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Impact of dynamic sub-populations within grafted
chains on the protein binding and colloidal
stability of PEGylated nanoparticles†

Delyan R. Hristov,‡a Hender Lopez, b Yannick Ortin, c Kate O’Sullivan,c

Kenneth A. Dawson*a and Dermot F. Brougham *c

Polyethylene glycol grafting has played a central role in preparing the surfaces of nano-probes for biologi-

cal interaction, to extend blood circulation times and to modulate protein recognition and cellular uptake.

However, the role of PEG graft dynamics and conformation in determining surface recognition processes

is poorly understood primarily due to the absence of a microscopic picture of the surface presentation of

the polymer. Here a detailed NMR analysis reveals three types of dynamic ethylene glycol units on PEG-

grafted SiO2 nanoparticles (NPs) of the type commonly evaluated as long-circulating theranostic nano-

probes; a narrow fraction with fast dynamics associated with the chain ends; a broadened fraction spec-

trally overlapped with the former arising from those parts of the chain experiencing some dynamic restric-

tion; and a fraction too broad to be observed in the spectrum arising from units closer to the surface/graft

which undergo slow motion on the NMR timescale. We demonstrate that ethylene glycol units transition

between fractions as a function of temperature, core size, PEG chain length and surface coverage and

demonstrate how this distribution affects colloidal stability and protein uptake. The implications of the

findings for biological application of grafted nanoparticles are discussed in the context of accepted

models for surface ligand conformation.

Introduction

The widespread application of hydrophilic polymer surface
coatings, such as polyethylene glycol (PEG), on medical device
surfaces, bionanostructures, and biomolecular medicines has
been viewed primarily as a practical means to mitigate a broad
range of undesirable biological responses to foreign
bodies.1–11 PEG is believed to present a stable hydrogen-
bonded hydration layer which, combined with the configura-
tional entropy derived from the flexible chains, inhibits
protein adsorption, as well as screening antigenic epitopes
(that might be caught up in the interface layer) from immuno-
logical processing.5,12 Beneficial effects, such as the pro-
longation of bloodstream circulation and reduced probability

of implant rejection, were conceived to derive from a reduction
in the degree of non-specific biomolecular binding and few
attempts were made to uncover the detailed mechanisms
involved beyond that.7,13–18

Several significant changes in thinking have emerged
recently. Firstly scientific developments now suggest that bio-
logical recognition of nanoscale surfaces entails levels of com-
plexity and subtlety not previously recognised. For example,
the identity of the protein corona may influence drug release
profiles.19 Blood circulation times may require the recognition
of specific proteins or protein motifs on the particle surface.20

Conversely other proteins may lead to a lower probability of
recognition and longer nanoparticle (NP) circulation times
in vivo.5 The complexity is well described in the work of Cai
et al., where the authors suggest that “appropriate surface
ligands with reduced protein binding and desired long blood
circulation time could be predicted from acquired corona
composition”.21

The growing set of methodologies available to study these
phenomena at the molecular level has enabled deeper under-
standing of surface effects.5,19,20,22–25 For example, new NMR
tools have enabled more detailed analysis of the particle
surface and its interactions with low affinity proteins.3,26–28

There have also been several observations, discussed below,
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that cast a new light on previous understanding.3–5,29–32 In par-
ticular, questions about how interactions with environmental
molecules are influenced by the ligand coverage (surface
density) and conformation have been raised.

The original paradigm of nanoscale biomolecular reco-
gnition that was framed around the ‘biomolecular corona’24

may be briefly summarised as follows. Those environmentally
derived biomolecules presented ‘accessibly’22,23 on the nano-
particle surface with residence times exceeding a critical ‘pro-
cessing time’ are deemed to be involved in biological reco-
gnition and processing and termed ‘hard corona’, whereas
those that exchange faster are termed ‘soft corona’ and while
they affect physicochemical aspects of the material they are un-
likely to contribute directly to recognition. This conception
while in broad terms being verified across many fields, has
mainly been considered for conventional strongly adsorbing
nanostructures33 where the separation of timescales between
the strongly adsorbed hard corona and loosely associated soft
corona is great. In the present case of PEG layers, the appli-
cation of these fundamental ideas is more nuanced. For
instance, while it is evident that the ‘steady state amount’ of
exchanging biomolecules in the polymeric layer could affect
gross issues, such as circulation time, the modern focus
derives from the certain realisation that PEG layers in situ are
biologically recognised, and the strong suspicion that the very
small amounts of biomolecule implicated in the layer are criti-
cal to that mechanism.3,5 Thus a major interest now is in
understanding how (in the above context) those small
amounts of biomolecules are presented in the low binding
layer and the underlying layer where exchange times are mod-
erate.26 It is clear that these issues cannot be fully clarified
without a detailed molecular understanding of the structure
and dynamics of tethered low binding affinity surfaces, such
as PEG ligand layers.

