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Abstract 6 

Residential buildings can significantly contribute to the European Union’s 2020 efficiency energy targets. For 7 

this reason, energy distributors and suppliers are required to provide assistance to householders to reduce energy 8 

end-use. This paper develops statistical modelling methods that can be used by suppliers to infer the gas fuel 9 

efficiency of buildings in their residential portfolio, in order to deliver improved energy management 10 

services to consumers. The study begins by estimating individual statistical building energy models for a 11 

sample of consumers and presents the resulting distribution of independent parameters. These parameter 12 

distributions are then characterised by regression models using descriptive household data that is generally 13 

known by the consumer and can be easily gathered by the energy supply company. These models are then 14 

used to compare the inferred energy end-use efficiency of the household (cooking, hot-water and space 15 

heating) compared to similar dwellings. Buildings with higher-than-expected gas consumption can be 16 

targeted for energy efficiency programmes. 17 

Keywords: Energy suppliers, residential gas consumption, energy efficiency, smart meters, degree days. 18 

1 Introduction 19 

In the European Union (EU), residential buildings are responsible for 26% of annual energy consumption 20 

and 37% of this energy is consumed as gas (European Commission, 2014). Domestic gas consumers can 21 

therefore make a significant contribution to the EU’s 2020 targets of: 1) a 20% reduction in greenhouse gas 22 

emissions from 1990 levels; 2) a 20% increase in energy from renewable resources; and 3) a 20% 23 

improvement in energy efficiency (European Commission, 2009); and thus help to meet the objective of 24 

decarbonising energy end-use in Europe. 25 
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To help realise such improvements and a reduction in fossil fuel imports, the EU has mandated that smart 26 

meters are made available to residential gas consumers in each member state, except those states where an 27 

adverse cost benefit has been established (Official Journal of the European Union, 2009). This has resulted in 28 

the on-going installation of these meters in many countries across the EU.  These include the United 29 

Kingdom (UK) where 22 million are planned for installation by 2019 and France, where 11 million could be 30 

in place before 2020 (Hierzinger et al., 2013). In such countries, consumers will have access to high 31 

resolution time-of-use consumption data. Sampling intervals for smart meters are typically hourly (or less) 32 

compared to monthly (or more) for traditional manually-read meters. Access to such high-frequency data 33 

will enable consumers to manage their gas consumption more effectively and identify readily achievable 34 

energy savings. 35 

The EU has also recommended that energy distributors and/or suppliers provide assistance to consumers to 36 

help reduce their energy consumption. In this regard, each EU member state can implement an ‘Energy 37 

Efficiency Obligation Scheme’ to ensure that suppliers achieve energy savings each year from 2014 to 2020 38 

that are at least equivalent to 1.5% of their consumers’ average annual energy consumption between 2010 39 

and 2012 (Official Journal of the European Union, 2012). However, because gas is used in the home for 40 

space heating, hot water production and cooking purposes, and since this consumption is dependent on 41 

factors such as dwelling size and occupancy, it is difficult for suppliers to identify appropriate energy 42 

efficiency measures for individual consumers based on their gas consumption data alone. 43 

________________________________________________________________________________________________________________________________________ 44 
Abbreviations 45 

A area (m2) 46 

C gas consumption (kWh) 47 

F fuel consumption (kWh) 48 

HLC overall heat loss coefficient (kW/ oC) 49 

HDD heating degree day (oC·day) 50 

MLS multinomial logistic regression 51 

N number of air changes per hour (1/h) 52 

NLS non-linear least squares 53 

Q heat (kW) 54 

T temperature (oC) 55 

U U-value (W/m2·°C) 56 

V volume of the heated space (m3) 57 

Subscripts 58 

B base 59 

D day 60 

G gain 61 

IN indoor 62 

MP metered period 63 

O outdoor 64 

SP set-point 65 

Greek symbols 66 

ε model error 67 

η heating system efficiency (%) 68 
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This study therefore develops and demonstrates a methodology that can be used to compare a household’s 69 

gas consumption end-uses to those of other households with similar characteristics. Smart-metered gas 70 

consumption and household data (e.g. number of bedrooms and dwelling type) are used to develop statistical 71 

models which estimate energy end-use (e.g. space heating, cooking and hot water) for individual dwellings 72 

and compare these to a benchmark for dwellings with similar characteristics. This information allows energy 73 

suppliers to screen their customers and target appropriate energy efficiency measures at the most appropriate 74 

households. The methodology is demonstrated using daily gas consumption and household data collected for 75 

a sample of over 500 residential dwellings in Ireland. 76 

The paper is organised as follows. It begins with a section on the current methods used to benchmark 77 

building energy efficiency using metered energy data. Because heating degree days (HDDs) are widely used 78 

in these methods and since they are used in the approach later described in this paper, a brief review of HDD 79 

theory is then given. The Methodology section describes data sources and two statistical inferential models. 80 

The first of these, based on non-linear least squares (NLS) estimates dwelling gas consumption based on 81 

parameters which we relate to gas end-uses. The second, based on multinomial logistic regression (MLR), 82 

estimates the relationships between these end uses and household characteristics. This latter model is then 83 

used to compare the relative energy end-use performances of households of similar characteristics. 84 

Following this Methodology section, a Results and Discussion section presents the statistical models, and by 85 

way of example, assesses the relative energy end-use efficiency of a sample of consumers with similar 86 

household characteristics. Conclusions and Recommendations are then presented.  87 

2 Benchmarking 88 

Benchmarking is the process of comparing an individual performance against a relevant standard, or 89 

benchmark. A wide variety of benchmarking methods have been developed for assessing household energy 90 

efficiencies using metered energy consumption data and, in almost all cases, these are based on HDDs. The 91 

