SNR. Four recordings (Recording 5, 7, 9, and 12) were 
classified as clean heart sounds by the QAE pipeline while identified as 
undiagnosable by the respondents of the survey. These recordings were 
classified as clean by the pipeline because they all have higher than 
threshold SNRs. However, analyzing the relationship between the 
average quality ratings, duration, and type of noise contaminations in-
dicates that these two noise characteristics are also indicators of the 
heart sound quality. These results highlight that SNR should not be 
relied upon in isolation to estimate heart sound quality and should be 
used in conjunction with other content feature analysis and signal 
characteristics such as type and duration of the noise. Studies such as 
[32,45] focused on evaluating the effectiveness of the quality 
enhancement algorithms on limited noise classes (pink/white noise). 
The findings of our study suggest that a more nuanced approach to noise 
is valuable where noise characteristics and SNR are considered together. 
Our future studies will compare the performance of data-driven heart 
sound classifiers for noisy and denoised versions of a signal to further 
establish the benefits of the pre-processing decision to denoise the signal 
for different noise types and durations. 

6.2. Signal quality enhancement 

In addition to the quality assessment stages, the QAE pipeline in-
cludes two stages of signal quality enhancement in which transient and 
continuous noises are removed from the captured signal. In Section 5.1.3 
of the results, we observed the impact of the quality enhancement al-
gorithms of the pipeline on the perceived quality of the heart sound 
recordings. Denoising algorithms were applied to seven recordings. Out 

Fig. 8. The proportions of the respondents who chose each of the four options for each noise category.  

Table 7 
Groupings of the heart sound recordings in terms of quality, outputs of the QAE 
pipeline, and the provided feedbacks in the case of signal rejection.  

Recording 
# 

Acceptable 
Quality 

QAE Pipeline 
Output 

User Feedback 

1 No Rejected due to 
short length 

Short-length signal. 
Recapture needed. 

2 No Passed to QE due to 
high noise 

- 

3 Yes Passed to QE due to 
high noise 

- 

4 No Passed to QE due to 
high noise 

- 

5 No Accepted as clean - 
6 Yes Passed to QE due to 

high noise 
- 

7 No Accepted as clean - 
8 Yes Accepted as clean - 
9 No Accepted as clean - 
10 Yes Passed to QE due to 

high noise 
- 

11 Yes Passed to QE due to 
high noise 

- 

12 No Accepted as clean - 
13 Yes Passed to QE due to 

high noise 
- 

14 Yes Accepted as clean - 
15 Yes Rejected after QE 

due to high noise 
A high level of noise was 
detected. Recapture 
needed. 

16 No Rejected after QE 
due to high noise 

- 

17 Yes Rejected after QE 
due to high noise 

A high level of noise was 
detected. Recapture 
needed. 

18 Yes Accepted as clean - 
19 No Rejected after QE 

due to high noise 
A high level of noise was 
detected. Recapture 
needed. 

20 Yes Rejected after QE 
due to high noise 

A high level of noise was 
detected. Recapture 
needed.  
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of these, the average quality ratings went up in four cases and decreased 
in three cases. If we consider the cases where quality enhancement led to 
a decrease in average quality ratings (Recordings 6, 11, 13), we can 
observe that at least over 50% of respondents believed that these re-
cordings were diagnosable before applying the denoising algorithms. 
These results indicate that applying quality enhancement algorithms to 
good quality heart sounds leads to an increased information loss and in 
fact, reduces the diagnosability of heart sounds. 

As we discussed in Section 2.2, heart sound denoising has been 
recognized as a necessary pre-processing step towards building a heart 
abnormality detection system in the literature. A variety of denoising 
algorithms were applied irrespective of the noise content of the signal, 
which includes a range of methods, from simpler techniques like 
filtering to more complex ones such as wavelet-based denoising (e.g. 
Refs. [34,35,46]). As denoising algorithms must distinguish between 
noise and signal, some studies, e.g. Kumar et al. [48] try to identify 
noise-free parts of the heart sound to allow noise estimation. However, 
any denoising alters the signal and may introduce corrupting artifacts as 
well as restoring the heart sounds. The survey results also indicate that 
applying quality enhancement algorithms degrades the diagnosability of 
heart sounds in cases where enhancement is not required (Table 6). This 
finding reinforces the importance of assessing the heart sounds in terms 
of the noise content before applying denoising algorithms to such sig-
nals. Such a quality assessment enables us to limit the usage of denoising 
algorithms only to cases where quality enhancement is needed. In 
addition to this, it allows a decision on the type and aggressiveness of the 
denoising to be applied. 

