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A Nanoscale Shape-Discovery Framework
Supporting Systematic Investigations of
Shape-Dependent Biological Effects and
Immunomodulation
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ABSTRACT: Since it is now possible to make, in a controlled fashion,
an almost unlimited variety of nanostructure shapes, it is of increasing
interest to understand the forms of biological control that nanoscale
shape allows. However, a priori rational investigation of such a vast
universe of shapes appears to present intractable fundamental and
practical challenges. This has limited the useful systematic investigation
of their biological interactions and the development of innovative
nanoscale shape-dependent therapies. Here, we introduce a concept of
biologically relevant inductive nanoscale shape discovery and evaluation
that is ideally suited to, and will ultimately become, a vehicle for
machine learning discovery. Combining the reproducibility and tunability of microfluidic flow nanochemistry syntheses,
quantitative computational shape analysis, and iterative feedback from biological responses in vitro and in vivo, we show that
these challenges can be mastered, allowing shape biology to be explored within accepted scientific and biomedical research
paradigms. Early applications identify significant forms of shape-induced biological and adjuvant-like immunological control.
KEYWORDS: nanoscale shape, shape identification, microfluidic, tunable synthesis, biological effects, immunomodulation

While the underlying principles and paradigms of
nanostructure biological recognition and processing
are quite different from those for biomolecules,1−5

this fundamental distinction is only beginning to be
appreciated and applied in biology and medicine. This has
resulted in much emphasis on the use of nanostructures as
vehicles to “carry” drugs and other cargoes and more limited
appreciation of the fundamental role that the nanostructure
itself can play in biological control. Increasingly, we understand
that, in contrast to molecular ligand−receptor binding,
numerous interactions distributed across the whole nanostruc-
ture−cell interface (“synapse”) collectively induce a complex
set of membrane and peri-membrane molecular events that we
term “bionanoscale recognition”. In determining the nano-
structure’s biological identity these processes take account of
the details of the molecular presentation at the nanostructure’s
surface,3−6 the detailed organization of nanoscale shape
features and possibly other collective features yet to be
discovered.7−12 Membrane signaling responses are sensitive to

stress relaxational phenomena on the nanoscale, and since
relaxation of peri-membrane recognition processes occurs on
comparable length- and time scales, we hypothesize that
correlated nanoscale shape features can be detected by the cell
recognition machinery as patterns of differentiated stress
relaxation at the membrane.2 However, extensive and detailed
mechanistic investigations will be required to fully determine
the mechanistic drivers of shape recognition on the nanoscale,
greatly advanced and facilitated by recent advances in shape
control and characterization.6,8
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Figure 1. Definition of nanoscale shape ensemble distributions. (A) TEM micrographs showing the shape library of gold nanoparticles
(GNPs), scale bar is 100 nm. (B) Schematic showing the process of nanoscale shape identification: capture and digitization of the contours
of the nanostructures, shape space classification based on Fourier transform descriptor. (C) 2D scatter plot and TEM micrographs for
selected points of the first two principal components (PC) obtained from the analysis of the shape descriptor for three nanostructures: star,
flower, and urchin. The ellipses represent the regions which contain 95% of the points for each shape. (D) Schematic showing the process
used to quantify the level of overlap between two nanoscale shapes. The coordinate X represents the line that joins the center of gravity of
the two shapes in the 3D scatter plot of the first three principal components. The projected points onto the line X are used to calculate the
probability distribution function (PDF) for each shape which is then used to measure the level of overlap between two shape distributions.
Examples of the overlap quantification between star and flower (E), urchin and star (F), and flower and urchin (G).
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Clearly, for the field of shape-dependent biological effects to
progress we now require concepts that will allow us to explore
the science by systematic rather than (only) phenomenological
trial and error investigations. Those of us seeking to develop
this field of research see many competing priorities as to where
to begin. In many ways we are like the early astronomers
recording the apparently unlimited variety of events in the sky;
somewhat awestruck by the infinitude of particle shapes and
the extent of the nanoparticle shape universe, but unable as yet
to make sense of the diversity and “meaning” (degree of
biological control) that can be exerted by nanoscale shape
biology. Certainly, the few early snapshots of shape biology we
do have suggest an extraordinary richness of responses, distinct
from simpler biological interactions, and hint at practical
possibilities to control immunological, metabolic and other
system level responses.13−21 Still for the field to grow we will
need executable research programmes. First, it is important for
shape characteristic data to be reportable and transferrable
between different laboratories and across different approaches
to the science. Investigators will need to use different types of
reactors and syntheses but have transferrable structural inputs
and biological outcomes in much the same way as we take for
granted in small or biomolecular biological investigations.
Clearly, the usual physiochemical data alone (while important)
do not specify shape and are insufficient for this purpose.
Shape quantification is required to make meaningful,
reportable, and reproducible connections between shape
distributions and biological outcomes. However, the major
challenge is that in such a vast universe of shape we need to
know where to look for interesting biological effects without
the impracticalities of guessing or randomly searching a vast
unknown shape space.
These and many other detailed technical features of

