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ORIGINAL PAPER

Biosensor for the oxidative stress biomarker glutathione based on SAM
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Abstract
Self-assembled monolayer (SAM) of cobalt teraaminophthalocyanine (CoTAPc) was developed on thioctic acid (TA)
dithiol modified gold electrode and electrochemically evaluated as a glutathione (GSH) selective biosensor. The
CoTAPc-TA-Au modified electrode was developed by the covalent immobilization of the CoTAPc as the electrochemical
mediator onto previously prepared gold electrode modified with TA (TA-Au) via amid bond formation with the carbox-
ylic group of TA, producing well-organized SAM of the mediator. For comparison, another electrode modified with 3-
mercaptopropionic acid (MPA) as a monothiol linker instead of TA was similarly prepared. The electrode surface
modification was characterized using SEM, AFM, CV, and EIS. The contact angle measurements of the surface con-
firmed the formation of CoTAPc SAM on both TA and MPA modified electrodes. The CoTAPc-TA-Au modified
electrode showed enhanced catalytic activity for GSH oxidation compared to that of CoTAPc-MPA-Au, indicating that
the TA dithiol allowed for more coverage of the catalyst layer on the electrode surface with stronger binding. The
experimental parameters controlling the voltammetric processes like scan rate and pH of sample solution were opti-
mized. Using DPV technique, the proposed sensor exhibited a linear response of oxidation peak current vs. GSH
concentration, over the concentration range between 10 and 100 μmol L−1 with a LOD of 1.5 μmol L−1 for the
CoTAPc-TA-Au modified electrode compared to 5.5 μmol L−1 GSH, for the CoTAPc-MPA-Au electrode. The proposed
sensor was utilized for detection of glutathione in some hemolyzed blood samples.

Keywords Glutathione . Biosensor . SAM . Thioctic acid . Cobalt phthalocyanine

Introduction

The tripeptide glutathione (GSH) is a critical physiological
component endogenous to all biological tissues and fluids
[1, 2]. This tripeptide containing a sulfhydryl group plays
important biological functions in the living organism, includ-
ing protein and DNA synthesis, enzyme activity, metabolism,
and cell protection. Reduced glutathione (GSH) (γ-L-
glutamyl-L-cysteinyl-glycine) is the major non-protein thiol
in living cells, with cellular concentrations ranging from 0.5
to 10 mmol L−1. It is considered as one of the most important
agents of the antioxidant defense system of the cell. In con-
junction with the enzymes glutathione peroxidase (GSH-Px)
and glutathione S transferase pi (GSTpi), it plays a central role
in the detoxification and biotransformation of chemotherapeu-
tic drugs [3]. Existing primarily in its reduced form, an over-
production of reactive oxygen species (ROS) initiates the con-
version of GSH to its corresponding disulphide (GSSG) [2, 4,
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5]. An alteration in the level of GSH or the GSH/GSSG ratio is
one of the first indications of cellular oxidative stress, a status
which has been implicated in the pathophysiology of condi-
tions such as Alzheimer’s, Parkinson’s and Huntington’s dis-
ease [4, 5]. GSH and its oxidized forms, glutathione di-
sulphide (GSSG) and glutathionylated proteins (PSSG) are
considered as biomarkers [6] of oxidative stress. Autism is
an increasingly prevalent neurodevelopmental disorder in the
United States, which relies on applied behavioral therapy as
means of treatment. This disorder has been linked to increased
levels of oxidative stress and lower antioxidant capacity.
Metabolites in the interconnected transmethylation and
transsulfuration pathways are significantly altered in autism,
causing decreased glutathione synthesis. The use of the gluta-
thione redox ratio as a biomarker for disease and treatment
status was supported by several reports [7]. In addition, a high
burden of oxidative stress, quantified by the plasma
aminothiols, cystine, glutathione, and their ratio, is associated
with mortality [8] in patients with coronary artery disease, a
finding that is independent of and additive to the inflammatory
burden. Therefore, this tripeptide was established to be a bio-
marker of oxidative stress and its concentration in blood can
be relevant for the clinical diagnosis. Analytical methodolo-
gies to determine GSH often involve complex sample pretreat-
ment steps such as derivatization of the analyte for fluores-
cence detection [9]. However, direct methods such as electro-
chemical [10] and chemiluminescence [11] are simpler.
Electrochemical methods using modified electrodes offer sim-
ple, sensitive and selective analytical alternative. Chemically
modified electrodes (CMEs) have continued to be of major
concern during the past decade and a relatively large amount
of electrochemical research has been devoted to the develop-
ment and applications of different types of CMEs.
Modification of the electrode surface, especially a gold elec-
trode with a self-assembled monolayer (SAMs) of alkane
thiols or their derivatives has been well studied, being of con-
siderable interest in the field of electroanalysis and biosensor
development. SAMs on gold have also been shown to be
useful for the chemical immobilization of redox mediators
[12, 13], enzymes, and antibodies for biosensor development
[14, 15]. The stability of a SAM modified gold electrode is
related to the fact that the alkane thiol reacts strongly with gold
to form a bond with covalent character [16]. As a sulfur-
containing compound, thioctic acid (TA) has received great
attention in the area of gold surface functionalization for a
number of reasons: the alkyl chain length in TA would be
expected to result in a more ordered SAM than a simple
mercaptoalkyl ether, and disulphide attachment to gold sur-
faces results in enhanced stability. Therefore, TA was
employed as a linker for the attachment of lipids, carbohy-
drates, proteins, and oligonucleotides to gold surfaces [17,
18]. At the same time, it is now well known that certain tran-
sition metal complexes with phthalocyanines [19],

