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Abstract

Transactional fraud datasets exhibit extreme class imbalance. Learners cannot make

accurate generalizations without sufficient data. Researchers can account for imbal-

ance at the data level, algorithmic level or both. This paper focuses on techniques

at the data level. We evaluate the evidence of the optimal technique and potential

enhancements. Global fraud losses totalled more than 80 % of the UK’s GDP in

2019. The improvement of preprocessing is inherently valuable in fighting these losses.

Synthetic minority oversampling technique (SMOTE) and extensions of SMOTE are

currently the most common preprocessing strategies. SMOTE oversamples the mi-

nority classes by randomly generating a point between a minority instance and its

nearest neighbour. Recent papers adopt generative adversarial networks (GAN) for

data synthetic creation. Since 2014 there had been several GAN extensions, from im-

proved training mechanisms to frameworks specifically for tabular data. The primary

aim of the research is to understand the benefits of GANs built specifically for tab-

ular data on supervised classifiers performance. We determine if this framework will

outperform traditional methods and more common GAN frameworks. Secondly, we

propose a framework that allows individuals to test the impact of imbalance ratios on

classifier performance. Finally, we investigate the use of clustering and determine if

this information can help GANs create better synthetic information. We explore this

in the context of commonly used supervised classifiers and ensemble methods.

Keywords: Fraud detection, generative adversarial networks, SMOTE, class-imbalance,

supervised learning, clustering
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Chapter 1

Introduction

Financial fraud most commonly occurs when bad actors obtain stolen credit card in-

formation and use it for their gain. Global fraud losses totalled more than 80 per

cent of the UK’s GDP in 2019 (Gee & Button, 2019), highlighting the inherent need

for financial institutions to invest in fraud detection solutions. Fraud detection us-

ing supervised statistical learners is hence a common and important area of machine

learning research. The problem itself can be simplified into a simple binary classifi-

cation problem, where statistical learners use certain features to learn distributions

of fraudulent transactions. A common attribute faced by fraudulent dataset is the

presence of extreme class imbalance. Having little volume of fraudulent data hinders

a learners ability to correctly identify new fraud instances. To remedy this we explore

the use of synthetic data creation techniques.

1.1 Background

Transactional fraud classification is a complex problem. Fraud instances tend to be

non-static, resulting in distributional change over time. Secondly, fraud is scarce,

creating difficulty for statistical learners to generalise the desired distribution. The

research problem we are considering focuses on the latter. Given the rarity of fraud

instances, classifiers will be biased toward any majority class. For example, if 99.9% of

a dataset is not fraudulent then the classifier will be considerably better at predicting

1



this class. Misclassification is hence more common if this problem is not addressed and

by definition financial fraud has a high cost associated with it. Data-level techniques

that change the imbalance ratio to reduce the classifiers bias toward the majority class.

Upsampling at an algorithmic level using nearest neighbour (Chawla et al., 2002; Han

et al., 2005)) and cluster approaches (He et al., 2008) have been widely researched.

(Haixiang et al., 2017). Haixiang et al. (2017) showed out of a sample of 156 papers

29.6% used oversampling techniques.

Newer research has employed generative adversarial networks (GAN) (Goodfellow

et al., 2014) for synthetic data generation. GANs originated and are commonly used

in image processing literature to generate realistic images based on large training sets

of images. GANs are less commonly used for the generation of tabular data, however,

more recent papers have found GANs can be used to generate tabular structured

data and have outperformed traditional oversampling methods in aiding supervised

classifiers performance for extremely imbalanced datasets (Douzas & Bacao, 2018;

Gangwar & Ravi, 2019). Research to date has adopted the same GAN framework

that is used for image generation tasks. Xu et al. (2019) proposes a GAN specifically

designed for tabular data. This framework has yet to be applied to aid fraud classifiers.

Our research paper will focus on this gap. The introduction of conditional GANs

(Mirza & Osindero, 2014) allowed for more realistic synthetic image generation. This

occurs when the data generation is conditioned on a particular feature e.g. annotation

and tagging. Credit card fraud occurs in fraud rings. The application of clustering can

be applied to identify meaningful groups of common account holders. These clusters

can have varying fraud risks attached with them (Kasa et al., 2019). We further

explore if the use of clustering can help GANs create better synthetic data and hence

better classification performance.

1.2 Research Problem

Our research will focus on GANs to understand if this method of synthetic data

generation is superior to commonly used traditional methods in aiding supervised



classifier’s performance. The main contribution of the project is to consider a GAN

framework that is built specifically for tabular data (Conditional Tabular GAN) (Xu

et al., 2019). We define our research problem as:

“To what extent can generative adversarial networks improve the performance of

supervised classifiers on fraud detection for financial transactions?”

Secondly, we conduct multiple quantitative experiments across different imbalance

ratios. The imbalance ratio is defined as the ratio between the minority class and the

majority class. This provides a sub research question:

Research Sub-Question A: “Does an optimal imbalance ratio threshold exist when

adding synthetic data to maximise the performance of a classifier for the detection of

financial transactions?”

Finally, we consider the use of k-means clustering assignment on our fraud data to

understand if this can improve the GAN training process. This provides an additional

sub research question:

Research Sub-Question B: “To what extent can the use of additional cluster infor-

mation reduce the accuracy of a classifier synthetic and non-synthetic data generated

by GANs?”

1.3 Research Objectives

There are several objectives of the research project. Firstly, we perform a literature re-

view of data level oversampling techniques, GANs and GAN developments over time.

The aim of this review determines any gaps or limitations that exist and research

newer GAN techniques that have yet to be applied in this space. Secondly, we use

empirical experiments to determine if GANs designed for modelling tabular data will

improve supervised classifier performance. Through our experimental framework, we

gather evidence to compare GAN methods against traditional oversampling methods.

Our experimental framework involves 65 comparisons across differing imbalance ra-

tios. This provides us with evidence towards the existence of an optimal imbalance



ratio. Additionally, this should give us insight into the relationship between classifier

performance and a datasets imbalance ratio. Finally, we explore the use of k-means

clustering, to determine if the addition of this information can aid us in synthetic data

generation for CTGAN.

1. Literature review of traditional oversampling techniques and GANs

2. Explanatory data analysis and cleansing

(a) Feature Engineering - Identify features within the dataset that can be ma-

nipulated and transformed to create new features. New features will be

used in the aims of improving classifier performance and GAN training.

(b) Skewness and distribution analysis - Define asymmetry of distributions for

each class. Use standard error to standardise skewness and compare against

bounds of a normal univariate distribution. Visualise distributions using

ggplot2 (Wickham, 2016).

(c) Duplicates and common values - Use ’dplyr’ (Wickham et al., 2018) to

identify any rows that are exact duplicates. Group fraud transaction by

amount to determine any common amounts.

(d) k-Means cluster analysis

i. Elbow Plot - Initialise k in range 0-10. For each k, calculate the total

within sum of squares (TSS) as a performance metric achieved using

function fviz nbclust by Kassambara and Mundt (2017). Investigate

values k which represent large reduction in TSS.

ii. Cluster Visualisation - Using fviz cluster function (Kassambara & Mundt,

2017) compute principal component analysis (PCA) to determine prin-

cipal components of chosen k and visually inspect cluster formations.

iii. Concatenate fraud results and their cluster assignments for use in GAN

training.

3. Hyper-parameter tuning for tree models (Decision Tree, Random Forest, XG-

Boost)



(a) Initialise 5-fold cross validation framework using scikit-learn (Pedregosa et

al., 2011). Identify desired parameters. Note both optimal average perfor-

mance and computational requirements to gather evidence for parameters

to use in our experimental framework.

(b) GAN training framework

i. Define up parameters for WGAN with gradient penalty and CTGAN.

ii. Define GAN evaluation framework. Define an XGBoost classifier to

determine accuracy.

iii. Train CTGAN 10 times per 100 epochs from 100-500. Store accuracy

result for each iteration. Repeat using clustered information. Visualise

results in box-plot using matplotlib(Hunter, 2007).

iv. Compare significance across groups - Perform Sharpio-Wilk test and F-

test to assess t-test assumptions. If assumptions hold, perform a t-test

to assess evidence of inclusion of cluster information.

v. Repeat steps for WGAN to determine epoch level to use in our exper-

imental framework

vi. Replicate framework used by Nash (2017) to benchmark GAN results.