PEG layers on flat surfaces have been extensively studied
using techniques such as QCM,34 surface force apparatus35–37

and atomic force microscopy,38 revealing that PEG coverage
largely determines surface properties such as surface friction
and protein binding.12,39 It is suggested that these responses
are primarily determined by ligand conformation and solvent-
layer interactions.12,40 While those methods are not feasible
for studying particle dispersions, other evidence, including
protein binding and cell response studies, points to significant
influence of ligands on nanoparticle responses.3,41–43

In particular 1H NMR has previously been used,42,44–46 in
conjunction with other methods,47 to study ligand grafts on
dispersed nanoparticles. However, the majority of studies are
for small particles (<20 nm) and small molecules (<1000 Da).
In these cases, the observed NMR signal broadening arises
from: (i) the presence of multiple environments (usually due to
different adsorption sites)48–51 and (ii) magnetic susceptibility
effects, both of which generate heterogeneous broadening. In
addition there can be effects due to: (iii) ligand exchange; (iv)
residual dipolar interactions; and (v) particle–ligand electronic
interactions, usually resulting in homogeneous
broadening.48,52 In cases where these interactions dominate

the resonances are not detectable by conventional high resolu-
tion NMR, and specialized magic angle spinning techniques
are required.44 1H MAS NMR spectroscopy53 has been used for
qualitative identification of species present on 5 nm Fe3O4

nanoparticles.44 31P CP-MAS NMR was used to identify mul-
tiple surface binding sites for 1.8 nm triphenylphosphine
stabilized Au nanoparticles,54 which were shown by hole-
burning to be primarily heterogeneously broadened due to a
distribution of chemical environments. 19F NMR spectroscopy
of particle bound ligands has recently been used to measure
the effect of protein adsorption on diffusion.26

Conventional high-resolution solution state NMR is a more
commonly available technique suitable for ligand analysis and
potentially quantitation. 1H and 13C NMR has recently been
used, in combination with other techniques,55 to study the
mobility and conformation of ligands48,50 and to evaluate
surface composition for mixed ligand systems.49,56 For
instance, in the study of patchy 4–5 nm Au particles the
Stellacci Group used the dependence of the chemical shift and
nuclear Overhauser effect enhancements on ligand mole frac-
tion to confirm patch formation and/or ligand dispersion for
combinations of ligands exhibiting different phase compatibil-
ity.49 Salorinne and co-workers identified all 44 possible 1H
resonances arising from Au102 nanoparticles surface grafted
with para-mercaptobenzoic acid.50 These high-resolution NMR
studies, which were at the edge of the spectral resolution
achievable for these particle sizes, establish the suitability of
the technique to measure ligand dynamics and conformations.
There are some NMR studies of lipid nanoparticles,57,58

however there are surprisingly few studies into PEG dynamics
for higher molecular weight grafts and for larger particles,
which is the size range of greatest interest for bio-probe devel-
opment and in which broadening begins to dominate.

Here we describe the synthesis and grafting of silica par-
ticles with varied surface coverage of higher molecular weight
PEG, and provide detailed 1H NMR analysis of the grafts.
Spectra were recorded at different temperatures for PEG (Mw 1
and 5 kDa) bound to relatively large (50, 65, 75, 90 and 200 nm
core diameter) nanoparticles with varied surface coverage (0.05
to 1.0 PEG chains per nm2). Particular care was taken to evalu-
ate the sensitivity of the outcomes to the model selected for
fitting the spectra and to confirm the interpretation of
changes in chain segment mobility by T1 and T2 relaxometry.
We demonstrate that ethylene glycol units can be separated
into three distinct quantifiable dynamic fractions whose rela-
tive populations change with coverage and temperature in a
predictable way, providing insight into the molecular changes
associated with changes in brush conformation. Finally we
show that for 50 nm SiO2 PEG5000 nanoparticles there was
measurable coverage dependence in (serum) protein uptake
and distribution. These findings suggest that coverage-
induced changes in PEG dynamics, and particularly in the
population of the dynamic fractions, alter the critical residence
times and hence recognition for different proteins in subtly
different ways. The implications of the findings for function of
grafted nanoparticles in biological systems are discussed.
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Results
Sample preparation and colloidal characterization

Silica cores were synthesized as previously described.41,59 PEG
molecules were attached through the addition of a silane-func-
tionalized PEG, as previously described.41 PEGylated particles
were washed using five centrifugation re-suspension cycles
(which is in excess of the number usually applied) to carefully
remove contaminants, including precursors.29 The removal of
free PEG and the loss of some particles during this process
were evaluated by NMR; we observed that in all cases more
than 94% of the total NMR signal was lost after the third wash
(Fig. S1†). Typically the intensity of the free PEG signal in the
last supernatant was between 1–4% of that measured for the
subsequently redispersed pellet (Fig. S2†). Finally, comparison
of the line-shape analysis from the particle suspension and
last supernatant shows that a maximum of 3% of the integral
value in the last supernatant has the chemical shift and line-
width of free PEG (Fig. S3†). This suggests that free PEG con-
tributes <0.12% to the PEG signal of the particle suspensions
immediately after synthesis and purification.

The final particle suspensions were observed to be fully dis-
persed in water with narrow size distributions, by dynamic
light scattering (DLS), and to be colloidally stable for several
weeks (Table 1, S1, Fig. S4 and S5†). Nanoparticle suspensions
with different coverage were synthesized using the same batch
of core particles to which different concentrations of PEG were
added. The average coverage was determined by quantitative
1H NMR of dissolutes using the previously described pro-
cedure.29 The coverage was found to vary from 0.06 to
0.35 nm−2 (for PEG5000 on 50 nm NPs), which corresponds in
all cases to the “brush” conformation under the accepted
criteria.60–62 Unless otherwise indicated we describe the
response of suspensions of 50 nm cores, which is in the size
range of interest for drug delivery and diagnostics, grafted with
PEG5000.

