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a b s t r a c t

Tidal current energy has the advantage of predictability over most of the other renewable energy re-
sources. However, due to the harsh operating environment and complicated site conditions, de-
velopments in this domain have been gradual. Paramount to these points is device design and
optimisation of hydrodynamic performance. Recent developments in the correction models of BEM
theory have further improved the accuracy of the prediction model. Using an improved blade element
momentum theory model that is capable of accurately capturing the downwash angle and combining it
with a well-developed and reliable non-dominated sorting genetic algorithm model, an effective and
efficient tidal current turbine blade optimisation tool has been developed and is presented in this paper.
This novel work incorporated a NACA generator that is capable of reproducing any NACA profile, such a
tool allows the solver to analyse each and every profile used in each spanwise blade element. As a result,
the model is very effective at producing tidal current turbine blades that have been optimised not only
for local twist angle and chord length, but also for the suitable NACA profiles to be used at a particular
spanwise blade element. The use of the non-dominated sorting genetic algorithm in this work allows the
model to efficiently explore a wide range of solutions, outputting a number of tidal current turbine
blades suitable for a specified operating condition. The accuracy of the performance prediction of the
improved BEM model is validated against an experimentally validated tidal current turbine blade. The
coefficient of determination (R2) values for power and thrust coefficient are 0.99828 and 0.99488
respectively when comparing this work with experimental measurements found in the literature.
Furthermore this proves that the improved BEM model is capable of efficiently predicting hydrodynamic
performance of a tidal current turbine blade to a high degree of accuracy. Further work includes
implementing computational fluid dynamics for further validation and evaluation.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Recently there has been an increase in the number of companies
pursuing tidal current energy, using tidal current turbines (TCT), to

tap into the relatively large unexploited tidal energy. Furthermore,
some of the prototypes and projects have demonstrated successful
commercialisation. One of such examples is Verdant Power's TCT,
the company's grid-connected tidal power has exceeded perfor-
mance projections by 40%, generating over 275 MWh over eight
months of continued operation [1]. Another example is Magallanes
Renovables, the company has successfully reinstalled their second
generation 2 MW tidal platform ‘ATIR’ in April 2021 and connected
to the national grid in the Fall of Warness in Orkney, Scotland [2].
The AR500 from SIMEC Atlantic Energy, installed in Naru Island,
Japan, has made a recent milestone, the device has successfully
passed one of the strongest tides of the year, followed by exhaustive
inspection and verification of all the involved equipment. The de-
vice has also outputted more than 90 MWh of energy since the

* Corresponding author.
E-mail addresses: engjet.yeo@dkit.ie (E.J. Yeo), david.kennedy@tudublin.ie

(D.M. Kennedy), fergal.orourke@dkit.ie (F. O'Rourke).

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier .com/locate/energy

https://doi.org/10.1016/j.energy.2022.123720
0360-5442/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Energy 250 (2022) 123720

http://creativecommons.org/licenses/by/4.0/
mailto:engjet.yeo@dkit.ie
mailto:david.kennedy@tudublin.ie
mailto:fergal.orourke@dkit.ie
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2022.123720&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2022.123720
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.energy.2022.123720


installation in January 2021 [3]. Despite the success of tidal energy
devices for a number of companies, the tidal energy sector is still
some way behind other mature renewable energy technologies,
such as wind energy and this is evident in the large body of liter-
ature investigating the effects of different tidal current turbine
designs under various operating conditions experienced at real
tidal current energy sites [4e9]. Optimisation of tidal current tur-
bines plays a major role in improving the performance, life span
and the economics. This is paramount to ensure full commerciali-
sation of tidal current energy systems.

The work presented in this paper focuses on a coupled multi-
objective non-dominated sorting genetic algorithm (NSGA) and
blade element momentum (BEM) theory. The BEM theory has been
widely utilised in the wind industry and has proved to be one the
most common and computationally efficient methods to predict
the aerodynamic/hydrodynamic performance acting on the blades
of wind turbines as well as TCTs [10e15]. Vogel et al. [16] have
comprehensively described the main difference between TCTs and
wind turbines is the volume flux constrained flow field that occurs
around TCTs. The authors have further extended the BEM theory to
take into account the effects of flow confinement for the case of
TCTs. Masters et al. [17] have presented a BEM model with the in-
clusion of Prandtl's correctionmodel and have validated against the
lifting line theory model and an industrial code, GH Tidal Bladed,

the presented results have shown good correlations with the code.
El-shahat et al. [18] found that the results of BEM theory were in
good agreement with experimental data presented by Bahaj et al.
[19] at low values of Ncrit parameter (Ncrit value is used tomeasure
the free flow turbulence and to simulate the turbulent transition
location in XFoil) when using the XFoil code for lift and drag co-
efficients. Using the same experimental data, the study undertaken
by El-shahat et al. has also shown better thrust coefficient predic-
tion and a more realistic power coefficient prediction over a range
of tip speed ratios in their BEMmodel when compared to the SERG-
Tidal model by Bahaj et al. [19].

