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ABSTRACT Instant messaging (IM) applications, even with end-to-end encryption enabled, pose privacy
issues due to metadata and pattern leakage. Our goal is to develop a model for a privacy preserving IM
application, by designing an IM application that focuses on hiding metadata and discussion patterns. To
solve the issue of privacy preservation through the obfuscation of metadata, cryptographic constructions
like Oblivious Random Access Machines (ORAM) have been proposed in recent years. However, although
they completely hide the user access patterns, they incur high computational costs, often resulting in
excessively slow performance in practice. We propose a new federated model, FedORAM, which is the
first ORAM scheme that uses a federation of servers to hide metadata for an IM use case. In order to
investigate the trade-off between security and performance, we propose two versions of FedORAM: Weak
FedORAM and Strong FedORAM. Strong FedORAM uses a tree-based federation architecture to ensure
strong obliviousness, but with an increased overhead cost. Weak FedORAM has a more simple federated
architecture that only uses Oblivious Transfer (OT) to increase communication speed, but with security
consequences. Our results show that both constructions are faster than a similar client-server ORAM scheme.
Furthermore, Weak FedORAM has a response time of less than 2 seconds per message for a middle-sized
federation.

INDEX TERMS ORAM, oblivious RAM, metadata, privacy, instant messaging, federation.

I. INTRODUCTION
Privacy is an ever growing concern in society; as more and
more of our lives are lived online, protecting the privacy of
our data and online activity is of utmost importance, partic-
ularly in sensitive contexts. When it comes to maintaining
the confidentiality of our digital data, there are many existing
cryptographic techniques that can be used very effectively.
However, it is not only our data that needs to be protected;
metadata, describing our online activity, can be observed
on servers hosting the applications we interact with on a
daily basis. This metadata can be gathered over time to infer
sensitive knowledge about the users on the system.

With free licenses and usage, multi-platform Instant Mes-
saging (IM) applications are becoming the first choice for
many people wishing to communicate via text. While some
of these popular applications have well-known and attractive
security features, they are still vulnerable in terms of privacy

The associate editor coordinating the review of this manuscript and

approving it for publication was Ismail Butun .

attacks. For example, the security of well-known, popular
Instant Messaging applications that use end-to-end encryp-
tion such as Signal or WhatApp is an incentive for many
users. However, even though data are kept safe with the help
of encryption when stored or in transit, an attacker or an
untrustworthy service provider, with full access to the server,
could still have many possibilities for obtaining sensitive
information by looking at the metadata discussion patterns.

Indeed, such metadata are sensitive, and have become
notorious in the scope of communications surveillance. For-
mer NSA General Counsel, Stewart Baker, said ‘‘Metadata
absolutely tells you everything about somebody’s life. If you
have enough metadata, you don’t really need content.’’.1 Our
previous work in [37] and [35], defines different types of
metadata and demonstrates the potential for metadata leakage
in IM applications. Examples of the types of metadata that
can commonly be collected on a classic IM server are the

1https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-
metadata/
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message id, size, senders, recipients and timestamp. We also
showed that an ORAM construction is a valid solution for
metadata leakage as it hides the connections between some
of the metatada collected.

Oblivious Random Access Machine (ORAM) is a tech-
nique that allows clients to access encrypted data residing
on an untrusted storage server, while completely hiding the
access patterns to storage. Notably, the sequence of physical
addresses accessed is independent of the actual data that the
user is accessing. To achieve this, existing ORAM construc-
tions continuously download, re-encrypt, and re-upload data
blocks on the storage server. Consequently, ORAM schemes
are limited in terms of complexity. In recent years, the goal
of most research contributions was to reduce the complexity
of the model in order to make it practical in real life [5].
Thus, in order to speed up and simplify the ORAM schemes,
the structure of most server models has been changed [40],
[43]. Therefore, as of today, ORAM studies focus on scheme
complexity and security features like group support [25]. But
these schemes remain impractical in real life applications.
Moreover, to the best of our knowledge, there is nothing in
the literature about ORAM implementations that have been
adapted for a given use case such as IM. Most of the schemes
proposed are for generic mass data storage or do not target a
specific application.

There is a well known trade-off between security and
performance: the more secure something is, the less usable
it becomes. The overhead introduced by adding layers of
security measures negatively impacts on the performance of
a system and thus the usability of that system. Security is a
process of choosing between ‘‘less safe’’ and ‘‘more safe’’ and
continuing to fork toward safety until you read safe enough.
Edward Snowden.2 When considering the construction of a
secure application this is particularly accurate.

Finding the balance between ‘secure enough’ and ‘prac-
tically usable’ is critical. Considering the existing work in
the literature, the main motivation of this paper is to create
an ORAM scheme that is practical in terms of performance
for a given use case. Therefore, we need to find the trade-off
between privacy and speed in order to design new oblivious
algorithms. In our quest to achieve this, we address the fol-
lowing research questions:
• What infrastructure design for an IM application will
result in a faster ORAM scheme?

• Can we define a new ORAM construction that only
slightly decreases the privacy protection in order to
increase the speed?

• Can amultiple server architecture be used to help protect
against metadata leakage?

In order to answer these questions, we built a prototype
ORAM IM server and implemented two novel federated
ORAM algorithms to explore the trade-off between oblivi-
ousness and performance. That is, the strong oblivious mode
is more secure but slower and the weak oblivious mode is

2https://twitter.com/Snowden/status/1165391070726950913

less secure but faster. This work compares the two schemes
proposed in this paper together and against two reference
schemes: A non-ORAM federated IM application and Square
Root ORAM (SqrORAM) [46] a multi server ORAM sys-
tem. Comparisons are done considering response time and
network consumption metrics. Our results show that both
FedORAM schemes can support reasonable response times,
and can be considered more practical for use in real-world IM
applications than classic ORAM schemes.