HDD variable is a parameter based on outdoor temperature data that is traditionally used to estimate building 92 

heating system fuel consumption; the approach is described in detail in the next section. 93 
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Many building energy efficiency benchmarking tools have been developed that apply HDDs. For example, 94 

the US Environmental Protection Agency (US-EPA) has developed an Energy Star Score system for a range 95 

of commercial buildings that applies a regression based benchmarking tool (Energy Star, 2014a). The first 96 

step in this scoring system calculates an energy efficiency ratio for a building by dividing its annual energy 97 

use intensity (both electricity and gas) by that predicted by a regression model for the building type (Energy 98 

Star, 2014a). For example, the regression model applied for multifamily housing (or apartment) buildings has 99 

been fitted using a reference dataset of such buildings and is based on the number of dwellings per 1000ft2, 100 

the number of bedrooms per dwelling, the total HDDs and cooling degree days for the year, and the number 101 

of levels in each building (Energy Star, 2014b). The probability or percentile of the building’s energy 102 

efficiency ratio is then found using a lookup table developed using energy efficiency ratios for the reference 103 

dataset (Energy Star, 2014a). The Energy Star Score for the building is simply 100 minus this percentile 104 

value. For example, a building with an Energy Star Score of 75 is bettered by only 25% of the reference 105 

dataset. 106 

Home Energy Yardstick is an online tool that has been developed as part of the US-EPA’s Energy Star 107 

program (Energy Star, 2015a). This tool benchmarks residential building energy efficiency using a 1 to 10 108 

scoring system, where a score of 10 represents a home with the best energy efficiency level (Energy Star, 109 

2015a, 2015b). This score is based on a statistical method and requires users to provide utility bill 110 

consumption data for electricity and gas, and their building’s location, floor area and number of occupants 111 

(Energy Star, 2015a, 2015b). Energy suppliers in the US are encouraged to host this tool on their own web 112 

sites (Energy Star, 2015c). 113 

In Europe, a Display Energy Certificate system is applied to large public buildings. These certificates are 114 

also based on metered energy consumption and building floor area and are used to present a building’s 115 

annual energy use intensity (kWh/m2/year) on an A1 to G scale, where an E1 rating corresponds to a typical 116 

building in the relevant building class (SEAI, 2015). These energy intensities are based on building floor 117 

area. Such normalised energy consumption parameters are a very common way of benchmarking building 118 

energy efficiency (Wang, Yan, & Xiao, 2012). 119 
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Each of the above benchmarking tools is based on energy intensity parameters normalised by building floor 120 

area, which presupposes that floor area data are readily available. However, it has been observed that many 121 

householders are unable to provide their building’s floor area when surveyed – 75% in the case of a previous 122 

Irish housing quality survey (Watson & Williams, 2003) and 59% in the case of the smart metering survey 123 

used here. Accurate area data would therefore be difficult to collect for an energy supply company. 124 

Moreover, many variables other than floor area contribute to household energy use; these include occupancy 125 

patterns, no. of occupants and dwelling type (detached, semi-detached, etc.). These, too, should be 126 

considered in a comprehensive gas consumption benchmarking method. Therefore, instead of using an area-127 

related energy intensity parameter, this study develops an alternative regression-based benchmarking method 128 

based on multiple household variables which are known to householders and can be easily obtained through 129 

phone interview. 130 

3 Heating Degree Days 131 

Heating degree days form the basis of almost all energy efficiency benchmarking models. They are based on 132 

the concept that the instantaneous heat demand for a building may be estimated as the product of the 133 

building’s overall heat loss coefficient (HLC) and the temperature differential between the heated space and 134 

the surrounding environment. HDDs estimate the integral of this temperature differential over time, so that 135 

the fuel consumption of the building’s heating system, is approximated by the sum (CIBSE, 2006): 136 

𝐹 = 𝐻𝐿𝐶(∑ 𝐻𝐷𝐷𝑖
𝑛
𝑖=1 ) (

24

𝜂
)          (1) 137 

where: F is fuel consumption (kWh); n is the number of days in the relevant time period; HDD is the heating 138 

degree day parameter (°C·day); 24 is a conversion factor to kWh units; η is a conversion factor to fuel 139 

consumption units that is given by the efficiency of the building’s heating system (%); and HLC (kW/°C) is 140 

given by (CIBSE, 2006): 141 

𝐻𝐿𝐶 = (∑𝑈𝐴 + 0.33𝑁𝑉) 1000⁄          (2) 142 

where: ΣUA is the building’s fabric loss coefficient (W/°C), given by the sum of the products of U-values 143 

(W/m2·°C) and areas A (m2) for each of the external building fabric elements; 0.33NV is the building’s air-144 
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infiltration coefficient (W/°C), given by N the number of air changes per hour for the building (1/h) and V 145 

the volume of the heated space (m3); and 0.33 and 1000 are conversion factors required to ensure that the 146 

units of the HLC are kW/°C. 147 

While there are alternative methods to calculate a HDD that depend on the resolution or format of the 148 

available temperature data (CIBSE, 2006), this paper will apply the following internationally accepted 149 

function (EN ISO 15927-6, 2007): 150 

𝐻𝐷𝐷 = max(0; 𝑇𝐵 − �̅�𝑂)          (3) 151 

where: T ̅ O is the average outdoor temperature for the day (°C); and TB is the building’s base temperature 152 

parameter (°C).  153 

This base temperature parameter is used to estimate the average internal temperature in the building during 154 

the heating season, less the equivalent temperature effect of incidental heat gains, as follows (CIBSE, 2006): 155 