In addition to the BEM theory, the use of genetic algorithm (GA)
has also been widely used as an optimisation tool in the wind in-
dustry and proven to save computational time. Early studies un-
dertaken by Selig and Coverston-Caroll [20] have demonstrated the
use of GA in wind turbine design to maximise the annual energy
output by optimising the blade pitch, chord and twist distribution.
Sessarego et al. [21] have used NSGA to optimise annual energy
output and optimising the flap-wise bending moment of the wind
turbine. There are many other studies done using GA in an attempt
to further improve the performance of wind turbines and wind
farm layout [22e31]. As tidal current turbines share a number of
similarities with wind turbines, a GA model can be similarly
implemented to optimise a TCT blade. Sale [32] has used the

Nomenclature

Greek
a Angle of attack
ai Effective angle of attack
g Blade twist angle
lr Local tip speed ratio
n Kinematic viscosity of fluid
4 Angle of relative fluid
r Density of fluid
s Local blade solidity

Roman
c Geometric mean chord length
a Axial induction factor
a0 Angular induction factor
ac Critical axial induction factor
B Number of blades
C Chord length
CD Drag coefficient
CL Lift coefficient
Cn Normal force coefficient
CP Power coefficient
Ct Tangential force coefficient
CT Thrust coefficient
CD;e Drag coefficient at effective angle of attack
CL;2DðaÞ 2D hydrofoil's lift coefficient at local angle of attack
CL;e Lift coefficient at angle of attack
CD Crowding distance
D Diameter of the rotor
dFD Drag force
dFL Lift force
dFN Normal force
dFtan Tangential Force
dT Local Thrust
dr Blade element thickness

F Resultant loss correction factor
F1 Shen's correction constant F1
f1 Objective function 1
f2 Objective function 2
f3 Objective function 3
Fn Normalised fitness value
FR Three-dimensional downwash factor
FS Rotational factor
Fhub Hub loss correction factor
Ftip Tip loss correction factor
Ftotal Sum of fitness values
g1 Coefficient constant for Shen's correction model
m Curve slope of the linear zone of hydrofoil lift profile
MB Fap-wise bending moment
n Pareto front number
PC Crossover probability
PM Mutation probability
R Radius of the rotor
Rhub Radius of the rotor hub
r Local radial position on the blade
Re Reynolds number
S Blade area between local radial position and the

blade tip
U Free stream velocity
Y1 Shen's correction constant Y1
Y2 Shen's correction constant Y2

List of abbreviations
BEM Blade element momentum
CFD Computational fluid dynamics
GA Genetic algorithm
MAE Mean absolute error
NSGA Non-dominated sorting genetic algorithm
RMSE Root mean squared error
TCT Tidal current turbine
TSR Tip speed ratio
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coupled GA and BEM to optimise a TCT for an ideal power curve
while avoiding cavitation inception. Kolekar and Banerjee [33] have
used GA to improve power coefficient and reduced flap-wise
bending stress by optimising pitch angles, tip speed ratios (TSR)
and chord length, and it was further validated using CFD. Zhu et al.
[34] have demonstrated the use of neural networks and GA to
optimise a TCT blade and has shown improvement in power coef-
ficient as well as for an expanded range of optimal tip speed ratios,
the optimised TCT blade has been further validated against an
experiment in a cavitation tunnel as well as sea trials on Xiushan
island, Zhejiang province, China. Men�endez et al. [35] have used the
surrogate-based optimisation method to replace the computa-
tionally expensive computational fluid dynamics (CFD) simulation
in predicting the hydrodynamic performance of a TCT blade and
utilised multi-objective GA to find the optimum blade geometry,
the output blades as a result have shown improvement in terms of
hydrodynamic performance when compared to their base case.
There are many more studies presented in the literature proving
that effectiveness and efficiency of using GA in terms of optimising
TCT designs [36e42].