(c) Baseline result calculations - Use defined parameters from hyper-parameter

tuning results. Use 5-fold cross validation to identify baseline F1 score using

original imbalance ratio.

(d) Experimental framework engineering

i. Engineer and code a framework for use with each oversampling method-

ology. This framework should allow the user to repeat 5-fold cross

validation across a list of imbalance ratios.

ii. Visualise the average F1 scores achieved from the framework across

oversampling methods using matplotlib (Hunter, 2007)

(e) Test significance of results - Store and rank results. Employ a Friedman

test to determine if results are significantly different across groups. Report

on the mean rank to give evidence for the research hypothesis.



(f) Synthetic Data Distributional Analysis - Using best ranked GAN and tra-

ditional method, investigate the difference in distributions. Identify the

2 most important features from decision tree training. Tag synthetic and

non-synthetic samples. Use ggplot2 to produce a scatter plot of the two

features as and histograms faceted by synthetic identifier.

1.4 Research Methodologies

The research employs a quantitative methodology. The experiments undertook are

based on the use of statistical models for learning and classification. Traditional models

include probabilistic models (Naive Bayes), linear models (Logistic Regression) and

tree-based models (Decision Trees). We employ bagging by using Random Forest and

boosting using extreme gradient boosting (XGBoost). k-Means clustering is used as

an additional method to provide potentially useful information to GANs that uses a

conditional framework. A classifier optimisation strategy is defined using grid search

architecture for decision tree, random forest XGBoost models. For traditional minority

oversampling we consider SMOTE and ADASYN. We consider WGAN and CTGAN

as our generative network architectures. Empirical investigations employ multiple 5-

fold cross validations across combinations of classifiers and upsampling algorithms.

Further, a Friedman test determines significance in ranking methods across classifiers

and imbalance ratios.

1.5 Scope and Limitations

1.5.1 Scope

The scope of the research relates to generative adversarial networks as a data level

oversampling strategy to improve the detection of fraudulent financial transactions

using machine learning.



1.5.2 Limitations

1. Financial information is highly sensitive, therefore the obtained dataset com-

prises of majority principal component analysis (PCA) transformed columns.

These limits are the ability to properly interpret the dataset in the context of

influencing variables. A suggestion for further study would be to redesign the

experiment using domain-specific columns.

2. The dataset spans only 2 days. Fraud is an ever-evolving problem, therefore we

do not have sufficient evidence to understand if the results of our experiments

would hold for newer observations.

3. Our research is focused primarily on financial fraud with extreme imbalance.

We cannot discern from our experiment if the results are transferable to other

non-transactional datasets.

4. We focus on methods to learn the distribution of the fraudulent dataset. Given

fraud distributions are subject to distributional changes, it would be advisable

to also investigate methods that are conditional on the majority class and look

for distributional differences i.e. learn what is genuine and score transactions

that deviate from this.

1.6 Document Outline

The research document is structured into the following chapters

• Chapter 2: “Review of existing literature” - This chapter aims to give a com-

prehensive view of supervised classifiers used for fraud, GANs and empirical ev-

idence of relevant papers. From this review we identify clear gaps which mould

the focus of our research project.

• Chapter 3: “Design and methodology” - This chapter defines our main research

hypothesis. We detail the experimental framework used to gather evidence for

this hypothesis. Details of the dataset, exploration and preprocessing techniques



used are further detailed. GAN training evaluation and k-means clustering set

up is also considered.

• Chapter 4: “Results, evaluation and discussion” - This chapter details the results

from our experimental research and any experiment undertaken which provide

evidence toward answering research questions and sub-questions. We discuss our

findings in detail.

• Chapter 5: “Conclusion” - The concluding chapter aims to link our empirical

results against our research objectives detailed in section 1.3. We critique our

results and offer recommendations for future work for any gaps not considered

in our experimental framework.



Chapter 2

Review of existing literature

2.1 Traditional Upsampling Methodologies

For class imbalance, the literature suggests 3 main techniques to tackle this problem:

1. Algorithmic level - When applying an algorithm, create a cost-sensitive function

that commits higher cost to the minority class and boost class importance (Zhou

& Liu, 2010).

2. Data level - Solve for the imbalance through:

• Upsampling the minority class.

• Undersampling the majority class - Remove majority class data to settle the

imbalance. A common algorithm used is Random-Under-Sampling (Tahir

et al., 2009).

3. Hybrid Model - an ensemble method combining technique 1 and 2.

Our research will focus on data level techniques. Haixiang et al. (2017) review of

159 papers tacking fraud found 29.6% employed these techniques.

2.1.1 Synthetic Minority Oversampling (SMOTE)

SMOTE (Chawla et al., 2002) is a distance-based algorithm that generates new sam-

ples based on a random distance between points. Using the minority class, the tech-

9



nique introduces new observations within the line segments joining k nearest neigh-

bours. k is randomly chosen depending on the level of oversampling needed. The

distance between the sample and its nearest neighbour is multiplied by a random

number between 0 and 1. This number is added to the feature space. There are over

85 SMOTE extensions since the original paper (Fernandez et al., 2018) which vary in

techniques. An example is employing kernel functions to replace the nearest neighbour

with a clustering framework. Our experiments will only consider vanilla SMOTE.

2.1.2 Adaptive Synthetic Upsampling Technique (ADASYN)

ADASYN (He et al., 2008) builds upon SMOTE logic with the addition of using

weighted distribution across minority examples. The intuition behind this is to shift

the classifiers decision boundary to focus more on examples that are difficult-to-learn.

This results in more synthetic data around these difficult to learn areas compared to

observations with more well-defined distributions. This further aims to reduce the bias

that occurs due to class imbalance.

2.1.3 Problems with SMOTE algorithms

SMOTE algorithms are affected by the location of the minority class. SMOTE shows

problems when classes overlap or there are disjuncts within the data. A disjunct

relates to areas within a larger cluster where classes overlap (Prati et al., 2004). This

means the algorithm may create more data in an area that is not easily separable and

requires more complex classifiers. Cluster-based SMOTE extensions e.g. ADASYN

accounts for this, however, it is constrained by assumptions. Fernandez et al. (2018)

argues that these assumptions may not be applicable for generating these complex

distributions.



2.2 Generate Adversarial Networks

Generative adversarial networks (GAN) (Goodfellow et al., 2014) are neural networks

used for synthetic data creation first introduced within image processing literature.

The process is dependent on two models:

1. A generative model: G : Z → X

Z represents a space of noise with random dimension dZ. This is dependent on

given hyper-parameters and X represents the data space.

2. The discriminative model: D : X → [0, 1]

D considers data from the real dataset.D will assign a probability that the sample

is genuine.

This creates a min-max game. The discriminator aims to maximise the average log

probability of the real data and the inverse log for the synthetic data (Douzas & Bacao,

2018). G seeks to minimise the log inverse probability predicted by the generator to

encourage the creation of data that is difficult to discern as synthetic. The value

function is denoted as:

(min)G (max)D V ( D,G ) = ED + EG

where:

ED = Ex,y∼pdata( x,y ) [ logD ( x, y ) ]

EG = Ez∼pz( z ),y∼p( y ) [ log ( 1−D ( G ( z, y ) , y ) ) ]

x values are sampled from the real data while z values are sampled from the noise

distribution. The aim is to optimise this process toward a probability of 0.5 i.e. the

discriminator can’t distinguish between actual and generated samples. The original

paper from Goodfellow et al. (2014) uses Nash equilibrium as a point of optimisation.

The training process of a min-max game will always be unstable. Vanilla GANs have

a problem with convergence as the point at which to stop training can not be known.



Further, this attribute of vanilla GAN can create a mode collapse problem leading to

a vanishing gradient (Goodfellow et al., 2014). There have been many additions to

the literature to create a more stable GAN training process (Salimans et al., 2016;

Arjovsky et al., 2017; Gulrajani et al., 2017; Xu et al., 2019).

2.2.1 GAN Developments

Conditional Adversarial GANs

Conditional GAN (cGAN)(Mirza & Osindero, 2014) improves upon the vanilla GAN

architecture by adding some conditional input c to both our generator (G) and dis-

criminator (D) models. Given the conditional input’s information is significant, the

expected result is to create better structuring of latent space. This has been shown

to have more favourable results within image processing. An example of helpful con-

ditions is image tagging and annotations.