nanoscale shape recognition have hitherto appeared to make
systematic exploration of the relationship between nanoscale
shape and biology a daunting proposition. For instance,
(whether endogenous or man-made) even when the objective
is to create a single shape identity, nanostructures are typically
fabricated in weakly constrained assembly processes, leading to
structural variations between individual particles and thereby
to heterogeneous distributions. That, and the difficulty in
controlling the process itself, often make it difficult to
reproduce shape distributions and characterize them in a
meaningful way. However, this challenge has now been
addressed by advanced computational geometry methods
applied to electron microscopy that digitize, capture, and
analyze particle shape.22−26 Those methods now allow us to
check the reproducibility of shape and dispersion character-
istics of the ensembles and to develop methods to ensure those
standards are met. Such advances now allow us to carry out
meaningful, reportable and systematic biological investigations
of nanoscale shape, if we know which shapes are of interest.
In this paper, we report on the next step, presenting a “shape

discovery” approach that enables disciplined biological studies
on interesting nanoscale shapes. Based on previous inves-
tigations of the mechanism behind the shape formation of
branched GNPs, combining tunable microfluidic nanostructure
flow synthesis capacities with a quantitative framework that
captures and quantifies nanoscale shape, we are able to vary
shape in a flexible manner, reproducibly making shape
ensembles.27 Then coupling those microfluidic syntheses and
digital shape characterization we use feedback from cellular (in
the example discussed in this article: immune relevant) in vitro

read-outs to inductively tune along a trajectory of different
shape distributions to a regime of biological interest. Such
inductively located particle ensembles are essentially “lead
shape distributions” for further investigations. As a proof of
concept, using this discovery process, we have identified an
immunologically interesting nanoscale shape regime and
confirmed the distinctive shape-dependent immunological
properties by detailed analysis of antibody responses and B-
cell receptor repertoire.

RESULTS AND DISCUSSION
Definition and Characterization of Nanoscale Shape

Ensemble Distributions. While nanoscale shape ensembles
have in the past been described using “typical” electron
microscope images and evocative names (e.g., stars, flowers,
and urchins) (Figure 1A), here we use statistical nanostructure
image capture, digitization, and quantitative computational
analysis of shape ensembles. The key steps have been described
before,7 including abstraction of minimal information capture
of shape ensembles (de facto choosing a mathematical
representation) and further condensation of that information
(by principal component analysis) to allow it to be
manipulated and analyzed, so here we only briefly summarize
the features. Summarily, we first capture and digitize hundreds
of nanostructure electron microscopy generated surfaces (or
more condensed surface-projected contour descriptions) and,
in much the same way signals are Fourier analyzed,28−31

transform the image contour of each particle into (typically)
hundreds to thousands of discretized coefficients in a suitable
representation (Figure 1B). At that point these coefficients are
simply equivalent to the contour itself, but identification of the
principal components in such a (suitable) representation
produces a ranked ordering of the most relevant (principal
component eigenvector) combinations to describe (and
differentiate) those shapes. In this representation, particle
surfaces are sampled by their projected contours, and the
presence of correlated typical nanoscale “features” (e.g., spikes
and bumps) dominates the principal component description.
Each structure may then be represented by a single point in

a low (often two or three) dimensional representation in the
space of major principal component directions, representing an
easily understood “shape space”. As an example, several well-
known shape types (formerly named as stars, flowers, etc.) are
easily differentiated as separated clustered “shape space”
identities (Figure 1C). We can also determine an “average”
shape and capture the largest particle-to-particle ensemble
shape fluctuations (deviations) from that mean, thereby
quantifying shape polydispersity in different directions in
principal component space (Figure 1D), providing a rather
complete description of the shape ensemble. This information
can now be used to guide the optimization of flow reactor
design and parameters until an appropriate level of
reproducibility, “purity”, and dispersion of shape distributions
has been achieved.
Since biology is sensitive to nanoscale shape, the question of

particle shape dispersity is important. Two nearby distributions
with different mean shapes may still contain numbers of near
identically shaped biologically active particles, making it is
necessary to determine how different two (statistically shape
independent) ensembles are from each other. In Figure 1E−G
we visually represent the issue of shape-distinctiveness between
two distributions by comparing the spread in their shape
distributions (projected onto the line connecting the two mean
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shapes) with the “distance” between the mean shapes. It is also
possible to numerically quantify the fraction of particles

common to both and to stipulate a threshold for
independence. These points illustrate the type of shape