porphyrins, Schiff bases, and other ligands can catalyze, via
reduction of their central metal ions, the electro-oxidation of
several important chemical and biological compounds. A
number of these compounds, as mediators in modified elec-
trodes, have been characterized for electrocatalysis of some
sulfhydryl compounds such as cysteine and its derivatives,
glutathione, 2-mercaptoethanol and other sulfhydryl com-
pounds. FePc modified-AuNPS composite in a CPE has been
successfully utilized for the catalytic oxidation of cysteine
[20]. Covalent attachment of redox mediators to the surface
of the monolayer containing some free terminal groups like
COOH and NH2 through amide linkage formation provides a
well ordering of these mediators on the surface of the elec-
trode which also affects the rate of electron transfer processes.
Cobalt (II) phthalocyanine [21] is well reported as an excellent
electro-catalyst for the enhancement of the oxidation of gluta-
thione. Different electrodes with different CoPc immobiliza-
tion techniques were reported for glutathione detection.
Adsorption of CoPc on pyrolytic graphite electrode [22], im-
mobilization on nitrogen-doped graphene [23], Covalent at-
tachment to graphene oxide [24], intercalation with Zn–Al
layered double hydroxide [25] or as a composite in modified
screen printed electrodes [26, 27] are among the different
techniques used. In this paper, we aimed at developing a
SAM modified gold electrode with SAM of cobalt tetra-
aminophthalocyanine (CoTAPc) as a glutathione sensor.
Gold electrode modified with a monolayer of TA, has been
used for the formation of a SAM of CoTAPc, through amide
bond formation between its free carboxyl groups and the ami-
no groups of the phthalocyanine molecule. The use of dithiol
TA as a linker rather than a monothiol, for the immobilization
of the CoTAPcmolecules producedwell organized monolayer
that exhibited excellent electrochemical performance. The
strong interaction between the two sulfur atoms of each TA
molecule and the gold electrode enabled the formation of sta-
ble enough to SAM layer, which prolonged the life time of the
immobilized CoTAPc layer resulting in longer life time of the
glutathione sensor. Themodified electrode was investigated as
a biosensor to detect the oxidative stress biomarker glutathi-
one in hemolyzed blood samples.

Experimental

Materials

Gold electrodes SiO2/Si/SiO2/Ti/Au (0.3 cm2) were used as
working electrodes; Potassium hexacyanoferrate(III) (> 99%),
potassium hexacyanoferrate(II) trihydrate (> 99.99%), (±)-α-
thioctic acid (TA), 3-mercaptopropionic acid (MPA), L-
glutathione reduced (GSH), N-Hydroxysuccinimide (NHS),
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydro-
chloride (EDC), and 5-sulfosalicylic acid were purchased

1130 J Solid State Electrochem (2019) 23:1129–1144



from Sigma-Aldrich. 4-nitrophthalic anhydride was pur-
chased from Fluka. Phosphate buffer solution was prepared
at pH 7.4 using 0.1 mol L−1 KH2PO4 and 0.1 mol L−1

K2HPO4.

Instrumentation

The electrochemical experiments (cyclic voltammetry, elec-
trochemical impedance spectroscopy, and differential pulse
voltammetry) were performed using an electrochemical work-
station Model 660D, CH Instruments Inc. The experiments
were carried out in 5 mmol L−1 [Fe(CN)6]

3−/4- solution as
redox indicating probe and phosphate buffer solution
(0.1 mol L−1, pH 7.4). A conventional three-electrode cell
equipped with platinum wire and a standard Ag/AgCl elec-
trode (filled with 3 mol L−1 KCl solution) as the counter and
reference electrodes, respectively, was used. Contact angle
(CAM) measurements were performed using Easydrop
Model OCA 20, Data Physics Instruments (Germany). The
surface morphology was characterized using scanning elec-
tron microscopy JEOL JXA-840A. AFM Images were obtain-
ed using scanning probe microscope SHIMADZU SPM 9600.
X-ray photoelectron spectroscopy (XPS) was performed using
Kratos Ultra DLD, using Mono Al X-rays (Kα 1486.58 eV;
150 W). Survey and high-resolution (narrow regions) spectra
were taken at pass energy of 160 eVand 20 eV respectively. C
1 s peak at 284.8 eV was used as a charge reference to deter-
mine core level binding energies. Spectra were collected in the
normal to the surface direction. For quantitative analysis, sur-
vey spectra were acquired at normal emission (take off angle
900) and both survey and high-resolution spectra were ac-
quired at a sample tilt of 600 (take off angle 300).
Construction and peak fitting of synthetic peaks in narrow
region spectra used a Shirely type background and the syn-
thetic peaks were of a mixed Gaussian-Lorenzian type.
Relative sensitivity factors used are from CasaXPS library
containing Scofield cross-sections [28].

Synthesis of cobalt (II) tetranitro-phthalocyanine
and cobalt (II) tetraamino-phthalocyanine

The synthesis of electro-catalyst was carried out according to
the previously reported method [29]. Briefly, 7.72 g of 4-
Nitrophthalic anhydride (0.04 mol), 2.49 g of cobalt (II) ace-
tate tetrahydrate (0.01 mol), 25 g of urea, and 0.01 g of am-
monium molybdate tetrahydrate as a catalyst were added into
30 mL nitrobenzene, and refluxed at 200 °C with stirring for
almost 5 h until a stable dark blue color formed. The solvent
was excluded by filtration using a G4 glass filter. The precip-
itate was washed with ethanol, 1.0 mol L−1 HCl then
1.0 mol L−1 NaOH till a colorless filtrate was observed. The
reduction of Co(II)TNPc to Co(II)TAPc was carried out by
adding 1 g of Co(II)TNPc and 5 g of sodium sulfide in

50 mL distilled water. The mixture was heated at 50 °C with
stirring for 5 h. The product was filtered and washed with
distilled water till a colorless filtrate. The final structure of
the product is shown in Fig. 1.