The contributions of this paper can be summarised as
follows:

1) To the best of our knowledge, we are the first to propose
a federated ORAM scheme.

2) We propose a novel ORAM model for an IM applica-
tion. More specifically, an ORAM scheme adapted for
small message sizes (less than 1KB) with an automatic
deletion policy for old messages.

3) We define the notion of ‘Weak Obliviousness’ that
leaks some metadata, but does not provide an attacker
with enough to infer a full access pattern. Using this
definition, we propose a newORAM scheme, that takes
advantage of the trade-off between privacy and perfor-
mance, resulting in a faster scheme.

The remainder of the paper is organised as follows:
Section II discusses the related work in the area. Section III
proposes the definition of Weak and Strong Oblivious RAM
as well as the attacker model used in this paper. Section IV
describes the two ORAM systems proposed. Section V
describes and discusses the experimental results. Finally,
Section VI concludes the paper and presents some future
work.

II. RELATED WORK
This section describes the previous work that has been pub-
lished in the area. To the best of our knowledge, this is the first
work to propose Oblivious RAM for a federation of servers.

Landau [23] highlights the importance of metadata in
Edward Snowden’s revelations on the security world. For
instance, this paper shows that the NSA is now known
to collect domestic and telephony metadata. Furthermore,
Mayer et al. [28] evaluates the privacy properties of telephony
metadata and show how applying prediction on collected
metadata, we can retrieve sensitive knowledge such as loca-
tion, relationship status, and health status. On another appli-
cation, but still considering metadata, Dubin et al. [13] show
how video identification can be achieved from an encrypted
multimedia stream like YouTube. Finally, Hoang et al. [20]
show how, using a simple trilateral method, it is possible
to retrieve user positions on famous LGBT-focused dating
applications, which poses enormous privacy issues.

Protection against data privacy threats can be achieved
with data encryption techniques, data sanitisation [2] or
data anonymisation [4]. More generally, various techniques
to ensure data privacy is maintained [44]. However, since
these techniques do not protect against metadata leaks

187688 VOLUME 8, 2020
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(as demonstrated in our previous work [35]), a significant
amount of work has been done in order to provide access
privacy for outsourced data. This can be achieved by means
of Private Information Retrieval (PIR) [9], [17] or by means
of Oblivious RAM. PIR and ORAM are similar in the way
that a PIR scheme can be seen as a read-only ORAM scheme.
PIR is, therefore, suitable for a different use case. Still, many
ORAM schemes include techniques that are similar to PIR.

Preventing the leak of data using an oblivious structure
between a trusted processor and an untrusted RAM was
presented for the first time in 1996 by Goldreich and Ostro-
vsky [18]. They were the first to introduce the notion of
Oblivious RAM. The purpose of this technique was to hide
the true access pattern of the software on the local memory.
Later, the system was extended for cloud storage purposes
[5], [40]. Then, the goal of most research contributions was
to decrease the complexity of the models in order to make
them practical in real life. Thus, the techniques used were
changed. The structure of most models changed from tree
based models, where the server structure is a binary tree
[30], [39], [40], [42], to Path ORAM based system [43],
[45]. Furthermore, given that executing all computation on
the client side is not efficient and since the Cloud has the
advantage of providing computational resources in addi-
tion to storage, ORAM with server side computation was
proposed [3], [10], [26], [46]. These schemes use a fully
Homomorphic Encryption (HE) function [16] resulting in the
computation shrinking from logarithmic in client-side to con-
stant in server-side computation model. However, server-side
computation suffered from significant communication over-
head. Ring-ORAM [39] reduced the cost of communication
in Path-ORAM significantly, by performing XOR computa-
tions on the server. Some other alternatives ( [3], [11], [14],
[27], and [32]) leveraged single-server PIR or fully/partial
HE to further reduce the communication cost. For example,
Onion ORAM [10] is a layered encryption approach that aims
to reduce the communication overhead incurred in the obliv-
ious storage process using bandwidth-efficient additive HE
schemes. Meanwhile, some recent systems support sharing
features, e.g., Group ORAM [25] or Obliv P2P [22]. They
introduce some additional concerns; new parameters such
as access rights management must be considered. Finally,
Dog ORAM [36], proposes an ORAM scheme that merges
some existing solutions, a Path ORAM based server with
server-side computation and user management.

All these schemes propose innovations in terms of com-
plexity or security features. They provide proof of security
through a formal proof of obliviousness of the protocol pro-
posed. However, they do not compare their security with other
systems or with a non-ORAM server.

Since ORAM solutions present a complexity problem,
there have been a number of studies conducted to exam-
ine the necessity of this scheme. On searchable encryption,
Naveed et al. [33], [34] present inference attacks on search-
able encrypted databases secured with an ORAM model.
They show these systems still leak metadata. This is because

ORAM models are secure only when the data is accessed
through a random access interface. For an application such
as searchable encryption, that does not fit this requirement,
ORAM schemes are not a solution. However, Pulls et al. [38]
show ORAM is needed for other types of applications. Their
paper introduces and discusses the feasibility of a practical
anonymous cloud storage service that includes an anonymous
payment method. It especially shows that long term anony-
mous cloud storage can be achieved using an ORAM system.
Moreover, the authors confirm ORAM methods are an open
research challenge.

