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Medical Stents: State of the Art and Future Directions

Oxygen Mass Transport in Stented Coronary Arteries
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Abstract—Oxygen deficiency, known as hypoxia, in arterial
walls has been linked to increased intimal hyperplasia, which is
themain adverse biological process causing in-stent restenosis.
Stent implantation has significant effects on the oxygen
transport into the arterial wall. Elucidating these effects is
critical to optimizing future stent designs. In this study the
most advanced oxygen transport model developed to date was
assessed in two test cases and used to compare three coronary
stent designs. Additionally, the predicted results from four
simplified blood oxygen transport models are compared in the
two test cases. The advanced model showed good agreement
with experimental measurements within the mass-transfer
boundary layer and at the luminal surface; however, more
work is needed in predicting the oxygen transport within the
arterial wall. Simplifying the oxygen transport model within
the blood flow produces significant errors in predicting the
oxygen transport in arteries. This study can be used as a guide
for all future numerical studies in this area and the advanced
model could provide a powerful tool in aiding design of stents
and other cardiovascular devices.

Keywords—Coronary artery disease, Stents, In-stent resteno-

sis, Hypoxia, Computational fluid dynamics.

INTRODUCTION

Coronary artery disease is characterized by the
development of atherosclerotic lesions within the walls of
coronary arteries. Percutaneous coronary intervention is
used throughout the world as a fast and effective treat-
ment for coronary artery disease. Typically, the proce-
dure involves the expansion of a stent at a lesion site by a
balloon-tipped catheter, thereby dilating a previously
narrowed artery. In some cases re-narrowing of the ar-

tery, known as in-stent restenosis (ISR), occurs and is
primarily caused by the development of intimal hyper-
plasia (IH). Drug eluting stents (DESs) have reduced the
frequency of ISR to single digit percentages; however, by
affecting the natural biological healing processes within
the arterial wall, DESs mask the underlying adverse
consequences of the stenting procedure which can lead to
late-stent thrombosis.1 The biological processes that can
result in ISR are instigated by the effects of stent
implantation and include structural damage to the arte-
rial wall, augmentation of the local haemodynamic
environment and the presence of a foreign body.20 In
terms of the augmentation of the haemodynamic envi-
ronment, stenting produces a predominantly beneficial
effect, i.e., restoration of required blood flow to down-
stream vasculature; however, locally within the stented
region, the haemodynamics impact the natural healing
processes within the arterial wall. This local augmenta-
tion of the haemodynamic environment due to the pres-
ence of a stent in turn affects the oxygen flux into the
arterial wall which can result in a deficiency of oxygen,
known as hypoxia, in some regions. Hypoxia has been
associated with increased adventitial vasa vasorum6 and
IH in animal studies.24,26 Therefore, given that hypoxia
and increased IH may result in ISR, investigation of the
local oxygen transport within stented arterymodels using
computational fluid dynamics (CFD) is important in
order to elucidate the effects of stenting on the arterial
wall cellular components and also to aid in the design of
future coronary stents.

Hypoxia is known to cause atherosclerosis in large
arteries.29 Because of this, the majority of numerical
studies of oxygen transport in three-dimensional (3D)
arteries have been in relation to arteries with no im-
planted device. Many of these numerical studies fall
into the category of wall-free models where only the
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oxygen transport in the blood is modeled and a con-
stant value of oxygen concentration is specified on the
luminal surface.7 Another category of oxygen trans-
port studies employs fully coupled blood and arterial
wall models, where diffusion and consumption of
oxygen in the arterial wall are modeled, and a constant
flux or concentration boundary condition is specified
on the media/adventitia boundary interface.2,28 These
models offer the advantage of a more realistic repre-
sentation of the oxygen transport conditions; however,
in these simulations the arterial wall was modeled as
homogeneous which is not physiologically correct. In
contrast, Richardson modeled the oxygen transport
within heterogeneous coronary arterial walls only, with
varying parameters according to age and stenosis,
while ignoring the flow within the lumen.23 To date,
the computational modeling of oxygen transport in
stented coronary arteries has only been undertaken by
Caputo et al.2 Their study allowed direct comparison
of in silico models, predicting the haemodynamic and
oxygen transport conditions, with observations of
neointimal hyperplasia obtained from the porcine
coronary artery. This study concluded that stent
implantation does significantly alter the local haemo-
dynamic conditions and the oxygen transfer; however,
because of limitations in the oxygen transport model
adopted, it is possible that the extent of the hypoxic
regions in the arterial wall was under-predicted.

Oxygen is carried in the blood in two forms: free oxygen
dissolved in the plasma and oxygen reversibly-bound to
hemoglobin, known as oxyhemoglobin, contained within
red blood cells (RBCs). RBCs are subjected to a shear-
dependent dispersion within blood flow that accordingly
affects theoxygen transportwithin the blood.5,8The above
studies ignore the transportation of the bound oxygen in
their models. The limitation of ignoring the bound oxygen
was analyzed in Moore and Ethier’s 2D study of oxygen
transport in large arteries.19 They made the important
conclusion that ignoring the bound oxygen produces large
errors in oxygen transport predictions.

In this work oxygen transport within stented coro-
nary arteries was investigated using the most advanced
blood oxygen transport model presented to date and,
significantly, includes the bound oxygen. Themodel was
first evaluated using two test cases and subsequently
used to assess the arterial wall oxygenation in three
realistically-deformed stented arteries. Additionally, in
two test cases, four simplified oxygen transport models
are compared with the most advanced model in order to
assess their limitations. The results of this study give
strong evidence that simplifying the blood oxygen
transport model has significant effects on predicting the
resulting oxygen tension within the arterial wall and,
critically, should provide a comprehensive framework
for all future oxygenmodeling studies in human arteries.