6.3. User feedback 

While some studies (e.g. Refs. [52,54–56]) have attempted to classify 
the heart sound recordings in terms of the quality, their focus was a 
binary classification as to whether to discard low-quality recordings. 
However, for the mobile phone heart sound capture use case, this study 
sought to explore the quality as a continuum, where there is an expec-
tation of some potential noise but an objective to deal with it through 
feedback to the user to assist in recapture with an acceptable quality or 
application of appropriate signal enhancement based on quality 
assessment. 

In this regard, at four decision points in the QAE pipeline, feedbacks 
are provided to users regarding the quality of the heart sound capture. In 
Section 5.4, we showed that in cases where the pipeline rejected the 
captured signals, feedbacks were provided regarding the cause of the 
signal rejection. Such feedbacks can inform the users regarding the cause 
of an unacceptable heart sound capture. This, in turn, decreases the 
reliance on trained clinicians to capture and validate the heart sounds. 
However, it should be noted that the accuracy of such feedbacks is 
influenced by the accuracy of the heart sound quality assessment. In 
other words, to provide more accurate feedback, we need to improve the 
quality threshold that has been employed in the quality assessment 
stages of the pipeline. 

7. Conclusion 

The ability to capture heart sounds that can be used for diagnostic 
purposes independently from clinicians is essential to building a self- 
diagnostic or tele-medicine system for heart health screening. From a 
clinical point of view, a great advantage would be to establish a level of 
heart sound quality that enables the distinction between a normal and 
abnormal sounding heart which would, in turn, allow for further 
appropriate investigation. To address this problem, in this paper, we 
proposed a heart sound quality assessment and enhancement pipeline 

for signals captured by mobile phone devices. 
In order to inform and validate the design decisions within the 

pipeline, a survey was conducted. We observed a high level of agreement 
between the survey results and fundamental design decisions in the 
pipeline. We showed that it is possible to automatically estimate the 
quality of the heart sound signals by analyzing the signal characteristics. 
We also showed that we could increase the diagnosability of low-quality 
heart sounds by applying quality enhancement algorithms. These find-
ings indicate that the proposed pipeline can reduce our dependency on 
clinicians to capture valid heart sound signals. Survey results indicate 
that noise has a destructive impact on the diagnosability of heart sound 
signals. The type, intensity, and duration of the noise determine the 
severity of this harmful impact. As a result, the captured signals must be 
analyzed in terms of the quality and enhanced or rejected if not meet a 
minimum threshold of quality. 

We observed that in a few cases, undiagnosable heart sounds were 
determined as clean signals by the QAE pipeline. The survey results 
indicate that such cases can be minimized by analyzing the character-
istics of noise contamination such as intensity, duration, and type of the 
noise. As a result, in the future, we will explore the possibility of 
improving the signal quality assessment by designing a more complex 
quality threshold that not only includes signal-to-noise ratio but also 
takes into account the other important characteristics of noise contam-
ination. Such an improvement in the pipeline will also enable us to 
provide more accurate and specific feedbacks regarding the cause of the 
signal rejection that will, in turn, reduce our dependency on trained 
clinicians for heart sound capture. 

The survey results confirm the validity of the design decisions in the 
pipeline and shows the usefulness of the proposed pipeline from the 
point of view of clinicians. Findings from our study allow us to better 
understand the different ways we can improve the common approaches 
taken in the field regarding the assessment and enhancement of the 
heart sound signals in the future. In this study, we did not explore the 
impact of the proposed pipeline on the performance of the heart sound 
classification systems. In our next phase of work, we will develop a 
classification model and compare the performance of that model on both 
unprocessed signals and the ones processed by the QAE pipeline. The 
results of this experiment will be utilized to optimise the thresholds and 
algorithms used in the QAE pipeline and consequently increase the 
overall performance of the pipeline. 