In an attempt to improve the performance and scala-
bility of ORAM to make it more practical, several pro-
posals have been made to eliminate the extremely costly
(full/partial) HE operations by implementing multi-server
models. Stefanov et al. [41] were one of the first to propose a
multi-server ORAM scheme that utilises two non-colluding
servers, capable of computation, in order to decrease the
bandwidth usage between the client and server in Partition
ORAM [42].Moataz et al. proposed CHf-ORAM [31], which
has constant communication complexity without using HE,
achieved by moving from the traditional single-server to
4 non-colluding servers. However, the work in [1] demon-
strated how to break CHf-ORAM [31]. Meanwhile, [1] also
proposed a new model, consisting of two non-colluding
servers, to perform XOR computations for block retrieval
over a k-ary ORAM tree structure. In 2018, Chan et al. [6]
proposed a secure 3-server ORAM scheme based on the orig-
inal hierarchical ORAM structure proposed by [18]. Gordon
et al. [19] proposed a simple and efficient 2-server tree-based
ORAM, with low bandwidth overhead. A static position map
is implemented and references deterministic and static data
block paths, which are computed using a pseudo-random
function. Hoang and Yavutz [21] proposed the multi-server
ORAM model S3, which leverages Shamir Secret Sharing
and amulti-partymultiplication protocol on applicable binary
tree-ORAM paradigms to avoid the costly complexity of HE
or other cryptographic primitives.

Conceptually, in an attempt to increase the speed of
ORAM, because classic Path ORAM schemes are limited to a
lower bound [24], some researchers looked to a multi-server
approach. For example [7] uses S2PC to store part of the data
on two non colluding servers. However S2PC comes with an
important cryptographic cost. Metal ORAM [7] is the first
cryptographic file sharing system that hides both user identi-
ties and file access patterns from both the server and from
malicious users. Metal uses a tree-based ORAM structure
and has logarithmic worst-case complexity and considerably
less computation. It avoids the linear worst-case times that
is experienced by SqrORAM [46] and FLORAM [12]. This
setup is very interesting because it allows the reduction or
elimination of the trust requirements present in a single server
system. The ORAM literature contains very strong evidence
showing that the lack of trust in a server comes with a very
high performance cost in terms of cryptographic primitives
needed to address it.

VOLUME 8, 2020 187689
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Oblivious Transfer (OT) [29] is a cryptographic protocol
that allows a sender to transfer one (or more) message to a
receiver. The sender remains oblivious as to what piece (if
any) has been transferred. It differs from ORAM because in
ORAM the sender is trusted while the receiver is not trusted.
When used with elliptic curve cryptography, OT schemes are
fast and scalable [8], [15].

Our work presented in this article is the first to propose
a federation of servers to provide oblivious access for users.
Moreover, we consider an IM application, which has specific
properties and performance requirements when compared to
a generic mass storage use case seen most often in the litera-
ture. Finally, we also investigate the potential for leveraging
the trade-off between security and performance in order to
provide a faster, but less secure ORAM model.

III. OVERVIEW OF OUR CONSTRUCTION
This section describes FedORAM’s system architecture and
threat model as well as the definitions for some pertinent
concepts discussed in the paper.

A. FedORAM
The concept of a trade-off between security and performance
motivated our design of multiple federated ORAM models.
We created two different constructions in order to compare
them in terms of security and speed:

1) Strong Federated ORAM (Strong FedORAM): A
federated ORAM scheme where both clients and
servers are fully compliant with the classic ORAM
definition (see definition 4).

2) Weak Federated ORAM (Weak FedORAM): A fed-
erated ORAM scheme that by construction is designed
to provide a weaker protection against metadata leaks
than the strong federated ORAM scheme. However,
it aims to be faster (see definition 3).

Outside the context of ORAM, we are not the first to
consider such a federation, the most famous example being
the email system. Although it has well known drawbacks
such as spam detection issues, a federation based scheme has
several advantages over a classic client-server architecture:

• It provides fault tolerance as a server can be removed
without stopping the rest of the federation.

• It provides a protection by default as only the source
and destination server can collect data. Furthermore the
source server is often chosen by the user and therefore
is more trusted than other servers.

• Multiple service providers can easily add and remove a
server on the federation without trusting each other.

As shown in definition 1, FedORAM is a new federated
infrastructure, that requires new server types to play different
roles when sending messages.
Definition 1 (Server Types): • Entry server SE : The
entry server is the first server the data sent by a user will
meet. It is the only interface an end-user has access to
within the federation.

• Destination server SD: The destination server is the last
server the data sent by a user will meet. Data stored on
this server will be obliviously collected by the destina-
tion user.

• Third party server: The other servers in the federation
that are neither the transfer server nor a destination
server, but that can have a role in the data transaction
as an intermediary.

B. FEDERATED OBLIVIOUSNESS
Definition 2 is as a reminder of the security property of
obliviousness. However, this paper focuses on oblivious con-
structions in the scope of a federated architecture.We define a
new security property: federated obliviousness. Definitions 3
and 4 are our new proposed definitions for strong and weak
federated obliviousness, which also consider the accesses
from a user and between servers inside the federation.
Definition 2 (Obliviousness): A scheme is oblivious if the

server cannot distinguish between two accesses which con-
tain any kind of authorised operation of the users.
Definition 3: (Weakly Federated Obliviousness): A

scheme is weakly federated oblivious if and only if all the
following conditions are meet:
• An entry/destination server knows its type for an access.
• A destination & third party server cannot distinguish
between two accesses which contains any kind of oper-
ation the users have the rights to execute on the server
(at the exception of the access type: push/pull).

• An entry server cannot distinguish between a destination
and a third party server.