METHODOLOGY

Background

Blood consists of liquid plasma in which three types
of cellular elements are suspended: RBCs, white blood
cells and platelets. RBCs constitute about 45%, by
volume, of whole blood and are the main carriers of
oxygen. The coronary arteries act as a conduit for the
blood to deliver oxygen and nutrients to the heart
muscle downstream. Oxygen is critical for the main-
tenance of arterial wall physiology and is supplied to
the cells within the arterial wall from both the luminal
blood and blood passing through vasa vasorum in the
adventitia. Oxygen is transported in blood as free
oxygen dissolved in plasma and oxygen reversibly-
bound to hemoglobin within the RBCs.

Blood Oxygen Transport

The concentration of free oxygen dissolved in plasma
is quantified by the oxygen tension, i.e. the partial
pressure of oxygen in plasma. The oxygen tension is
related to the free oxygen concentration byHenry’s law:

PO2 ¼
C

a
ð1Þ

where PO2 is the oxygen tension, a is the solubility of
oxygen in plasma, and C represents the concentration
of free oxygen in plasma. The amount of bound oxy-
gen contained in the RBCs in the form of oxyhe-
moglobin is proportional to the PO2 within the
surrounding plasma and can be approximated using
the Hill equation (oxygen dissociation curve, as shown
in Fig. 1a):

S ¼ POn
2

POn
2 þ POn

2;50

ð2Þ

where S is the ratio of oxyhemoglobin to total
hemoglobin in the RBCs (commonly expressed as a
percentage), PO2,50 is the PO2 value at which the
hemoglobin is 50% saturated and n is the Hill parame-
ter. For the purpose of modeling oxygen transport in
blood, difficulty arises when the bound oxygen is in-
cluded in the model because of the non-linear nature of
the Hill equation. When included, the transportation of
both free oxygen and bound oxygen in the blood can be
modeled using two advection–diffusion equations given
as Eqs. (3) and (4) respectively:

a
DPO2

Dt
¼ ar: DbrPO2ð Þ þ r ð3Þ

Hb½ � DS
Dt

¼ Hb½ �r: DcrSð Þ � r ð4Þ
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where D=Dt is the substantial derivative, Db is the
diffusivity of free oxygen in the blood, r is the rate of
release of oxygen from the hemoglobin, [Hb] is the
total oxygen carrying capacity of hemoglobin in blood,
and Dc is the diffusivity of oxyhemoglobin in blood.
[Hb] is assumed to be constant, thus ignoring the
plasma skimming layer which has little effect on the
oxygen transport.19 Oxyhemoglobin is encapsulated in
RBCs and therefore the Dc value is interpreted as the
shear-augmented dispersion coefficient of RBCs in
blood flow. In previous studies this value is taken as

1:5� 10�11 m2/s,19 which is the dispersion coefficient
for red tracer cells in a straight glass tube at an
approximate shear rate of 20 s21.3 Higher shear rates
are encountered in carotid and coronary arteries and
therefore, a variable dispersion coefficient was em-
ployed in this work. This was extrapolated from three
separate studies by Goldsmith, Goldsmith and Mar-
low, and Cha and Beissinger as described in Eqs. (5)
and (6) with the resultant Dc plotted against the shear
rate shown in Fig. 1b:5,10,11

For 0 � _c � 100s�1 : Dc ¼ 5:00� 10�12 þ 5:00� 10�13 _c

ð5Þ

For _c>100s�1 : Dc ¼ 3:68� 10�11 þ 1:96� 10�13 _c

ð6Þ

where _c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D : D
p

is the local shear rate and D is the
strain rate tensor. The two constants used in Eq. (5)
are deduced from RBC ghost cell experiments by
Goldsmith, and Goldsmith and Marlow between
average shear rates of 2–20 s21 at haematocrits of 39
and 40% respectively.10,11 The two constants used in
Eq. (6) were deduced from the shear-induced particle
diffusivity calculated by Cha and Beissinger at shear
rates between 200 and 1000 s21 at a RBC ghost vol-
ume fraction of 0.45 corresponding to the average
haematocrit for a human male.5

To reduce complexity when performing numerical
simulations the two advection–diffusion equations gi-
ven above can be added together to form a single
equation, as described in Moore and Ethier19:

1þ Hb½ �
a

dS

dPO2

� �

DPO2

Dt
¼

r: Db 1þ Hb½ �
a

Dc

Db

dS

dPO2

� �� �

rPO2

� �

ð7Þ

where the term dS=dPO2, as shown in Fig. 1c, is the
slope of the oxygen dissociation curve given by:

dS

dPO2
¼ 1

POn
2;50

nPOn�1
2

1þ PO2
�

PO2;50

� 	nh i2
: ð8Þ

FIGURE 1. (a) Oxygen dissociation curve for n 5 2.7, (b) Dc

as extrapolated from experimental studies for the shear rates
ranging from 1 to 500 s21, and (c) the gradient, dS=dPO2, of
the oxygen dissociation curve plotted against PO2.
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Given the shape of the oxygen dissociation curve,
non-linearity enters the oxygen transport equation
through this term. In order to implement Eq. (7) in the
commercially-available CFD software package used
here it must be rearranged into the form given in
Eq. (9):