1H NMR lineshape analysis

The effect of coverage and chain length on the 1H spectra was
evaluated; variation in PEG coverage and color coding is sche-
matically represented in Fig. 1a. For all D2O suspensions it is

immediately apparent (Fig. 1) that binding to the particle
surface results in changes to the ethylene group resonance at
c. 3.7 ppm,7,29 as compared to free PEG solutions (Fig. S6†).
Visual inspection indicates that for most suspensions, e.g.
Fig. 1b, the resonance has two distinct Lorentzian-like contri-
butions from narrow and broad fractions. This suggests
different dynamic environments for PEG associated either
with different populations on a given particle or different types
of particles. Care was taken therefore to use extended recycle

Table 1 Physicochemical characterisation (DLS) and PEG coverage, for
N = 8 NP batches

Sample

Size characterisation, DLS

ρPEG (nm−2)

Z average
diameter
(nm) PDI

Number
mean
diameter (nm)

VH 92 ± 12 0.09 ± 0.05 70 ± 8 0.35 ± 0.07
H 101 ± 23 0.11 ± 0.07 68 ± 9 0.37 ± 0.06
M 97 ± 15 0.10 ± 0.06 74 ± 20 0.28 ± 0.02
L 111 ± 22 0.16 ± 0.08 73 ± 19 0.17 ± 0.04
VL 113 ± 39 0.20 ± 0.08 57 ± 3 0.06 ± 0.02
SiO2 core 95 ± 21 0.16 ± 0.08 61 ± 12 0

Fig. 1 Regions of interest in the 1H spectra, recorded at 25 °C for
PEG5000 grafted SiO2 nanoparticles in D2O suspension. (a) Schematic
representation of 50 nm PEG5000 grafted SiO2 nanoparticles showing
the colour coding used in the rest of this work; VH (purple), H (blue), M
(green), L (dark yellow) and VL (dark red). (b) Representative spectra
recorded at 25 °C for 50 nm particles of different coverage. (c) A repre-
sentative line fit for a VH spectrum for 50 nm particles showing the
measured signal (purple), the sum of the fractions (blue dashes), and the
individual fractions (navy dots and dashes). (d) Change in the spectra
with PEG5000/particle size ratio, the insert highlights the change in
broadness of fraction B with particle size.
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delays, of 25 s, in the experiments to enable quantitation in
case of spectral contributions with long T1 values.

Multi-Lorentzian fitting successfully reproduced the line-
shape confirming that for all but the lowest coverages the
signal comprises a narrow fraction (A, FWHM ≤4 Hz unshifted
relative to free PEG) and a broad fraction (B, FWHM ≥30 Hz,
shifted downfield by c. 0.01 ppm). Fraction A is almost per-
fectly fitted by a single Lorentzian while fraction B is best fit by
two Lorentzians (Fig. 1c). Increasing the number of functions
used in the fitting does not measurably change the quantifi-
cation of A and B that follows (see Fig. S7† for details).

We found that for fixed core size and PEG chain length an
increase of coverage leads to: (i) fraction A becoming more pro-
minent (Fig. S8g†) compared to B; (ii) the broadness decreasing
slightly (Fig. S8i†); and (iii) the mean chemical shift (δ) value
shifting upfield (Fig. S8h†). Similar trends were clearly observed
(despite reduced signal-to-noise) for PEG1000 grafted 50 nm NPs
(Fig. S8d, e, f, S9 and S10†), demonstrating the presence of
similar coverage dependence for narrow and broad fractions for
shorter grafts. One difference for PEG1000 as compared to
PEG5000 grafts is that the signal broadened with reducing ligand
coverage. Increasing the particle size (for PEG5000) resulted in
broadening of fraction B (Fig. 1d and S8–10†).

Comparison of the total 1H signal intensity of the NP sus-
pensions and their dissolute solutions demonstrates the pres-
ence of a third fraction, C, not detectable in the suspensions
which is apparently broadened into the baseline. This pres-

ence of C can be confirmed, and its spectral profile estimated,
through point-by-point 1H saturation transfer experiments.
Typical PEG and HDO saturation profiles (integral as a func-
tion of the selective saturation pulse frequency) for a VH sus-
pension are shown in Fig. S11.†

Interestingly, for VH, H and M suspensions the methoxy
end group is observable (for νL 600 MHz) as a very weak sharp
feature at c. 3.3 ppm. For L this feature is rarely detectable at
room temperature, but often becomes observable at higher
temperature, (Fig. S12†). The observations for the ethylene and
methoxy resonances suggest complex evolution of chain-
surface interactions, leading to freer motions for a greater
faction of the graft-distant units at higher coverage and temp-
erature. At the lowest coverage the NMR response is qualitat-
ively different.

The 1H spectra are consistent with the presence of three
fractions arising due to differences in PEG mobility or surface
conformation. We suggest that fraction A is the most mobile
and arises from ethylene glycol units furthest away from the
particle surface, fraction B arises from units closer in and frac-
tion C from the most conformationally restrained units nearest
the particle surface.