• An external attacker could distinguish an entry server.
Definition 4: (Strongly Federated Obliviousness): A

scheme is strongly federated oblivious if and only if all the
following conditions are meet:
• An entry/destination server knows its type for an access.
• A servers (regardless of type) cannot distinguish
between any two accesses which contain any kind of
operation the users have the rights to execute on the
server (at the exception of the access type: push/pull).

• An entry server cannot distinguish between a destination
and a third party server.

• A destination server cannot distinguish between an entry
server and a third party server.

• An external attacker cannot distinguish between any
servers.

C. METADATA
Although the notion of metadata is common as per defini-
tion 5, in the scope of data privacy this high-level definition is
not sufficient. Definition 6 shows that we need to consider the
different types of metadata that can be leaked by a server. All
data have a specific format (e.g., file, message), but it can
have multiple distinct sets of metadata, each describing a dif-
ferent property of the data. Each different way of describing
data is called a ‘type’ of metadata.

187690 VOLUME 8, 2020
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TABLE 1. Metadata leakage depending on the scheme.

Definition 5 (Metadata): Metadata is defined as the data
that provides information about other data.
Definition 6 (Type of Metadata): When the information

collected about different data describes the same property,
this information is from the same type of metadata.

As previously described in [35], the types of metadata that
can commonly be collected on a classic IM server are themes-
sage id, size, senders, recipients and timestamp. Furthermore,
it is the link between some of them (id, senders, recipients)
that is the root cause of privacy leaks. As presented in table 1,
breaking this connection by only leaking the message times-
tamp is the main objective of an ORAM solution. By defini-
tion, on a classic ORAM scheme (like Path ORAM), only the
activity timestamp is leaked. In a less secure scheme, such as
our proposedWeak FedORAM, the objective is to leak a little
more metadata so as to improve the performance, but not so
much that an attacker could use it to breach the users’ privacy.
For example, we leak the identities of the senders or the
recipients to two different non-colluding servers. In Strong
FedORAM, we only leak the path taken by the message on
the federation tree.

Usually ORAM schemes maintain a symmetry in the sys-
tem. A read action has a corresponding write action. Meaning
they first read a possibly dummy data then they write a (pos-
sibly dummy) data. It provides read/write obfuscation and it
is extremely valuable in ORAM construction. However, this
is usually slow. Even more so considering a path structure,
where a write can be fast, but the read is slow. Therefore,
to speed up the system, the approach used in FedORAM is
to break this symmetry. Thanks to the federated structure,
the lack of read/write symmetry does not come with much
privacy drawback.

D. ATTACKER MODEL
1) SECURITY ASSUMPTIONS
Our adversarial model draws from common assumptions in
real life and in the ORAM literature. They are justified in
real-life cloud architectures because service providers need
to maintain a good reputation:

• The data owners are always trusted.
• The other clients are not especially trusted. However,
they do not collude with the server. This assumption
makes sense because it would be against the purpose of
the application for a malicious client to voluntarily send
metadata to the server.

• The servers are considered ‘‘honest but curious’’3

(HbC).
• We assume the third party servers in the federation can
be corrupted and therefore we do not trust them. They
remain HbC.

• An entry or destination server knows its status. Meaning
it knows it is an entry or a destination server for a given
message id.

• The servers are not colluding.
Furthermore, the Weak and Strong FedORAM schemes

have some differences in terms of attacker model. With
Strong FedORAM, the entry server and the destination server
are oblivious to each other. While for Weak FedORAM:
• Destination and entry servers are not colluding.
• An external adversary (or some colluding servers) can
guess general access pattern of the federation.

2) SECURITY GUARANTEES
Both FedORAM schemes provide the following security
guarantees:
• Secrecy:A client can only read messages for which they
hold read permissions.

• Integrity: A client can only write messages for which
they hold write permissions.

• Authentication:A client can only access their messages
after the server has verified their identity.

• Obliviousness for the considered scheme as shown in
definitions 4 and 3.

We do not consider forward secrecy and data sharing as
we really focus on the creation of the first federated ORAM
scheme.

IV. FedORAM
This section describes the Weak and Strong FedORAM
schemes.

A. COMMON STRUCTURE
1) SERVER STRUCTURE
Each individual server stores data into a tree. The structure
is similar to the PathORAM protocol. The data is stored in
a binary tree of LS + 1 levels (see figure 1). The leaves are
numbered from 0 to 2LS − 1. Each block is associated with
a random path from the root to a leaf l: P(l). Notations used
throughout the rest of the paper are summarised in table 2.
When a new server enters the federation, it must generate

a new key pair and maintain a list of public keys from all the
servers in the federation. All the users also have they own key
pair.

2) OBLIVIOUS TRANSFER
By definition, an ORAM construction sends data from a
trusted client to an untrusted server. However, when employ-

3The servers are regarded as passive adversaries following the scheme
specifications correctly but seeking to gather additional information about
the clients’ data and access patterns.
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FIGURE 1. Tree data structure on each server of the federation.

TABLE 2. FedORAM parameters and notations.

ing a federated architecture, there are a minimum of two
servers to consider:
• The destination server, from where the recipient user
will pull new messages.

• The entry server, to which the sending user pushes the
message.

The new challenge of a federated oblivious scheme is to be
able to obliviously transfer data from the entry server to the
destination server.

A way to achieve this is to use Oblivious Transfer (OT)
[15], [29]. Despite its name, OT is very different to ORAM
because OT and ORAM do not have a similar attacker model.
As shown in figure 2 using OT, the receiver knows what
message id is sent, not the sender. However, OT schemes can-
not be directly applied to our new FedORAM construction.
Therefore we needed to adapt a 1−2 OT to use in FedORAM.