Gold substrate pretreatment

Before use, the working gold electrodes were sonicated twice
in acetone for 10 min, then the electrodes were immersed in
Piranha solution (1:3 v/v, 30% H2O2: Conc. H2SO4) for 1 min
and rinsed thoroughly with water. The cleanliness of the elec-
trode surfaces was ascertained by recording the cyclic voltam-
mogram of the cleaned surface in 5 mmol L−1 [Fe(CN)6]

3−/4-

in 0.1 mol L−1 KCl solution.

Formation of CoTAPc SAM on the gold electrode
and coupling

The best SAM are formed using a process similar to that used
for carboxyl terminated alkyl-thiols by adding acetic acid to
ethanol solutions to form and rinse films [30]. The thioctic
acid monolayers adsorbed on Au builds a foundation for the
use of these films in biological and chemical sensor applica-
tions and for surface-attached macromolecules. Modification
of the gold electrode with thioctic acid and CoTAPc was done
bymodifying the previously reported method [31], by dipping
the surface in an ethanolic solution of 10−2 mol L−1 TA con-
taining 5% acetic acid for 24 h. EDC/NHS coupling reaction
was performed to form the amide bond between the amino
group in CoTAPc and the carboxylic group of TA monolayer
[32] by dipping the electrode in 10−2 mol L−1 solution of each
of CoTAPc, EDC and NHS in 5 mL of Et OH /DMF (1:1) for
24 h. Finally, the weakly adsorbed or non-adsorbed species
were removed by rinsing the modified electrode in Et OH
/DMF. Scheme 1 shows a presentation of the formed
CoTAPc SAM on the gold electrode.

Real sample preparation

To investigate the applicability of the proposed electrochemi-
cal sensor for the electrocatalytic determination of GSH in real
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Fig. 1 Cobalt (II)-2,9,16,23-tetraaminophthalocyanine
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samples, we selected human blood for the analysis of GSH
contents. Human blood was obtained from two volunteers.
The erythrocytes contents were separated from the whole
blood by discarding the plasma of a 5-mL blood sample by
centrifugation for at 3000 rpm. The supernatant was removed
and the rest was washed three times with 5 mL of 0.9% NaCl
solution. The erythrocyte pellets were hemolyzed with water
(1:1 v/v). For protein precipitation, the hemolysate was mixed
with 5-sulfosalicylic acid (10%, w/v) in the ratio of 2:1 (v/v).
This mixture was centrifuged. Then, the supernatant became
ready for the electrochemical determination of glutathione.

Results and discussion

Surface characterizations

Scanning electron microscopy

A scanning electron microscope (SEM) scans a focused elec-
tron beam over a surface to create an image. The electrons in
the beam interact with the sample, producing various signals
that can be used to obtain information about the surface to-
pography and composition. It allows users to examine

specimen at a high resolution. As seen in Fig. 2, the SEM
image of bare gold electrode shows no surface features (Fig.
2(a)) in contrast to CoTAPc-TA-Au modified electrode which
shows distinct surface protrusions (Fig. 2(b, c)) which is an
indication for the success of the assembly and coupling
processes.

Atomic force microscopy

Atomic force microscopy (AFM) or scanning force
Microscopy (SFM) is a very-high-resolution type of scanning
probemicroscopy (SPM), with demonstrated resolution on the
order of fractions of a nanometer, more than 1000 times better
than the optical diffraction limit. Atomic Force Microscopes
(AFMs) give us a window into this nanoscale world. AFM has
enabled us to deepen our study of film formation and optimize
some parameters of deposition protocols. Figure 3(A) (a, b,
and c) shows the plane AFM images of the CoTAPC-TA-Au,
CoTAPC-MPA-Au and the bare Au gold electrodes, treated
for 5 μm. This image shows the effectiveness of cleaning
protocol for the bare gold electrode with the piranha solution.
Figure 3(B) (a and b) shows 3-D images for the two modified
electrodes using TA and MPA thiols with a clear difference in
surface morphology. The AFM images show the surface mean

Fig. 2 SEM images of (a) bare gold electrode; (b) CoTAPc-TA-Au modified electrode × 500 and (c) with × 2000 magnification

Scheme 1 Schematic
presentation of CoTAPc-TA-Au
and CoTAPc-MPA-Au modified
electrodes

1132 J Solid State Electrochem (2019) 23:1129–1144



roughness factor values of 29.03 nm for CoTAPc-TA-Au and
137.82 nm for CoTAPc-MPA-Au, compared to the unmodi-
fied gold with the mean roughness of 0.54 mm. The increase
in roughness factor might be due that various areas of the
surface is covered by SAMs while other areas are exposed
(as predicted by impedance spectroscopy), thus increasing
the mean roughness of the surface.

X-ray photoelectron spectroscopy analysis

In order to confirm the presence of elements, various function-
al groups and surface composition for the bare and modified
gold electrodes, XPS analysis was performed. Figure 4 and S1
summarize the XPS results for each stage of surface modifi-
cation (TA-Au and CoTAPc-TA-Au) in addition to the bare
gold electrode. The survey XPS spectra of bare electrode (Fig.
S1a) shows the presence of Au 4f (83.4 eV) which is obvious
and due to the gold surface. Au 4f (83.2 eV) and S 2p
(163.2 eV) peaks were observed for thioctic acid modified
gold electrode (TA-Au, Fig. S1b) which confirm the success-
ful assembly of TA onto the gold electrode via Au-S