DPO2

Dt
¼ r: D0rPO2½ � þ Sourcef g ð9Þ

where the diffusivity coefficient D’ and the source term
Sourcef g are given in Eqs. (10) and (11) respectively:

D0 ¼ Db 1þ Hb½ �
a

Dc

Db

dS

dPO2

� �


1þ Hb½ �
a

dS

dPO2

� �� �

ð10Þ

Source ¼ Db 1þ Hb½ �
a

Dc

Db

dS

dPO2

� �


1þ Hb½ �
a

dS

dPO2

� �2
" #

rPO2:
Hb½ �
a

r dS

dPO2

� �

ð11Þ

Equations (9)–(11) represent the complete non-lin-
ear blood oxygen transport model, referred to herein as
Model 1, which incorporates both the free oxygen and
bound oxygen. Previous studies have used simpler
models in order to reduce computational expense.
Firstly, the non-linearity can be removed by replacing

dS=dPO2 with a constant mean value of dS=dPO2

calculated using Eq. (12)19:

dS

dPO2
¼ nS

PO2

� �

1� S
� �

ð12Þ

where PO2 is a mean reference value fixed at 75 mmHg
and replaces PO2 in the Hill equation in order to

evaluate �S, as shown in Eq. (13):

S ¼ PO2
n

PO2
n þ POn

2;50

ð13Þ

Secondly, the dispersion of the RBCs can be ignored
by setting Dc ¼ 0, and finally, the bound oxygen can be
completely disregarded by setting Hb½ � ¼ 0.

Similar to the study by Moore and Ethier19 the
following five models were compared:

Model 1 Both the free and bound oxygen are
modeled and the non-linearity of the Hill equa-
tion is retained.
Model 2 Both the free and bound oxygen are
modeled and the non-linear element, dS=dPO2, is

replaced with the constant value dS=dPO2 eval-
uated using Eq. (12).
Model 3 Both the free and bound oxygen are
modeled and the non-linearity of the Hill equa-
tion is retained, but Dc ¼ 0, thus neglecting the
shear-augmented dispersion of RBCs.
Model 4 Both the free and bound oxygen are
modeled and the non-linear element, dS=dPO2, is
replaced with the constant value dS=dPO2, and
Dc ¼ 0.
Model 5 Only the free oxygen is modeled, i.e.
Hb½ �¼ 0.

Arterial Wall Oxygen Transport

The arterial wall consists of three layers: the intima,
media and adventitia. In this study only the two inner
layers, i.e. the intima and media, are included in the
arterial wall models with distinct transport parameters
assigned to each based on a study by Richardson.23 In
this study, the convection by the interstitial fluid in the
arterial wall is ignored as the convective velocity of
interstitial fluid is two orders of magnitude lower than
the diffusive velocity.19 It is also assumed that the
endothelial cells lining the artery offer no resistance to
the oxygen transport,27 and as oxygen diffuses through
the arterial wall it is consumed by the cells within.29

The consumption rate of oxygen within the wall can be
affected by a number of different variables, e.g.
thickness of arterial wall, presence of inflammation/
atherosclerotic plaque, subject species and age.23 For
the purposes of this study the Michaelis–Menten
Kinetics model was employed to model the oxygen
consumption within the arterial wall:

M ¼ M0
PO2

PO2 þ PO2;M
ð14Þ

where M is the consumption rate of oxygen, M0 is the
maximum consumption rate and PO2,M is the value of
PO2 at which the rate of reaction is half-maximal.22

The resultant diffusion equation employed for the
prediction of the transport of oxygen in the arterial
wall is:

dPO2

dt
¼ r: DTrPO2ð Þ �M

aT
ð15Þ

where DT is the diffusivity of oxygen and aT is the
solubility of oxygen in the arterial wall tissue. Unless
otherwise stated the values listed in Table 1 were used
for the parameters in all simulations and the boundary
conditions are given at the end of each test case
description.
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Test Cases

To compare the five different blood oxygen trans-
port models two separate test cases were devised. Test
Case 1 compares the transarterial wall PO2 profiles
predicted in an idealized carotid bifurcation using the
fives models with measurements recorded by Santilli
et al. in dog carotid bifurcations.25 In Test Case 2 the
maximum and minimum transarterial wall PO2 profiles
in a stented coronary artery predicted using the five
models were compared with measurements from a
separate study by Santilli et al. In this separate study
transarterial wall PO2 profile measurements were taken
within rabbit aortae, of similar size to human coronary
arteries, which had been implanted with 3 mm stents.26

Additionally, the PO2 and the local Sherwood number,
Sh, on the stented artery luminal surface predicted by
each model were compared, along with the percentage
volume of the arterial wall exposed to low and hypoxic
levels of PO2. Finally, in Test Case 3 the most ad-
vanced model, Model 1, was applied to the three
sample stents to demonstrate how different stent de-
signs can impact the oxygen transport within a stented
coronary artery.