Temperature dependence of the 1H spectra

To better understand the nature of the fractions and to further
probe the sensitivity of the spectra to graft dynamics a variable
temperature study was undertaken (Fig. 2). Spectra were

Fig. 2 Analysis of the temperature dependence of the 1H spectra for different surface coverage. (a) Representative example of the temperature
dependence of the 1H NMR spectra recorded for a batch of VH to VL suspensions of PEG5000-grafted 50 nm SiO2 NPs. (b) Temperature dependence
of the monomer distribution into fractions A, B and C (quantified using the 3 Lorentzian model), averaged for the spectra shown in (a) and two other
independent samples. The average (n = 3 batches) PEG coverage is noted below each graph. Error bars are indicative of the standard deviation. (c)
Temperature dependence of the signal detected (SD = IAB × 100/IABC), note that PEG5000 has an average of 114 units.
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recorded every 10 °C following temperature equilibration. The
residual water peak was used to confirm the sample tempera-
ture and temperature stability. The spectra in Fig. 2 were
measured as soon as possible after synthesis, in this case in
the same week, to avoid long term surface stability issues. The
curves in Fig. 2b and c are the averages of 3 independent par-
ticle batches synthesised side-by-side on the same day. The
experiment was also repeated with a multitude of samples at
different stages during the study with comparable results.

A gradual increase in intensity and narrowing of the high
resolution ethylene glycol signal with increasing temperature
or coverage are observed (Fig. 2a). Quantification of the frac-
tions by line-fitting (IA, IB″ and IB″) and evaluation of their rela-
tive contribution to the total signal (IABC), reveals that for all
suspensions there is a gradual transfer of 1H signal intensity
from fraction C to B and from B to A (Fig. 2b) with increasing
coverage and with increasing temperature. We ascribe both
trends to gradual reduction in residual dipolar interactions
(averaged to zero giving sharp spectra in the case of ethylene
glycol units in the fast-motion limit) associated with faster
chain dynamics for an increasing number of monomers along
the chains, i.e. chain mobility increases with temperature.
Physically this may correspond to a shift of the ethylene glycol
units average positions away from the surface. Consequently
this model suggests less extended average chain conformations
at low ρ which is in line with the de Gennes model.63 The trans-
fer of 1H magnetisation between fractions is more consistent
with fairly uniform coverage throughout the suspension as
opposed to the presence of sub-populations of particles with
different coverage. This interpretation is supported by hole-
burning experiments conducted for all coverages (Fig. S13†),
which show that it is not possible to burn a hole in fraction B,
demonstrating that it is predominantly homogeneously broad-
ened. Presumably this is due to residual dipolar interactions
(see ESI†) associated with conformational restraints.

To quantify the non-detectable 1H magnetisation (fraction
C) we calculate the % of the ethylene glycol units signal detect-
able in the suspension as SD = (IAB/IABC) × 100. The tempera-
ture and coverage dependence of SD are revealing (Fig. 2c). At
25 °C the SD value for VH, H and M particles is between 85
and 90% while for L and VL it is significantly lower, at ∼75%
and ∼25% respectively. Hence at lower coverage only a small
fraction of the ethylene glycol units are sufficiently mobile to
be detectable. Increasing temperature resulted in an increase
in SD for all coverages (notably to c.100% for VH), corres-
ponding to a transfer of units from fraction C to B (increasing
IAB). A relatively small change in SD was observed for particles
with high to moderate ligand coverage, VH 13%, H 14% and M
15%, when the temperature was increased from 10 to 50 °C.
However, low ρ resulted in a larger transfer for L of 20% (from
68 to 87%) and for VL 22% (22 to 44%), i.e. to a greater fraction
of the units moving into the faster motion regime. These find-
ings are consistent with results for PEG1000 for different par-
ticle sizes, where the resonance ceases to be observable below
a certain surface coverage which depends on the particle size
(Fig. S8d–f, Table S1† and Fig. 4 in our previous work29).

A more rigorous analysis of fractions A and B reveals an
increase in both IA and IB with temperature where the relative
increase in the latter is larger. That is more units are trans-
ferred from C to B than from B to A, and both observable fea-
tures narrow on increasing temperature (Fig. 2a and S14†). For
example, the FWHM of B of VH suspensions decreased from
∼80 to ∼30 Hz on increasing the temperature from 10 to 50° C.
The width of A increased marginally from ∼1.8 to ∼2.3 Hz in
the same range. Comparable behavior was observed for H and
M dispersions (Fig. 2a, b and S14†). Interestingly, we also
observe subfractions of A at higher temperatures (40–50 °C,
Fig. S15†), a change that is reversible on cooling back down.
Finally, L and VL dispersions were found to behave differently.
In the case of the former the line-shape of the peak was more
apparently bimodal, specifically fraction B was shifted more
downfield than in higher ligand coverage particles (Fig. S16†).
While VL did not exhibit a narrow fraction, even at elevated
temperature. Additionally the number of Lorentzian com-
ponents used in the line-fitting had to be reduced from two to
one for VL particles at low temperatures.