Applying this to our problem, we can identify clustering as a potential condition

to aid in data generation. This unsupervised method will aim to identify similar types

of fraudulent activities or behaviours of fraud rings e.g. same fraud actors making

multiple fraud attempts. We will focus our experiments on using k-means to initialise

potential fraud clusters.

Wasserstein GAN

Wasserstain GAN (Arjovsky et al., 2017) attempts to tackle the issue of bad gradients

by creating a more stable optimisation process. This is achieved by replacing Jensen-

Shannon (JS) divergence with a Wasserstain distance when comparing the synthesised

samples against the generated samples (Liu et al., 2019). Wasserstein distance W (q, p)

can be described as the minimum cost of transporting mass to transform distribution

q into distribution p. The value function of a WGAN uses Kantorovich-Rubinstein

duality and is defined in equation 2.1.

L = min
G
max
D∈D

Ex∼Pr [D (x)]− E∼
x∼Pg

[
D
(∼
x
)]

(2.1)



Here Pr relates to the distribution of the real data and Pg is the distribution of the

synthetic data. This is generated using ∼
x = G(z). z represents a random noise

vector initialised at the start of training. For training, the generator remains constant

and the discriminator is trained by maximising the value function (2.1). After the

maximisation is complete, the discriminant model stays constant to minimise the value

function 2.1. This creates the Wasserstein distance between the two distributions

(Gao et al., 2020). The aim here is to have the generated and real data as similar

as possible. The min-max game will converge once the discriminator can no longer

distinguish between real and synthetic data. Since the Wasserstein value function is

continuous, the lower the Wasserstein distance the higher quality the synthetic data.

The discriminant model is comprised of a set of 1-Lipschitz functions. Equation

2.1 D is represented by K-Lipschitz functions. This is possible by clipping weight

in each of the discriminator’s layers. This stabilisation improvement has been shown

empirically within the image processing domain (Zhu et al., 2019) and has shown as

a successful oversampling technique (Wang et al., 2019).

WGAN with Gradient Penalty

An unwanted by-product of the WGAN framework is that in some instances the net-

work can still fail to converge resulting in poor quality synthetic data. These instances

are often caused by the use of weight clipping (Gao et al., 2020). Weight clipping is

used to satisfy the Lipschitz constraint which defines WGAN’s discriminant model.

This clipping can restrict the weights of every layer to a restrictive range which may

result in either vanishing or exploding gradients (Gao et al., 2020). Gulrajani et al.

(2017) proposed adding a penalty factor to satisfy the Lipschitz constraint instead of

WGAN’s original clipping mechanism. This creates a new value function 2.2.

Ex∼Pr [D (x)]− E∼
x∼Pg

[
D
(∼
x
)]
− λ E

x̂∼Px̂

[
(
( (‖ (∇)x̂ D ( x̂ ) ‖)2 − 1 )

)2
] (2.2)

From equation 2.2, λ represents the penalty coefficient. This works by penalising



any gradient norms that are far from 1, ensuring all gradient norms move toward

1. This is a property of a 1-Lipschitz function i.e., one whose gradient norm is a

maximum of 1. This allows for optimised performance as this property allows for

faster convergence. We will focus our non-tabular GAN training using this GAN

formulation and address going forward as WGAN.

Conditional Tabular GANs (CTGAN)

CTGAN (Xu et al., 2019) is a GAN specifically targeted at generating data in a tabular

format. Their extension accounts for features within the dataset that have more

complicated distributions. The framework models continuous and discrete columns

separately. The authors create a mode-specific normalisation to account for non-

Gaussian and multi-modal distributions.

For every continuous column Ci that exists, a variational Gaussian mixture model

(Reynolds, 2009) is used to detect multiple modes Mi. For each value ci,j in Ci a

probability coming from each mode is computed. One mode is sampled from the given

probability density, this is then used to normalise the value. The representation of a

row in our dataset is detailed as the concatenation of continuous and discrete columns.

Vanilla GANs do not account for the imbalance of categorical columns. Xu et al.

(2019) argues that if any rows fall into a minor category they will not be sufficiently

represented during training. This is due to data being randomly sampled. They

approach this problem by resampling in a way that categories from discrete attributes

are sampled evenly while also recovering the real data distribution during testing. The

generator in CTGAN is described as a conditional distribution of a particular column

and row.

The output of the conditional generator is assessed by a critic network similar to

WGAN. This calculates the distance between the learned conditional distribution and

the conditional distribution of the real data (Xu et al., 2019). In this framework,

the authors empirically show they learn distributions better compared to Bayesian

networks. As CTGAN framework has never been tested as an oversampling method

for fraudulent transactions, we will focus our research on this gap.



GANs as an Upsampling Strategy - Empirical Evidence

Dal Pozzolo et al. (2014) dataset containing fraudulent credit card attempts is often

used within this domain (Sisodia et al., 2017; Tanaka & Aranha, 2019; Ba, 2019;

Fiore et al., 2019). The dataset represents 284,807 financial transactions captured by

a financial institution over two days in 2013. 492 of these are fraudulent (0.172%).

• Tanaka and Aranha (2019) uses a decision tree as a classifier comparing GAN,

simple SMOTE and ADASYN. The best performing GAN model showed a recall

of 0.82. The use of ADASYN showed better performance for the classifier (0.86).

• Douzas and Bacao (2018) compares SMOTE methods against GAN methods

on 71 datasets with varying imbalance ratios using 3 evaluation metrics (AUC,

F-score and G-Mean) across 5 classifiers. They find cGAN to significantly rank

the highest on average in terms of performance.

• Gangwar and Ravi (2019) found upsampling using WGAN led to a significantly

higher F1 score for the classifier compared to SMOTE and ADASYN.

2.3 Clustering Techniques

The objective of clustering is to identify similarities within a feature space and label

them. For datasets dealing with financial fraud, this information can be useful in

identifying fraud rings, or a single fraud actor attempting multiple times.

2.3.1 k-Means Clustering

The k-means algorithm splits our observations into a predetermined number of clusters

(k). Initially, each observation is assigned to the nearest centroid. If an observation

has the same distance between two centroids, one will be chosen at random. Given

this initial centroid assignment the algorithm iterates using 2 steps (Friedman et al.,

2001):



1. At each centroid we determine a subset of training points that is closer to it than

any other centroid.

2. Calculate the mean of each feature for the points in each cluster. This mean

vector becomes the new centre for that cluster.

This creates an optimisation problem 2.3, where C()̇ relates to the cluster assign-

ment function and mk represent cluster means .

min
C, {mk}K

k=1

K∑
k=1

∑
C(i)=k

‖xi −mk‖2 (2.3)

For our experiment we will employ Euclidean distance ‖x − y‖=
√∑n

i=1(xi − yi)2

which influences the shape of clusters.

To determine the optimal value of k we employ the use of the elbow method origi-

nally proposed by Thorndike (1953). At each k we compute the within sum of squares

distance between each observation and its assigned centroid. k is plotted against the

within sum of squares to visually determine a point of inflection where the reduc-

tion in the sum of squares is considerably less than the previous k. This creates an

elbow-shaped line graph.

2.4 Traditional Supervised Classifiers for Financial

Fraud

The below section explains the statistical models and techniques which we will employ

during our research.

2.4.1 Logistic Regression

Logistic regression was originally proposed by Cox (1958). It is a probabilistic model

designed for use on binary target variables and can be extended to multi-categorical

targets (multiple logistic regression). The algorithm will learn from a training set of

vector weights and a bias term, where each weight wi is a number associated with



a predictor feature. Weights distinguish a predictor’s importance in the decision for

classification. The bias term is added to the weighted inputs (Keselj, 2009). The

weighted sum of this evidence can be described in 2.4 which is the dot product of two

vectors. To ensure our probabilities lie between 0 and 1 we pass z through a logit

function 2.5. This bounds outputs between 0 and 1 and has a well defined derivative.

z = w · x+ b (2.4)

y = σ(z) = 1
1 + exp(z) (2.5)

To determine the best parameter values for our model we need to employ a loss

function L(ŷ, y) which calculates the magnitude in which the predicted value of our

target (ŷ) is from our actual value y. This is known as conditional maximum likelihood

estimation. We want to find the model parameters (β0, βi) that maximise the log

probability of y. We optimise our model using cross-entropy loss function 2.6. This

heavily penalises misclassified instances.