𝑇𝐵 = �̅�𝐼𝑁 − 𝑇𝐺            (4) 156 

where: T ̅ IN is the building’s average indoor temperature (°C), and TG is the equivalent temperature effect of 157 

incidental heat gains (°C), given by (CIBSE, 2006): 158 

𝑇𝐺 = 𝑄𝐺 𝐻𝐿𝐶⁄             (5) 159 

where: QG is the useful heat gain to the heated space (kW). 160 

Based on these concepts, the HDD variable can be used to model monthly (or bi-monthly) gas meter 161 

readings by employing the following regression model: 162 

𝐶𝑀𝑃 = 𝑏o𝐷𝑎𝑦𝑠𝑀𝑃 + 𝑏1∑𝐻𝐷𝐷𝑀𝑃 + 𝜀𝑀𝑃        (6) 163 

where: CMP is the building’s gas consumption (kWh) for each metering period (MP); b0 is an estimate of the 164 

building’s daily base or weather-independent gas consumption (kWh/day); DaysMP is the number of days in 165 

each metering period; b1 is an estimate of the building’s gas consumption response to HDDs (kWh/°C·day); 166 

∑HDDMP is the sum of HDDs in each metering period; and εMP is the model error for each metering period. 167 
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Such HDD regression models are generally fitted using HDD data published by the local meteorological 168 

service that is calculated using the traditional base temperature adopted for that region – for example, 15.5°C 169 

in the UK (CIBSE, 2006) and Ireland. However, if instead outdoor temperature data are applied the true (or 170 

individualised) base temperature for the building can be estimated, and a more representative building energy 171 

model will result. Many calls have been made in this regard for the adoption of building-specific base 172 

temperatures (CIBSE, 2006).  173 

Traditionally, the true base temperature for a building has been estimated using alternative ‘trial and error’ 174 

techniques for monthly or daily metered fuel consumption data (CIBSE, 2006). For monthly data, a quadratic 175 

HDD regression model is applied that estimates a building’s base temperature by the value which yields a 176 

zero squared-HDD coefficient (Day et al., 2003). For daily metered data, however, a building’s base 177 

temperature is estimated either by: 1) visually identifying the point of inflection in a scatter plot of fuel 178 

consumption vs. temperature; or 2) identifying the upper temperature limit in the data that yields the 179 

maximum coefficient of determination (R2 value) for a linear model of fuel consumption based on the lower 180 

temperatures (CIBSE, 2006). 181 

However, monthly gas meter readings are generally only applied to large commercial (or high consumption) 182 

consumers. For example, in the United Kingdom, monthly meter readings are only recorded for consumers 183 

with an annual gas requirement greater than 293,000 kWh (or 10,000 therms, an order of magnitude greater 184 

than typical domestic consumption), and annually for consumers below this threshold (Joint Office of Gas 185 

Transporters, 2015). In France, bi-annual meter readings are recorded for consumers (including households) 186 

with an annual requirement less than 300,000 kWh (Commission de Régulation de L'Énergie, 2012). While, 187 

such data limitations have made it difficult for energy suppliers to apply the above HDD modelling methods 188 

to domestic consumers, the increasing availability of domestic smart-metering data means that they can now 189 

be applied to the residential sector. 190 

  191 
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4 Methodology 192 

This section first describes the data used in this work. A non-linear least squares (NLS) statistical inferential 193 

model which uses HDDs as well as other independent parameters to estimate daily dwelling gas consumption 194 

is then described. We then explain how the NLS estimator parameters can be used to infer gas consumption 195 

related to cooking/hot water, envelope heat losses and heating controls. The section concludes by describing 196 

a multinomial logistic regression modelling method which is used to relate the inferred end-use 197 

consumptions to household characteristics (both physical and occupancy-related), and how this method can 198 

be used to compare the relative end-use efficiencies of individual households of similar characteristics. The 199 

benefit of this approach is that it estimates the relative end-use fuel consumption for each customer 200 

compared to other similar households, rather than comparing buildings based on floor area only, which takes 201 

no account of dissimilar household characteristics. 202 

4.1 Data 203 

This study is based on smart-metered gas consumption data and household survey data, recorded between 204 

December 2009 and May 2011, for a sample of over 500 Irish dwellings which participated in gas smart-205 

metering trials (Commission for Energy Regulation, 2011). Participants were selected to be representative of 206 

the Irish gas consumer population, and were located in either in the largest city, Dublin (64%), or in urban 207 

centres no more than approximately 250km from Dublin. Due to anonymity requirements, the locations of 208 

households were not known. For this reason, and given the small geographic spread of participants, the 209 

models estimated in this study were fitted using outdoor temperature data for the most representative single 210 

location, Dublin Airport.  211 

The household survey data were collected using a telephone questionnaire survey and are listed later in Table 212 

2 under ‘Survey Data Collected’. This survey also collected data on building floor area, wall insulation and 213 

building occupancy. However, it was found that a significant proportion of consumers did not provide 214 

information for several variables. For example, 59% did not know their building’s floor area, 27% did not 215 

know whether or not wall insulation was present in their building, and 26% did not state whether or not their 216 

building was occupied by adults during the day. Therefore these explanatory factors were not used in the 217 
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development of the logistic regression models, as their inclusion would significantly limit the usable sample 218 

size. Data relating to the presence of attic insulation were not used for similar reasons. 219 