The work presented in this paper is an optimisation tool for TCT
blades using combined NSGA and an improved BEM model along
with a NACA generator. Using an improved BEM model that accu-
rately captures the downwash angle, a well-developed and reliable
NSGA has also been used to improve the optimisation efficiency,
resulting in a solver with higher fidelity. On top of that, the opti-
misation tool in this work incorporated a NACA generator that is
capable of reproducing any NACA profile, such a tool allows the
solver to analyse each and every profile used in each spanwise
blade element. As a result, the model is very effective at producing
tidal current turbine blades that have been optimised not only for
local twist angle and chord length, but also for suitable NACA
profiles to be used at a particular spanwise blade element. Addi-
tionally, this model also allows further implementation of other
hydrofoil profiles that can be similarly generated using other ap-
proaches, expanding the capability to explore more hydrofoil pro-
files to be considered in the optimisation process. A set of Pareto
optimal solutions have been produced in this work and each so-
lution represents a completely unique tidal current turbine blade
profile. Whereas other studies in the literature have used GA to only
determine new hydrofoil profiles, optimising for the resulting lift
and drag, and then used these results as model inputs into a BEM
solver. The model used in this work focuses on maximising the
power coefficient across a range of tip speed ratios while reducing
the overall flap-wise bending moment by optimising for NACA
profiles, twist angle and chord length at each blade element along
the span of the tidal current turbine blade.

2. Theory

In this section, an improved blade element momentum (BEM)
theory model is described, followed by a description of XFoil in
terms of accuracy and the non-dominated sorting genetic algo-
rithm (NSGA) employed in this work.

2.1. Blade element momentum theory

In a classic blade element momentum (BEM) theory, a few as-
sumptions are made. The one-dimensional momentum theory as-
sumes that the flow perpendicular to the rotor disc is steady,
homogenous and incompressible. The rotor is assumed to have an
infinite number of blades and no frictional drag between the tur-
bine and the fluid. The static pressure of the fluid far upstream is
equal to the static pressure of the fluid far downstream. For blade
element theory the blade is divided into a number of spanwise

blade elements, where each of the elements experience different
fluid flow conditions due rotational velocity and the local element
geometry such as hydrofoil profile, chord length, and twist angle.

As previously described in another paper by the authors [43],
the hydrodynamic parameters on each blade element are illus-
trated in Fig. 1. The angles in Fig. 1 consist of angle of attack, a, and
relative angle of the tidal current flow, 4. Fig. 1 also includes the
tangential force, dFtan, lift force, dFL, normal force, dFN, and drag
force, dFD. The horizontal broken line in Fig. 1 represents the rotor
plane.

The BEM theory initially uses an assumption of an infinite
number of turbine blades, which is not realistic and has to be cor-
rected. To improve the accuracy of the BEM, tip loss correction
factor is employed. There are several tip loss correction models
proposed in the literature such as Glauert's characteristic equation
[44], Wilson et al. [45,46], Goldstein [47] and Shen's correction [48].
The correction model used in this research is a validated and
improved model based on Shen's correction model by Zhong et al.
[49]. The authors introduced two factors to the model, one is the
downwash due to the three-dimensional effect, FS, and the other is
due to the rotational effect, FR, as described in Equations (1) and (2).

FR ¼2� 2
pi
cos�1

�
exp

�
� 2B

�
1� r

R

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2r

q ��
(1)

FS ¼
2
pi
cos�1

(
exp

"
�
	
R� r
c


3
4

#)
(2)

where B is the number of blades, R is the radius of the turbine, r is
the radial position of the blade element, lr is the local tip speed
ratio and c is the geometric mean chord length,

c¼ S
R� r

(3)

where S is the blade area between the local radial position and the
blade tip. In addition to the two new factors introduced by Zhong
et al. Prandtl's tip loss correction factor [10], Ftip, is used and is
described in Equation (4).

Ftip ¼
2
p
cos�1

�
exp

	
BðR� rÞ
2r sin 4


�
(4)

Similarly, the hub loss model, Fhub, is employed to correct the
induced velocity as a result of vortex shedding near the hub of the
rotor.

Fig. 1. Section blade element diagram of a tidal current turbine showing angles, forces
and velocities.
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Fhub ¼
2
p
cos�1

�
exp

	
Bðr � RhubÞ
2r sin 4


�
(5)

where Rhub radius of the rotor hub. The tip and hub losses can be
multiplied to get the resulting losses, F ¼ FhubFtip. As Zhong et al.
described in his study, the lift and drag coefficients, CL and CD of the
local blade element have to be corrected.