Another future direction will be to develop a mobile application 
prototype to investigate the heart sound capture process in real-world 
scenarios. Using this mobile prototype, we will investigate how can 
non-expert users be guided to capture valid heart sound signals using 
mobile phones. Such a prototype will also enable us to evaluate the QAE 
pipeline’s capabilities in providing feedback to users and guiding them 
towards a successful heart sound capture. 
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Appendix 1  

Table 8 
Survey questions and their corresponding choices  

# Question Choices 

1 Please specify your profession.  ● Cardiologist  
● Cardiology fellow  
● General practitioner  
● Medical student  
● Other medical 

specialty  
● None of the above  

2 In your opinion, is this heart sound recording clear and long enough to be used as part of a diagnostic exercise? (This question is repeated 20 times – 
one for each recording)  

● Yes  
● No  

3 How many heartbeats would you need to listen to at one location on the chest before you can use the sound as part of a diagnostic exercise?  ● 1-5  
● 6-10  
● 11-20  
● 21-30  
● Over 30  

4 In the scenario where internal sounds (such as respiratory or digestive sounds) are present when you are listening to a patient’s heartbeats: To what 
extent do these sounds disrupt your ability to assess the heart sounds, such that you might even have to re-listen?  

● No disruption  
● Limited disruption  
● Somewhat disruptive  
● Very disruptive  

5 In the scenario where sounds due to the movement (such as chest piece or body movement) are present when you are listening to a patient’s 
heartbeats: To what extent do these sounds disrupt your ability to assess the heart sounds, such that you might even have to re-listen?  

● No disruption  
● Limited disruption  
● Somewhat disruptive  
● Very disruptive  

6 In the scenario where ambient sounds (such as phone ringing or people talking) are present when you are listening to a patient’s heartbeats: To what 
extent do these sounds disrupt your ability to assess the heart sounds, such that you might even have to re-listen?  

● No disruption  
● Limited disruption  
● Somewhat disruptive  
● Very disruptive  
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[53] D.H. Eiríksdóttir, R.G. Sæderup, D. Riknagel, H. Zimmermann, M. Plocharski, 
J. Hansen, J.J. Struijk, S.E. Schmidt, Quality assessment of maternal and fetal 
cardiovascular sounds recorded from the skin near the uterine arteries during 
pregnancy, in: 2019 Computing in Cardiology (CinC), IEEE, 2019, p. 1. 

[54] D.B. Springer, T. Brennan, N. Ntusi, H.Y. Abdelrahman, L.J. Zühlke, B.M. Mayosi, 
L. Tarassenko, G.D. Clifford, Automated signal quality assessment of mobile phone- 
recorded heart sound signals, J. Med. Eng. Technol. 40 (7–8) (2016) 342–355, 
https://doi.org/10.1080/03091902.2016.1213902. 

[55] D. Das, R. Banerjee, A.D. Choudhury, S. Bhattacharya, P. Deshpande, A. Pal, K. 
M. Mandana, Novel features from autocorrelation and spectrum to classify 
phonocardiogram quality, in: 2017 39th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2017, 
pp. 4516–4520. 

[56] H. Tang, M. Wang, Y. Hu, B. Guo, T. Li, Automated signal quality assessment for 
heart sound signal by novel features and evaluation in open public datasets, 
BioMed Res. Int. 2021 (2021) 1–15, https://doi.org/10.1155/2021/7565398. 

[57] C. Liu, D. Springer, Q. Li, B. Moody, R.A. Juan, F.J. Chorro, F. Castells, J.M. Roig, 
I. Silva, A.E.W. Johnson, Z. Syed, S.E. Schmidt, C.D. Papadaniil, L. Hadjileontiadis, 
H. Naseri, A. Moukadem, A. Dieterlen, C. Brandt, H. Tang, M. Samieinasab, M. 
R. Samieinasab, R. Sameni, R.G. Mark, G.D. Clifford, An open access database for 
the evaluation of heart sound algorithms, Physiol. Meas. 37 (12) (2016) 
2181–2213, https://doi.org/10.1088/0967-3334/37/12/2181. 

[58] D.S. Panah, A. Hines, S. Mckeever, Exploring Composite Dataset Biases for Heart 
Sound Classification, AICS, 2020, pp. 145–156. 

[59] T. Li, H. Tang, T. Qiu, Y. Park, Best subsequence selection of heart sound recording 
based on degree of sound periodicity, Electron. Lett. 47 (15) (2011) 841, https:// 
doi.org/10.1049/el.2011.1693. 

[60] P. Bentley, G. Nordehn, M. Coimbra, S. Mannor, The pascal classifying heart 
sounds challenge 2011 (chsc2011), URL, http://www.peterjbentley.com/heartch 
allenge/index.html. 

[61] D. Barry, Q. Zhang, P.W. Sun, A. Hines, Go listen: an end-to-end online listening 
test platform, J. Open Res. Software 9 (1) (2021) publisher: Ubiquity Press. 