4.2 Non-Linear Least Squares Regression Modelling 220 

Because daily gas consumption data will soon be widely available for domestic consumers from smart 221 

meters this study has developed a more direct method to estimate the b0, b1 and TB parameters of the HDD 222 

regression model than the methods reviewed in the literature. Such daily data allows the HDD regression 223 

model in Eq. (6) to reduce to the following form: 224 

𝐶𝐷 = 𝑏o + 𝑏1𝐻𝐷𝐷 + 𝜀𝐷          (7) 225 

where: CD is daily gas consumption (kWh), εD is the model error for each day (D), b0 and b1 are as before in 226 

Eq. (6) but can now be referred to as the intercept and slope parameters of the HDD regression model 227 

respectively.  228 

By substituting Eq. (3) for the HDD parameter this model can be re-expressed as follows:  229 

𝐶𝐷 = 𝑏o + 𝑏1max(0; 𝑇𝐵 − �̅�𝑂) + 𝜀𝐷                   (8) 230 

This expression permits the use of the non-linear squares model fitting method described later in this section. 231 

The resulting model parameters can be interpreted as follows.  232 

4.2.1 Intercept parameter (b0) 233 

The b0 parameter is the building’s daily base gas consumption, and for residential consumers this is typically 234 

used for hot water and cooking purposes. Therefore, the b0 parameter may be used to identify buildings in 235 

need of a hot water heating system upgrade or a reduction in hot water set-point temperature (Raffio et al., 236 

2007). 237 

4.2.2 Slope parameter (b1) 238 

The b1 parameter is related to the building’s heat loss coefficient and heating system efficiency as follows 239 

(CIBSE, 2006): 240 
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𝑏1 ≈ 𝐻𝐿𝐶 (
24

𝜂
)            (9) 241 

and may be used to identify buildings in need of building fabric or heating system upgrades (Raffio et al., 242 

2007). 243 

4.2.3 Base temperature parameter (TB) 244 

The TB parameter is related to the average indoor temperature and useful heat gain in the building, as shown 245 

in Eq. (4) and Eq. (5). This average temperature is in turn related to the building’s heating system set-point 246 

temperature, as follows (CIBSE, 2006): 247 

�̅�𝐼𝑁 ≈
𝑇𝑆𝑃(𝑂𝑛)+∑ 𝑇𝐼𝑁,ℎ

(24−𝑂𝑛)
ℎ

24
         (10) 248 

where: TSP is the heating system’s set-point temperature (°C) – which is assumed to be representative of the 249 

building’s indoor temperature during heating periods; On is the number of heating system operating hours 250 

each day; and TIN,h is the indoor temperature at hour h in the day when the heating system is off. 251 

The TB parameter may be used to assess a consumer’s thermal comfort requirement, as buildings with high 252 

base temperatures must respond to more HDDs during each heating season than those with lower base 253 

temperatures. This may either be the result of increased set-point temperatures and heating system operating 254 

hours or poor heat gain retention in the building. Such buildings are targets for behavioural programmes or 255 

improved heating system control systems, for example programmable thermostats (Raffio et al., 2007). 256 

4.2.4 Model Fitting 257 

The parameters of the non-linear regression model in Eq. (8) are estimated for each consumer in the sample 258 

using the Levenberg-Marquardt non-linear least-squares algorithm, available in the statistical computing 259 

software, R (R Core Team, 2013). This local NLS modelling method was used in preference to a global NLS 260 

algorithm that is also available in R, as it is more robust to stochastic changes in the modelled series. 261 

Each NLS model is estimated using daily gas consumption data for the final year in the smart-meter trial 262 

(31st May 2010 - 30th May 2011), as only a single heating season is required to estimate the base temperature 263 

parameter. To help convergence to a local NLS solution, starting values and limits have been stipulated for 264 



Page 11 of 23 

each parameter as shown in Table 1. Alternative starting values were trialled to assess the sensitivity of the 265 

models, but this resulted in a slight decrease in the number of successfully converged models and no 266 

observable change to the intercept, slope and base temperature parameter distributions presented in Figs. 2 - 267 

4. 268 

Table 1 Parameter starting values and limits 269 

Parameter Starting 

Value 

Lower 

Limit 

Upper 

Limit 

Intercept (b0) 0 0 None 

Slope (b1) 0 0 None 

Base temperature (TB) 15.5 5 25 

4.3 Multinomial Logistic Regression Modelling 270 

MLR modelling is a well-known method used to model categorical variables (Field, 2013). It is used in this 271 

study to categorise the intercept, slope and base temperature parameter estimates of individual household 272 

NLS models as ‘low’, ‘medium’ or ‘high’ relative to other similar households. This allows consumers with 273 

higher-than-expected NLS modelling parameters to be identified so that relevant energy saving advice can be 274 

tailored to their needs. The approach is demonstrated in the Results and Discussion. 275 

Three MLR models have been developed for this purpose. These are initially used to characterise each of the 276 

intercept, slope and base temperature parameter distributions resulting from the NLS models. They are fitted 277 

to low, medium and high categories of these distributions using the household survey data collected for the 278 

consumer sample. The relationship between the intercept, slope and base temperature parameters of the NLS 279 

regression model and this survey data are described in Table 2.  280 

Each of the resulting MLR models comprise low and high sub-models based on a medium reference 281 

category. The most frequently occurring categorical explanatory variable (listed under ‘Categories’ in Table 282 

2) has been specified as a reference category. Small sample categories of some explanatory variables have 283 

been merged into alternative categories or removed from the logistic regression models were appropriate. 284 

Each of these models is fitted using the ‘multinom’ algorithm in R. 285 

  286 



Page 12 of 23 

Table 2 Survey data collected and their relationship to the NLS regression model 287 

Survey Data Collected Relationship to the NLS Regression Model 

Variable Categories Parameter Description and likely effect on the associated 

parameter 

No. of adults 1, 2, 3, 4, 5 or ≥ 6. b0 Building occupancy positively affects hot water and 

cooking gas requirements. 