CL ¼
1

cos 2ai

�
CL;e cos ai � CD;e sin ai

�
(6)

CD ¼ 1
cos 2ai

�
CD;e cos ai þCL;e sin ai

�
(7)

where ai is the downwash angle which is determined using
Equation (8), CL;e and CD;e are the 2D hydrofoil's lift and drag co-
efficient at effective angle of attack, ae.

ai ¼
CL;2DðaÞ

m
ð1� FSÞ (8)

where CL;2DðaÞ is the 2D hydrofoil's lift coefficient at the local angle
of attack, a, and m is the curve slope of the linear zone of the hy-
drofoil lift coefficient profile before the stall angle. The axial in-
duction factor, a, and the angular induction factor, a’, can then be
calculated as shown in Equations (9) and (10).

a¼
2þ Y1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Y1ð1� FRÞ þ Y2

1

q
2ð1þ FRY1Þ

(9)

a0 ¼ 1
ð1�aFRÞY2

1�a � 1
(10)

where

Y1 ¼
4FRsin 2 4

sCnF1
(11)

Y2 ¼
4FR sin 4 cos 4

sCtF1
(12)

F1 ¼ 2
p
cos�1

�
exp

	
� g1

BðR� rÞ
2r sin 4


�
(13)

g1 ¼ exp½ � 0:125ðBl�21Þ� þ 0:1 (14)

where s is the local solidity defined by s ¼ CB
2pr where C is the chord

length and B is the number of blades. The normal force coefficient,
Cn, and tangential force coefficient, Ct ; are calculated as follows.

Cn ¼CL cos 4þ CD sin 4 (15)

Ct ¼CL sin 4� CD cos 4 (16)

When the axial induction factor, a becomes larger than the
critical value, ac ¼1/3, the momentum theory is no longer valid and
Glauert's correction is employed to calculate the local thrust coef-
ficient, CT. This work uses a modified Glauert's correction by Shen
et al. [48] which is compatible with the current improved BEM
algorithm.

CT ¼
(
4aFð1� aFÞ; a< ac

4
h
a2c F

2 þ ð1� 2acFÞaF
i
; a � ac

(17)

The flapwise bending moment of the blade can be calculated
with Equation (18), based on the assumption that the turbine blade
is modelled as a cantilever beam supported at the blade root [50].

MB ¼
1
B

ðR
0

rdT (18)

where

dT ¼1
2
rpCTU

22rdr (19)

and r is the density of seawater and dr is the blade element
thickness.

2.2. Reynolds number and XFoil

XFoil is code that is used in the current study to analyse the lift
and drag coefficients of the generated NACA hydrofoil profiles. As
the lift and drag characteristics are the fundamental in accurately
determining the axial and tangential forces on each blade element,
the reliability of XFoil is paramount. Xfoil has been widely studied
in the literature. Van Treuren [51] has performed experimental
tests of wind turbine airfoils and have stated that the XFoil code is
not robust enough for predicting the aerodynamic performance at
low Reynolds number (below Re ¼ 100,000). Similarly, Mack et al.
[52] performed an analysis on a modified NACA 643e618 profile at
low Reynolds numbers (Re ¼ 64,200 and Re ¼ 137,000) and have
concluded that XFoil is not capable of capturing the effects of
separated laminar boundary layer and the formation of a closed
laminar separation bubble, leading to inaccuracy of results pro-
duced by XFoil.

On the contrary, Van Treuren [51] have stated that the simula-
tion results generated by XFoil are generally adequate at Reynolds
number greater than 500,000 as the flow will stay attached to the
airfoil. Timmer and Bak [53] have discussed and shown that XFoil
and its extension RFoil have produced results with good agreement
with measured data at Re ¼ 6,000,000. Zhu et al. [54] have
designed new airfoil profiles optimised for Re ¼ 16 million using
XFoil and the results are in good agreement with a CFD solver. Pires
et al. [55] have conducted tests on the DU00W212 airfoil at high
Reynolds numbers of 3, 6, 9, 12 and 15 million at the DNW high
pressure wind tunnel in G€ottingen. It was confirmed that as Rey-
nolds numbers increase, the minimum drag decreases and
maximum lift increases. There is negligible change in lift co-
efficients in the linear region (angle of attack between�7⁰ to 10⁰) at
different tested Reynolds numbers. The test results have provided
invaluable insights on the airfoil aerodynamic behaviour at high
Reynolds numbers. Pires et al. have also performed tests of high
Reynolds numbers (Re ¼ 3,000,000 and Re ¼ 6,000,000) at the
wind tunnel of LM Wind Power. In the same article, the authors
have compared the measured data with XFoil, It was shown that
XFoil is capable of predicting results of good agreement by fine
tuning the N-factor and Mach number [56]. A study conducted by
Selig [57] has proven that XFoil is well suited for analysis of airfoils
at Reynolds numbers (between Re ¼ 100,000 and Re ¼ 500,000). It
was agreed by Morgado et al. [58] showing that XFoil remains an
excellent airfoil design and analysis tool, providing sufficient ac-
curacy at the phase of conceptual designs.