LCE(ŷ, y) = −ylogσ(w · x+ b) + (1− y)log(1− σ(w · x+ b)) (2.6)

To calculate the best function weights we use a limited Broyden–Fletcher Gold-

farb–Shanno algorithm (LBFGS). The goal is to find a minimum or local minimum

of a given objective function. Logistic regression has a convex loss function with a

single minimum which simplifies the task at hand. LBFGS finds which direction we

should descend in by preconditioning the objectives curvature information. The algo-

rithm makes use of both the gradient of the objective function and its values. This is

achieved by improving the Hessian matrix of the loss function using gradient evalua-

tions (Dennis Jr & Schnabel, 1996). The limited version uses only the most recent m

gradients which improves the computational performance of the operation.



2.4.2 Naive Bayes

Naive Bayes applies simplified learning for classification as it assumes all features are

independent. Although this condition is unrealistic, there is empirical evidence that

the method works well. Rish et al. (2001) shows that the accuracy of the classifier is

not directly correlated with the degree of feature dependency, which may explain its

empirically good performance.

The algorithm is based on Bayes Theorem. For a given feature X = (x1, x2, ..., xn)

and target class Ck we define Bayes Theorem as 2.7. P (X|Ck) is the posterior prob-

ability, P (Ck|X) is the likelihood, P (X) is the prior probability of the predictor and

P (Ck) is the prior probability of class (Fan & Fan, 2018).

P (Ck|X) = P (X|Ck)P (Ck)
P (X) , fork = 1, 2, ..., K (2.7)

Naive Bayes adds the assumption of conditional independence 2.8.

P (xi | xi+1, ..., xn | Ck) = P (xi | Ck) (2.8)

This assumption yields that P (X|Ck) is the product of all given points posterior

probabilities:

(X | Ck) = P (x1, ..., xn | Ck) =
n∏

i=1
P (xi | Ck) (2.9)

Therefore, the posterior probability can be defined as:

(Ck|X) = P (Ck)∏n
i=1 P (xi | Ck)
P (X) (2.10)

The Naive Bayes model looks to find the maximum of P (Ck)∏n
i=1 P (xi | Ck) for

each class k. This is defined as:

Ĉ = arg max
Ck

P (Ck)
n∏

i=1
P (xi | Ck) (2.11)



2.4.3 Decision Tree

Decision or classification tree modelling is commonly used in supervised classification.

They are hierarchical models which identify an optimal strategy for classification. This

is achieved by identifying variables that are important for classification. For example,

in fraud detection, the amount of a transaction may be more important than the

gender of the cardholders. A decision tree is made up of “nodes” that create a rooted

tree. The initial node is defined as the “root”. Nodes in preceding layers that connect

to other nodes are ”internal”. Nodes that are only connected to a previous internal

node are ”leaf” or “terminal” nodes (Maimon & Rokach, 2014). Decision trees decide

on which variables to split on by using impurity measures. This is calculated using

Gini or Shannon’s Entropy.

Entropy Based Approach

Hi = −
n∑

k=1, pi,k 6=0
pi,k log2 (pi,k) (2.12)

Equation 2.12 defines Shannon Entropy. pi is the frequentest probability of class

i in our set of observations (fraud or genuine). Higher entropy values are associated

with lower levels of purity. We can think of this as variables that do not discriminate

our target variable much, for example, if 50% of fraudulent transactions were from

female participants and 50% male we would expect the feature to have high entropy.

Using only gender to determine our fraud classification would be the same as random

guessing (Maimon & Rokach, 2014).

Next, we calculate information gain. Information gain of a new variable (Y) is

calculated by subtracting the entropy of Y given X from the entropy of Y. Decision

trees decide which variables to split on by maximising the calculated information gain.

Gini Based Approach

Gi = 1−
n∑

k=1
p2

i,k (2.13)

Gini impurity (2.13) is an alternative purity measure. The Gini itself is a probabil-



ity measure where the higher the Gini coefficient the higher the purity between nodes

(Maimon & Rokach, 2014). Gini impurity is computationally more efficient compared

to an Entropy based approach.

2.4.4 Random Forest

Random Forest is an ensemble learning technique that can be applied to classification

tree models using a method known as bagging. Decision trees suffer from high variance,

meaning small changes to inputs or the dataset can result in different decisions and

tree architectures (James et al., 2013). Bagging aims to reduce the variance of any

statistical learning method. It achieves this by using many training sets, building

separate predictive models for each set and averaging the resulting predictions. We

often do not have access to many different training sets. We can use bootstrapping

to account for this. Bootstrapping generates B separate training sets. We train our

model on the bth set and average all predictions.

A Random Forest is an improvement on bagging by implementing a mechanism

to decorrelate the trees (James et al., 2013). This decorrelation method is achieved

by choosing a random m predictors for splitting from our full set of predictors p. A

new sample is taken at each split, commonly chosen as m = √p. The intuition is to

eliminate a situation where we have multiple trees with one strong predictor being

the top split. In this instance, the multiple bagged trees would have similar starting

nodes and hence be correlated by this fact. Averaging many correlated trees leads to

a higher variance compared to uncorrelated trees (James et al., 2013).

The model’s performance over several trees is calculating using out-of-bag (OOB)

error. On average each bagged tree will use over 70% of the dataset, the remaining

unused observations are OOB. We can predict the ith observation using the trees

where that observation was OOB (James et al., 2013) which is akin to leave-one-out

cross-validation i.e., train on all observations expect i, test on i (Mosteller & Tukey,

1968).



2.4.5 XGBoost

Boosting is similar to bagging as it involves combining a multitude of decision trees to

influence a prediction. Different to bagging, boosting looks to train trees sequentially

using the residuals from each subsequent tree. It is an ensemble of weak learners

meaning trees are strongly correlated with each other. Boosting models focus on

misclassification areas and improving these areas over time. A shrinkage parameter

(λ) allows different shaped trees to improve the residuals (Mosteller & Tukey, 1968).

The gradient boosting algorithm identifies areas subject to higher misclassification

by using gradients in the loss function. Extreme Gradient Boosting (Chen & Guestrin,

2016) uses a more regularised model formalisation to improve performance and reduce

over-fitting. We define a trees output as:

f(x) = wq(xi) (2.14)

x represents an input vector and wq is the score of a corresponding leaf q. The output

of the full tree ensemble is hence:

yi =
K∑

k=1
fk(xi) (2.15)

XGBoost minimises the below objective function (J) per step t:

J(t) =
n∑

i=1
L(yi, ŷi

t−1 + ft(xi)) +
t∑

i=1
Ω(fi) (2.16)

Ω(f) = γT + 1
2λ

T∑
j=1

w2
j (2.17)

The initial term looks into the loss function between predicted and real class. The

second term is the regularisation term to prevent the model from overfitting. Com-

plexity (Ω) considers the number of leaves in the tree (T ). γ is a pseudo-regularisation

term. λ relates to a shrinkage parameter defined as the L2 norm for leaf weights

(Dimitrakopoulos et al., 2018).

XGBoost uses the gradients of the second-order approximation of the given loss



function to optimise the best weight values, creating an objective function below where

gi and hi relate to gradient statistics for the loss function and I is the set of leaves

(Dimitrakopoulos et al., 2018).

J(t) = −1
2

T∑
j=1

(∑i∈I gi)2∑
i∈I hi + λ

+ γT (2.18)

2.4.6 Empirical Results of Supervised Classification for Fraud

Detection

Which classifier works best for classifying fraud? This is a key research question

covered throughout anomaly detection literature. Shen et al. (2007) study used a

similar credit card transactional dataset comparing decision tree. They found logistic

regression to outperform decision tree methods. Ensemble methods are often cited

as well-performing methods when applied to financial fraud datasets. Sohony et al.