Test Case 1: Carotid Bifurcation

Santilli et al. used an oxygen microelectrode to
measure the transarterial wall PO2 gradients in 11 dog
carotid bifurcations.25 Although these measurements
from Santilli et al. are from dog arteries, they are used
for comparison with the predicted results for a human
with the distance through the arterial wall scaled
according to the thickness of the human artery. The
five different models were used to simulate the oxygen
transport in an idealized carotid bifurcation, shown in
Fig. 2, adapted from Tada with the addition of a
heterogeneous arterial wall.16,17,28 The geometry, con-
structed in Rhinoceros 3D (McNeel, Indianapolis, IN,
USA), comprised of the common carotid artery (CCA)
which bifurcates into the internal carotid artery (ICA)
and the external carotid artery (ECA). To reduce
computational expense the geometry was halved along

the centreline of the carotid arteries, thus ignoring the
secondary curvature of the ICA.28 The thickness of the
arterial wall in the carotid arteries, particularly the
intima in the carotid sinus, has been shown to vary
with location in human subjects.16 Accordingly, a
variable intimal thickness ranging from 0.10 to
0.63 mm was used, as shown in Fig. 2, which corre-
sponds to the mean values of measurements from bi-
planar angiographs from 57 patients as listed by Ku
et al.16 The media was assumed not to experience any
thickening and was assigned a constant thickness of
0.60 mm. The predicted and measured transarterial
wall PO2 profiles were then compared at three of the
six measurement locations as outlined by Santilli

FIGURE 2. (a) Plan of the carotid bifurcation model with (b)
cross-section X–X¢ and (c) cross-section Y–Y¢. The intima
thickness is approximately 0.12 mm throughout the common
carotid artery (CCA) and the internal carotid artery (ICA), ex-
cept in the outer wall of the carotid sinus and proximal to the
ICA where it gradually increases to a maximum of 0.63 mm in
accordance with Ku et al.16 This can be seen clearly in the
cross-section X–X¢.

TABLE 1. List of parameter values used for the blood and arterial wall oxygen transport model.

Symbol Units Blood Intima Media Reference

a mlO2
=mlblood=mmHg 3.0 9 1025 – – Pittman21

Db m2=s 1.2 9 1029 – – Moore and Ethier19

[Hb] ml O2=ml blood 0.2 – – Pittman21

PO2,50 mmHg 26 – – Ethier19

n – 2.7 – – Hill12

DT m2/s – 0.9 9 1029 1.05 9 1029 Richardson23

aT mlO2
=mltissue=mmHg – 2.4 9 1025 2.4 9 1025 Richardson23

M0 mlO2
=mltissue=s – 2.1 9 1025 1.21 9 1025 Richardson23

PO2,M mmHg – 1 1 Goldman9
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et al.25 One of the benefits of these locations numbered
1–3, in terms of assessing the blood oxygen transport
models, is that they cover three distinct flow patterns:
straight shear flow parallel to a wall, low shear recir-
culation flow and high shear flow directed towards the
wall, respectively.

Boundary Conditions
A mass flow rate boundary condition of 0.00375 kg/s
was placed at the inlet of the CCA which corresponds
to the averaged mass flow rate over the cardiac cycle,
divided by two for the half geometry, as taken from a
study by Tada.28 Additionally, at the inlet
PO2,in = 100 mmHg, which corresponds to the aver-
age luminal value recorded by Santilli et al.,25 and also
the typical arterial value found in human arteries.22 At
both outlets PO2,out = 0 mmHg and an entrainment
boundary condition was imposed with a zero relative
pressure. The mass flow rates at the two outlets were
compared with the calculated transient mass flow rates
from Tada and found a maximum difference of 5.68%
in the averaged flow rate over the cardiac cycle at ECA
outlet. At the external wall boundary, which corre-
sponds to the medial/adventitia interface, a constant
PO2 = 75 mmHg was imposed, which was the aver-
aged PO2 value recorded at the adventitia by Santilli
et al. At the arterial wall surfaces located at the inlet
and outlets a zero flux PO2 boundary condition was
imposed.

Test Case 2 and Test Case 3: Stented Coronary Artery

Three different stent designs, shown in Fig. 3, were
investigated in this study and are referred to as Stent

A, Stent B and Stent C with their differing geometrical
properties listed in Table 2.18 Stent A resembles the
BX Velocity stent (Cordis of Johnson & Johnson,
Fremont, CA, USA). Stent B resembles the S7 AVE
stent (Medtronic, Fridley, MN, USA) and Stent C
resembles the thick strut Multilink RX Ultra stent
(Abbott Laboratories, North Chicago, IL, USA). Only
Stent A was used for comparison of the five different
blood oxygen transport models in Test Case 2. All
three stents were compared using the most advanced
model, i.e. Model 1, in Test Case 3 for the purpose of
demonstrating the effects of different stent geometries
on the PO2 values within the arterial wall. The realis-
tically-deformed stented artery geometries were
obtained from non-linear finite element analyzes
(FEA) carried out using ABAQUS (Dassault Sys-
tèmes, Providence, RI, USA). These structural ana-
lyzes consisted of the expansion of the sample stents
using a realistic model of a tri-folded balloon-tipped
catheter within an idealized coronary artery as shown
in Fig. 4. The thicknesses of the intima and media were
0.24 and 0.32 mm, respectively, as adopted from
Holzapfel et al.13 The details of these analyzes are
discussed elsewhere.18 Figure 5 shows the surface mesh
within the stented region for all three stents to give an
indication of the mesh density employed here in the
CFD-oxygen transport analyzes.

Boundary Conditions
For the stented artery models the following boundary
conditions were implemented. At the inlet of the fluid
domain a fully developed Hagen-Poiseuille velocity
profile was imposed with Vmean = 0.2313 m/s and
PO2,in = 100 mmHg, which is normal arterial blood

FIGURE 3. The three stents analyzed. The final deformed configuration is shown.