Figure 2. Microfluidic reactor (MR) which can achieve high reproducibility and narrow shape distribution for 5 nm seeds and GNPs. (A)
Diagram of the microfluidic reactor synthesis setup for 5 nm seeds. (B) Normalized UV−vis−NIR spectra absorption. (C) DCS analysis
showing the high reproducibility of different batches of 5 nm MR_Seeds. (D) Representative TEM micrographs and TEM size distribution.
The scale bar is 20 nm. (E) Diagram of the microfluidic reactor synthesis set up for MR_GNPs. (F,G) Normalized UV−vis−NIR spectra
absorption and DCS analysis showing the high reproducibility of different batches of MR_GNP. (H) Shape variance expressed as a
probability distribution function (PDF) over distance showing the similarity of three batches of MR_GNP. (I) 2D scatter plot of the first two
principal components and representative TEM micrographs for each batch MR_GNP. The scale bar is 50 nm.
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characterization required for interoperable, reproducible, and
reportable nanoscale shape biology. As we show later, they also
provide the basis for shape discovery.
Synthesis of Nanoscale Shapes for Biological

Application. Defined shape ensembles typically result from
kinetically controlled growth around supercritical spherical-
symmetry-broken nuclei (or “seeds”).6,32−37 Those seeds
possess different crystal growth faces which can be differ-
entially grown by control of the growth kinetics at the different
interfaces.32,38,39 Consequently, shape-ensemble-growth con-
trol features include the density and geometry of the growable
(and quenchable) surfaces represented by the seeds,40−42 the
nature of the reaction (composition and reactants),24,43 the
rate at which reactants can be deposited at the growing
interface, and the nature and amount of the surface-active
substance enhancing (“catalyzing”) or inhibiting (“blocking”)
the growth kinetics at those surfaces.44−47 As slow mixing
heterogeneities occur on time scales comparable (or greater)
to interface growth kinetics, macroscopic reaction vessels limit
our control of shape synthesis.48,49 High reproducibility and
tunability of shape ensembles require small mixing-volume
flow chemistries in which suitable reactor control parameters
provide fixed and reproducible constraints between mass
transport, interface growth, and quenching kinetics.50−53

Here, we employed a fast-mixing microfluidic reactor to tune
across a large range of nanoscale shapes while achieving a high
shape ensemble reproducibility. Our flow reactor consists of a
Luer Lock T-junction, microfluidic sample injection shut-off
valves, flow sensors, PTFE tubes (to allow the mixing and
further reactions), reaction reservoirs for reagents, and a
computer for real-time monitoring and control (Figure 2A,
detailed microfluidic synthesis protocol and potential scal-
ability are discussed in supporting method). The reactor leads
to highly reproducible symmetry-broken gold seeds (Figure
2B−D). For instance, we observe that it is almost impossible to
resolve between three batches of independently produced 5
nm gold seeds using any macroscopic measurement (e.g., UV−
vis−NIR absorption spectra and differential centrifugation
sedimentation (DCS) shown in Figures 2B and C). Benchtop
tank reactor-based synthesis methods do have the advantage of
being able to make much more material, but efforts to
reproduce this seed type using macroscopic syntheses are
challenging and typically lead to numerous failures before
suitable batches are made (a typical example is shown in Figure
S1).
Starting with high quality and reproducible seeds, we now

synthesize a wide range of nanoparticle shapes using various
reconfigurable microfluidic setups. As an example, a reactor,
including four reservoirs, growth feed solution HAuCl4·3H2O
in reservoir 1, seeds dispersed in trisodium citrate dihydrate
(Na3Cit) in reservoir 2, and reducing solution hydroquinone in
reservoirs 3 and 4 (Figure 2E), was used to synthesize a family
of branched gold nanoparticles. The resulting particles drain
into the collection vessel containing the initial surface agent of
interest (small exchangeable molecules, proteins, other
biopolymers or surface-active agents) where the reaction is
quenched, and nanoparticles remain dispersed. When proteins
are used to quench the system, we observed that, beyond a
critical protein concentration, different choices of surface
quenching proteins lead to very modest changes in the final
shape distribution (Figure S2). The reproducibility of shape
dispersions across independent microfluidic syntheses is
confirmed by analyses of localized surface plasmon resonance

(Figure 2F) and DCS size distribution (Figure 2G). These
results are consistent with the well-overlapped shape variance
profiles (Figure 2H) and two-dimensional shape scatter plots
(Figure 2I). Together, these results illustrate the quite general
capacity of such flow reactors to reproduce “typical shapes”
accompanied by reproducible and narrow distributions around
that average (a comparison of the shape distribution between
tank reactor- and flow reactor-based synthesis methods is
shown in Figure S3). We note carefully that many flow reactors
operate on complex and different principles, some of which are
not fully understood as yet.53−56 Therefore, it is essential to
tune parameters and quantitatively compare the output shape
distributions, rather than (only) replicate reactor design.