(2018) conducted an empirical approach proposing an ensemble model that combines

Random Forest and Feed-Forward Networks, showing improved results compared to

baseline methods. shimin2020xgboost showed that using SMOTE to fully balance

the dataset combined with an XGBoost classifier resulted in a state-of-the-art per-

formance and improvements in the classifiers recall score. A limitation of this paper

is that they ran single experiments and did not cross-validate their results. On the

same dataset, Randhawa et al. (2018) show that the use of boosting algorithm Ad-

aBoost (“AdaBoost”, 2009) outperforming standard models (Naive Bayes, Logistic

Regression) even in the presence of noise. Xuan et al. (2018) used Random Forest and

showed Gini impurity strategy to significantly improve the F1 score of the classifier.

They employed undersampling, however they used data set with a much larger number

of fraudulent transactions (n > 81000) compared to our research problem.



Chapter 3

Design and methodology

This chapter aims to outline the quantitative methodology used for the empirical study.

We outline our primary null and alternative hypothesis. Description of the dataset

and techniques to process this data is outlined. An experimental framework design for

gathering evidence for our hypothesis is formalised. The optimisation strategy of tree-

based classifiers using hyper-parameter tuning is detailed. GAN training evaluation

and methods for determining the inclusion of cluster information is specified. Finally,

we include a summary of methods used including strengths and limitations.

3.1 Hypothesis

H1: Employing a Conditional Tabular Generative Adversarial Network as a data-level

oversampling method will result in a significant increase in the F1 score of a classifier

compared to traditional oversampling methods.

H0: Employing a Conditional Tabular Generative Adversarial Network as a data-

level oversampling method will result in no significant increase in the F1 score of a

classifier compared to traditional oversampling methods

23



3.2 Experimental Framework

Figure 3.1, A.1 represents our experimental framework for testing our upsampling

methods across classifiers and imbalance ratios. Let D represent our full dataset.

We randomly split D into 5 identically sized folds. Let X ⊂ D = ∑5
j 6=i xj Where i

represents the fold used for testing. X is of comprised of Xmajority and Xminority,real.

Xmajority represents genuine transactions. Xminority,real represents real tagged fraudu-

lent transactions. We pass Xminority,real to the given upsampling method for synthetic

data generation. The number of new samples to be generated (Nsyn) is a function of

the sets original imbalance ratio IRX and the desired imbalance ratio IRY . We denote

N as the number of observations.

IRX = Nmajority

Nminority,real

(3.1)

θ = IRY − IRX (3.2)

Nsyn = θ ∗Nmajority (3.3)

Adding Nsyn synthetic samples creates new set Xminority,syn, which is joined to our

original set. This is added to our original set X. We denote the resulting set as

Y = Xmajority +Xminority,real +Xminority,syn. We train our classifier Ci on training set

Y and test on our remaining fold xi using F1 score for performance evaluation (3.7).

This is repeated 5 times and an average F1 score across folds is stored. We repeat this

over a number of imbalance ratios and classifiers. A list of chosen imbalance ratios

is detailed in section 5.3. Given the relatively small number of minority instances

(492), within our dataset we choose to only use 5 folds, however the solution can be

generalised for any k number of folds.



Figure 3.1: Upsampling Framework Using 5-Fold Cross Validation

3.3 Dataset Description

Dal Pozzolo et al. (2014) dataset containing fraudulent credit card attempts is often

used within this domain (Sisodia et al., 2017; Tanaka & Aranha, 2019; Ba, 2019;

Fiore et al., 2019). The dataset represents 284,807 financial transactions captured by

a financial institution over two days in 2013. 492 of these are fraudulent (0.172%).

Given the high sensitivity of the data, the majority of feature names are omitted to

protect the identity of the persons. The features of the dataset are given as so:

• ‘Time’ - Numerical - Number of seconds elapsed between this transaction and

the first transaction in the dataset.

• ‘Amount’ - Numerical - Represents the financial amount taken from the card-

holders account.

• ‘Class’ - Logical - Identifies if a transaction is fraudulent. 1 represents fraud, 0

represents non-fraud.

• ‘V1’ - ‘V28’ - Numerical - principal components obtained by PCA.



3.4 Data Exploration and Pre-processing

3.4.1 Exploratory Data Analysis and Feature Engineering

Time

The time variable was transformed to identify the number of days the dataset encom-

passes using equation 3.4.1. The maximum value for variable Days was 1.99 i.e. the

transactions span 2 days.

Hours = Time

3600
Days = Hours
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Figure 3.2: Histogram and Distribution of Time

Figure 3.2 shows a histogram of the variable. The low density areas represent off-

peak times in terms of consumer behaviour. From this we create a new logical vector

based on a transactions relative frequency within the time range. Denisty > 0.000005

is the positive class indicating ’on-peak’ transactions. Otherwise a transaction is ’off-

peak’



Duplicated rows

927 duplicated rows were identified. A duplicate row is defined as identical values

across all records. 911 relate to normal transactions, 16 relate to fraudulent trans-

actions. Given there is a possibility of multiple re-attempts for transactions and the

small proportion we did not remove these instances.

Amount - Distribution and Skewness

Visual inspection of transaction amount by class using 3.3 shows very right skewed

distributions. Groeneveld and Meeden (1984) defines skewness as the degree of asym-

metry for a distribution. This is denoted in 3.4.1, where µi represents the iith central

moment.

γ1 = µ3

µ
3/2
2

= µ3

σ3

We standardise this value by dividing by the variable’s standard error 3.4.1.

var (x̄) = σ2

n

Genuine transactions were determined as having a standardised skew of 36.25.

This is outside the bound needed to indicate a normal univariate distribution [0− 2]

(George, 2011). We see a similar distributional shape for Fraud class. We observe a

higher frequency of high value transaction. 7.1% of fraud class is greater than 500$

while 3.3% of genuine transactions showed this amount.

Table 3.1 looks into our fraudulent transaction data grouped by amount. We

notice a number of non-unique amounts. 113 fraudulent transactions only show as

$1 and 27% show as $0. It is a common occurrence for fraudulent actors to test

credit card information multiple times using smaller amounts, which could explain

this phenomenon.



Figure 3.3: Histogram of Amount by Class

Table 3.1: Frequency Table: Amount

Amount ($) n % of Total Fraud
1 113 22.97%
0 27 5.49%
99 27 5.49%

0.76 17 3.46%
Other 308 62.5%

3.5 Hyper-parameter tuning

Our analysis considers multiple tree-based classifiers with varying parameters. Our

upsampling framework will consider the best performing parameter combination for

each. We determine this by employing a grid search with 5-fold cross validation. Each

combination of our parameters is passed through a 5-fold cross validation framework

to determine the best combination. The whole dataset is considered and randomly

shuffled to create 80% for training each combination and 20% for testing. The com-

bination which maximises the evaluation metric will be kept as our parameters for

additional training. We evaluate based on F1 score. We employed tuning framework



on our tree-based classifiers. Decision tree parameters are defined in table 3.2. Ran-

dom forest classifiers are defined in table 3.3. XGBoost parameters are defined in table

3.4.

Table 3.2: Parameters for Decision Tree

Random Forest Parameters Parameter Values (Step)

Criterion entropy, gini
Tree Depth 4-12 (2)

Table 3.3: Parameters for Random Forest

Random Forest Parameters Parameter Values (Step)

Max Depth 5,8,15,25
Min Samples 3-5 (1)

Min Samples Split 8-12 (2)
Number of estimators 100-500 (200)

Table 3.4: Parameters for XGBoost

XGBoost Parameters Parameter Values (Step)

Estimators 50-100 (1)
Learning Rate (ETA) .025 -.05 (.025)

Tree Depth 1-14 (1)
Minimum Child Weight 1-6 (1)

Subsample .5-1 (.05)
Gamma .5-1 (.05)

Colsample by Tree 0.5-1 (.05)

3.6 GAN Performance Analysis

GAN performance is measured using framework detailed in Figure 3.4, A.2. Post

training, we create a synthetic dataset with the same number of observations as the

real dataset (n = 492) our generative network Gz. The sets are both randomly split,



setting half for training and half for testing. An XGBoost classifier is trained on

training set and accuracy (3.4) is used as a performance metric. The central idea is

to obtain a result close to 0.5, as this indicates the classifiers performance is akin to

random guessing. This would result in synthetic data that is difficult to distinguish

from real data.