Similar to Ouro et al. [59], the Reynolds numbers for the current
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work is based on the turbine rotor's diameter, described in Equation
(20).

ReD ¼UD
n

(20)

where U is the velocity of the fluid, D is the diameter of the rotor,
and n is the kinematic viscosity of the fluid.

2.3. Non-dominated sorting genetic algorithm

The genetic algorithms (GA) are part of evolutionary computa-
tion models that are capable of effectively and efficiently optimis-
ing problems with the process of biologically inspired operators
such as natural selection, crossover and mutation. In nature, the
natural selection ensures that individuals that are fitter than others
are more likely to survive and produce offspring. The natural se-
lection is a mechanism that assigns probabilities to the individuals,
individuals with a higher fitness value aremore likely to be selected
and therefore contribute more to the production of the next gen-
eration. These probabilistic search procedures are designed to work
on large data sets that can be represented by strings [60]. Each
string can also be imagined as strands of chromosomes and in each
chromosome, there are genes.

In this work, with the blade element moment (BEM) model, the
tidal current turbine blades were split into multiple blade elements
to determine the local hydrodynamic performance. By specifying
the operating condition and local blade element profile such as
NACA profile, twist angle, and chord length, the BEMmodel outputs
the local power and thrust coefficient as a result. The genes in the
current GA model are represented by the local blade element
profile, and the chromosomes can then be represented with tidal
current turbine blades.

There are four phases in the GA, namely Selection, Crossover,
Mutation, and Repopulation. The selection will select pairs of
blades based on their fitness value, a higher fitness value results in a
higher chance of being selected to proceed in the next phase. The
fitness functions employed in the current study are power coeffi-
cient at design tip speed ratio (TSR), f1, mean power coefficient at
plus and minus two steps of design TSR, f2, and the mean overall
bending moment of the tidal current turbines across the range of
TSR, f3. The fitness functions f1, f2, and f3 are described as follows:

f1 ¼CP;i (21)

f2 ¼
Piþ2

i�2CP;i
5

(22)

f3 ¼
P

MB

TSRn
(23)

where i is the designed TSR and MB is the bending moment of the
blade.

The blades are selected with the proportional roulette wheel
function described in Equation (24), where Fv is the fitness value of
the blade, Ftotal is the sum of fitness values of the current population
and Fn is the normalised fitness value of the tidal current turbine
blade.

Fn ¼ Fv
Ftotal

(24)

The proportional roulette wheel selection allows all the in-
dividuals to be selected, the selection chance of each individual is
directly proportional to their fitness value. Therefore, individuals

with high fitness values are selected with greater likelihood than
individuals with low fitness values.

Once a pair of blades are selected, theywill undergo crossover or
known as recombination, exchanging local blade element profiles
such as the hydrofoil profile, twist angle and/or chord length,
depending on the specified crossover probability, PC, inheriting the
characteristics of both parent blade parameters, producing a pair of
potentially better performing tidal current turbine blades in the
next generation. The crossover of parameters will only happen
between the blade section of the same radial position, for example,
sections towards blade root will not be cross-overed with sections
towards the blade tip.

Schimitt L.M [50]. discussed that mutation plays a key part in
the random generator phase of the GA. If the crossover operation
combined with fitness selection without mutation, the conver-
gence effect for the algorithm will exhibit genetic drift, which is a
phenomenon when the populations become genetically identical.
The mutation mechanism randomly mutates a few of the genes of
the post-crossover chromosomes, this allows the GA to explore
solutions beyond the initial population. In the current work, mu-
tation randomly occurs after the cross-over operation depending
on the mutation probability, PM, to prevent pre-mature conver-
gence and exploring solutions beyond the initial population set.
The mutation may occur to change the local NACA profiles,
randomly increase or decrease the twist angle and/or chord length,
provide offspring blades with awider variety of local blade element
profiles. As a boundary condition set for the current study, each
section is allowed to have up to a 10% change in parameter when
mutation occurs to avoid drastic changes. The mutation and
crossover theory is comprehensively detailed by Schimitt L. M [61].