FIGURE 2. Oblivious transfer.

Our remote oblivious transfer works as follows: a client
generates a message block M . It contains the real message
the client wants to send but also extra parameters that will be
needed by the entry server to run the OT protocol. Let a client
C1 send a message m to a user C2. Let SE be the entry server
for C1, SD the entry server for C2 and thus the destination
server for C1. Sd denotes a dummy third party server in the

federation. Then, in both Weak and Strong FedORAM, C1
generatesM as follows:

M =

{
(M1, SD)
(M2, Sd )

(1)

We constructM1 and M2 as follows:

M1 =

{
(E(m),ESD (SD))
(E(d),ESD (SD))

(2)

M2 =

{
(E(d),ESd (S ′d ))
(E(d),ESd (S ′d ))

(3)

where d are dummy random messages of the same size as m.
E and E are encryption functions. To simplify the notation, E
uses a client public key and therefore only a client can decrypt
it while E uses a server public key such that ESD denotes an
encryption function using the public key of SD. Finally, S ′d is
another dummy third party server different to Sd .

Using this structure, when a client sends M to an entry
server, M1 and M2 are encrypted and the entry server cannot
decrypt them. Nevertheless, it knows SD and Sd where it can
send the message using OT.

3) EVICTION PROCESS
Each server stores data in a classic oblivious tree structure
as used in PathORAM. When adding a new message to the
server, the data is always written on the root node of this
server. Therefore, every time the root node of a server is
full, the server must run an eviction algorithm in order to
evict the messages from the root node into the children nodes
to ensure it does not overflow. This process is usually long
and contributes significantly to the overall complexity of an
ORAM system.

As in PathORAM, the eviction process is executed by
a client if needed when pulling new messages from the
server. Due to some design features, in FedORAM, this pro-
cess is faster:
• As it is a scheme for an IM use case, we included an
additional feature called automatic data deletion, which
simply deletes old messages. This deletion is done by
the eviction algorithm that ignores the last stage of the
path and considers them as having become dummy data.
Therefore, less data needs to be evicted.

• The oblivious tree of each server is independent of the
federation.

On each server, the eviction algorithm ensures that the root
node is not full. This is needed as new messages are always
written on the root node. On a pull request, a client runs the
eviction if it is required. That is to say, if the root node of its
entry server is full.

The user selects a random leaf levict on which the eviction
will be run. For all considered nodes on the path, themessages
are moved into its two children nodes. It is the same eviction
algorithm as PathORAM. Therefore, by construction, old
messages will be on the last levels of the tree.

187692 VOLUME 8, 2020



A. Pujol et al.: FedORAM: A Federated Oblivious RAM Scheme

To speed up the eviction process, we do not evict the
messages on the last e nodes as the messages in these nodes
are not shuffled. e, the number of levels from the leaf to not
evict, is determined randomly between Ll , the local tree depth
and D < Ll , a configuration parameter that determines how
fast old messages are deleted.

B. WEAK FedORAM
Figure 3 shows the general architecture of the Weak FedO-
RAM model when a client C1 sends a message to another
client in the server SD. Weak FedORAM can be summarised
as follows:
• A set of s independent servers Si, 1 ≤ i ≤ s.
• A root server SR.
• Each server has its own set of clientsCi, 1 ≤ i ≤ c. Each
client as a unique ID in format Ci@Si

• A set of algorithms as shown in definition 7.

FIGURE 3. Overview of the weak FedORAM scheme.

Definition 7 (Weak FedORAM Scheme): A Weak FedO-
RAM Scheme is a set of the following algorithms:

M ← Push(id,m, user) Send a message to a user on
a server. Generate and send the message block to be
transferred to the destination server using OT from the
entry server
m ← Pull(id) Pull new message from the client’s entry
server.
Serve(id) Transfer/Receive a client message to the fed-
eration using OT.
Eviction(leaf , forget) Start the eviction algorithm on the
entry server.

1) OVERVIEW
As shown in figure 3, when a client C1 sends a message
to another client in SD, the client generates M as shown in
equation 1. Then C1 sends this message block to its entry
server SE . SE knows the destination servers it has to send

data to (SD and Sd ). Thus SE runs two OT transactions to SD
and Sd using M1 and M2. The real and dummy destination
servers both receive their message block sub-part,M1 andM2
respectively. Both servers decryptMi=1|2[1] and can compare
their own server id against it. If they are equal, the server is a
real destination server and it writes E(m) on its internal root
node. If they are not equal, the server ignores the transaction.

M1 = (E(m),ESD (SD))
= (E(m), SD)

M2 = (E(d ′),ESd (Sd ′ ))
= (E(d ′), Sd ′ )

2) PositionMap
Internal metadata management is a critical feature of all
ORAM models; metadata allows the operations on the
remote messages. In a similar way to other ORAM schemes,
we use a PositionMap matrix that we store on the root
server. This matrix links the virtual id id of a (real or
dummy) message to its assigned leaf on the server destination
server. PositionMap[id] gives a leaf l indicating that the
message with the id id can be found in the destination server
on the path P(l).

In FedORAM, it is the sender of the message that generates
the random leaf l and appends it to PositionMap on the root
server. There is no indication of the destination server in the
matrix.

3) OTMap
Similarly to the PositionMap, FedORAM needs to store an
oblivious transfer matrix on the root server. It links the virtual
id id of a message to the oblivious transfer identifier b that
tells which (if any) message id of the real message that has
been transferred. b is encrypted such that only the destination
server can read it. OTMAP[id] gives an identifier b.