TABLE 2. Geometrical properties of the three investigated stents.18

Stent A B C

Stent configuration Closed-cell Open-cell Open-cell

Strut thickness 0.14 mm 0.10 mm 0.13 mm

Strut width 0.13 mm 0.10 mm 0.10 mm

Link configuration Peak-to-peak Peak-to-peak Peak-to-valley

Link type Flexible Non-flexible Non-flexible

Link shape N-shaped Straight Straight

Link width 0.10 mm 0.08 mm 0.10 mm
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PO2.
22 At the outlet an entrainment boundary condi-

tion with a zero relative pressure was set with
PO2,out = 0 mmHg. PO2 was free to transfer across the
luminal/arterial wall surface and on the stent surface a
PO2 zero-flux condition was imposed. On the media/
adventitia interface surface PO2 = 45 mmHg, as used
by Richardson,23 and on the wall surfaces located at
the inlet and outlet a zero flux boundary condition was
imposed.

Discretisation of Computational Domains

A structured mesh topology was used to discretise
the computational domain for Test Case 1, while an
unstructured mesh topology was used for Test Case 2.
These were generated using ANSYS ICEM meshing
software (ANSYS Inc., Canonsburg, PA, USA). The
mesh for Test Case 1 was comprised of hexahedral
elements and the mesh for Test Cases 2 was comprised
of tetrahedral and prism elements. Following mesh
convergence studies for each test case, the resultant
meshes had total node counts of 1566030 and 2639580
for Test Cases 1 and 2 respectively. The meshing
parameters applied in Test Case 2 were used for each
of the three sample stents analyzed in Test Case 3.

Modeling the Blood Flow

The meshes were imported into the CFD commer-
cial software ANSYS CFX 15 (ANSYS Inc.,
Canonsburg, PA, USA) where the Navier–Stokes
equations were solved to predict the blood flow within
the luminal domain. All simulations were steady state
as pulsatility has been shown to have a minimal effect
on oxygen transport to the arterial wall.15 The density
of blood was taken as 1060 kg/m3 and the non-New-
tonian nature of blood was modeled using the non-
Newtonian Bird–Carreau model with assigned values
based on experimental data from Jung et al.14 The
momentum and continuity equations were solved with
a high resolution advection scheme and the conver-
gence criteria were set to a maximum residual tolerance

of 1 9 1026. All simulations were carried out on the
Irish Centre for High-End Computing (ICHEC) Fionn
supercomputer using a maximum of five nodes, each
with 2 9 12 2.4 GHz Intel Ivy Bridge core processors
and 64 GB of RAM.

Modeling the Oxygen Transport

The PO2 in the blood and the arterial wall is rep-
resented in ANSYS CFX 15 as an additional variable.
Additional variables are defined in ANSYS CFX as
non-reacting scalar components that are transported
through a flow field but do not affect the momentum
or continuity equations. The transport of the PO2

within the blood flow is governed by Eq. (9) with flow
variables affecting the transport through theDPO2=Dt
term. The diffusivity coefficient, D’, is represented by
Eq. (10) and the source term is controlled by Eq. (11).
Both D’ and the source term are evaluated explicitly,
based on the previous time step value for PO2, and a
time step independence study found no difference in
results at lower time step values. The PO2 is trans-
ported via diffusion only in the arterial wall with a
fixed diffusivity coefficient, DT, and consumption
modeled via a source term. The advection/diffusion
equation for PO2 in the lumen domain was solved with
a high resolution advection scheme, in line with rec-
ommendations by Carroll et al.,4 and the convergence
criteria were set to a maximum residual tolerance of
1 9 1026 in all domains.

Variable of Interest: Sherwood Number

Sh is a dimensionless mass-transfer coefficient and
was calculated using the predicted results in Test Cases
2 and 3 along the luminal surface using:

Sh ¼ �
Dia dPO2=dn

� 	

PO2;in � PO2;w

� � ð16Þ

where Dia is the diameter of the artery, dPO2/dn is the
gradient of PO2 normal to the wall, PO2,in is the PO2

FIGURE 4. FEA-predicted deployment of Stent A using a tri-folded balloon-tipped catheter within an idealized coronary artery
with a heterogeneous multi-layered arterial wall incorporating an intima, media and adventitia.18 (a) Initial configuration with a
pressure load 5 0.00 MPa (b) expansion of balloon with a pressure load 5 0.50 MPa, (c) maximum expansion with a pressure
load 5 1.10 MPa, and (d) the final deformed configuration with a pressure load 5 20.01 MPa.
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set at the inlet and PO2,w is the PO2 predicted at the
arterial wall luminal surface. Low Sh highlights
potential areas on the luminal surface where the
underlining cells may be in danger of hypoxia. To
establish what constitutes low Sh the Damkholer
number (dimensionless reaction rate coefficient) is first
calculated using:

Da ¼ M0TDia

aTDTPO2;in
ð17Þ

where T is the arterial wall thickness. Using the as-
signed parameters for the coronary artery models
presented here the calculated Da � 17. When
Sh � Da the supply exceeds the demand within the
arterial wall; however, as Sh ! Da the PO2 levels
become increasingly dependent upon the blood oxygen
transport.29 Therefore, as the Sh drops towards this
calculated value of Da the PO2 levels within the arterial
wall will decrease to possible hypoxic levels.