interactions. The survey (Fig. 4(a)) and high-resolution spec-
tra for CoTAPc-TA-Au confirm the presence of Au 4f
(83.3 eV), S 2p (163.3 eV), N 1 s (398.3 eV) and Co 2p
(780.6 eV) which are in agreement with the expected surface
composition. Overall, the presence of Au, S, N, and Co peaks
collectively confirms the successful immobilization of
CoTAPc onto the thioctic acid (TA) modified gold electrode
[28, 33, 34]. From the high-resolution spectra (Fig. 4(c and
d)), S was observed in the form of different functional groups
(RS−, S and -SH) which are associated with the successful
assembly of thioctic acid onto the gold surface. The presence
of carbon functional groups (C-C, C-O, C=O, O=C-O) and in
particular C-N peak at 399.7 eV (Fig. 4(e)) which is only
observed for CoTAPc-TA modified gold electrode is a confir-
mation of phthalocyanine ring. From the high-resolution spec-
tra for CoTAPc-TA modified gold electrode (Fig. 4(f)), Co
was found to be in (+2, Co2+) oxidation state and associated
with Co-phthalocyanine [28, 33, 34]. In addition, from the
high-resolution XPS spectra (Fig. 4(b)), Au 4f shows doublet
peaks with narrow FWHM (0.7 eV) at around 84.0 ± 0.2 eV
which corresponds to metallic Au [28, 33, 34]. From the

Fig. 3 AFM images (A) plane of (a) CoTAPC-TA-Au, (b) CoTAPC-MPA-Au, and (c) bare Au and (B) 3-D (a) CoTAPC-TA-Au, (b) CoTAPC-MPA-Au
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survey spectra analysis, the Au content (surface composition)
was found to be 34.3%, 22.6% and 2.6% for bare Au, TA-Au
and CoTAPc-TA-Au, respectively. It is clearly evident from
the XPS analysis that the surface Au content was reduced by
about 66% for TA and 75% for CoTAPc-TA modified gold
surfaces compared to the bare gold electrode. This confirms
the success of the linker (TA) assembly onto the bare Au
surface and CoTAPc immobilization onto the TA modified
gold electrode.

Wettability, contact angle measurements

When an interface exists between a liquid and a solid, the
angle between the surface of the liquid and the outline of
the contact surface is described as the contact angle (θ).
The contact angle (wetting angle) is a measure of the

wettability of a solid by a liquid. Wettability measure-
ments were performed to investigate the gold surface
quality. Firstly, 5 μL of DI water was deposited onto the
surface. Afterwards, the water droplet behavior obtained
on the surface was acquired with a digital camera. The
wettability was recorded before and after surface modifi-
cation. Table 1 shows the change of the contact angle as a
function of the modification performed on the gold sur-
face. In the first step, the gold surface was cleaned well
with acetone and piranha and the contact angle was mea-
sured at 67.2 °. This value shows the hydrophilic proper-
ties of the surface. In the second step, the thiol was
allowed to assemble onto the surface. The contact angle
after assembly of thioctic acid and 3-mercaptopropionic
acid was 62.0 ° and 35.6 °, respectively. This attributed
to the fact that thiol has a carboxylic group, and a

Fig. 4 (a) The survey spectra of
CoTAPc-TA modified gold
electrode; (b) High-resolution
spectra of Au 4f for bare and
modified electrodes (labeled); (c
and d) High-resolution spectra of
S 2p for TA-Au and CoTAPc-TA-
Au, respectively; High-resolution
spectra of (e) N 1 s and (f) Co 2p
for CoTAPc-TA-Au
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decrease in the CA values is expected, as the surface be-
came more hydrophilic. The surface modified with TA
shows less decrease in the CA value of the bare electrode
compared to surface modified with MPA. The difference
in the CA value between TA and MPA is attributed to the
difference in the number of carbon atoms and the length
of the molecules. After immobilization of CoTAPc in both
cases, CA was increased to 67.5° and 65.5° for CoTAPc-
TA-Au and CoTAPc-MPA-Au, respectively. Table 1
shows the contact angles at each step of electrode modi-
fication. Thus, as the prevention of the dissociation of
organic ligands from the metallic surface and accordingly
enhancing the SAM stability, is the prerequisite for the
further application of it in electrochemical catalysis.
Thioctic acid (TA) appears very promising for the stabili-
zation and the further functionalization of SAM because it
is characterized by a carboxylic acid group and two thiol
functions, through which simultaneous anchorage onto a
gold surface is possible. For the first time, we synthesized
the phthalocyanine SAM on gold using TA for sensor
application. The better stability of the dithiol TA con-
structed SAM on gold compared to the monothiol ligands
of MPA constructed monolayer has been proved by ex-
perimental results which in close agreement with similar
reports [35].

Electrochemical characterization

Cyclic voltammetry

Cyclic voltammetry (CV) is an electrochemical technique which
measures the current that develops in an electrochemical cell
under conditions where voltage is in excess of that predicted by
the Nernst equation. It is a powerful and popular electrochemical
technique commonly employed to investigate the reduction and
oxidation processes of molecular species. CV is also invaluable
to study electron transfer-initiated chemical reactions, which in-
cludes catalysis. CV is performed by cycling the potential of a
working electrode, and measuring the resulting current. The gold
electrode was scanned in 5 mmol L−1 [Fe(CN)6]

3−/4- in
0.1 mol L−1 KCl solution between − 0.4 and 0.6 Vat a scan rate
0.1 V/s. As shown in Fig. 5a, the cyclic voltammogram recorded
for the bare gold electrode shows an oxidation and reduction
peaks that are related to the electron transfer processes between
the gold electrode and ferricyanide solution with a peak separa-
tionΔE= 163mV.After immersing the bare electrode in thioctic
acid solution, a monolayer was assembled and the electron trans-
fer processes at the electrode surface was blocked which is an
indication for a successful assembly process as the negatively
charged carboxylic groups of the linker block the electron trans-
fer processes with the negatively charged redox couple, very