The last phase of the GA model in the current study is done by
the non-dominated sorting method, hence non-dominated sorting
genetic algorithm (NSGA). Each blade is evaluated to determine if
the blade is dominated by others in the current population, all non-
dominated tidal current turbine (TCT) blades are the Pareto optimal
solution, or known as the Pareto Frontier in the current population.
For example, in a case of two objective functions, f1 and f2, if any
chromosome is not dominated by any other chromosomes in terms
of f1 and f2, the non-dominated chromosomes are considered as the
Pareto Front 1. Once a frontier has been determined, the sorting
process will repeat for the entire population to search for Pareto
Front 2, 3, 4 and so on. The TCT blades are sorted using the
crowding distance method as described in Equations (25) to (26)

CDi;nf1
¼ Fn

�
f1iþ1

�� Fn
�
f1i�1

�
Fn
�
f1max

�� Fn
�
f1min

� (25)

CDi;nf2
¼ Fn

�
f2iþ1

�� Fn
�
f2i�1

�
Fn
�
f2max

�� Fn
�
f2min

� (26)

CDi;nf3
¼ Fn

�
f3iþ1

�� Fn
�
f3i�1

�
Fn
�
f3max

�� Fn
�
f3min

� (27)

CDi ¼ CDi;nf1
þ CDi;nf2

þ CDi;nf3
(28)

for i ¼ 2; …; ðl � 1Þ,
Where l is the total number of chromosomes in the Pareto Front

Number, n, and f1, f2 and f3 are objective function 1, 2 and 3
respectively. The crowding distance, CD for i ¼ 2 and i ¼ l is infinity.
Once the CD is determined for the entire population, the TCT blades
are sorted by CD in descending order. This mechanism ensures that
TCT blades in the smallest Pareto Front Number will be selected for
reservation in the next generation, then, TCT blades with furthest
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distance apart from each other in the same Pareto Front Number
are prioritised to be reserved to the next generation. A detailed
description of the Non-dominated Sorting theory used in NSGA-II
can be found in Refs. [21,39,62,63].

3. Methodology

The coupled non-dominated sorting genetic algorithm e blade
element momentum (NSGA-BEM) model begins by randomly
generating tidal current turbine blades in the initial population,
using the experimentally validated 63-8xx Series tidal current
turbine blade [19,64] as a sample. A variety of NACA profiles are
generated using the NACA Airfoil generator [65] and the lift and
drag characteristic of each NACA profile are predicted using XFoil
and stored in a virtual growing library, which allows the ease of
access for the optimisation model, saving computational time. The
integrated NSGA-BEM model is then let to run according to the
parameters tabulated in Table 1.

The optimisation process of the NSGA-BEM is illustrated in
Fig. 2. After the initial population, all tidal current turbine (TCT)
blades will go through BEM prediction and sorted before the NSGA
sequence begins to iterate until the set number of generations is
achieved. At the end of each generation, each TCT blade that has
undergone crossover or mutation will go through the BEM pre-
diction again to re-evaluate the new hydrodynamic performance.
At the end of each generation, the population size will double the
initial set amount, the TCT blades are sorted and any excess TCT
blades beyond the population limit are eliminated from the current
population pool. It is important to note that all TCT blades gener-
ated are stored as a different variable which can be used for data
processing at the end of the sequence.

4. Results and discussion

The coupled non-dominated sorting genetic algorithm e blade
element momentum (NSGA-BEM) tool was let to run for 300 gen-
erations, 100 blade profiles in each generation and it took
approximately 16 hours to complete on an Intel® Core™ i7-8750H
CPU, producing a total of 30,000 blade profiles. Full details on the
model outputs and results are given in subsections below.