RESULTS AND DISCUSSION

Test Case 1

The results of each model at all three locations
within the human carotid bifurcation are presented in
Fig. 6 along with experimental values recorded by
Santilli et al. in dog carotid bifurcations. Models 1–4,
which include the bound oxygen, predict a steep gra-

FIGURE 5. Surface mesh used for the stent and luminal
surface for the three stents analyzed.
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dient within the mass-transfer boundary layer at
Locations 1 and 2 that is also observed between the
luminal and first arterial wall PO2 value in the exper-
imental results from Santilli et al. Model 5, which does
not include the bound oxygen fails to predict this steep
gradient. The reasoning for this steep gradient is pre-
sented below.

Previous studies have explained this steep gradient
in PO2 between the lumen and arterial wall as due to
high oxygen consumption by the endothelium,31 and
this is currently an unresolved controversy in this field
because it is not corroborated by in vitro studies. This
controversy is covered in depth by both Vadapalli et al.
and Tsai et al.30,32 In the results presented here, pre-
dictions by Model 1 show that the steep gradient seen
experimentally could be due to the complex balance
between the free and bound oxygen contained within
the mass-transfer boundary layer, and the consump-
tion within the arterial wall. This could be a very

important consideration for future oxygen transport
studies.

As an example, the PO2, dS=dPO2, D’ and S values
for each model are shown in Fig. 7 for the boundary
layer at Location 1. Model 1 and 3 include the non-
constant gradient of the dissociation curve, dS=dPO2,
in the calculation of D¢. As shown in Fig. 7b, dS=dPO2,
increases rapidly within the boundary layer which
numerically results in a decreased D’ within this region
for both Model 1 and 3. What this means physiologi-
cally is that there are two exchanges taking place: the
exchange of oxygen between the blood and the arterial
wall, and the exchange of oxygen between the RBCs
and the plasma; i.e., the bound and free oxygen. The
free oxygen only constitutes 1.5% of the total oxygen
contained within the blood22 and therefore, the bound
oxygen can have a significant effect on the exchange of
oxygen between the blood and the wall. This is exem-
plified by the difference in PO2 between the models
that include the bound oxygen, Models 1–4, and the
one that does not, Model 5. Additionally, for Model 3
where the dispersion of the RBCs, which generally
increases the oxygen flux, is ignored (Dc = 0) and the
non-linear relationship between the free and bound
oxygen there is a significant drop in the predicted PO2

levels at the luminal surface.

FIGURE 7. Predicted (a) PO2, (b) dS=dPO2,(c) D¢ and (d) S values along a line within the blood flow from a radius of 2.9 mm to the
luminal surface at a radius of 3.0 mm at Location 1 for Test Case 1.

FIGURE 6. Comparison of predicted and measured transar-
terial PO2 profiles at (a) Location 1, (b) Location 2, and (c)
Location 3. Measurements adapted from Santilli et al. are
shown for comparison and the distances through the arterial
wall for these have been scaled to the size of a human carotid
artery. The luminal surface is shown as a vertical dashed-
dotted line.

b
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In terms of the PO2 transarterial profiles in the
arterial wall for Model 1 at Location 1 the predicted
PO2 values show reasonable agreement with the
experimental results in capturing the overall trend. At

Location 2 there is a considerable difference. There are
several reasons for this, all stemming from the fact that
in humans this location is commonly a site of intimal
thickening, caused by atherosclerotic plaque build-up,
as included here. Conversely, in dogs, as studied by
Santilli et al., the wall thicknesses are actually thinner
at this location compared with Location 1
(154.0 ± 4 lm at Location 2 vs. 203.7 ± 5.5 lm at
Location 1).25 The intimal thickening in humans takes
place over an extended period of time and would result
in the penetration of vasa vasorum into the medial
layer which increases the oxygen supply to the cells at
this site.33 What is seen in the PO2 predictions pre-
sented here for Location 2 is the consequence of the
thickening without penetration of the vasa vasorum.
Additionally, as described by Richardson, the fat
content and stage of atherosclerotic plaque build-up
within the intima affects both the consumption rate
and the solubility of oxygen within the arterial wall.23

Therefore, to properly predict the PO2 profile at this
location more information is needed on the effects of
plaque build-up on the oxygen diffusion and con-
sumption. Lastly, at Location 3 the predicted PO2

value just within the arterial wall matches well with the
experimental results from Santilli et al.; however, the
PO2 values across the arterial wall differ with those
recorded experimentally, which again would be due to
differences in consumption, diffusion and solubility of
the oxygen at this location.

The predicted results using the other four models
show a broad variation in comparison with Model 1.
At Locations 1 and 2 Model 2 gives a higher luminal
surface value than Model 1. Linearising the dS/dPO2

term generally produces a higher D¢ value within the
mass-transfer boundary layer whose effect is to allow
more oxygen to diffuse through to the luminal surface
and is most pronounced at Location 1 for Model 2. At
Location 3, where the flow is directed towards the
arterial wall, the PO2 value within the boundary layer

is close to the value taken for PO2, which explains why
there is relatively little difference between Models 1
and 2 at this location. Model 3 which has the lowest D¢
values, consistently under-predicts the PO2 values
across the arterial wall at all locations. Model 5 with a
relatively high D¢ value is shown to over-predict the
PO2 at all locations.