In summary the trends of an increase in SD (Fig. 2c), a
reduction in FWHM (Fig. 2a and S9†) and a shift upfield on
increasing temperature were observed for all sample batches
and all coverages, changes which are consistent with increas-
ing chain mobility. These systematic changes, and in particu-
lar the temperature-dependence of SD as a function of ligand
coverage (Fig. 2c), were more pronounced at lower ρ (L and
VL). Interestingly, total batch-to-batch variability in the line-
shape and resulting quantification were greatest for L, indicat-
ing that the dynamics changes sharply in this ρ range. As
noted above the observed trends were independent of the
fitting model used (this is demonstrated in Fig. S17†).

Ligand mobility and 1H NMR relaxometry

The interpretation of the changes in the spectra with particle
and ligand size (Fig. 1), temperature (Fig. 2) and ligand cover-
age as arising from changes in ligand mobility and possibly
conformation were further evaluated using 1H NMR relaxome-
try. Spin–lattice, T1, and spin–spin, T2, relaxation times were
measured (details in ESI†) for the PEG resonance in VH, H, M
and L suspensions, between 10 and 50 °C. VL could not be
studied due to low signal intensity at achievable NP concen-
trations. Dephasing times, TFW

2L;S, were calculated from the spec-
tral lineshape analysis as TFW

2L;S = 1/πνFWHM, where νFWHM is the
full width at half maximum extracted for each fraction.

The PEG T1 values were found to be in the range of
750–1400 ms with only minor differences observed between
the values for fractions A and B at 25 °C (Fig. S19†). Spectra
recorded with the inversion recovery sequence confirm the
complete absence of any fast T1 relaxation in the ms range
(Fig. S20–22†). The T1 values were weakly dependent on cover-
age in the measured temperature range. The values for fraction
B increased slightly, by ∼17%, and for fraction A more signifi-
cantly, by ∼120%, between 10 and 50 °C (Fig. S19a, b and
Table S3†) demonstrating that both fractions are in the fast
motion regime. As a relaxation minimum was not present in
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the available temperature window application of a model to
interpret the dynamics incurs uncertainties and so is not
presented.

In contrast the PEG T2 relaxation was found to have two dis-
tinct stages (Fig. S23†) and to be more sensitive to dynamical
restrictions of interest. A short process with T2S of up to 15 ms,
and a long one with T2L ≥2000 ms for full recovery were always
observed (Fig. S24†). Changes in the spectral shape during the
echo train show that the fast and slow decays arise from frac-
tions B and A, respectively (Fig. S23b†). For both fractions T2
increased with temperature (Fig. 3a and b). Details of the
approach used to extract T2 values are provided in Fig. S25 and
Table S2.†

The T2L values (fraction A) are less interesting as these
ethylene glycol units are hardly affected by graft restrictions.
As the T2L values were very similar to T1 we can conclude this
fraction is indeed in the motional averaging regime (T1 ≈ T2).
This is typical for low molecular weight species undergoing
rapid isotropic motion. It is worth while noting that the T2L
recorded for fraction A is similar to the T2 value of free PEG,
there is a small measurable difference (Fig. 3a). For complete-
ness, the T2L values were slightly longer than the TFW

2L values
from lineshape analysis (Fig. S26†), suggesting some hetero-
geneous contributions to the broadening of A. This is most
likely due to field inhomogeneity, which is supported by
broadening of resonances from low molecular weight species
in the suspension (e.g. internal standard DMF, Fig. S27†).

The PEG T2S values were two orders of magnitude smaller
and interestingly they were found to be somewhat dependent
on temperature, coverage, PEG length and particle size. From
the good correlation between T2S and TFW

2S (Fig. S28†) and the
fact that hole-burning is not possible we can conclude that
this 1H magnetisation fraction is homogeneously broadened.
This confirms that the spectral features (Fig. 1 and 2) arise
from different dynamic fractions of ethylene glycol units and
not from particle subfractions. We will use the T2S (rather than
the TFW

2S ) values for data interpretation which are extracted
using 300 echoes rather than a single FWHM and are thus con-
sidered more accurate (details in ESI, Fig. S28†).

Independently increasing either the temperature or the cov-
erage (Fig. 3b) lead to an increase of T2S, strongly suggesting
that either change activates the dynamic process driving the
relaxation. Similar behavior was observed using 65 nm SiO2

particles (Fig. S29†).
The dependence of T2S on ρ was further explored through

partial dissolution of VH particles in low salinity media, i.e.
surface etching (Fig. 3c). This treatment led to a reduction in
coverage of 0.08 PEG per nm (36%) with no measurable
change in gross sample morphology (Fig. 3f), hydrodynamic
size or colloidal stability (Fig. S30a†). Final ligand coverage
was similar to that of L particles. The change in PEG surface
coverage over this time was measurable by NMR (Fig. 3d), and
free PEG was subsequently found in the supernatant
(Fig. S30b†). As expected the etching process led to a reduction
in the measured T2S values for the particles at all temperatures
(Fig. 3e), indeed these values were found to be between those

of the VH and L suspensions. A similar effect of reducing T2S
was also found on prolonged storage in D2O at RT, with the
associated increase of free PEG also confirmed.