No. of children 0, 1, 2, 3, 4, 5 or ≥ 6.  Children (less than 15 years old) are likely to 

consume less hot water than adults. 

Hot water system Timed gas fuelled, untimed 

gas fuelled or alternatively 

fuelled system.(a) 

 Alternatively fuelled hot water systems should result 

in reduced base consumption, while timed gas 

fuelled systems should consume less gas than 

untimed systems. 

Cooking system Gas fuelled or alternatively 

fuelled system.(a) 

 Alternatively fuelled (e.g. electrical) cooking 

systems should result in reduced base consumption. 

Bedrooms 1, 2, 3, 4 or ≥ 5. b1 This is a simple metric known to consumers that can 

be used as a proxy measure of building floor area, 

which in turn is related to the building’s exposed 

fabric area that is used to determine a building’s heat 

loss coefficient. 

Dwelling type Apartment, terrace, semi-

detached, detached or 

bungalow. 

 In general terms, these alternative building types 

have increasing proportions of exposed building 

fabric area, which in turn is related to the building’s 

heat loss coefficient. 

Construction 

year 

Pre-1935, 1935-1979, 1980-

1999, 2000-2004 or 2005-

2010.(b) 

 These construction years generally relate to 

increasing levels of insulation as required by Irish 

building standards. And this relates to the fabric U-

values used to determine a building’s heat loss 

coefficient. 

Boiler service 

frequency 

Annually, every 2-3 years or 

never. 

 This relates to heating system efficiency, which in 

turn is used to determine a building’s heat loss 

coefficient. 

Temperature set-

point 

< 18°C, 18-20°C, 21°C, 22-

24°C, >24°C, not known by 

the consumer, or no thermostat 

control system. 

TB This set-point together with the heating system 

operating hours is related to a building’s average 

indoor temperature, and this is in turn is related to 

the building’s base temperature. 

Timer control Separate zones, single zone, 

not known by the consumer, or 

either the timer system is not 

used or no time control system 

is present.(a) 

 This relates to heating system operating hours and 

whether or not a consumer can control the set-point 

temperature in different zones of their building in 

order to facilitate decreased average indoor 

temperatures. All of which is related to the 

building’s base temperature. 

Operating hours 0 < hours/day ≤ 8, 

8 < hours/day ≤ 10,  

10 < hours/day ≤ 12 or  

12 < hours/day ≤ 24.(c) 

 See temperature set-point description above. 

Notes: 

(a) The levels (or categories) of this explanatory factor incorporate alternative categories or answers allowed in the survey 

questionnaire. For example, there were three alternative answers in the survey which described a gas fuelled hot water 

system: 1) central heating system, 2) combination boiler (no hot water cylinder) or 3) gas fuelled system. 

(b) Construction year is reported in the survey either by the actual construction year or by the categories given in the table, 

thus any actual construction years reported in the survey have been also been categorised. 

(c) Heating system operating hours have been determined using each consumer’s hourly resolution smart-metered gas 

consumption data. For simplicity, this metric has been evaluated for each consumer by the average daily number of gas 

consumption hours during the second week of January. During this week, it is assumed that buildings are likely to be 

occupied and heating systems are likely to consume gas during each timed operating hour. Any suspected pilot light 

consumption in the sample has been accounted for by applying a nominal 0.5 kWh gas consumption threshold to the 

hourly gas consumption data. 

 288 
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5 Results and Discussion 289 

The results of this study begin with a presentation of the R2 distribution resulting from the individual NLS 290 

models for the consumer sample. Models which poorly fit the data are removed. A R2 value threshold of 0.6 291 

was chosen resulting in the removal of 66 dwellings. 292 

5.1 NLS Regression Results 293 

The distribution of R2 values resulting for each of the household NLS models are shown in Fig. 1. From this 294 

distribution it has been found that 15% and 72% of the models have strong and moderately-strong R2 values 295 

above 0.8 and between 0.6 and 0.8 respectively. However, 13% of the R2 values are weak to moderate 296 

between 0 and 0.6, and as result these models or consumers have been eliminated from the subsequent NLS 297 

model analysis. These consumers gas consumption was frequently zero during the heating season, indicating 298 

they were either unoccupied, or intermittently occupied. Consequently, they would not represent a good 299 

opportunity for energy savings. In addition, two consumers from the total sample (524) are not included in 300 

the R2 distribution in Fig. 1 or in the subsequent NLS model analysis, as the algorithm failed to converge 301 

using these consumers’ gas consumption series. Again, both of these consumers had numerous zero 302 

consumption days during wintertime. 303 

 304 

Fig. 1 Distribution of coefficient of determination (R2) values for the NLS models (522 sample size). 305 

The distribution of the intercept, slope and base temperature parameters for the NLS models for the retained 306 

consumer sample are shown in Figs. 2 - 4. Each of these parameter distribution have been categorised by low 307 

and high quartiles and a medium interquartile range. These categories are shown using boxplots in the 308 

figures and are used as a basis in which to develop the following MLR models. This limitation to quartiles 309 
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allows simple classifications of each distribution and reduces the size of the resulting MLR models in Tables 310 

3 - 5. 311 

 312 

Fig. 2 Distribution of intercept (b0) parameters for NLS models with an R2 ≥ 0.6 (456 sample size). 313 

 314 

Fig. 3 Distribution of slope (b1) parameters for NLS models with an R2 ≥ 0.6 (456 sample size). 315 
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 316 