Test Case 2

Figures 8a and 8b show the maximum and mini-
mum PO2 transarterial profile plots within the stented
domain for all five models which were taken at the
position of maximum and minimum luminal surface
values. For comparison the measurements by Santilli

FIGURE 8. (a) Maximum and (b) minimum transarterial PO2

profiles for each model applied to the deformed coronary ar-
tery geometry virtually implanted with Stent A. Measurements
adapted from Santilli et al. are shown for comparison and the
distances through the arterial wall for these have been scaled
to the size of a human coronary artery.26 The minimum PO2

luminal surface value for each model is located within a
recirculation zone immediately downstream of a stent strut
which produces a severe drop and variable slope in PO2

profile in (b). The luminal surface is shown as a vertical da-
shed-dotted line.
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et al. from rabbit aortic arteries on day 1 following
stent implantation with 3 mm internal-diameter stents
are also shown.26 The stents used were manufactured
by Cordis, although it was not stated specifically that
the BX Velocity stent was used. The balloon used was
a 3 mm outer diameter balloon, which was also used in
the FEA simulations presented here. In their study, the
exact measurement location within the stented domain
is not provided and therefore, the maximum and
minimum profiles for each model are presented here
alongside the experimental results. Assuming the
experimental results are taken as being reflective of the
values present in a similar size human coronary artery,
as modeled here, then Model 1 is again shown to
produce the steep PO2 gradient and is within the range
of luminal surface PO2 values observed experimentally.
Differences in the PO2 transarterial profile could be
attributed to differences in arterial wall properties of
different species.

Contour plots of the PO2 and Sh are shown in
Figs. 9a and 9b respectively. When analyzed in con-
junction with the line plots along the axial cross-sec-
tion A–A¢ (Fig. 10) the effects of each model become
apparent. The difference between Model 1 and the
simpler models is striking. Firstly, the plots of the PO2

values along the luminal surface in Fig. 9a show quite
a large variability across the five models with the extent
of the difference clear in the PO2 line-plot in Fig. 10.
The areas of low PO2 values (<30 mmHg) around the
stent struts which are apparent with Model 1 do not

appear with Models 2, 4 and 5, with Model 5 pre-
dicting very little variation in PO2 on the luminal
surface with the lowest value being 64 mmHg. Model
3, which neglects the RBC dispersion predicts exceed-
ingly low PO2 levels on the luminal surface which
translates into very little PO2 diffusing into the arterial
wall. Interestingly though, Model 3 predicts very high
Sh values along the surface because the Sh is based on
the gradient of PO2 normal to the surface, which is
very high for Model 3 as seen in Fig. 8 previously. This
highlights a possible disadvantage in using the Sh as a
basis for analysis.

The relatively small variation in PO2 values
observed along the luminal surface for Model 5
translates to very little variation predicted in the local
Sh also. For Models 1–4 there is a similarity in the
regions of low and high Sh, with low Sh (values
tending towards the calculated Da � 17) predicted in
regions where the flow is separating away from the
luminal surface and high Sh predicted in regions where
the flow is reattaching, i.e. where the flow is directed
towards the wall and oxygen transport through con-
vection is high. The peaks of high Sh observed with
Models 1–4 are dampened considerably for Model 5 to
the extent that the reattachment points are unrecog-
nizable on the luminal surface plots.

Greater amounts of neointimal thickening have
been shown to occur in areas with PO2 values of less
than 30 mmHg and hypoxia exists where the PO2 levels
drop to below 10 mmHg.6,26 Thus, how much of the

FIGURE 9. Predicted (a) PO2 and (b) Sh using all five models on the stented artery luminal surface for Stent A.
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arterial wall is exposed to PO2 values below these two
thresholds is of importance in predicting the possibility
of excessive neointimal thickening and potential ISR.
As shown in Table 3, the five models studied here
predict a broad range of percentage volumes of the
arterial wall exposed to low PO2 (<30 mmHg). For
example, Model 5 predicts that none of the stented
arterial wall is exposed to low PO2, as opposed to
Model 1 predicting 76.9% of the stented arterial wall is
exposed to low PO2 with 16.3% exposed to hypoxic
conditions. Critically, this again highlights the disad-
vantages of simplifying the blood oxygen transport
model.

Test Case 3

The PO2 and Sh luminal surface plots and PO2 axial
cross-sectional plots for Stents A, B and C are pre-
sented in Figs. 11 and 12. Immediately apparent in
Figs. 11a and 12 is that the N-shaped link struts in
Stent A, which are predominantly aligned perpendic-
ular to the flow, cause an extended region of recircu-
lation zones and consequently low PO2 values on the
luminal surface. This in turn results in the extremely
high percentage volume of the arterial wall at 76.9%
exposed to low PO2 and 16.3% of the arterial wall
being exposed to hypoxic conditions, as listed in Ta-
ble 4. Stent B has the second highest percentage vol-
ume exposed to low PO2 at 69.5%. Crucially though,
only 4.6% of the arterial wall is exposed to hypoxic
conditions for Stent B. Stent C performs the best of the
three stents with only 60.1% of the arterial wall ex-
posed to low PO2 and only 1.9% exposed to hypoxic
conditions. When Fig. 12 is analyzed it becomes
apparent that the design of Stent C, with stent struts
that are well-spaced out and link struts which are
aligned with the flow, results in reduction in the size of
the low and hypoxic PO2 zones. As shown in Table 4,
it is not simply a case of decreased lumen/arterial wall
interface area within the stented region which impinges
the PO2 flux into the arterial wall. This further suggests
the dominance of the augmented haemodynamic
environment caused by stent implantation on the
oxygen flux. Interestingly, the prolapse of the arterial
wall between the struts allows increased oxygen con-
vection into the wall downstream of each strut, which
is apparent in Fig. 9b with high Sh in these regions.
This detail would not have been captured effectively
with an idealized non-deformed arterial wall.