Table 1 Contact angle measurements

Surface 

composi�on
CA, Droplet shape

Bare gold
67.2 °±  1 

°

MPA-Au 35.6 °± 1 °

TA-Au 62.0 °± 1 °

CoTAPc-TA-Au 67.5 °± 1 °

CoTAPc-MPA-Au 65.5 °± 1 °

J Solid State Electrochem (2019) 23:1129–1144 1135



weak oxidation and reduction peaks were observed and the peak
separation increased, ΔE = 725 mV. After the chemical modifi-
cation was applied for the carboxylic acid tail groups of thioctic
acid by immobilizing the redox mediator CoTAPc via amide
linkage using EDC coupling reagent and the electron transfer
processes were resumed and the peak separation becomes
ΔE = 174 mV which is an indication for the success of the im-
mobilization of the mediator. Figure 5(b) shows the CVs record-
ed for the modification of the gold electrode using
mercaptopropionic acid (MPA) as the linking thiol, with ΔE =
174, 175 and 187 mV for the bare gold, MPA-Au and CoTAPc-
MPA-Au electrodes respectively, the electrochemical parameters
of the Co(II)TAPc-modified gold electrodes using TA and MPA
is summarized in Table S1.

Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) is an effective
characterization technique for examining interfacial properties
of modified electrodes. From the EIS measurements and equiv-
alent electrical circuit designed from the impedance spectrum,
Rct values were calculated for each stage of electrode fabrica-
tion. The AC impedance of the gold electrode was recorded at
different stages of its modification in 5mmol L−1 [Fe(CN)6]

3−/4-

in 0.1 mol L−1 KCl solution at 0.24 Vand frequency range from
0.1 Hz–105 Hz as shown in Fig. 6(a, b). The obtained Nyquist
plot shows a semicircle portion at higher frequencies corre-
sponding to the electron transfer-limited process and a linear

part at the lower frequency range representing the diffusion-
limited process. The semicircle diameter in the Nyquist plot is
a measure of the charge transfer resistance (Rct) and can be used
to describe the interface properties at different stages of the
electrode modification. Rct directly affects the electron transfer
process of the redox couple at the interface. The obtained data
was fitted by applying an equivalent circuit for the system to get
the Rct values. The measured impedance, shown in Table S2,
was found to be 564.1Ω and 121.8Ω for the TA/Au andMPA/
Au electrode respectively. At the last step, CoTAPc was
immobilized and onto both the TA and MPA functionalized
gold electrodes where the impedance values of 46.69 and
30.89 Ω for CoTAPc-TA-Au and CoTAPc-MPA-Au respec-
tively were obtained. Thus, data in Table S2 reveals that formed
TA and MPA thiols monolayer acts as a resistive layer due to
the presence of negatively charged carboxylic groups which
impede access of the anionic redox system compared to the
bare gold electrode. The electrode surface modified with the
CoTAPc redox mediator resulted in a significant reduction in
Rct indicating electron transfer accessibility and utility of the so
formed catalytic film. EIS measurements shown in Table S2,
was in agreement with the redox probe CV data above.

Electrode coverage rate

The electrode coverage (θ) is a key factor that can be used to
estimate the surface state of the electrode and related to the
resistance of the charge transfer. It is reasonable to assume that

Fig. 6 Nyquist plot of gold
electrodes modified with (a) TA
and (b) MPA (black: bare gold
electrode; blue: thiol-modified
Au; red: CoTAPc-modified Au)
in 5 mmol L−1 [Fe(CN)6]

3−/4- in
0.1 mol L−1 KCl solution, at
0.24 V from 0.1 to 105 Hz

Fig. 5 Cyclic voltammograms of
gold electrodes (a) modified using
TA (black: bare gold electrode;
blue: TA-Au; red: CoTAPc-TA-
Au) and (b) modified using MPA
(black: bare gold electrode; blue:
MPA-Au; red: CoTAPc-MPA-
Au) in 5 mmol L−1 [Fe(CN)6]

3−/4-

in 0.1 mol L−1 KCl solution
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highly compact and hydrophobic monolayers are practically
insulating under usual electrochemical conditions, except in
the existence of pinholes due to structural imperfections.
Pinholes are a kind of defect in a thiol monolayer and they
allow molecules and ions, from the electrolyte, reach the elec-
trode surface. Assuming that all the current is passed by pin-
holes on the electrode, the electrode coverage can be calculat-
ed by the following equation:

θ ¼ 1–
RAuE
ct

RSAM
ct

� �

Where θ is the coverage rate, RAuE
ct is the charge transfer

resistance of the gold electrode before functionalization,

and RSAM
ct is the charge transfer resistance after SAM for-

mation. As per the calculations below, the coverage rate
was found to be 0.96 and 0.80 for TA-Au and MPA-Au,
respectively, as shown in Table S2. However, after immo-
bilization the phthalocyanine, it was calculated to be 0.50
and 0.24 for CoTAPc-TA-Au and CoTAPc-MPA-Au, re-
spectively. The high coverage of TA-Au electrode may be
attributed to the fact that each molecule binds the gold
surface by two Au-S bonds and this enhances the stability
of the assembled layer. After immobilization, the surface
coverage is still higher than that of MPA which again
proves the stability due to strong binding of TA linker.
Therefore, TA was chosen to prepare the modified elec-
trode because of its strong binding with the surface and
accordingly the CoTAPc is also more stable after immo-
bilization [36, 37].