4) ALGORITHMS DESCRIPTION
In this paragraph we describe the main Strong FedORAM
algorithms. Both Push and Pull algorithms run on clients.
The OT transactions that run on the servers have already been
described in previous paragraphs.

Push In algorithm 1, the client generates themessage block
M and encrypts it using the public key of the recipient. It also
generates the leaf of the destination server as well as the OT
selection identifier for Sd and SD. Then,M is sent to the entry
server SE that will proxy it.
Pull In algorithm 2, the client reads and decrypts the mes-

sage using the same algorithm as in PathORAM. If needed,
the eviction is started as shown in section IV-A.

5) LIMITATION & CONCLUSION
This scheme is quite different from a classic ORAM scheme
as it usesmostly direct connections to servers in the federation
and does not require extra costly computational resources.
However this efficiency comes at a security cost. While it
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Algorithm 1M ← Push(id,m, user)
Input: virtual message id , m plain message, user federation

user.
Output: message blockM
1: M ← GenereateMessageBlock(m) F As shown in (1)
2: for all server in (Sd , SD) do
3: for all message id in Mi do
4: OTMap[id]← b F Set OTMap according toM
5: PositionMap[id]← GenLeaf () F Local leaf for
id

6: end for
7: end for
8: returnM FMessage block to be sent to SE

Algorithm 2 m← Pull(id)
Input: virtual message id
Output: plain message m
1: m← PathORAMAccess(id)
2: if Eviction is needed then
3: levict ← Random(0, 2Ll − 1)
4: forget ← Random(D,L − 1)
5: Eviction(levict , forget)
6: end if
7: return m

is able to protect against some metadata leakage, it remains
sensitive to some access pattern attacks that could leak the
entry and destination server, but not the sender and receiver.
The solution to this privacy issue is to ensure the messages
are always transferred through the same server regardless
of the originating server. As a solution we propose Strong
FedORAM, that takes inspiration from the well-known tree
based path ORAM oblivious data structure on a single server
and adapts it to a federation of servers.

C. STRONG FedORAM
Figure 4 shows the general architecture of the Strong FedO-
RAM model when a client C1 sends a message to another
client in the server SD. Strong FedORAM can be summarised
as follow:

• A tree based federation of servers.
• A set of s independent servers Si, 1 ≤ i ≤ s, such that
s = 2L − 1.

• Each server has its own set of clientsCi, 1 ≤ i ≤ c. Each
client as a unique ID in format Ci@Si

• A set of algorithms as shown in definition 8.

Definition 8 (Strong FedORAM Scheme): A Strong FedO-
RAM Scheme is a set of the following algorithms:

M ← Push(id,m, user) Send a message to a user on
a server. Generate and send the message block to be
transferred to the destination server using OT from the
entry server
m← Pull(id) Pull new messages from the entry server.

FIGURE 4. Overview of the strong FedORAM scheme.

Proxy(id, leaf ) Proxy message from a federation server
towards a leaf.
Eviction(leaf , forget) Start the eviction algorithm on the
entry server.

1) FEDERATION STRUCTURE
The federation structure we propose follows the structure of
a binary tree. Each node is a server in the federation. Each
server can store up to n messages in their own ORAM data
structure, similar to Path ORAM. All these data structures are
independent of each other. In a similar way to Path ORAM,
each message sent from a client to an entry server is associ-
ated with a path from the root server to a leaf l: P(l). The
client selects l such that the destination server is on P(l).

2) ACTIVITY
We keep the OT structure presented in Weak FedORAM,
however, we adapt it to a tree based federation. As shown
in figure 4, when a clientC1 sends a message to another client
C2 in SD. Let ld be a random dummy leaf in the federation
tree. The client generatesM as shown in equation 4.

M =

{
(M1, l)
(M2, ld )

(4)

Then, in order to successively transfer the message to the
paths,M1 andM2 are generated in the following layered form:

M1 = ESR (. . .ESD−1(ESD (E(m), SD), Sd ), . . . , Sd ) (5)

M2 = ESR (. . .ESd−1(ESd (E(d), Sd ′ ), Sd ′ ), . . . , Sd ′ ) (6)

This layered construction ensures that:
• Only the destination user can decrypt it: E(m)
• Only SD can decrypt it: ESD (E(m), SD)
ThenC1 sends this message block to its entry server SE and

updates the PositionMapmatrix and the OTmapmatrix in the
root server SR. SE the entry server runs two OT transactions
with the first element of M1 and M2 to the root server. Then
the root server runs two other OTs into the federation tree to
the next server in the federation that belongs to the leaf ld and
l respectively forM1 and M2.
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Then, for any third party server, the server checks if it
is the destination server using the same method as in Weak
FedORAM. If it is the destination server, it stores the message
in its internal root node and replaces the message with a
random dummy one before forwarding it to the next server in
the path. If it is not the destination server, it simply forwards
the message to the next server in the path.

With this construction, the users only connect through their
entry server. Regardless of the destination server, the entry
server always sends the messages to the root server. The root
server itself sends the message back into the federation leaf.
This structure takes inspiration from the eviction process on a
single server Path ORAM scheme where the data are evicted
to two paths, a real one and a dummy one.

Strong FedORAM uses the same PositionMap andOTMap
matrices structure as Weak FedORAM. The only difference
is that these matrices are stored on the root server, not a server
outside of the federation.

3) ALGORITHMS DESCRIPTION
In this paragraph we describe the main Strong FedORAM
algorithms. The Proxy algorithm is the only algorithm that
needs to be run on a server of the federation. As Push and
Pull are client algorithms. The Pull algorithm is the same as
in WeakORAM.