Figure 3.4: GAN Performance Framework

3.6.1 Cluster information for training

For GAN training, our generative model Gz is based a random initialization of a noise

vector dZ. Hence, in practice we may get varying results when generating synthetic

data. To account for this we repeated our framework 3.4 10 times for 5 different

training epoch values ranging from 100 to 500. We use CTGAN for this experiment.

This is repeated for training using cluster information and non-cluster information.

The results in a distribution of scores to analyse. To determine if we should continue

to use cluster information we combined all results across epochs for both groups and

conducted a t-test to determine if training with cluster information is significantly

different to training without.



3.7 Performance Evaluation

3.7.1 Evaluating Classifiers

actual

value

Prediction outcome

p n total

p′
True

Positive

False

Negative
P′

n′
False

Positive

True

Negative
N′

total P N
The above represents a confusion matrix. This is a tabular representation of the

possible outcomes of a binary classification problem. We define the positive class as a

fraudulent transaction and the negative class as genuine.

• Accuracy: Calculates the ratio of correct predictions over all attempts.

• Precision: Calculates the true positive rate.

• Recall: Measures the proportion of actual positives that were identified correctly.

• F1 score: Calculates the harmonic mean between precision and recall.

Accuracy = TP + TN

TP + TN + FP + FN
(3.4)

Precision = TP

TP + FP
(3.5)

Recall = TP

TP + FN
(3.6)

F1 = 2 ∗ (precision ∗ recall)
precision+ recall

(3.7)



Accuracy (3.4) is not useful for imbalanced classification. For example, if the

classifier predicted everything as genuine and genuine transactions represent 99% of

the dataset, the accuracy would be 99% even though it did not correctly classify any

fraudulent observations.

For imbalanced datasets it is most common to use a performance metric that is

based on the classifiers general ability to detect both genuine and fraudulent instances.

For our research, we will focus on F1 score given it is the most commonly used across

similar papers (Fiore et al., 2019; Douzas & Bacao, 2018; Gangwar & Ravi, 2019).

3.8 5-Fold Cross Validation

In our experimental framework and training baseline classifier we employ the use of 5-

fold cross validation. This obtains an average score F1 score to reduce variance in our

results. The dataset is randomly split into 5 equal sized folds. We train our classifier

Ci on ∑k−1
j xj where j 6= i. This results in 5 separate F1 scores. The average of these

scores are taken as our final result.

3.9 Ranking Oversampling Methods

Our experimental framework involves us testing 5 classifiers across 13 different im-

balance ratios and 4 upsampling methods. This results in 260 separate experiments

undertaken. Across each classifier and imbalance ratio where synthetic data genera-

tion took place we rank the best performing method. This results in 65 rank data.

We conduct a Friedman’s test to determine significance in the difference across these

methods. These results will aid us in gathering evidence toward our research question

if CTGAN can outperform traditional methods.

3.9.1 Summary and Limitations

This chapter successfully details the methods needed to obtain evidence needed for

our research hypothesis and sub-research questions. We use static parameters across



our experimental framework. Hyperparameter tuning allows us to ensure we are using

paramters that gives optimal performance combined with computational efficiency. A

limitation of this framework is the use of 5-fold cross validation. Given we have a

very limited number of fraud observations, we wanted to ensure each test set was suf-

ficiently large enough for testing. To improve the framework one may increase to 10

fold to improve the validity of the average F1 score. GAN training framework ensures

we have a scalable method of measuring the quality of our synthetic data. Statistically

comparing groups with and without cluster information provides evidence if cluster

information will improve our synthetic data. Considering GAN training involves ran-

dom intialisation, repeated experiments over epochs acccounts for confounding factors

associated with training i.e. instead of simply setting a reproducible seed we want to

determine the distribution of results if we were to repeat random intialisation. This

creates a limitation as this particular section of experiments are not exactly repro-

ducible.



Chapter 4

Results, evaluation and discussion

The existence of extreme class imbalance and lack of data is a significant problem in

the performance of supervised classifiers for fraud detection. The ability to remedy this

imbalance and improve classfier performance is a key area of research as it transalates

to great financial benefits for financial institutions and businesses, given the high cost

associated with missed fraud. This research focuses on the improvement of classifier

performance by comparing the use of GAN technologies against traditional, nearest

neighbour methods. Further, we explore the relationship between datasets imbalance

ratio and performance to understand if there exists an optimal point of adding ad-

ditional synthetic samples. Finally, we explore the use of clustering information on

synthetic data generation using GANs and accounting for counfounding factors.

In this chapter we report on our experimental results and discuss them with respect

to basineline methods. Limitations and critiques will be highlighted in the summary

section.

4.1 Results

4.1.1 Clustering Results

From Figure 4.1 we observe that the the greatest reduction of within sum of squares

is achieved when moving from 1 to 2 clusters. We observe a smaller but significant
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decline from 2 to 3, hence we choose k=3. Visually inspecting this in plot (b) shows

well defined clusters using k=3.

(a) Elbow Plot

(b) Visualisation of Clusters (k = 3)

Figure 4.1: Cluster Analysis Results

4.1.2 Hyperparameter Tuning Results

Iterating through parameters in Table 3.2 best F1 score for a simple decision tree was

found using a Gini strategy combined with a maximum tree depth of 4.

For the Random Forest algorithm, we noted the best performance using a Gini

approach and a maximum depth of 5 using 200 trees (F = 0.77). Random forest



classier was computationally expensive. A varying number of estimators was tested to

determine the impact on performance as described in Table 4.1. We observe a 0.009

difference from 50 to 200 trees. The computational cost of training is 25% using 50

trees, hence we decided to use this for training.

Table 4.1: Random Forests: Average F1 Performance Across Different Estimators

No. estimators (trees) F1 score

25 0.7578

50 0.7694

200 0.7703

500 0.7676

XGBoost showed the best performance using a maximal tree depth of 69 trees.

The optimal eta value was .125 with a gamma value of .7. The best randomly selected

fraction of features used to train each tree was .5. The best randomly selected fraction

of features used in every node to train each tree was 0.9.

4.1.3 GAN Training Results

CTGAN Cluster Information and Training Epochs

Figure 4.2 shows the accuracy of our results across different epochs. Across both

groups training using 100 epochs showed the smallest interquartile range of results.

Non-Cluster group showed lowest median accuracy at 200 epochs (Mdn = .91). Non-

clustered median accuracy was also lowest at 200 epochs (Mdn = .92).

A Sharpiro-Wilk test (Shapiro & Wilk, 1965) was undertaken to determine the

t-test assumption of normality. Both groups were found to be approximately normal:

Clustered Group (W = .978, p= .44), Non-Clustered Group (W = .973, p= .32).

An F test was applied and concluded no significant difference between each group’s

variance, F(49,49) = 0.86, p = 0.61. A t-test was conducted given we have evidence



to support the tests assumptions between groups. Accuracy results training with

cluster information (M =.93, SD = .02) compared to removing cluster information

(M =.915, SD = .02) demonstrated significantly higher results, t(97) =3.31, p .05.

Based on these results we decided to leave out cluster infromation when training our

GANs.

Figure 4.2: CTGAN: Boxplot of Accuracy Across Cluster Groups and Epochs

WGAN Training Epochs

Given results in section 4.1.3 we trained our WGAN without any cluster information.

Figure 4.3 denotes WGAN accuracy across each 100 training epochs repeated 10 times.

400 epochs showed lowest median accuracy (Mdn = .982). Increasing to 500 epochs

showed a smaller interquartile range. For our experiments 500 epochs was used as

standard for use in our experimental framework.



Figure 4.3: WGAN: Boxplot of Accuracy Across Epochs

4.1.4 Upsampling Framework Results

Decision Tree

Applying both traditional and GAN oversampling methods had a positive effect on

average F1 scores compared to baseline (IR = .017). Table 4.4 shows SMOTE having

the highest average F1 score across all upsampling methods (F1 = .8064). Traditional

methods (SMOTE and ADASYN) resulted in optimal performance using an imbalance

ratio of .01. WGAN reach a maximum of .0054 and CTGAN at .7864. Figure 5.1 shows

that SMOTE and ADASYN displays an almost concave relationship between average

F1 score and imbalance ratio, both reaching a peak and subsequent sharp decline.

GANs exhibited a more volatile relationship.