Fig. 4 Distribution of base temperature (TB) parameters for NLS models with an R2 ≥ 0.6 (456 sample size). 317 

It has been found that the mean value of the base temperature parameter distribution is 14.23°C. This is over 318 

a degree lower than the 15.5°C traditionally assumed for HDD modelling in the UK. This is unsurprising as 319 

this 15.5°C value was recommended in 1934 (CIBSE, 2006), since when improvements have been made to 320 

heating control systems and building insulation standards. 321 

5.2 Multinomial Logistic Regression Models 322 

The MLR models for the intercept, slope and base temperature parameter distributions are shown in Tables 3 323 

- 5. Likelihood ratio (or Χ2) tests for these models show that each model rejects the test’s null hypothesis (see 324 

Note (a) in Table 3), and that most explanatory factors are significant in this regard. Although, some 325 

explanatory factors did not significantly contribute to their respective models, including: the number of 326 

children, boiler service frequency and temperature set-point. By comparing the pseudo-R2 value (see Note (d) 327 

in Table 3) for each model, it is seen that the slope and base temperature models have the best and weakest 328 

overall fits, respectively. 329 

  330 
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Table 3 Multinomial logistic regression model for the intercept parameter 331 

Intercept Model  Χ2 test of -2LL (df) (c)  psuedo-R2 (d)   

Overall Model (a)  74.5 (16) ***    0.22     

Explanatory Factors (b)            

   No. of Adults  17.34 (4) **        

   No. of Children  2.73 (6)         

   Hot Water  27.95 (4) ***        

   Cooking  30.9 (2) ***        

Sub-models (e) Low     Med.(f) High     

 n (g) β (h) SE (i)   Exp(β) n n β SE  Exp(β) 

Intercept  -1.72 0.37 *** 0.18   -0.46 0.28  0.63 

No. of Adults:            

  2 (j) 61     107 53     

  1 6 0.22 0.56  1.24 11 1 -1.82 1.06 ˙ 0.16 

  ≥ 3 13 -0.94 0.37 * 0.39 59 36 0.28 0.28  1.33 

No. of Children:            

  0 (j) 43     104 51     

  1 14 0.22 0.40  1.25 36 17 -0.07 0.35  0.93 

  2 18 0.52 0.40  1.69 23 14 0.36 0.40  1.44 

  ≥ 3 5 -0.16 0.58  0.85 14 8 0.15 0.49  1.16 

Hot Water:            

  Untimed gas system(j) 26     75 45     

  Timed gas system 24 -0.21 0.35  0.81 71 38 -0.09 0.28  0.91 

  Alternative system 30 1.13 0.38 ** 3.11 31 7 -1.09 0.46 * 0.34 

Cooking:            

  Gas cooker  (j) 25     105 60     

  Alternative system 55 1.43 0.31 *** 4.18 72 30 -0.39 0.28  0.67 

Notes:  

(a) Chi-squared (Χ2) test to ascertain the significance of the decrease in unexplained variance from an intercept only model 

to the overall model (Field, 2013), based on the null hypothesis that each regression coefficient in the model is zero 

(Andrews & Krogmann, 2009). The -2 log likelihood (-2LL) statistic used in this test is given by -2(LL(intercept model) - 

LL(overall model)) (Andrews & Krogmann, 2009; Field, 2013). This Χ2 test is based on model’s corresponding degrees of 

freedom (df) (Andrews & Krogmann, 2009).  

(b) Χ2 test to ascertain the significance of explanatory factors to the overall model (Field, 2013). This -2LL statistic is given 

by -2(LL(overall model) - LL(overall model without the factor under test) (Field, 2013). This Χ2 test is based on explanatory 

factor’s corresponding degrees of freedom (df).  

(c) See notes (a) and (b).  

(d) Nagelkerke’s pseudo-R2 statistic is a measure of the improvement in fit of the overall model compared to a model with 

no independent variables. This statistic has a range of 0 to 1 and is analogous to the coefficient of determination (R2) statistic 

used in ordinary least squares regression (Andrews & Krogmann, 2009). 

(e) Sub-model categories: 0≤Low<Q1 and Q3<High≤Max; where Q1, Q3 and Max are the first and third quartiles and the 

maximum value of the modelled distribution.  

(f) Reference category level. (g) Sample size (n). (h) Coefficient (β). (i) Standard Error (SE).(j) Reference factor level. 

˙, *, ** and *** significance at 0.1, 0.05, 0.01 and 0.001 levels respectively. 

 332 

  333 
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Table 4 Multinomial logistic regression model for the slope parameter 334 

Slope Model  Χ2 test of -2LL (df) (c)  psuedo-R2 (d)   

Overall Model (a)  157.4 (24) ***    0.37     

Explanatory Factors (b)            

   Bedrooms  62.57 (6) ***        

   Dwelling Type  32 (6) ***        

   Construction Year  46.34 (8) ***        

   Boiler Service Freq.  5.2 (4)         

Sub-models (e) Low     Med.(f) High     

 n (g) β (h) SE (i)   Exp(β) n n β SE  Exp(β) 

Intercept  -0.82 0.28 ** 0.44   -0.96 0.30 ** 0.38 

Bedrooms:            

   3 (j) 67     122 29     

   ≤2 19 1.52 0.47 ** 4.59 9 1 -1.26 1.13  0.28 

   4 15 -0.91 0.35 ** 0.40 62 55 1.21 0.32 *** 3.34 

   ≥ 5 1 -1.12 1.13  0.33 6 13 2.19 0.61 *** 8.97 

Dwelling Type:            

   Semi-detached (j) 54     115 51     

   Apartment/Terrace 37 0.06 0.30  1.07 54 5 -1.63 0.54 ** 0.20 

   Detached 8 -0.18 0.49  0.83 24 36 1.09 0.38 ** 2.98 

   Bungalow 3 -0.45 0.79  0.64 6 6 0.84 0.67  2.32 

Construction Year:            

   1935-1979 (j) 31     77 53     

   <1935 11 0.32 0.51  1.38 14 13 0.47 0.52  1.60 

   1980-1999 34 0.56 0.32 ˙ 1.75 64 21 -1.28 0.37 *** 0.28 

   2000-2004 18 0.79 0.39 * 2.20 32 10 -1.71 0.48 *** 0.18 

   2005-2010 8 0.92 0.56 ˙ 2.51 12 1 -2.93 1.12 ** 0.05 

Boiler Service Freq.            