The angiographic restenosis rates for each com-
mercially available coronary stent that resemble the
three stents are presented in Table 4, along with the
percentage volume of the arterial wall exposed to low
and hypoxic PO2 levels. These rates were taken from
the following clinical trials at 6-month follow-up: Stent
A, ISAR-STEREO-II, Stent B, DISTANCE and Stent
C, ISAR-STEREO-I. Stent A is predicted to perform
the worst in terms of volumetric percentages of low
and hypoxic PO2 within the arterial wall and interest-
ingly, it also shows the highest restenosis rate. Stents B
and C are predicted to both have significantly less
percentage volume of the arterial wall exposed to hy-
poxic PO2 levels and both show lower restenosis rates
in comparison with Stent A. Stent C is predicted to
perform the best out of the three stents; however, this
does not match with the restenosis rates. Considering
ISR is a multifactorial process, there may be some
other issue with this stent, e.g. structural damage of the

FIGURE 10. Predicted PO2 and Sh using all five models
along line A–A¢ for Stent A

TABLE 3. Percentage volume of the arterial wall exposed to
hypoxic and low PO2 within the stented region for each model
along with the minimum and maximum D¢ values present

within the blood flow.

Hypoxic

PO2 (<10

mmHg) (%)

Low

PO2 (<30

mmHg) (%) D¢min (m2=s) D¢max (m2=s)

Model 1 16.28 76.9 1.12E211 3.51E210

Model 2 0.0 15.0 9.05E211 2.56E210

Model 3 45.6 85.3 6.13E212 2.08E210

Model 4 0.0 35.0 8.58E211 8.58E211

Model 5 0.0 0.0 1.20E209 1.20E209

Oxygen Mass Transport in Stented Coronary Arteries 519



arterial wall or areas of low wall shear stress, which is
not captured by oxygen transport models alone.

LIMITATIONS

In terms of limitations of the methodology and pos-
sible avenues for future work, the shear-dependant dis-

persion of RBCs is a haemodynamic flow feature that is
not fully understood. This may be improved by particle
based CFD software which could model all the con-
stituent cells of blood including theRBCs. Additionally,
at low shear rates RBCs are known to form rouleaux
which could impact both their dispersion and the oxygen
transport. Therefore, future studies of this phenomenon
may improve the predictive capability of the model. All
the simulations carried out as part of this study were
steady state and the assumption of rigid arterial walls
was used. Including pulsatile flow and wall motion may
be an avenue for future studies. Also, the haematocrit is
considered to be constant throughout the fluid domain
when in reality there would be a reduced haematocrit
within the plasma skimming layer at the luminal surface.
This could affect the predicted steep gradient in the PO2

levels within the blood adjacent to the luminal surface,
although to what extent would need further investiga-

FIGURE 12. Axial cross-section of predicted PO2 in both the arterial wall and lumen within the stented region for the three stents
analyzed. The interfaces between all three domains are clearly outlined.

FIGURE 11. Predicted (a) PO2 and (b) Sh on the stented artery luminal surface for the three stents analyzed.

TABLE 4. Percentage volume of the arterial wall exposed to
low and hypoxic PO2 within the stented region for each stent
along with restenosis rate and lumen/arterial wall interface

area within the stented region.

Stent A B C

Low PO2 (<30 mmHg) (%) 76.9 69.5 60.1

Hypoxic PO2 (<10 mmHg) (%) 16.3 4.6 1.9

Restenosis rate (%) 31.4 10.1 25.8

Interface area (mm2) 99.75 95.43 99.11
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tion. Additionally, one aspect which was not varied was
the parameters defining the oxygen transport within the
arterial wall. In reality, for stented arteries the presence
of plaque, and additionally the structural damage
caused to the arterial wall by stent implantation, could
result in a much higher oxygen demand within the
arterial wall. Thus, the values shown here in this study
are conservative estimates of the PO2 levels and in reality
the situation could be significantly worse. Clearly, as
shown by the results at Location 2 in Test Case 1, more
accurate representations of each layer of the arterial
wall, including plaque, and their diffusion/reaction
parameters based on cellular composition would be
required for more patient-specific analysis; unfortu-
nately, these are not available at present. Given the
aforementioned correlations between hypoxia and IH,
with the addition of patient-specific geometries and
parameters this methodology could be a considerable
aid to the both the design of future implantable devices
and also to the tailored analysis of the impact of these
devices on individual patients.

CONCLUSIONS

Three important conclusions for future analyzes of
oxygen transport in stented arteries are inferred by this
study. Firstly, ignoring the oxyhemoglobin content
within the RBCs leads to large errors in the PO2 gra-
dient within the mass-transfer boundary layer and,
consequently, the prediction of hypoxic regions within
the arterial wall. The standard simplified model which
ignores oxyhemoglobin, i.e. Model 5, and is crucially
the most commonly used model in the literature, over-
predicts the PO2 levels in both the carotid bifurcation
and stented coronary artery test cases presented here.
It therefore presents an overly optimistic view of the
risk of IH caused by low and hypoxic PO2 levels.
Secondly, neglecting the shear-induced dispersion of
RBCs also affects the accuracy of the predicted results.
Thirdly, given the link between IH and hypoxia as
concluded by other studies, numerical modeling of
oxygen transport in arteries using Model 1 could offer
a powerful tool in predicting the safety of any future
implanted devices or procedures which impact the
haemodynamic, and consequently the oxygen trans-
port, environment within the arterial system.
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