The effects of reducing chain length are shown in Fig. 3g
and h for 50 nm NPs grafted with PEG5000 (ρ 0.35 nm−2) and

Fig. 3 Dependence of spin–spin relaxation on coverage, particle size
and temperature. 1H relaxometric analysis for (a) T2L and (b) T2S as a
function of temperature for 50 nm PEG5000-grafted NP suspensions of
different coverage, compared to free PEG (grey triangles). Data pre-
sented in (a) and (b) is the average for n = 3 samples. (c) Schematic rep-
resentation of the particle grafting and controlled particle dissolution.
(d) Reduction of 1H signal for 50 nm NP suspensions before (purple) and
after (magenta) partial dissolution. (f ) TEM showing the absence of sub-
stantial morphological change over the same stages shown in (c). (e) T2S
of 50 nm PEG5000 grafted VH particles (ρ = 0.22 nm−2) and surface
diluted VH particles (ρ = 0.14 nm−2) compared with L particles (ρ =
0.13 nm−2). (g) T2L and (h) T2S recorded for the same 50 nm NP suspen-
sion grafted with PEG5000 (ρ = 0.35 nm−2, VH, purple circles) and
PEG1000 (ρ = 0.9 nm−2, purple squares). The dashed lines represent fits
to the data (see methods). The T2L trend for VH, H and M particles in (a)
and PEG1000 and PEG5000 in (g) overlap completely and are thus difficult
to distinguish in the figure.
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PEG1000 (ρ 0.9 nm−2). The T2L value was found to be insensitive
to the chain length indicating that the dynamics of A are largely
unchanged. IA/IB decreased for shorter chains consistent with
fewer unhindered units in fraction A, as expected, and T2s
decreased suggesting more hindered dynamics for fraction B.

Hence over the range of particle size, coverage and chain
length studied, NMR relaxometry and spectral analysis demon-
strate increasing numbers of ethylene glycol units move from
less to more dynamic fractions. This suggests that the fraction
of the grafts in the different dynamic regimes can be precisely
controlled through surface graft coverage and modification.

Effect of ligand coverage in complex media

The NMR analysis (FWHM and total intensity) suggests strong
coverage dependent changes between H/L and between L/VL
suspensions. This is especially clear in Fig. 1 where a ∼30%
reduction in coverage leads to a nearly threefold reduction in
intensity. Changes in graft dynamics may result in changes to
the colloidal stability and other responses; hence aggregation
studies in media of increasing salinity and protein binding
studies were undertaken.

The dependence of colloidal stability at different ionic
strength (IS) on PEG coverage was measured by DLS salt titra-
tion (Fig. S31† shows data for three independent particle
batches). It was found that suspensions of 50 nm NPs were
more stable to increasing IS at either extreme of the PEG5000

coverage range studied. Specifically, the higher ρ dispersions
(VH and H) exhibited good colloidal stability up to 100 mM
(NaCl in PBS) as did VL. It is important to note that bare silica
particles are stable in the test conditions. However, suspen-
sions of intermediate coverage particles, i.e. M and L, destabi-
lised at 20 and 40 mM, respectively. Detailed analysis on the
mechanism of the coverage dependent aggregation is beyond
the scope of this work. However, loss of steric stabilisation at
intermediate ρ is apparent and at very low coverage the surface
behaves more like free (electrostatically stabilised) silica NPs.

Protein binding of the particles was evaluated by incubating
50 nm SiO2 PEG5000 suspensions with undiluted human
serum in a 1 to 1 volume ratio for an hour, stationary at RT.
After this time dispersions were washed four times to remove
free proteins. A continual increase of bound protein was
observed, by microBCA and gel silver staining, over the VH to
L range (Fig. S32a and d†). The largest increases (∼80% of the
total protein bound) occurred from H to M and from M to L,
representing a jump of 0.14 and 0.17 mg mL−1, respectively.
Increased protein binding with reducing PEG coverage is well
documented.3,64–66 We note here for the first time a correlation
between protein binding and a shift in ligand dynamics
(revealed by NMR), and in particular the strong negative corre-
lation between binding and SD (% of the ethylene glycol units
detectable by 1H NMR) at 25 °C. Note also that suspensions
with intermediate coverage (M and L) are not stable when incu-
bated with human serum, as may be expected from the results
above (Fig. S32b†). The composition of the hard protein
corona, obtained from full human serum, was also found to
change with PEG surface coverage, for VH and H it was com-

posed mostly of proteins in the 46–58 kDa (∼40%) and
58–80 kDa ranges (∼20%). For lower coverage the molecular
weight distribution was broader, and that was particularly the
case for VL for which the distribution was similar to that for
uncoated SiO2 (Fig. S32c and d†). The detailed molecular inter-
actions giving rise to these observations are an interesting
question but beyond the scope of this work; but again we note
the correlation between ligand dynamics measured by NMR
and corona composition.

Discussion

In summary 1H NMR analysis of the suspensions identifies
three signal fractions: A which is similar to free PEG in terms
of width (FWHM 1–4 Hz) and T1/T2 relaxation times on the
order of several seconds. It arises from relatively mobile ethyl-
ene glycol units. B which is broader (13–300 Hz) with T2 of the
order of several microseconds and δ between 3.69 and
3.73 ppm. It arises from units which experience significant
conformational restraints, presumably due to proximity to the
particle surface. Finally, C which is broadened into the back-
ground. It arises from units which are closest to the surface
and are in slow motion on the NMR timescale. The physical
picture that emerges is shown schematically in Fig. 4a.