   Annually (j) 63     106 54     

   2-3 years 32 -0.40 0.28  0.67 76 38 0.35 0.31  1.42 

   Never 7 -0.53 0.51  0.59 17 6 -0.29 0.60  0.75 

Notes: see Table 3            

Table 5 Multinomial logistic regression model for the base temperature parameter 335 

Base Temperature Model  Χ2 test of -2LL (df) (c) psuedo-R2(d)     

Overall Model (a)  40.26 (22) *   0.11       

Explanatory Factors (b)             

   Temperature Set-point  10.28 (12)          

   Timer Control  10.07 (4) *         

   Operating Hours  17.91 (6) **         

Sub-models (e) Low     Medium(f) High    

 n(g) β(h) SE(i)   Exp(β) n  n β SE  Exp(β) 

Intercept  -0.50 0.29 ˙ 0.61    -1.21 0.34 *** 0.30 

Temperature Set-point:             

   18 - 20°C (j) 33     51  26     

   < 18°C 8 0.08 0.54  1.08 11  1 -1.50 1.09  0.22 

   21°C 6 -0.61 0.53  0.55 18  10 -0.02 0.48  0.98 

   22 - 24°C 7 -0.14 0.53  0.87 12  10 0.53 0.51  1.69 

   > 24°C 2 -0.50 0.87  0.60 5  5 0.79 0.70  2.20 

   No Thermostat  32 -0.29 0.31  0.75 70  31 -0.12 0.33  0.88 

   Unknown 14 -0.14 0.41  0.87 25  15 0.27 0.42  1.31 

Timer Control:             

   Single Zone (j) 58     130  71     

   Separate Zones 20 0.65 0.36 ˙ 1.92 23  5 -0.95 0.54 ˙ 0.39 

   No Timer/Not Used 24 0.29 0.31  1.34 39  22 -0.01 0.32  0.99 

Operating Hours:             

   0 < hours/day ≤ 8 (j) 48     81  23     

   8 < hours/day ≤ 10 28 0.00 0.31  1.00 49  32 0.80 0.33 * 2.23 

   10 < hours/day ≤ 12 13 -0.36 0.39  0.70 28  14 0.62 0.41  1.85 

   12 < hours/day ≤ 24 13 -0.47 0.38  0.62 34  29 1.11 0.35 ** 3.04 

Notes: see Table 3          
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It can be seen that each statistically significant coefficient (β) estimate in the MLR models is consistent with 336 

the residential gas consumption dynamics described in Table 2. This is confirmed by the following 337 

characterisations of the intercept, slope and base temperature parameter distributions: 338 

• Dwellings with low b0 intercepts (which are inferred to use little gas for cooking and hot water) are 339 

unlikely to be occupied by three or more adults, given this factor’s low odds-ratio (Exp(β)) value, 340 

and are highly likely to use alternative hot water and cooking systems, given these factors high odds-341 

ratios. Those with high intercepts are unlikely to be occupied by a single adult and to use an 342 

alternative hot water system. 343 

• Dwellings with low b1 slopes (which are inferred to have low exposed envelope areas and/or low U-344 

values) are likely to have no more than two bedrooms, and to have been built since 1980. Those with 345 

high slopes are likely to have four or more bedrooms, are likely to be detached dwellings rather than 346 

apartment or terrace type dwellings and are unlikely to have been built since 1980. 347 

• Dwellings with low TB base temperatures are likely to use zoned time control systems. High base 348 

temperature dwellings are unlikely to use zoned time control systems, and are likely to have their 349 

heating systems operated for over eight hours each day, although this characterisation is not 350 

statistically significant for the ten to eleven hours category. 351 

5.3 Energy Efficiency Assessments 352 

In this section the MLR models presented in Tables 3 - 5 are used to compare the relative energy end-use 353 

levels of consumers with the same household characteristics in order to identify buildings with unexpectedly 354 

high intercept, slope and base temperature parameter estimates. 355 

In Table 6, intercept parameters are presented for three sample consumers – Consumer No. 1, 2 and 3. It is 356 

seen that these consumers have low, medium and high intercept parameter estimates, respectively, even 357 

though they share the same household characteristics. Based on these characteristics, 9%, 58% and 33% 358 

probabilities have been predicted for the low, medium and high intercept categories, respectively, using 359 

MLR probability formulae (Field, 2013) and the relevant β coefficients in Table 3. Therefore, Consumer No. 360 

3 has an unexpectedly high intercept parameter estimate; thus indicating unusually high hot water and 361 
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cooking consumption. This may be due to an inefficient hot water heating system, poor hot water cylinder 362 

insulation, or high hot water consumption by the occupants, relative to the other consumers in the Table. 363 

Energy saving opportunities should be explored for this consumer in this regard. For example, this consumer 364 

could: 1) decrease the number of operating hours set by their hot water system’s timer, 2) upgrade their hot 365 

water cylinder’s insulation, and/or 3) decrease its temperature set-point, if such a control system is present. 366 