θ TA−AuEð Þ ¼ 1–
23:4

564:1

� �
¼ 0:96

θ MPA−AuEð Þ ¼ 1–
23:6

121:8

� �
¼ 0:80

θ CoTAPc−TA−AuEð Þ ¼ 1–
23:6

46:6

� �
¼ 0:50

θ CoTAPc−MPA−AuEð Þ ¼ 1–
23:6

30:9

� �
¼ 0:24

Electrochemical glutathione determination using
CoTAPc-TA-Au electrode

Cyclic voltammetry

Cyclic voltammograms of bare gold electrode, TA-Au and
CoTAPc-TA-Au in PBS in absence and presence of
25 mmol L−1 GSH were recorded and shown in
Fig. 7(a, b). It is obvious that the CoTAPc-modified elec-
trode possessed the highest catalytic activity toward the
oxidation of the GSH. Cyclic voltammograms of glutathi-
one concentrations of 10, 15, 20, 25, 40, and 50 mmol L−1

were recorded using the proposed CoTAPc-TA-Au elec-
trode between 0.0 and 1.2 V in PBS of pH 7.4 at
100 mV s−1 scan rate. As shown in Fig. 8(a), the oxida-
tion peak is found to be at 888–904 mV and the reduction
peak at 0.398–411 mV for the various GSH and GSSG
concentrations respectively. Data in Table S3 reveals that
as the GSH concentration increases the oxidation peak
potential becomes more positive.

This is in agreement with a detailed study [38] which
found that the reduction potential of the GSSG/2GSH
half-cell is dependent on both the ratio of [GSH]/
[GSSG] and the initial concentration of GSH. Their re-
sults revealed that the same ratios of [GSH]/[GSSG] will
result in different reduction potentials as the concentration
of GSH changes. On the other hand, diffusion is the ran-
dom movement of molecules from a region of high con-
centration to regions of lower concentration. At low con-
centration of analyte, diffusion occurs in a satisfactory
way, but at high concentration, the diffusion process is
disrupted. In this condition, mass transport will be in trou-
ble, so, compensation of these problems and re-
establishment of mass transport, electrochemical system
applies more potential; therefore, the peak potential will
be shifted. As shown in Fig. 8(b), the resulting calibration
graph of the oxidation peak current (Ia) vs. glutathione
concentration exhibited a linear response over the concen-
tration range between 10 and 50 mmol L−1.

Fig. 7 Cyclic voltammograms of
bare gold (black); TA-Au (blue);
CoTAPc-TA-Au (red) electrodes
in (a) absence of GSH and (b)
presence of 25 mmol L−1 GSH
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Effect of scan rate

Useful information involving electrochemical mechanism usual-
ly can be acquired from the relationship between the peak current
and scan rate. Figure 9(a) shows the cyclic voltammograms of
25 mmol L−1 of glutathione in PBS pH 7.4 recorded at the
CoTAPc-TA-Au modified electrode at different scan rates in
the range of 100–600 mV s−1. From Fig. 9(b, c), it is obvious
that the anodic and cathodic peak currents were in linear

dependences with the square root of the scan rate (ν 1/2) in this
range. The linear equation of both the reduction and oxidation
peak currents versus ν 1/2 are calculated as y = 0.1401 x – 0.6194
(R2 = 0.9951) and y = 0.1047x + 0.4387 (R2 = 0.9935) respec-
tively. As it is well known linear relationship between
voltammetric peaks current (Ip) and square root of the scan rate
(ν 1/2) indicates diffusion controlled electrode kinetics. The graph
ofEp = f (log ν) yielded two straight lines with slopes of − 2.3RT/
αnF and 2.3RT/(1 −α)nF for the cathodic peak and anodic peak,

Fig. 8 (a) CVs of different
glutathione concentrations (10,
15, 20, 40, and 50 mmol L−1) in
PBS using the proposed CoTAPc-
TA-Au, pH = 7.4 and (b) the
resulting calibration curve
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Fig. 9 (a) Cyclic voltammograms
of 25 mmol L−1 glutathione in
PBS at pH = 7.4 at different scan
rates 100, 200, 300, 400, 500, and
600 mV/s; (b) The anodic and
cathodic peak currents were in
linear dependences with the
square root of the scan rate in the
range of 100–600 mV s−1, (c)
oxidation peak potential versus
scan rate, (d) oxidation peak
potential versus log scan rate, (e)
reduction peak potential versus
log scan rate, and (f) oxidation
peak current versus scan rate
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respectively (Fig. 9(d, e)), where α is the electron transfer coef-
ficient, n is the number of electrons [39]. Thus, the value ofα and
n were estimated from the slopes of the straight lines to be 0.64
and 0.9 respectively, which indicate the rate determining step
involve the transfer of one electron. In addition, the following
Laviron equation [40] was used to calculate the value of the
apparent heterogeneous electron transfer rate constant (ks):

logks ¼ αlog 1−αð Þ
þ 1−αð Þlogα−logRT=nFν−α 1−αð ÞnFΔEp=2:3RT

where α is the electron transfer coefficient, n is the number of
electrons,ΔEp is the separation of the redox peaks, and ν is the
scan rate. The electron transfer rate constant (ks) was calculated to
be 0.174 s−1. Furthermore, Fig. 9(f) shows the linear plot of Ia vs.
ν. From the slope the surface concentration of the electroactive
species (Γ) can be estimated according to the following equation
[41]:

Ip ¼ n2F2AΓν=4RT

Where, ν is the scan rate, n is the electron transfer numbers,F the
Faraday number, A is the electrode surface area, R gas constant
and T temperature. Γ was estimated to be 3.19 nmol cm−2.

As shown also, it is clear that by increasing the scan rate,
the peak potential is shifted to a more positive potential. The
degree of surface coverage is a very important parameter in
the construction of chemically modified electrodes (CMEs).
Its value is strictly dependent on the surface morphology of
the electrode. All the criteria affecting the electrochemical
behavior of the mediator should be considered at the degree
of surface coverage. As shown by increasing the scan rate, the
peak potential is shifted to a more positive potential.