Inductive Navigation along Shape Space Trajectories
of Biological Interest. Recognizing the unlimited numbers of
potential shapes, and complete lack of a priori knowledge on
which shapes are of biological interest, unguided combinatorial
search screening would not be efficient. Therefore, to develop
the selection of interesting shape-space regimes we propose an
inductive approach. Using a flow reactor, we iteratively make
small changes in the reaction parameters, represent the shape
ensemble in principal component shape space, and then at
appropriate check points, use a cellular readout to decide if we
are moving toward (or away from) an interesting area of shape
space. Thus, we can build a “shape learning trajectory” by
simultaneously varying (single and multiple) combinations of
different flow reactor parameters, using shape computation to
calibrate the scale of the shape-space increments required to
reach the next shape ensemble along the trajectory. There are
some noteworthy features associated with searching across
shape space, derived from the fact that we are comparing
distributions, not simply fixed shapes. For instance, since this is
essentially an experimentally based “gradient optimization”
search process, when exploring such shape learning trajectories,
if we make overlarge changes in the flow reactor parameters in
a single step the change in typical shape is discontinuous and it
is difficult to discern which aspect (“direction”) of the flow
reactor leads to the desirable structural features or specific
biological outcomes. That information therefore may not be
helpful in choosing which direction to take in the next move.
However, there is also a trade-off between the need for these
close (small change) points along the learning trajectory that
contribute to directional guidance and the fact that nearby
distributions have significant “overlaps” corresponding to
numerous similar structures being common to the two
distributions.
Next, at appropriately chosen steps along this sequence of

synthesis-characterization points, we use biological readouts to
select useful directions (“slopes”) in the shape-space. Biological
readouts from such contiguous distributions (containing many
common structures) do not contribute to useful biological
information, so computational methods of shape character-
ization must be used to identify when (along the trajectory)
there is sufficient independence to result in significant
difference in biology. This inductive shape learning process
culminates in a useful “lead location” in shape space. Evidently,
all of these steps can (and will be) implemented via automated
machine learning to optimize the shape-learning process. Here,
as a proof of concept we seek to show how the essential
elements of the discovery process may be framed. Since we
apply the approach manually, on a relatively limited scale (and
seek in vivo immunological readouts), we use a high-
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Figure 3. Inductive navigation by microfluidic synthesis along shape space trajectories of biological significance. (A,B) 2D and 3D scatter
plots of the first two and three principal components, showing the center of gravity of each shape ensemble to illustrate the “shape learning
trajectory”. The arrows indicate the shape-tuning direction. The synthesis methodology for the shape trajectory is reported in the
Supporting Information. (C) 2D scatter plot of the first two principal components for MR_GNP06 and MR_GNP07. The inset shows the
overlap quantification for these two shapes. (D,E) 2D and 3D scatter plots of the first two principal components for four different shapes.
The larger dots with black borders represent the center of gravity of each shape distribution. The insets show TEM micrographs of each
shape. The scale bar is 50 nm. (F) Normalized UV−vis−NIR spectra absorption showing the LSPR (localized surface plasmon resonance) of
different shapes. (G) DCS analysis showing a similar size distribution of different shapes. (H) 2D scatter plot of the first two principal
components for three distinct shape ensembles used in the previously reported transcriptome study.7 The larger dots with black dash
borders represent the center of gravity of each shape distribution. The insets show representative TEM micrographs for each shape. The
scale bar is 50 nm. (I) Principal component analysis illustrating distinctively different transcriptome profiles induced by the three shape
ensembles. The percentages shown in the axis labels represent the variance explained by each PC.
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dimensional (“transcriptome”) read-out to choose directions
along the learning trajectory.
Given the fact that we are dealing with a multidimensional,

highly nonlinear, and a priori unknown relationship between
flow reactor parameters and output shape, increments in flow
parameters along the shape learning trajectory have to be
locally adapted to the regime being explored (Figure 3A,B).
For instance, different flow parameter settings (parameter
details in Table S1) associated with MR_GNP06 and

MR_GNP07 lead to distributions that are barely different
statistically (Figure 3C). Many of those along the rest of the
trajectory are sufficiently independent to be of interest but in
some cases represent such large steps in shape that it is
necessary for the shape-learning process to return close to the
previous coordinates to recommence more smooth progres-
sions. It is also worth noting that while highly congruent
(“nearby”) shape ensembles are useful to understand shape-
space tuning in synthesis, meaningful structure−function