In addition, it is estimated that Consumer No. 3 spends approximately €425/year on cooking and hot water 367 

(14.51kWh/day (intercept) x 365days/year x €0.08/kWh) at current Irish gas market rates. This estimate may 368 

be used to assess the viability of installing a solar hot water heating system or boiler upgrade based on 369 

current cost estimates. 370 

Table 6 Energy efficiency assessments 371 

Consumer No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 

Parameter Intercept (b0) Slope (b1) Base temperature (TB) 

    Estimate 2.73 8.21 14.51 3.18 5.84 7.63 11.66 14.0 15.54 

    Standard Error 1.72 1.87 2.65 0.12 0.16 0.26 0.31 0.62 0.62 

    Category Low Med. High Low Med. High Low Med. High 

Characteristics 2 adults  3 bedrooms 18-20°C temp. set-point 

 0 children Semi-detached Single zone timer 

 Timed gas fuelled hot water 1980-1999 construct. year 0 - 8 operating hours 

 Gas cooker Annual boiler service  

Category Probability   

    Low 9% 41% 32% 

    Medium 58% 53% 52% 

    High 33% 6% 16% 

In Table 6, the estimated slope parameters are presented for another three consumers – Consumer No. 4, 5 372 

and 6. It is seen that Consumer No. 6 has an unexpectedly high slope parameter estimate. This indicates that 373 

this dwelling may have an inefficient space heating system or a building fabric with poor thermal insulation 374 

levels, relative to the other consumers in the Table. Therefore, this consumer may benefit from a boiler or 375 

building fabric upgrade. It is estimated that this consumer spent approximately €660 on space heating for the 376 

previous year (7.63kWh/°C·day (slope) x 1078.72°C·day/year x €0.08/kWh, where the total HDDs for the 377 

year is estimated using the dwelling’s base temperature). This estimate may be used to assess the viability of 378 

boiler or building fabric upgrades based on current cost estimates. 379 

In Table 6, the estimated base temperature parameters are presented for another three consumers – Consumer 380 

No. 7, 8 and 9. It is seen that Consumer No. 9 has an unexpectedly high base temperature parameter 381 
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estimate, relative to the other consumers in the Table. Such consumers could be targeted with behavioural 382 

change programmes or zoned heating control systems. If for example, behavioural change or zoning results 383 

in a nominal 1°C reduction in base temperature, a saving of approximately €140 was possible in the 384 

modelled year for this consumer (5.53 kWh/°C·day (slope) x (2365.45-2050.41)°C·day/year x €0.08/kWh, 385 

where the reduction in HDDs is estimated using the total HDDs for a 1°C reduction in the dwelling’s base 386 

temperature parameter). 387 

Table 7 summarises the advice which could be given to individual customers with high inferred gas end-uses 388 

or NLS modelling parameters, such as Consumer No. 3, 6 and 9. Possible energy saving interventions are 389 

also given in Table 7 and these can be tailored to individual customers based on household data gathered 390 

through phone interviews or internet survey.  391 

Table 7 Potential causes of high inferred gas end-uses and possible energy saving interventions 392 

High Parameter Potential Causes Possible Interventions 

Intercept (b0) Inefficient hot water heating system Install timer and thermostatic control system to regulate 

hot water temperature. 

Reduce hot water cylinder set-point temperature and the 

operating hours of the hot water heating system. 

Install water softener to reduce limescale deposits in the 

hot water heating system. 

Service the gas boiler to increase its efficiency. 

 Poor hot water cylinder insulation Fit lagging jacket and/or insulation to reduce hot water 

cylinder and pipework heat losses. 

 Excessive hot water consumption Install water saving devices such as spray head taps and 

mixer showers in place of power (or pumped) showers. 

Slope (b1) Inefficient space heating system Install zoned timer and thermostatic control systems to 

regulate room temperatures by occupancy profile. 

Reduce set-point temperatures on room thermostats to 

limit heating system operating hours. 

Move poorly located thermostats such as those obstructed 

by furniture or those close to heat emitters in order to 

improve their effectiveness. 

Service the gas boiler to increase its efficiency. 

 Poor building fabric insulation and 

excessive air-infiltration 

Upgrade insulation and windows to decrease envelope U-

values. 

Install and/or maintain draught stripping devices on 

windows and doors in order to limit air-infiltration. 

Base temperature (TB) Excessive indoor temperature and 

heating system operating hours 

See above advice on inefficient space heating systems. 

Ensure that window blinds and curtains allow solar gains 

during the day and limit heat losses at night. 

6 Conclusions and Recommendations 393 

This paper presents a NLS regression model to estimate intercept, slope and base temperatures of individual 394 

dwellings using daily gas consumption and ambient external temperature data. These consumption data will 395 

become available as smart metering infrastructure is deployed across Europe.  The resulting model parameter 396 
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estimates can be used to infer gas consumption end-use due to cooking/water heating, envelope energy 397 

efficiency and heating control performance 398 

This study also demonstrated a multinomial logistic regression modelling method based on the resulting 399 

intercept, slope and base temperature parameter distributions and various household characteristics. This was 400 

used to compare the inferred gas end-uses of individual dwellings to other dwellings with similar 401 

characteristics. These models have been presented as an alternative to energy intensity metrics based on 402 

building floor area. By way of example, the multinomial logistic regression models were used to compare the 403 

inferred gas end-use efficiency of similar buildings based on their intercept, slope and base temperature 404 

parameter estimates. It was shown that households with high (and low) relative consumptions can be 405 

identified using this approach 406 
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