Algorithm 3M ← Push(id,m, user)
Input: virtual message id , m plain message, user federation

user.
Output: message blockM
1: (l, ld ← GenLeafs(user) F Generate random federation

leafs
2: M ← GenereateMessageBlock(m) F As shown in (4)
3: for all leaf in (l, ld ) do
4: for all message id in Mi do
5: OTMap[id]← b F Set OTMap according toM
6: PositionMap[id]← leaf
7: end for
8: end for
9: return M FMessage block to be sent to SE

PushAlgorithm 3 is similar to algorithm 1. The client gen-
erates the message block M , it also generates the federation
and local leaves as well as the OT selection identifier for all
servers in the leaves. Then, M is sent to the entry server SE
that will proxy it.

Proxy The proxy algorithm 4 allows a server to obliviously
transfer a message into the federation. S denotes the server id
on which the algorithm is run. First, regardless of the server
type, the algorithm retrieves the internal storage leaf from
the metadata matrix. It is only needed for the destination
server, however, querying the network only after the server
determines its state would leak it to the federation. Then,
the message block is locally decrypted into a tuple (Ml, Sl)
where Ml is the next message block (or m for the destination

Algorithm 4 Proxy(id, l)
Input: Virtual message id (possibly dummy), l federation

leaf.
1: lS ← PositionMap[id] F Get the internal storage leaf.
2: b← OTMap[id]
3: M ← OTReceive(b) F Retrieve message block from

parent node
4: Ml, Sl ← D(M )
5: if Sl == S then F If destination server
6: P(lS )← Ml FWriteMl on S.
7: Ml ← GenDummy() F Dummy block for other

servers in l
8: end if
9: Sn← GetNextServerOnLeaf (l)
10: OTSend(Ml, Sn) F Proxy to next server

server) and Sl is a (possibly dummy) server id. OTSend and
OTReceive() are the OT send and receive functions.

D. SECURITY ANALYSIS
This section proposes an analysis of the metadata leakage in
the federation. It focus on the obliviousness of the scheme.

1) CREATING A MESSAGE
For both schemes, when a client creates a new mes-
sage, the metadata types present on the client are the id,
size, senders, recipient and the timestamp. M , contains the
encrypted message, but no other information. Particularly,
the destination server identifier is encrypted. Both Position-
Map and OTMap store metadata for both real and dummy
message ids, moreover, OTMap entries are encrypted. The
server that stores these matrices is trusted for this usage as
it can see which user is active. This is standard behaviour in
the ORAM literature.

2) PUSHING A MESSAGE
When M is transferred to the root server. The entry server
knows its server type and knows the client is active at a given
time. However, as it can only seeM and run an OT transaction
with it, it does not have access to: the chain of discussion,
the message size and the recipient.

3) FEDERATION
Weak FedORAM presents limitations already described in
section IV-B5. Concerning Strong FedORAM, we can state:

• Entry server: Regardless of the destination server (even
if it is the same server), M is transferred to the root
server. Therefore, no other metadata other than a times-
tamp is leaked to the server. Only the root server knows
the role of the entry server.

• Root & Third Party servers: They only have access to
the leaf number. As two message streams are sent to two
leaves, no real information can be inferred from this.
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• Destination server: knows its state, and therefore could
potentially deduce the recipient.

• External attacker: as the destination server still proxies
a dummy message to deeper nodes in the path, an exter-
nal attacker observing activity in the federation cannot
distinguish between the dummy and the real leaf. There-
fore, only the destination server knows its role.

4) PULLING A MESSAGE
When a client wants to pull a message from its entry server,
it first reads the PositionMap matrix to get the local path lL
and uses it to download data from the server. As in PathO-
RAM, no metadata is leaked in this transaction.

V. EXPERIMENTS
In this section, we present the experiments we designed in the
scope of this paper. We tested Weak and Strong FedORAM
against each other but also against a classic federated IM
server as reference base. We also compared it against a well
known ORAM construction in the literature.

A. EXPERIMENTAL SETUP
We used a bare metal server to run the federation. The server
had two Intel Xeon E5-2630 v4 @ 2.20GHz CPU with 64 GB
of RAM. Each server ran in a docker container. Both the host
server and the docker containers ran on Debian 10.We imple-
mented Weak & Strong FedORAM in python. The network
communication is handled by aiohttp4 while cryptographic
functions were provided by cryptography.5 As a reference
non-ORAM server, we implemented a simple IM federated
system to compare against Weak & Strong FedORAM. For
all schemes, the sent messages was always a 1KB random
message. Due to the requirement of Strong FedORAM to
have the number of servers as a function of L, the depth
of the federation tree, all the different sizes of federations
considered always followed the function (s = 2L − 1).

B. FedORAM PERFORMANCE
1) RESPONSE TIME
Figure 5 plots the results for average response time in sec-
onds of at least 100 messages over an increasing number
of federation servers. There are 5 users per server and the
number of servers ranges from 3 to 31. Although, we only
consider relatively small sized federations, it remains the
first oblivious federation in the literature. The scalability of
ORAM schemes is a hot topic in the literature; one of the
goals of the literature is to make an ORAM construction less
impractical. Not to provide similar speed as a non-ORAM
system. Therefore, with the response time from Figure 5,
we show that oblivious federated architectures are good can-
didates to build an ORAM scheme. However, FedORAM
does not aim to be as scalable as a classic IM system. Indeed,

4https://github.com/aio-libs/aiohttp
5https://cryptography.io

FIGURE 5. Average response time.

due to the overhead required to ensure obliviousness, that is
not currently possible.