Figure 4. Antibody responses to nanoscale shape ensembles. (A) 2D scatter plot showing the shape distribution of in vivo_GNPs shape
ensembles in relation to the biological responsive shape regime identified by in vitro_GNPs. The larger dots with black borders represent the
center of gravity of each shape distribution. Representative TEM micrographs of each shape are shown, and the scale bar corresponds to 50
nm. (B) Subcutaneous immunization schedule in rats. (C) Levels of circulating IgG determined by ELISA. Data are presented as dot plots of
individual rats, showing the mean of duplicates. Statistical significance was determined by two-way ANOVA analysis using the Tukey’s test,
****p < 0.0001. (D,E) Circulating IgM and anti-C1q autoantibodies induced by in vivo_GNP(A) and in vivo_GNP(B) were evaluated by
ELISA. Data are presented as dot plots of individual rats, showing the mean of duplicates. Statistical significance was determined by ANOVA
analysis using the Tukey’s test, *p < 0.05, **p < 0.01.
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relationships rely on an independent (investigator-controlled)
variable involving the evolution of shape identity along which
the (dependent variable) biological read-outs can be measured.
For instance, the shape trajectory (Figures 3D,E), in
distinction to a shape learning trajectory, is composed of
nearly independent ensembles, and biological readouts from
these will reflect fundamental changes in shape and would
constitute the basis of a useful “structure−function” relation-
ship. Along this trajectory, each particle shape ensemble is
labeled by a different color, large dots with black borders
represent the “typical” (mean) shape, and illustrations of the
overlaps are given in various examples by confidential ellipses
(Figure S4). The associated physiochemical properties,
including surface plasmon resonance (Figure 3F), effective
size distribution of different shapes (Figure 3G), hydro-
dynamic diameter, and zeta potential (Table S2), are shown.
To direct the trajectory illustrated in Figure 3A we use

principal component analysis (PCA) of the whole tran-
scriptome data reported previously7 to identify the key
changes in biological responses. Those outcomes then help
us choose the direction of the learning trajectory to achieve a
target biological outcome. Mouse dendritic cells (JAWSII)
were treated with the three distinct shapes (marked in
vitro_GNPa-c, Figure 3H) along the shape-learning trajectory
(the details of synthesis and PCA of the transcriptome are
described in the Supporting Information.). The transcriptomic
changes are captured in the principal component analysis
(Figure 3I), illustrating that the transcriptome of in
vitro_GNPc treated cells returned to the untreated tran-
scriptome where the adjacent shape (in vitro_GNPb) gave rise
to a distinct transcriptome from the untreated one. It suggests
a sharply shape-responsive regime of interest (e.g., region
between in vitro_GNPb and in vitro_GNPc). In summary,
despite the fact that the intrinsic nonlinear relationships
between shape and flow reactor conditions combined with the
complex dependence of biological readouts on shape make it
far from obvious how to a priori tune shape for biological
outcomes, the inductive process outlined here converges
relatively quickly along the directions of primary interest.
We next sought to illustrate these concepts in a scientifically

interesting, challenging, and practically important shape regime
within an in vivo setting. This example also illustrates the
practical role of computational shape characterization in the
“hand-over” of target shape distributions between synthetic
approaches (including benchtop tank reactor-based synthesis)
that may make the whole workflow, including scale-up, feasible
for extended in vivo studies.
Decisive Biological Readouts for Nanoscale Shape.

Here, we illustrate the larger “shape discovery” potential of the
inductive screening approach described by searching for
specific adjuvant-like shape-controlled immune responses. We
have investigated the “lead” shape ensembles (using large-scale
batches, defined via their shape geometry) to allow in vivo
investigation of the shape region of interest. After optimization
particle batches (i.e., in vivo_GNP(B)) were prepared that
occupy the target shape region of interest (i.e., region between
in vitro_GNPb and in vitro_GNPc) (Figure 4A), being of an
acceptable structural quality and lipopolysaccharide (LPS) free
(the full characterization is shown in Figure S5). The other two
shape ensembles (i.e., in vivo_GNP(A) and in vivo_GNP(C))
with the gravity center of shape distribution shifted away from
the target shape region were used as the control. Healthy rats
were subcutaneously injected with the same number of gold