D. Shariat Panah et al.                                                                                                                                                                                                                        

https://doi.org/10.1007/s10916-019-1286-5
https://doi.org/10.1142/S0217984919503214
https://doi.org/10.3390/s20133790
https://doi.org/10.3390/s20133790
https://doi.org/10.1007/s11042-021-10805-3
https://doi.org/10.1007/s11042-021-10805-3
http://link.springer.com/10.1007/s11042-021-10805-3
http://link.springer.com/10.1007/s11042-021-10805-3
https://doi.org/10.1088/1361-6579/aa724c
https://doi.org/10.1088/1361-6579/aa724c
https://doi.org/10.1016/j.compbiomed.2021.104814
https://doi.org/10.3390/bios11040127
https://www.jove.com/v/10124/cardiac-exam-ii-auscultation
https://www.jove.com/v/10124/cardiac-exam-ii-auscultation
https://doi.org/10.1016/j.compbiomed.2013.05.020
https://doi.org/10.1016/j.compbiomed.2013.05.020
https://doi.org/10.3390/s19040957
https://doi.org/10.1109/TBME.2009.2028693
https://doi.org/10.1109/TBME.2009.2028693
https://doi.org/10.1016/j.bspc.2017.07.002
https://doi.org/10.1016/S0026-2692(01)00095-7
https://doi.org/10.1016/S0026-2692(01)00095-7
https://doi.org/10.1097/01.CNQ.0000264260.20994.36
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref37
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref37
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref38
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref38
https://doi.org/10.1109/TBME.2006.886660
https://doi.org/10.1109/TBME.2006.886660
https://doi.org/10.1016/j.asoc.2005.06.006
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref41
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref41
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref41
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref41
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref42
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref42
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref42
https://doi.org/10.1016/j.bspc.2019.101788
https://doi.org/10.1016/j.bspc.2019.101684
https://doi.org/10.1016/j.bspc.2019.101684
https://doi.org/10.1016/j.compbiomed.2014.06.011
https://doi.org/10.1016/j.compbiomed.2014.06.011
https://doi.org/10.1016/j.bspc.2017.11.001
https://doi.org/10.1007/s00034-017-0524-7
https://doi.org/10.1088/0967-3334/32/5/008
https://doi.org/10.1016/j.compbiomed.2013.03.002
https://doi.org/10.1016/j.compbiomed.2013.03.002
https://doi.org/10.1016/j.cmpb.2018.07.006
https://doi.org/10.3109/03091902.2012.684832
https://doi.org/10.3109/03091902.2012.684832
https://doi.org/10.1109/JBHI.2020.3047602
https://doi.org/10.1109/JBHI.2020.3047602
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref53
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref53
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref53
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref53
https://doi.org/10.1080/03091902.2016.1213902
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref55
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref55
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref55
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref55
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref55
https://doi.org/10.1155/2021/7565398
https://doi.org/10.1088/0967-3334/37/12/2181
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref58
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref58
https://doi.org/10.1049/el.2011.1693
https://doi.org/10.1049/el.2011.1693
http://www.peterjbentley.com/heartchallenge/index.html
http://www.peterjbentley.com/heartchallenge/index.html
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref61
http://refhub.elsevier.com/S0010-4825(22)00207-4/sref61

	An audio processing pipeline for acquiring diagnostic quality heart sounds via mobile phone
	Authors

	An audio processing pipeline for acquiring diagnostic quality heart sounds via mobile phone
	1 Introduction
	2 Related work
	2.1 Clean heart sounds
	2.2 Heart sound quality enhancement
	2.3 Heart sound quality classification

	3 QAE pipeline
	3.1 Signal quality assessment
	3.2 Signal quality enhancement
	3.3 User feedback

	4 Pipeline validation
	4.1 Dataset generation
	4.2 Survey

	5 Results
	5.1 Heart sound quality ratings
	5.1.1 Quality ratings and noise categories
	5.1.2 Quality ratings and noise duration
	5.1.3 Quality enhancement impact

	5.2 Number of heartbeats
	5.3 Noise impact
	5.4 Quality ratings and pipeline outputs

	6 Discussion
	6.1 Signal quality assessment
	6.2 Signal quality enhancement
	6.3 User feedback

	7 Conclusion
	Declaration of competing interest
	Acknowledgement
	Appendix 1 Acknowledgement
	References