4.1. Validation of the current BEM solver

The accuracy of the improved blade element momentum (BEM)
model was first validated against an experimentally validated tidal
turbine blade profile, the NACA 63-8xx series by Bahaj et al. [19,64].
Fig. 3(a) and 4(a) show the predicted power coefficient with
measured data against tip speed ratio. There is only slight variation
of the prediction of power coefficient over the range of tip speed
ratios when compared with themeasured data and there is a minor
underprediction of thrust coefficient across the range of tip speed
ratios (TSR) using the improved BEM model. The improved BEM
model demonstrates competency at predicting the hydrodynamic
forces acting on the tidal current turbine blade with a high degree
of accuracy when compared to basic BEM model with Glauert's

correction as shown in Fig. 3(a) and 4(a). When the measured data
is plotted against the predicted results as shown in Fig. 3(b) and
4(b), a diagonal straight line is presented, the mean absolute er-
ror (MAE), coefficient of determination (R2) and root mean squared
error (RMSE) are determined. It can be seen thatMAE, R2, and RMSE
of power coefficient are 0.01761, 0.99828 and 0.020317 respectively
with a minor overestimation on average when comparing the
predicted against measured values. In terms of thrust coefficient,
the MAE, R2, and RMSE were found to be 0.021971, 0.99488 and
0.025816 respectively with minor underestimation overall.

4.2. Pareto solutions

The coupled non-dominated sorting genetic algorithm e blade
element momentum (NSGA-BEM) model has almost consistently
generated 100 new turbine blade profiles in each generation,
depending on a number of factors, such as the crossover proba-
bility, PC, mutation probability, PM, and selection probability of
blades in the previous generation depending on the fitness func-
tion. Fig. 5 shows a 3-D plot of the three objective functions, where
f1, f2, and f3 are in the x, y, and z axis of the plot respectively and as
defined in Equation (21) e (23). Fig. 6(a) and Fig. 6(b) are the 2-D
plots of the Pareto solutionwith f1 versus f2 and f2 versus f3. In Fig. 5
and 6, each of the generated tidal current turbine blade profiles are
represented with dots, it can be seen that the sample blade, 63-8xx
series is grouped in the dominated solutions as it was one of the
sample blades in the first generation. The current model then
attempted to search for better solutions for the set objective
functions, resulting in 248 blade profiles in the Pareto frontier out
of 30,000 blade profiles. The selection of the solution was under-
taken manually, Solution 1 was selected with the highest f1 value,
Solution 2 was selected for minimum f3 value while having the f1
value higher than 0.47, and finally, Solution 3 was selected between
the two extremes.

4.3. Optimised blades

The three selected blades all have slight variations to at each
blade element and are tabulated in Tables 2e4. The blade profiles
are also illustrated in Figs. 7e9 and Selected Solution 1, 2 and 3

Table 1
Parameters of the NSGA-BEM model.

Parameters Value

Maximum number of generations 300
Population size 100
Crossover probability, PC 0.8
Mutation probability, PM 0.2
Design tip speed ratio 6

Fig. 2. The coupled non-dominated sorting genetic algorithm e blade element mo-
mentum theory optimisation process.
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respectively. It is observed that all three selected solutions output
contain the same NACA profile which is the 6415 from radial po-
sition between 0.5 and 0.8, the last two sections of Solution 2 and 3
also output the same NACA profile, NACA 661413/2. These two
NACA profiles are plotted in Fig.10 to showand compare the lift and
drag coefficients.

4.4. Performance comparison

The hydrodynamic performances for the selected solutions are
plotted to compare with the sample blade as shown in Fig. 11 and
Fig. 12. As shown in the figures, Selected Solution 1 outperforms the
sample blade at a range of tip speed ratios (TSR) around a value of
TSR ¼ 5 and has a lower thrust coefficient for values lower than a
TSR ¼ 7, which is within the range of the specified designed TSR for
the current study. Solution 2 and 3 showed similar performance
characteristics, in terms of power and thrust coefficients, both so-
lutions only outperform the sample blade at a TSR ¼ 6 and above
and slightly have an improved performance when compared to

Fig. 3. (a) Comparison of predicted power coefficients and measured data versus tip
speed ratio for the NACA 63-8xx Series tidal current turbine blade [19,64] and (b)
Predicted power coefficients versus measured power coefficients of 63-8xx Series tidal
current turbine blade.

Fig. 4. (a) Comparison of predicted thrust coefficients and measured data versus tip
speed ratio for the NACA 63-8xx Series tidal current turbine blade [19,64], and (b)
Predicted thrust coefficients versus measured thrust coefficients of 63-8xx Series tidal
current turbine blade.

Fig. 5. 3-D plot of the Pareto solutions, each dot represents a tidal turbine blade
profile.
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Fig. 6. 2-D plot of the Pareto solutions, (a) f1 versus f2 and (b) f2 versus f3.