nanoparticles (Figure 4B). The concentration of serum IgG at
Day 0, 30, and 60 (determined by ELISA) was observed to
have a general gradual increase of circulating IgG for all the
groups over the immunization course, with the steepest rise of
the in vivo_GNP(B)-treated group (Figure 4C). At Day 60, the
concentration of circulating IgG was shown to be approx-
imately 2- to 3-fold higher in in vivo_GNP(B)-treated rats than
the in vivo_GNP(A)- and in vivo_GNP(C)-treated groups,
respectively. In contrast, the in vivo_GNP(C) treated-group
exhibited comparable levels of IgG to the control and in
vivo_GNP(A)-treated groups (Figure 4C). To ensure the
accuracy of circulating IgG concentration, we carried out the
ELISA measurements by independent operators with each
assay performed in replicates (some examples are shown in
Figure S6).
Higher IgG levels are prevalent in many autoimmune

diseases, such as systemic lupus erythematosus (SLE) and
rheumatoid arthritis (RA),57 and since the shape ensembles
studied here had no exogenous biological antigen, the origin of
this rise in IgG levels was explored further for such effects. We
assayed serum IgM from Day 0−7 and for several autoanti-
bodies in the in vivo_GNP(B)-treated group. The concen-
tration of IgM at Day 5 was found to be about 2-fold higher
than Day 0 in the in vivo_GNP(C) group, whereas the in
vivo_GNP(A) treatment or control did not exhibit significant
change over the time (Figure 4D). To ensure reproducibility,
we repeated the ELISA measurements with independent
operators (some examples are shown in Figure S7). One of
the autoantibodies against complement C1q (anti-C1q)
consistently showed a 3-fold elevation in ELISA for the in
vivo_GNP(B)-treated group, in contrast to unchanged levels of
anti-C1q antibodies observed in the control and in vivo_GNP-
(A)-treated groups (Figure 4E).
Changes in B cell tolerance are often associated with an

increase in B cell clonal diversity, resulting in increased self-
reactivity,58 and B cell clonal diversity is also an important
proxy for BCR and antibody repertoires. We therefore
harvested the draining lymph node B cells and analyzed the
B cell receptor (BCR) repertoire using next-generation
sequencing. It was shown that in vivo_GNP(B) treatment
resulted in a significantly more diverse BCR repertoire than the
control and in vivo_GNP(A)-treated groups (Figure S8,
bioinformatic analysis parameter details in Table S3),
consistent with the elevation of autoantibodies. Evidently,
these results are quite striking, suggesting a role for
nanoparticle shape in the over-riding of usual autoreactive
controls. Certainly, under usual circumstances, the frequency
and affinity of autoreactive B cells is highly regulated through
multiple mechanisms at several sites, including central
tolerance in the bone marrow and peripheral tolerance in the
spleen, lymph nodes, and other tissues. While B cell tolerance
is centrally enforced, leaky self-reactive mature naiv̈e B cells are
sometimes found in the periphery,59 and their fate is subject to
a number of microenvironment contextual signals (such as the
specifics of antigen presentation, innate signaling (e.g., TLRs),
dendritic cell input (e.g., BAFF), and T cell collaboration (e.g.,
CD40L)). We therefore hypothesize that exquisitely controlled
nanoparticle shape ensembles are able to modulate those
contextual signals and lead to a form of self-recognition. While
it is not the purpose of this paper to enter into detailed
mechanistic investigations of such phenomena, we consider
these results constitute a striking example of a definitive
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readout for nanoscale shape regulation and the potential for
inductive discovery processes.

CONCLUSION
In this paper, we propose a generally applicable framework that
will enable the discovery of important biological and medical
outcomes in nanoscale shape biology while supporting the
systematic unraveling of the nanoscale shape-dependent
biological mechanisms. Our purpose was to highlight and
illustrate that these two mutually supportive agendas of
“discovery” and systematic mechanistic investigation can be
achieved within the same conceptual framework and via
workflows that are now firmly within the realm of well-defined
scientific investigation. Here we chose to illustrate the ideas
with an important example of nanoscale shape control that
could lead to key practical outcomes.
To assist future researchers in carefully framing directions,