Figure 4.4: Decision Tree: Average F1 Scores over Imbalance Ratios

Feature V17 and V14 showed the highest importance for the original dataset with

no oversampling. To further investigate the effect of our upsampling method on the

tree structure we compare our original tree and refit a decision tree on our best over-

sampling method and imbalance ratio (SMOTE, IR = .1). From Figure 4.5 we observe

a change in the first split from V17 to V14.

(a) First Split: Orginal Dataset (b) First Split: Dataset with IR = .1
using SMOTE

Figure 4.5: Comparing First Decision Tree Split



Naive Bayes

Naive Bayes classifier showed overall poor performance with a maximum average F1

score reaching .116 using CTGAN. Oversampling using GAN methods achieved minor

improvement from the original imbalance ratio. Traditional oversampling methods

did not improve performance. Table 5.2 shows both SMOTE and ADASYN having

optimal average F1 score using our original imbalance ratio (IR = .0017). WGAN

achieved an optimal score using an imbalance ratio of .0044. CTGAN showed the best

score at .0074.

Figure 4.6 shows SMOTE and ADASYN to have a negative correlation between

average F1 performance and imbalance ratio. GAN methods exhibited more random

results across imbalance ratios.

Figure 4.6: Naive Bayes: Average F1 Scores over Imbalance Ratios



Logistic Regression

Logistic Regression classifier achieved best results using WGAN by increaisng our

imbalance ratio to .01 (F1 = .7821). Both traditional and GAN methods improved

the classifiers average F1 score by increasing the imbalance ratio. Table ?? shows

that SMOTE reached an optimal imbalance ratio at .0054 (F1 = .7489) and ADASYN

at .0064 (F1 = .7478). Across imbalance ratios CTGAN showed poorest maximum

performance, reaching a maximum at .0084 (F1 = .6951).

Figure 4.6 shows SMOTE and ADASYN having a concave relationship between im-

balance ratios and average F1 scores. Both methods hit a distinct peak and eventual

decline. WGAN shows a similar pattern, yet performance is more stable across imbal-

ance ratios. CTGAN exhibits a more volatile relationship. The majority of average

F1 scores are higher when oversampling compared to applying no oversampling.

Figure 4.7: Logistic Regression: Average F1 Scores Across Imbalance Ratios by Over-
sampling Strategy



Random Forest

Random Forest classifier achieved best results using SMOTE by increasing our imbal-

ance ratio to .0084 (F1 = .8161). Both traditional and GAN methods improved the

classifiers average F1 score by increasing the imbalance ratio. Table 5.4 shows that

ADASYN reached an optimal imbalance ratio at .01 (F1 = .7982). We observed the

same for CTGAN (F1 = .8139). WGAN achieved optimal results using an imbalance

ratio of .0074 (F1 = .8094)

Figure 4.8 shows all upsampling methods result in better average F1 scores com-

pared to the original imbalance ratio. SMOTE shows F1 score reaches an initial peak

at IR = .0084. Unlike Naive Bayes and Logistic Regression we do not see a sharp

decline in performance, rather a weaker negative relationship with performance im-

proving again at IR = .3. ADASYN reaches a maximum at IR = .1 and a subsequent

large decline in performance. WGAN shows a similar function shape with performance

reaching a maximum at IR = .1. Performance declines at a slower rate compared to

ADASYN. CTGAN shows a more volatile relationship across imbalance ratios.



Figure 4.8: Random Forest: Average F1 Scores Across Imbalance Ratios by Upsam-
pling Strategy

XGBoost

XGBoost did not benefit greatly from the use of oversampling methods. ADASYN

and CTGAN both showed the best results using the original imbalance ratio (IR

= .0017) with no oversampling. Table 5.5 shows that SMOTE and WGAN exhibited

minor performance improvements. WGAN, using an imbalance ratio of .0074, exhibits

the best overall performance (F1 = .8234). Figure 4.9 presents that any increases in

imbalance ratio over .0074 have a negative relationship. ADASYN shows a near linear

negative relationship. GAN methods show more volatile performance, similar to all

other classifiers.



Figure 4.9: XGBoost: Average F1 Scores Across Imbalance Ratios by Upsampling
Strategy

4.1.5 Distributional Analysis

Using a set of 2359 synthetic samples we investigated the distributional changes that

occur when applying our best performing GAN and traditional upsampling methods.

Figure 4.10 shows that synthetic data shows near identical distributional properties

to the non-synthetic set. WGAN (Figure 4.11) creates synthetic data that follows

a more general normal distribution for both V14 and V17. The scatterplot shows

a more general shape, creating synthetic data which is more centred compared to

SMOTE which retains the specific shape of the original dataset with less empty space

(as the method fills in nearest neighbour distances).



Figure 4.10: SMOTE: Distribution and Relationships of Important Features

Figure 4.11: WGAN: Distribution and Relationships of Important Features



4.1.6 Ranking Oversampling Methods

Average F1 score were ranked across classifiers for each imbalance ratio where over-

sampling was conducted. Figure 4.12 shows ranked results across all experiments in

a boxplot. A Friedman test was conducted to determine if the oversampling meth-

ods were ranked significantly different. Results indicated a differential rank across

the 4 oversampling methods, χ2(3) = 23.5, p < .05. WGAN had the best mean rank

(M = 1.8) followed closely by SMOTE (M = 1.85). ADASYN was most often ranked

lowest (M = 3.42) with CTGAN most often ranking 3rd(M = 2.93).

Figure 4.12: Boxplot: Ranked Performance Across Oversampling Methods

4.1.7 Benchmarking - Conditional GAN

To benchmark our GAN results we looked to replicate an experiment completed by

Nash (2017). This author used a conditional GAN with the same dataset and scaled

and standardised their data. Further they applied a log transformation of the amount

variable. Firstly we trained non-standardised data using 3 cluster data as defined in

section 4.1.1. Observations associated clusters were one-hot encoded to create two

binary identifiers. A condition having both at zero value indicated default cluster



association. Further, we conditioned our training using ’Peak Time’ identifier. Ad-

versarial training was completed using 4000 epochs. The minimum accuracy achieved

was 0.9797. Figure 4.13 shows a 10-point rolling average across epochs up to 2000.

XGBoost accuracy was minimised close to 700 training epochs.

Figure 4.13: XGBoost Accuracy of cGAN using 3 Clusters and Non-Standardised data

Figure 4.14: Real vs Generated Data at 700 epochs, cGAN Non-Normalised dataset
(V1 and V2)

Secondly, we trained our GAN on standardised data. We employed the use of 2

clusters. Observations associated clusters were encompassed by a single categorical

variable with two categories (cluster 1 and cluster 2). We used the time variable

in this training and omitted ’Peak Time’. Over 4000 epochs the minimum accuracy

achieved was 0.7561. Figure 4.15 shows shows a 10-point rolling average across epochs

up to 4000. XGBoost accuracy was minimised close to 2000 training epochs, visually

represented in figure 4.16



Figure 4.15: XGBoost accuracy with cGAN using 2 clusters and standardised data

Figure 4.16: Real vs Generated Data at 2000 Epochs, cGAN Non-Normalised dataset
(V1 and Time)

4.2 Discussion

4.2.1 CTGAN as an oversampling technique

The experiments give evidence against the null hypothesis, showing that CTGAN

regularly ranked low in our upsampling framework across all classifiers. Further, this

provides empirical results to give evidence if CTGAN fulfils its purpose on the empirical

performance of CTGAN. CTGAN was developed to outperform vanilla GAN and its

extension specifically in creating tabular data. It conditionally considers continuous

and discrete columns separately. However, our results showed WGAN using a gradient

penalty outperforms CTGAN in the task, even though WGAN was built to handle

data generation for image processing. This may imply that either GANs do not need

to be conditional to their data’s structure or CTGAN requires further development.



4.2.2 Evidence of cluster information

To account for confounding factors we replicated our CTGAN 10 times per epoch

using both clustered and non-clustered information. We determined that the experi-

ments which used cluster information resulted in significantly higher accuracy. Higher

accuracy is synonymous with worse synthetic data. This suggests that the addition

of cluster information may not be relevant to data generation. Given the limitations

of the dataset, we did not have sufficient information on the individual fraud attacks.

There was no way to evaluate the clusters using domain knowledge, for example, to

understand if the cluster groups related to similar fraud attacks.