The spectral analysis poses the question of whether A arises
from the highly mobile units of bound chains alone or if there
are also contributions from free PEG and/or unbound but
entangled polymer. As noted above, initially the free PEG
found in the last supernatant is negligible. The reversible for-
mation at elevated temperature of subfractions of A, the stability
of the spectra (shown in Fig. 2) over the two week timeframe of
the analysis, and the reproducibility of the analysis in Fig. 2 for
other preparations (see ESI†) which were recorded at different
times within their two week window demonstrate that A arises
largely from bound PEG. This is further supported by the small
difference in T2 between A and free PEG (Fig. 3a). Hence while
the IA values may be slightly overestimated the reversible temp-
erature-dependent changes in the population of the fractions
arise from changes in on-particle graft dynamics. Zhang et al.
used DOSY spectroscopy to assign bound and free ligand reso-
nances, for 17.5 kDa poly(allylamine) grafted 5 nm nanodia-
monds, based on their diffusion coefficients.51 We were unable
to use DOSY for quantitation due to the significant spectral
overlap in the region of interest complicated by minor gradient
induced distortions of the lines.

Ethylene glycol units are found to move between fractions
on changing temperature. Increasing from 10 to 50 °C results
in transfer from C to B and from B to A which are reversible on
cycling the temperature (Fig. S33†). This is manifested by
more signal becoming measurable (i.e. a reduction of fraction
C), and the resonance narrowing (by tens of Hz), both due to
increased chain mobility arising from reduced interactions
with the particle surface as confirmed by T2 relaxometry, as
schematically presented in Fig. 4a. Similar coverage dependent
effects are observed for different particle sizes and chain
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lengths. Conversely transfer of units from B to C can be
achieved by reducing temperature or by removing surface sila-
nised PEG by dissolution (Fig. 4a).

Ligand conformation and the average distance to the
surface, which we suggest determine dynamics underpinning
the NMR response, are predicted by the Alexander–de Gennes
model.12,42,63 The ratio between the average ligand-to-ligand
distance (D) and the Flory radius (Rf ) is often used to classify
ligand surface conformation, though the exact cutoffs are not
agreed. Generally for D/Rf < 1 the chains are considered to be
in a brush conformation, while D/Rf >2 results in a mushroom
conformation.34,60,63,66,67 D/Rf values calculated for the SiO2

PEG5000 samples are in the brush conformation regime
(Fig. 4b). Thus our model suggests that for 50 nm particles
there is a relatively smooth change in properties between a
dense brush, i.e. VH and H particles, to intermediate stages (M
and possibly L) to a loose brush, VL. This demonstrates firstly
that the detectable 1H signal corresponds to surface distant
parts of the chains in a relatively dense brush conformation.
Secondly, it is interesting that the D/Rf values are correlated
with the extent of protein binding (Fig. S32a and S34†), i.e.
particles with low D/Rf (or high ρ) tend to bind less protein in
both microBCA and SDS-PAGE experiments.

The relationship between protein binding and ligand cover-
age has been well documented.3,29,67 This behaviour has pre-

viously been linked to the potential loss of ligand entropy and
to disruption of a structured water layer at the particle surface,
which is energetically unfavorable.39,66–67 However, to our
knowledge, this is the first time ligand conformation as
measured by NMR, and indexed with D/Rf values, has been cor-
related with protein concentration in the hard corona
(Fig. S34†).

The work presented here provides a more detailed micro-
scopic picture of the dynamic ligand derived aspects of these
key surface phenomena. New questions about the factors that
determine fraction population arise when our observations are
considered with other reports in literature,42,51 where chain
mobility is estimated through NMR. For instance the above
noted study from Zhang et al.51 suggested that based on
relaxometry 45% of the polymer retains rapid motion. This is
far greater than what we observe and may be due to the
smaller particle size and increased curvature. Interestingly Wu
et al. report that ligand coverage decreases as particle size is
increased42 which our data confirms (Table S1†). Importantly
in both studies NP-ligand grafting leads to peak broadening
when the same ligand is bound to particles with increasing
size (Fig. 1d).

Conclusions

The surface PEG coverage and temperature induced changes
in 1H NMR lineshape and relaxation times are explained by
differences in ligand mobility due to slowing of chain
motions. Reduced mobility is associated with proximity to the
particle surface and not from inter-chain steric hindrance, i.e.
mobility increases with coverage. On transition from high (VH,
H) to intermediate (M, L) to low (VL) coverage significant
changes in the 1H response, the colloidal stability with salt
titration and in the serum protein binding (total and distri-
bution) were observed which are consistent with ligand confor-
mational transitions from dense to looser brush. This work
and the related literature42,51 demonstrate the central roles of
the particle-to-ligand size ratio and ligand coverage in these
changes.

Preliminary NMR analysis of PEGylated particles in a
protein solution posed a significant challenge due to overlap
in the ethylene glycol region of the spectrum. Thus here we
describe the situation for the protein-free surfaces at which the
initial recognition events must occur. This work provides a
framework to investigate graft coverage dependence of protein
binding and so is a step towards better understanding of the
molecular processes on PEGylated nanoparticle surfaces that
determine their biological response. An interesting question
that arises is the link between ligand mobility, protein residence
time and recognition, which may be addressable for single
protein exposures. We suggest that the effect of surface coverage
and distribution of dynamic ethylene glycol units on protein
interactions demonstrated here will be shown to play a key role
in the processes that determine recognition in the low binding
affinity scenario under biologically-relevant conditions.