here we point out some of the open technical questions. First,
we should reiterate carefully that the purpose of the
digitization and analysis of shape reported here is not to
exhaustively describe the members of the population, though
that could be another interesting direction (for instance, in
refinement of fluidic syntheses). Rather, our purpose is to find
minimal relevant parametrizations that represent useful control
parameters to search different types of biological responses,
with perhaps some specific target such as vaccine adjuvancy in
mind. These two objectives raise quite different questions and
require different thinking. Thus, our hypothesis that shape
features on the nanoscale can regulate key elements of biology
does not preclude the fact that features on other scales or other
properties (not monitored in the current type of approach)
also affect the outcome, and that has yet to be studied in depth.
We should also ask if any particular description (“basic set of
descriptors”) we choose is both definitive and sufficient. These
are more subtle questions than they may appear at first sight.
For instance, in a particular class of material shapes and
syntheses a given parametrization may appear to be sufficient
to adaptively improve the design in the narrower sense.
However, given the loss of detail (say in going from two-to-
three-dimensional representations) in the description we
cannot preclude the outcome that other materials with similar
projected information may have similar biology. Also, one
cannot a priori exclude the fact that, for instance, other
synthetic setups could appear to give the similar projected
information but not have the same effects, simply because the
descriptor chosen by the researcher is insufficient to fully
describe the biology. While that might seem unlikely, there
remains the possibility (especially for larger search spaces) that
the really key biological control features are (within a certain
synthetic framework and material class) “slaved” (correlated)
to the characteristics we describe, and we have not yet isolated
the fundamental parameters. Again, our approach may be
sufficient in a specific study but may require enlargement for
the field to develop. Of course, such questions can be resolved
by evolution of a more complete set of shape characterizations
(even the use of three-dimensional information) and para-
metrizations. These are quite deep questions that can only be
resolved by accumulation of knowledge and many more well-
chosen examples.
We also stress that much has yet to be achieved to

understand the detailed mechanisms in shape control biology.
The issues are subtle, and it would be premature to make
definitive statements on that topic. For instance, we have

known for some time that it is the composition and collective
organization of the surface biomolecular (corona) layer, rather
than only individual surface molecules, that are recognized by
nanoscale biological mechanisms specifically evolved for that
purpose.1−3 And it is that collective recognition that
determines many early and later downstream biological
outcomes. There are certainly common features between that
corona paradigm (largely based on multiple and simultaneous
molecular motif engagements between the nanoscale surface
and cognate cell receptors and other interacting membrane
proteins) and repetitive features on various particle geometries,
such as those reported here. Indeed, potentially spatially
correlated nanoshape features could be recognized and
transduced at the cell membrane as patterns of differentiated
stress relaxation but could also (at least to some degree) be
coupled to collective surface molecular recognition. That issue
of decoupling the surface and shape effects is subtle and will
take time to clarify.
It will be necessary to acquire detailed and elaborated

evidence to reliably assign mechanisms of shape regulation in
vivo, including those shape-induced self-immune responses
discussed here. Still, practically speaking, our observations of in
vivo shape regulation are potentially highly significant,
suggesting the possibility of controlling the breaking of
balances of immunity and tolerance. We note carefully that
such effects may point toward an avenue to develop adjuvants
and immunotherapies possessing local regulatory functions
without affecting systemic immune tolerance. The implications
for significantly improved safety and efficacy in vaccine
applications are clear. In a scientifically related issue, the
results reported here also raise questions related to the
environmental impact of processes producing rich varieties of
nanoscale shape fragments. To confirm such a link to human
health and autoimmune disease it would be necessary to
carefully and fully investigate a variety of material types,
conditions, and species in the ecosystem. However, given the
long-standing suspicion that autoimmune diseases are linked to
environmental dusts, the issues involved appear significant and
should be investigated.60−62 In that context, we note carefully
that the difficulty in locating these effects (indeed requiring
inductive searching) may suggest such autoimmune-shape
biology effects are not ubiquitous and may be confined to
highly specific shapes. If it is true, then the good news is that
their limited nature could make conceivable their isolation and
elimination, with significant implications for human health.
Shape searches using the full machinery of inductive shape
learning (or otherwise very insightful hypotheses) to isolate
and identify these effects may therefore constitute a practical,
feasible, and scientifically well-founded frontier in hazard
identification for environmental health investigations.
However, these considerations all represent specific tasks

that should be considered by science. The central purpose of
this paper was to create conceptual and practical order out
what at first sight looks like a nanoscale shape cacophony. That
is to create a systematic shape-discovery framework that will
lead to interesting discoveries. We believe that automation and
implementation of machine learning of the framework of
inductive shape discovery presented in this paper will play a
central role in the search for valuable (or elimination of
harmful) shape space entities. Simultaneously, it will allow the
shape-biology-medicine research enterprise to be moved onto
well-established scientific principles, enabling widely shared
reproducible and validated results from scientific research.
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That will frame a secure basis on which to pursue future
research in the field.