Table 2
Blade profile of Selected Solution 1.

r 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NACA 4421 651,820 632,818 6415 6415 6415 6415 654,613 654,612
C/R 0.1560 0.1134 0.1025 0.0870 0.0741 0.0646 0.0576 0.0554 0.0532
g (�) 21.42 15.23 11.3 8.69 8.46 5.68 5.96 4.99 4.02

Table 3
Blade profile of Selected Solution 2.

r 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NACA 4523 24,021 654,619 6415 6415 6415 6415 661,413 661,412
C/R 0.1325 0.1230 0.0965 0.1002 0.0667 0.0614 0.0489 0.0517 0.0545
g (�) 25.19 14.74 14.15 10.66 8.14 7.45 6.05 5.17 4.29

Table 4
Blade profile of Selected Solution 3.

r 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NACA 23,022 24,020 634,819 6415 6415 6415 6415 661,413 661,412
C/R 0.1325 0.1350 0.1051 0.0996 0.0737 0.0652 0.0602 0.0517 0.0432
g (�) 23.93 15.67 12.65 10.25 8.62 7.62 6.24 5.17 4.10

Fig. 7. 2-D section view of blade profile of Selected Solution 1. Fig. 8. 2-D section view of blade profile of Selected Solution 2.
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Solution 1 at a TSR ¼ 9 and above. The thrust coefficients for both
Solution 2 and 3 are lower across the range of TSRs with Solution 2
having the lowest thrust coefficients when compared with the
other solutions, which is expected as it has the lowest f3 value.

The bending moment of the blades at TSRs of 5, 6, and 7 are
compared in Fig. 13, which shows that all three solutions have
overall lower bending moments at all radial position, except for
solution 1 which has a slightly higher bendingmoment at the blade
tip. Solution 2 demonstrates the lowest bending moment across all
radial position except for the blade tip where it is slightly higher
than Solution 3. It is worth noting that these plots are predicted
values using Equation (16) where R ¼ 10 m.

The NSGA-BEM model in the current study outputs a large
number of Pareto solutions, with 248 solutions in the Pareto
Frontier, which helps narrow down the choices to select a suitable
solution out of a total of 30,000 solutions. Each solution in the
Pareto Frontier has its own advantages and trade-offs. In this study,
Solution 1 demonstrates an overall increase in power coefficients
when compared to the sample blade while having an overall
slightly lower thrust coefficient. As a result, the tidal current tur-
bine blade experiences overall lower bending moment. Solution 2
and 3, on the other hand, have demonstrated an overall lower
thrust coefficient and bendingmoment but only slightly better in in
terms of power coefficients at a TSR of 6 and above.

Fig. 9. 2-D section view of blade profile of Selected Solution 3.

Fig. 10. Lift and drag coefficients of (a) NACA 6415 and (b) 661,412.

Fig. 11. Power coefficient versus tip speed ratio for the three optimised tidal current
turbine blades from E-GABEM (a) and NS-GABEM (b).

Fig. 12. Thrust coefficient versus tip speed ratio for the three optimised tidal current
turbine blades from E-GABEM (a) and NS-GABEM (b).
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5. Conclusion

The improved blade element momentum (BEM) theory was
validated against an experimentally validated tidal current turbine
blade, with coefficient of determination (R2) values of 0.99828 and
0.99488 for power and thrust coefficients respectively when
compared against the measured data. Using XFoil to obtain the lift
and drag coefficients of each NACA profile generated, the BEM
model in the current study has demonstrated that it is capable of
efficiently predicting the hydrodynamic performances of tidal
current turbines to a high degree of accuracy.

The work presented in this paper demonstrates a novel
approach to combine non-dominated sorting genetic algorithm
(NSGA) and the improved BEM model that is capable of accurately
capturing the downwash angle, as well as a NACA generator that is
capable of reproducing any NACA profile. Such a tool allows the
solver to analyse each profile used in each spanwise blade element,
producing tidal current turbine blades that have been optimised
not only for local twist angle and chord length, but also for suitable
NACA profiles to be used at a particular spanwise blade element.
The NSGA-BEM model treats each spanwise blade element as a
gene and each tidal current turbine (TCT) blade profile as a chro-
mosome, the model has efficiently produced 30,000 TCT blade
profiles in approximately 16 hours, 248 of which are in the Pareto
Frontier (optimal solutions). Three solutions were manually
selected from the Pareto Frontier base on several criteria and
compared with measured data from a tidal current turbine blade.
The findings have demonstrated an overall improvement in hy-
drodynamic performances as well as lowering the resulting
bending moment experienced by the tidal current turbine blades.
Further work will include computational fluid dynamics to

extensively study the selected solutions and to validate the results
presented in this paper.
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