Mechanism

Themechanism of the electrocatalytic oxidation of GSH at the
CoTAPc-modified gold electrode may be expressed as in the
following Eqs. 1–5:

GSH⇄GS− þ Hþ ð1Þ
GS− þ Co IIð ÞTAPc→ TAPcCo Ið Þ−GS½ �− ð2Þ
TAPc Co Ið Þ−GS½ �−→ TAPcCo IIð Þ−GS½ � þ e− ð3Þ
2 TAPcCo IIð Þ−GS½ �→2Co IIð ÞTAPcþ 2GS• ð4Þ
2GS•→GSSG ð5Þ

The proposed mechanism, (shown in Fig. 10), is in agree-
ment with those previously reported [22, 42] and indicates that
the first-one electron transfer is the rate-determining step for
GSH oxidation.

Effect of pH

The effect of the solution pH on the electrochemical oxidation
of GSH using 0.01 mol L−1 PBS at different pH values (6.8, 7,
7.4, 7.7, 8, and 8.5) was studied. The CoTAPc-modified gold
electrode was scanned in 15 mmol L−1 glutathione in PBS at
100 mV s−1. Figure 11(a) shows the cyclic voltammograms
recorded for each pH and the peak current values were plotted
against pH (Fig. 11(b)). The current increased with pH from
6.8 up to 7.4 and the current started to decrease by increasing

Fig. 10 Schematic presentation of the proposed mechanism

Fig. 11 (a) CVs of 15 mmol L−1 glutathione at scan rate 0.1 V/s and different pH values (6.8, 7, 7.4, 7.7, 8, and 8.5), (b) peak current values plotted
against different pH, and (c) effect of pH on the oxidation peak potential
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the pH up to 8.5. The maximum current recorded was for pH
7.4 which is the physiological pH value at which the glutathi-
one performs its action in vivo. The effect of pH on the peak
potential was studied as well and the results show that by
increasing the pH values the potential is shifted to lower
values. The anodic peak potential of GSH at the surface of
this modified electrode shifts to less positive values with in-
creasing pH of the buffered solution as shown in Fig. 11(c).
This negative shift in the anodic peak potential with pH indi-
cates that the deprotonation step of GSH is prior to the electron
transfer step [43]. It is also can be concluded according to
Nernst equation and from the slop of the graph of Ep vs pH
which is equal to − 50.54 (which is close to the theoretical
value 59.1) that one electron is involved in the electrochemical
reaction.

Differential pulse voltammetry

Differential pulse voltammetry (DPV) is known to offer more
sensitive measuring technique compared to the cyclic volt-
ammetry. Figure 12(a) shows DPV for different concentra-
tions of glutathione (10, 20, 40, 80, and 100 μmol L−1), re-
corded by the modified electrodes (CoTAPc-TA-Au and
CoTAPc-MPA-Au) in the range of 0.5 to 1.0 V in PBS (pH
7.4) at amplitude of 50 mV. The resulting peak potential and
current for different glutathione concentrations using the pro-
posed CoTAPc-TA-Au as well as data of the CoTAPc-MPA-
Au electrodes are given in Table 2, for comparison purpose.
Calibration graphs shown in Fig. 12(b) exhibit a linear re-
sponse between oxidation peak current vs. glutathione con-
centration, over the concentration range between 10 and
100 μmol L−1. The linear equation that represents the calibra-
tion lines are y = − 0.5751x – 3.1398, R2 = 0.9869 and y = −
0.2713x – 9.5448, R2 = 0.9882 for the two modified CoTAPc-
TA-Au and CoTAPc-MPA-Au electrodes, respectively. The
limit of detection (LOD) was calculated to be 1.5 and
5.5 μmol L−1 GSH, respectively, with LOD defined as 3 Sb/

m (where Sb is the standard deviation of the blank signal (n =
3) and m is the slope of the calibration curve).

Interference study

The selectivity of the proposed sensor should be tested as we
are aiming to apply this sensor to measure glutathione in real
samples which contain some biologically important biomole-
cules and thiols that may interfere with glutathione determi-
nation. Figure 13 shows the interfering molecules ascorbic
acid, methionine and cysteine that commonly present with
glutathione in blood, which has been chosen for evaluating
their effect on determination of glutathione in blood samples
[20]. The optimum concentration of ascorbic acid is at the
same concentration levels of glutathione [44]. But, concentra-
tions of methionine and cysteine in plasma are double of the
concentration of glutathione [45, 46]. The influence of these
molecules was examined under the optimum conditions.
Briefly, the percentage change in the current response of
50 μmol L−1 glutathione was measured after addition of up
to threefolds of ascorbic acid, methionine, and cysteine. The

Fig. 12 (a) DPVs of glutathione concentrations of 0, 10, 20, 40, 60, 80, and 100 μmol L−1 in PBS of pH 7.4 at CoTAPc-TA-Au and (b) the resulting
calibration curves of both CoTAPc-MPA-Au (♦) and CoTAPc-TA-Au (■) modified electrodes using the same experimental parameters

Table 2 The DPV oxidation peak potential and current for different
glutathione concentrations using both the CoTAPc-MPA- Au and
CoTAPc-TA-Au modified electrodes

GSH,
μmol
L−1

CoTAPc-
MPA-Au Ia,
μA

CoTAPc-
MPA-Au Ea,
mV

CoTAPc-
TA-Au Ia,
μA

CoTAPc-TA-
Au Ea, mV

10 − 11.2 884 − 9.352 837

20 − 15.97 880 − 14.87 844

40 − 21.59 872 − 26.29 842

60 − 25.39 868 − 38.03 842

80 − 29.31 856 − 44.97 861

100 − 37.92 836 − 63.62 893
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influence of these biomolecules on glutathione determination
was measured as a percent recovery from the original current
of glutathione prior to the addition of interferents (i.e., the
oxidation peak currents were measured and correlated to the
concentration ratio of each interferent, then, it’s percent con-
tribution toGSH concentration was calculated). Table 3 shows
the interference results for ascorbic acid, cysteine, and methi-
onine. From these results, it is obvious that the contribution
percent of ascorbic acid, methionine, and cysteine not exceeds
12.56%, 6.67%, and 9.05%, respectively.