METHODS
Chemicals. The following chemicals were purchased from Sigma-

Aldrich and were of highest available purity and used as received:
hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O, ≥99.9%),
trisodium citrate dihydrate (C6H9Na3O9, meets USP testing
specifications), potassium carbonate (K2CO3, ≥99%), tannic acid
(C76H52O46, ACS Reagent grade), hydroquinone (HQ, C6H6O2,
≥99%), silver nitrate (AgNO3, ≥99.9%), glycerol (C3H8O3, ≥99%),
sucrose (C12H22O11, ≥99.5%), dodecane (CH3(CH2)10CH3, ≥99%),
clean water (CHROMASOLV Plus, for HPLC), bis(p-
sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP,
C18H17K2O8PS2, 97%), bovine serum albumin (BSA, lyophilized
powder, ≥98%), human serum albumin (HAS, lyophilized powder,
≥98%), ovalbumin (OVA, lyophilized powder, ≥98%). Sodium
hydroxide (NaOH, ACS Reagent grade) was purchased from Fluka.
Poly(vinyl chloride) (PVC) calibration standard for differential
centrifugal sedimentation (DCS) measurements (263 nm) was
purchased from Analytik Ltd.
Microfluidics. Oil-free air compressor (8 bar) and Luer Lock T-

junctions (microfluidic manifold three-port small kit) were purchased
from Darwin microfluidics. The other microfluidic equipment and
adjuncts were purchased from Elveflow including: microfluidic flow
controller (OB1MK3+, channel pressure range 0−8 bar), microfluidic
flow sensors (MFS, flow rate range 0−5 mL/min), PTFE tubing (1/
16 in. OD × 1/32 in. ID, 50 m), microfluidic reservoir for 100 mL
bottles (bottle cap with two 1/4 in. 28-threaded ports), and
microfluidic fittings (1/4 in. 28 thread).
Computational Shape Analysis. To avoid aggregation due to

drying effects and to obtain well-dispersed imaging of nanoparticles
(NPs), sample preparation for TEM imaging used a modified method
based on the previously reported protocol.7 Grids (Agar Scientific)
were pretreated with a glow discharger, and 1 μL of 1 × 1010−1 ×
1011 NPs/mL sample solution was deposited on the grid. Imaging was
performed using a FEI Tecnai G2 20 Twin TEM at 200 kV, with
magnifications no less than 19000×. TEM images containing well-
spread NPs were used to extract their contours following the protocol
previously reported by our group.7 The obtained contours were then
used to analyze the shapes of the different batches of NPs.
Nanoparticle Immunization. All rat work was performed in

accordance with institutional guidance, the NIH Guide for the Care
and Use of Laboratory Animals (2011 edition), and EU directives and
guidelines (EEC Council Directive 2010/63/UE). Adult CD (Charles
River) male rats (approximately 300 g in body weight) were housed
paired in individually ventilated cages (Tecniplast S.p.A., Varese,
Italy) and maintained under specific pathogen-free conditions in the
Institute’s animal care facilities. They received food and water ad
libitum and were regularly checked by a certified veterinarian
responsible for animal welfare supervision and experimental protocol
revision. The investigators were not blinded to allocation during
experiments and outcome assessment. To exclude contamination, all
the procedure concerning animals were performed in a Class 2
laminar flow hood following strict precautions. The reagents used for
NP preparation were opened inside the laminar flow fume hood.
Immediately before the treatment, NPs were dissolved in water to
reach a concentration of 1.5 × 1012 NP/mL in a final volume of 500
μL and injected subcutaneously into the loose skin over the
interscapular area. NPs and water were administered at day 1 (first
boost), at day 30 (second boost), and at day 50 (third boost). Rats
were randomly assigned to the following treatment groups: control (n
= 11 for IgG ELISA; n = 6 for IgM ELISA), in vivo_GNP(A) (n = 11
for IgG ELISA; n = 6 for IgM ELISA; n = 4 for anti-C1q autoantibody
ELISA), in vivo_GNP(B) (n = 7 for IgG ELISA; n = 6 for IgM
ELISA; n = 4 for anti-C1q autoantibody ELISA), in vivo_GNP(C) (n
= 4 for IgG ELISA).
Blood Collection and ELISA. Under general anesthesia

(continuous flow of 5% isoflurane/oxygen mixture for induction

and 2−3% for maintenance), blood was taken from the lateral tail vein
at each indicated time point. Day 0 is defined as the day of injection.
Blood on Day 0 was taken before the injection. Blood was collected
into EDTA-tubes and centrifuged for 15 min at 1500g at 4 °C. The
supernatant (plasma) was aliquoted and immediately frozen. Animals
were sacrificed on Day 60. Blood was collected through a terminal
cardiac puncture, and then animals were euthanized by CO2
inhalation.

The levels of circulating IgG and IgM in rat plasma were
determined by Ready-SET-Go! total rat IgG and IgM ELISA (cat. no.
88-50490 and 88-50540, eBioscience) with predilution of 1:250 000
and 1:5000 in the provided sample diluent for IgG and IgM,
respectively. The concentration of autoantibody anti-C1q IgG was
determined by rat anticomplement 1q antibody ELISA (cat. no.
MBS722996, MyBioSource, USA) with predilution of 1:10 in the
provided sample diluent.
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