The traditional IM application without ORAM, depicted
by the green line, has an almost constant response time of
approximately 0.023 second. Our Weak FedORAM scheme,
depicted by the orange line, has a response time of 1.5 sec-
onds with a 3 server federation, whichmarginally increases as
the number of servers increase. The response time for Weak
FedORAM is higher than the non-ORAM system, which is to
be expected, but it remains at a practical level while affording
greater privacy preservation for the users.

The response time for our Strong FedORAM system is
depicted by the blue line; it is evident that this approach has
a much greater overhead than the other two models, which
increases significantly as the number of servers in the federa-
tion increases. The response time for a 3-server federation is
1.8s and increases linearly.

To summarise, the response time for bothWeak and Strong
ORAM is dependant on the number of servers in the federa-
tion. However, due to the construction of Strong FedORAM,
we see a much larger impact when additional servers are
added. The response times of between 1.5 and 3.5 seconds,
while higher than traditional non-ORAM applications, can be
considered reasonable in the context of highly sensitive com-
munications and the additional privacy preservation afforded
by the schemes.

2) COMMUNICATION COST
Figure 6 plots the average network usage in MB for one mes-
sage sent from one sender to one receiver over an increasing
federation size. An average was taken from 100 messages.

The green line depicts the number of MBs that are sent per
message using the traditional non-ORAM IM scheme. Each
message is very small and consumes about 6KB of network
capacity, which remains constant when the federation size
increases.

Weak and Strong FedORAM have a similar average net-
work consumption per message. They are depicted by the
orange and blue lines respectively. Both schemes incur a large
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FIGURE 6. Communication cost.

FIGURE 7. Federation at scale: response time.

network overhead per message due to the classic ORAM
read operation on the destination server. Moreover, Strong
FedORAM has a slightly higher usage due to its tree-based
structure, where the number of messages sent depends on the
size of the ORAM tree.

3) SCALING UP
Figure 7 plots the average response time per message in a
15-server federation as the number of users increase from 2 to
500.

The average response time for Weak FedORAM is
depicted by the orange line, which shows that the response
time per message increases as the number of concurrent users
in the federation increases. The response time is approxi-
mately 1.6 seconds for 20 users and increases linearly.

The average response time per message for Strong FedO-
RAM is depicted by the blue line, which also shows an
increase in response time as more users are added to the
federation. The average response time is 2.75 for 20 users

TABLE 3. FedORAM vs Square Root ORAM.

and is logarithmic. This is mostly due to the bottleneck that
is created by the root server and the tree structure.

These results are symptomatic of the inherent scalability
issues that exist in ORAM schemes, which remain a limita-
tion and a barrier to their widespread use.

4) COMPARISON WITH EXISTING ORAM
Table 3 presents the average response time when a message
is sent between 2 users in the different ORAM IM applica-
tions: our two schemes Strong and Weak FedORAM and a
reference scheme from the literature. Note, Strong and Weak
FedORAM are the first federated schemes to be proposed in
the literature and therefore it is difficult to perform a com-
pletely fair comparison. The results presented are the aver-
age response times calculated based on a 7-server federation
for FedORAM and the 2-server construction of SqrORAM,
where 100 messages were sent from one user to another user.
Both Weak and Strong FedORAM out perform SqrORAM,
with faster response times. This is due to the costly secure
multi-party computation used in the SqrORAM scheme.

5) SCHEME COMPLEXITY
Table 4 summarises our contributions and compares our
scheme with some of the state-of-the-art ORAM construc-
tions. Where n is the number of message stored on a given
server while N is the number of message stored on the full
oblivious scheme. Because FedORAM is based on PathO-
RAM for its client to server connection, they share the same
complexity in terms of client to server bandwidth and client
storage. The communications inside of the federation are
linear as well as the server computation.

TABLE 4. ORAM scheme complexity comparison.

VI. CONCLUSION
The objective of this research was to design a practical pri-
vacy preserving IM application, and in doing so to investi-
gate the trade-off between security and performance in this
applied ORAM context. That is, to assess whether it was
possible to create a faster model than a classic ORAM system
at the expense of revealing more (but not an exploitable
amount) metadata than a classic ORAM system. The appli-
cation selected for this work was an IM system, where we
considered only one-to-one user communication.
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We designed and implemented two new federated ORAM
models: aWeak FedORAM that was less secure but faster and
Strong FedORAM that was more secure but slower. Rigorous
experiments were conducted to compare the performance
and security of both new schemes against each other and
against several reference models from the literature. Our
results show that both FedORAM schemes can support rea-
sonable response times, and can be considered more practical
for use in real-world IM applications than classic ORAM
schemes. Weak FedORAM leaks slightly more metadata than
Strong FedORAM, but it has a faster average response time
of approx. 1.5 seconds. Strong FedORAM has an average
response time of 1.8 seconds in a small federation, but it is
more sensitive to the federation size and suffers from delay
as the number of servers in the federation increases.

One limitation of our proposal is that we only consider
one-to-one conversations in our experiments. While it would
be interesting to look at group chats, it is worth noting that
two party chats are the most common use case within an
IM context. While our federated schemes offer significant
benefits in terms of performance, ORAM suffers from scal-
ability issues and our system’s response time grows as the
number of users on the system increases, Strong FedORAM is
affected more severely due to its construction but it provides
full obliviousness on the federation.

Improving the scalibility of our federated schemes is an
item for future work. Finally, we would also like to consider
a scenario where there is an active attack between colluding
servers in the federation.
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