The DPVs recorded for GSH, cysteine and their mixture in
PBS, as well as the PBS alone using the modified electrode
(CoTAPc-TA-Au), are shown in Fig. 14. It can be noticed that
the position of oxidation peak of GSH at 0.85 V is far from that
of cysteine which is located at 0.40 V. This is in agreement with
data previously reported in literature, indicating that cysteine
oxidation peak always appears around 0.5 V [20, 47–51]. The
DPV recorded for 0.1 M PBS with zero concentration of both
cysteine and glutathione (green curve) and that for cysteine in
PBS with zero concentration of glutathione (red curve) showed
a small broad peak around 0.9 V. This small peak can be attrib-
uted to the redox couple Co(II)/Co(III) of the phthalocyanine
[37]. As well known, glutathione is a tripeptide with a gamma
peptide linkage between the carboxyl group of the glutamate
side chain and the amine group of cysteine, and the carboxyl
group of cysteine is attached by normal peptide linkage to a
glycine. The difference in oxidation peak position of glutathi-
one and cysteine can be attributed to the difference in their
structures which makes the oxidation of cysteine easier than
that of the glutathione, so that the oxidation peak of cysteine
appears at less positive potential. Also, it is clear from Fig. 14
that when the DPV was recorded for a mixture of glutathione
and cysteine, only two oxidation peaks were observed at 0.83 V
and 0.45 V without any overlap, where the peak of GSH at

0.83 V showed a little shift toward less positive potential value
with a little increase in the current value.

A comparison of the performance of the proposed sensor to
similar reports in the literature has been summarized in
Table 4. It provides evidence of the analytical benefits obtain-
ed by the use of CoTAPC-modified gold electrode for gluta-
thione determination. Data in table reveals that this work pos-
sesses a wide linear range and a good limit of detection when
compared with previous reports. Recently, a nanocomposite
molecular material based on cobalt phthalocyanine (CoPc)
and multiwalled carbon nanotubes functionalized with car-
boxyl groups (MWCNTf) was developed for modifying
glassy carbon electrodes (GCE) for the detection of reduced
and oxidized glutathione [57]. ThemodifiedGCE showed that
the combined use of CoPc and MWCNTf resulted in an elec-
trocatalytic activity for GSH oxidation and GSSG reduction,
enabling the simultaneous detection of both species.
Differential pulse voltammetry allows obtaining detection
limits of 100 μM for GSH and 8.3 μM for GSSG, respective-
ly. However, in our work, a self-assembled monolayer (SAM)
of cobalt teraaminophthalocyanine (CoTAPc) was developed
on a thioctic acid (TA) dithiol modified gold electrode, thus
the covalent binding of the phthalocyanine to the sensor ma-
trix allowed for enhanced electrocatalytic performance of the
developed glutathione (GSH) biosensor. Using the same DPV

Fig. 13 The interfering molecules
common present with glutathione
in blood, ascorbic acid,
methionine, and cysteine
respectively

Fig. 14 DPVs recorded using the modified electrode (CoTAPc-TA-Au)
in PBS pH 7.4 (green); 50 μmol L−1 GSH (black); 50 μmol L−1 Cysteine
(red); Mixture of both (blue)

Table 3 The effect of common interferents usually occur in blood on
the determination of GSH by the proposed sensor

Interferent Recovery, %

1:1 1:2 1:3

Ascorbic acid 93.25 92.46 87.44

Cysteine 102.85 107.39 110.95

Methionine 96.75 95.34 93.33
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technique, our developed sensor exhibited a linear response of
oxidation peak current vs. GSH concentration, over the con-
centration range between 10 and 100 μmol L−1 with a LOD of
1.5 μmol L−1, with about 67 times better compared to the
former composite-based sensor. It is worth mentioning that
the amount of the apparent coverage calculated of the
electroactive CoPc sites on the composite sensor was estimat-
ed to be Γ = 3.33 × 10−11 mol cm−2, while for the SAM of
CoPc in our developed sensor, Γ was estimated to be
3.19 nmol cm−2, which is about two orders of magnitude
higher, manifested in its higher sensitivity.

Real sample analysis

The standard addition method was used for glutathione determi-
nation. 0.1 mL of the prepared supernatant was added to 9.9 mL
of 20 and 40 μmol L−1 glutathione. The results are given in
Table 5, which clearly demonstrate and confirm the capability
of CoTAPc-modified gold electrode as suitable electrochemical
sensor in the voltammetric determination of GSH.

Conclusions

The constructed cobalt phthalocyanine SAM on thioctic acid-
modified gold electrode allowed for enhanced catalytic oxida-
tion of reduced glutathione with minimum interference from
ascorbic acid and cysteine, the compounds most probably oc-
cur with glutathione in blood. The assembled layer of
CoTAPC-TA on the gold electrode was found to acquire more
coverage rate compared to that constructed with MPA,
allowing for improved sensitivity. Also, it was found to be
strong enough to prolong the lifetime of the sensors due to
the presence of two bonds between the gold surface and each
molecule of the thiol linker. Thus, offering an excellent plat-
form for formation of a more organized monolayer of
CoTAPC which enhanced the oxidation of glutathione and
allowed its sensitive determination in hemolyzed blood
samples.
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