Fig. 4 Evolution of the dynamic domain populations and proposed
interpretation models. (a) Proposed conformational changes of the
PEG5000 ligand with an increase in temperature and surface coverage.
Blue-red areas at the bottom of the ligand reflect shifts in signal recov-
ery. Chain mobility is observed by peak FWHM in NMR. (b) Calculated
ratio of the average distance between PEG chains to their Flory radius,
as a function of ligand surface coverage for both PEG lengths used.
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Experimental section

Methods not reported here can be found in the accompanying
ESI section.†

50 nm SiO2 particle synthesis and modification

FITC – APTMS conjugation. The labelling conjugate was pre-
pared prior to particle synthesis by dissolving 2 mg of fluor-
escein isothiocyanate (FITC) in 1 mL of ethanol (99.9%) to
which 10 µL of (3-Aminopropyl)triethoxysilane (APTMS) were
added. The reaction was covered with aluminium foil and left
to react for a minimum of 4 hours at 20 °C. A 2 mL Eppendorf
tube was used in all cases.

Nanoparticle synthesis. Silica particles were synthesised using
a slight modification of the Stöber method.29 0.91 g of ammonia
(28.0–30.0% NH3 basis) was added to 25 mL of ethanol (99.9%)
in a 50 mL polypropylene container. To which 0.5 mL of the pre-
pared FITC-APTMS conjugate solution (see above) were pipetted.
The reaction was stirred for 1 minute, upon which Tetraethyl
orthosilicate (0.94 ml) was added. The reaction was then stirred
at 600 rpm at 20 °C for a further 20 hours in darkness. The result-
ing nanoparticle suspension was centrifuged down at 13 500 rpm
for 20 minutes. The pellet was resuspended in fresh ethanol once
and water three further times using bath sonication.

PEGylation of 50 nm silica nanoparticles. 1 mL of 5–10 mg
mL−1 silica particles were preheated to 90 °C and allowed to equili-
brate for 10 minutes while shaking at 6000 rpm. 5 kDa and 1 kDa
methylated PEG silicate were added to the particles in a concen-
tration of 5 (VH), 2.5 (H), 1 (M), 0.2 (L) and 0.015 (VL) PEG per
nm2. The dispersions were left to react in this way for one hour
after which they were washed with water twice and deuterium
oxide two further times as described in section 2.2 for 50–100 nm
particles and section 2.4 for 200 nm ones. Trimethylamine was
used to augment the pH to 9 for experiments reported in Fig. S6.†

Particle characterisation

Size by dynamic light scattering (DLS). A Malvern Zetasizer
ZS series was used in all measurements. Bare and PEGylated
silica particles were diluted in water as 1 in 100 for a final con-
centration of ∼100 µg mL−1 in a plastic low volume cuvette
(PLASTIBRAND, semi-micro, PMMA, l = 1 cm). Each measure-
ment was conducted at least three times and consisted of 11
consecutive 10 s runs at 25 °C. There was no equilibration
time prior to experiment.

Temperature stability by DLS (data not shown). Temperature
trends were conducted in the DLS in the range of 10–50 °C
measuring every 10 °C with an equilibration time of
20 minutes. Each point consisted of 10 consecutive runs.

1H NMR spectroscopy

Sample preparation for NMR. If the washed particles were
dispersed in H2O they were spun at 13 500 rpm for 15 min and
redispersed in D2O 1 mM DMF after supernatant removal and
with the assistance of bath sonication. This procedure was
repeated once more. Both the last supernatant and final par-
ticle dispersion were kept.

1H NMR using varian VNMRs 400 MHz. 1 mL of particles
(>5 mg mL−1) in D2O 1 mM DMF were pipetted into a 5 mm
thin wall, 8 inch NMR tube (Wilmad Lab Glass) and placed in
the instrument. Each measurement was conducted at room
temperature with a 45° pulse and 6 scans with a relaxation
delay of 25 seconds.

1H NMR using varian VNMRs 600 MHz. 0.7 mL of particles
(>5 mg mL−1) in D2O 1 mM DMF were pipetted into a 5 mm
thin wall, 8 inch NMR tube (Wilmad Lab Glass) and placed in
the instrument. The PROTON was run with a hard 45 degrees
1H pulse of duration 3.20 us, relaxation delay of 25 s, acqui-
sition time of 5.0 s, number of scans of 16, TOF at −215.95 Hz
(4.64 ppm), processing with 48 K points and no weighting
function applied before the Fourier Transformation.

Fitting 1H spectra. NMR signals were fit using a mixture of
models including a single Gaussian and Lorentzian function,
2, 3 and 4 Gaussians and Lorentzians, as well as several combi-
nations of types. The R2 and fraction of the signal fitted were
calculated and used as measures of the fit quality. The fitting
model was chosen based on the fewest number of parameters
required to best fit the signal which was three Lorentzian
peaks. The R2 and signal fraction fit of was >0.99 in every case.
It was shown that Lorentzian fits are more appropriate than
Gaussians through analysing the fitting moments. See section
“Details on lineshape analysis” above for more details.
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