4.2.3 The impact on boosting vs bagging

XGBoost is regarded as a well-performing classifier across supervised classification

tasks. We observed that both traditional and GAN upsampling methods did not have

a significant impact on performance. Traditional oversampling methods showed a

decline in performance as we increased the imbalance ratio above .015. Looking into

GAN methods we did not see this occur, with performance relatively stable between

.80 and .83. We note that GANS exhibit more textitgeneral synthetic closer to a

Gaussian shape compared to traditional methods. This is a potential reason why they

may perform better with our gradient boosted classifier, yet further investigation is

needed. Oversampling using both GAN and traditional methods showed a significant

improvement when using random forest. Although XGBoost achieved the best overal

score with WGAN (F1 = .8234, IR = .0074) we saw Random Forest improve to a

comparable best score using SMOTE (F1 = .8161, IR = .0084) compared to using no

oversampling (F1 = .7694). This highlights the inherent value oversampling can have

for bagging techniques.



4.2.4 Decision Tree - how synthetic data is changing our the

classifier?

We observed that oversampling the minority class resulted in a change in how our tree

classifier creates optimal decision nodes. The most important features remained the

same (V17, V14) however their order of importance changed. Decision trees suffer from

high variance which could be the main contributing factor. However, this may imply

that the addition of synthetic data leads to improved decision boundaries leading to

better-performing classifiers.

4.2.5 Distributional Changes

Across classifiers we found WGAN to be the superior synthetic data generation method

over CTGAN. Investigating distributional changes, WGAN created a more normal

distribution. Traditional methods directly copied the actual data distributional shape.

It is interesting to see that the inclusion of synthetic data that is distributionally

different still attributed to an improvement in the performance of our classifier.

Our WGAN training had the best mean rank across all classifiers and imbalance

ratios. This result was significant. SMOTE outperformed CTGAN, however, CTGAN

had a higher mean rank than ADASYN. We hence do not have evidence to reject our

research hypothesis. Yet given WGAN as the highest-ranked oversampling method

suggests that GAN architectures can outperform traditional methods. Considering

WGAN and GAN architectures are initialised from a Gaussian noise vector we are

creating synthetic data which is different to the real fraud data.



Chapter 5

Conclusion

Can generative adversarial networks help us fight financial fraud? By completing our

research objectives we show that GAN methods can outperform traditional methods

to help supervised classifiers performance in classifying fraud. Yet, this depends on

the classifier type, the GAN framework and the amount of synthetic data added to

the dataset.

The project’s main objective was to gather evidence towards our hypothesis (section

3.1). Our hypothesis stated CTGAN as an oversampling method will have significantly

better results than traditional methods. We gathered evidence for this by achieving

the secondary objective of designing an experimental framework. The results from our

experimental framework showed that CTGAN ranked significantly lower compared to

WGAN and SMOTE. This provides evidence against our null hypothesis. The com-

pletion of this research objective gives insight into the wider scope of the project as we

saw WGAN rank highest on average. This contributes to the greater literature that

GAN technology can outperform traditional methods. WGAN is potentially more

stable than CTGAN implying that the mechanism of optimisation may be more im-

portant for synthetic data generation than a framework designed to handle multimodal

distributions of discrete and continuous columns.

We completed the objective of engineering a framework for oversampling and

completing baseline classifier calculations. Using traditional methods (SMOTE and

ADASYN) Random Forest, Logistic Regression and Decision Tree classifiers show
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a concave relationship between average F1 score and synthetically increasing the

dataset’s imbalance ratio. This relationship gives evidence toward our sub research

question A, “Does an optimal imbalance ratio threshold exist when adding synthetic

data to maximise the performance of a classifier for the detection of financial trans-

actions?”. Experiment results suggest that there does exist an optimal imbalance

threshold for these classifiers. The same was not observed for GANs. Further, we

were able to reach a very similar optimal average performance by oversampling using

Random Forest compared to XGBoost. This suggests oversampling is well suited for

bagging ensemble methods. Our evaluation framework using XGBoost showed little

performance improvement across both traditional and GAN frameworks, although we

did achieve better than baseline results with WGAN. This indicates oversampling may

be less suited for boosting frameworks.

The completion of cluster analysis and GAN training research objectives showed

that the inclusion of cluster information attributed to inferior synthetic data generation

using CTGAN. We accounted for confounding factors by replicating training 10 times

per epoch selection. The significantly lower accuracy for our GANs using no cluster

information suggests cluster information may not be useful in aiding synthetic data

creation using GANs. We attribute this as evidence for research sub-question B “Will

the use of cluster information aid the creation of synthetic fraudulent data?”

5.1 Contributions and impact

• We provide evidence that WGAN using a gradient penalty significantly ranks

higher than SMOTE and ADASYN for Random Forest. This contributes to the

evidence that GAN can be superior in generating synthetic transactional data.

• The addition of clustering information did not show improvement of CTGAN

generation. This contributes to the understanding of cluster methods ability to

improve synthetic data generation without any domain knowledge.

• We develop an experimental framework for use with SMOTE, ADASYN, CT-



GAN and WGAN. This framework can be easily replicated for other researchers

and academics to explore the impact of increasing an imbalanced datasets imbal-

ance ratio on the desired classifiers performance. This is transferrable to multiple

domains where data imbalance is an issue e.g., rare disease detection and natural

disaster detection.

• We demonstrated that oversampling frameworks do not have significant perfor-

mance improvements for boosting. We observed significant improvements for

bagging techniques, reaching performance close to XGBoost. This shows the

inherent value and impact of the framework on the performance of a classifier,

considering XGBoost would be considered a state-of-the-art classifier compared

to Random Forest.

• For traditional upsampling methods with a Decision Tree, Logistic Regression

and Random Forests we showed the existence of a clear concave relationship

between classifier performance and oversampling. This contributes to how indi-

viduals can optimise the amount of oversampling applied to a given dataset.

• We identified our best performing GAN (WGAN) creating synthetic data with a

distribution closer to Gaussian normal compared to SMOTE. This provides em-

pirical evidence that synthetic data whose distribution deviates from the original

and is more “general”, can still help a learner’s performance.

• Benchmarking our conditional GAN performance against a similar approach

which used standardised data showed our accuracy considerably higher. This

contributes to the idea that scaling and standardising data may improve results

as GANs may have less to learn.

5.2 Future Work & recommendations

• There are over 85 SMOTE extensions within the literature. Our experimental

design considered only vanilla SMOTE. We would recommend applying our ex-

perimental framework across these extensions e.g. Borderline SMOTE (Han et



al., 2005), to determine the effect of differing SMOTE techniques on our classi-

fier.

• Our analysis had a small number of duplicate values across the dataset (¡.01%).

A recommendation for future work would be to exclude these duplicate values

to determine the effect they had on our experimental design.

• Our experiments only considered this technique concerning financial fraud. We

recommend replicating the framework on other domains which exhibit imbalance

problems e.g. cancer detection.

• When benchmarking our experiments against a similar study, we found that scal-

ing and standardizing showed better performance in data generation. We would

recommend replicating our experiments using standardised data to determine if

this would have a positive impact on the performance of our classifier.

• GAN networks discriminant network itself is a classifier. If researchers could

obtain a dataset with a high number of fraud instances we recommend using

transfer learning of the discriminant model to determine how it compares as a

classifier.

• Our cluster analysis tested only cluster assignment using k-means, and euclidean

distance. There is scope for future testing of different distance metrics e.g.

Manhattan distance. Further, one may consider different clustering algorithms.

• We would advise for future work for individuals to evaluate their cluster infor-

mation with domain knowledge before using them in GAN generation. The main

idea behind using clustering for fraudulent data is to indicate similar fraudsters

or the same fraudster attempting multiple times. After determining the validity

of clusters we recommend comparing GANs with and without cluster information

to see if this can aid in improving synthetic data generation.

• Our study showed that WGAN training resulted in a more general distribution

compared to traditional methods. We recommend replicating our experiment



using higher order of training epochs for GANs. This may contribute to the

understanding of the impact of synthetic data distribution on classifier perfor-

mance.

5.3 Tables

Table 5.1: Decision Tree: Average F1 Results Over Imbalance Ratios

Imbalance Ratio SMOTE ADASYN WGAN CTGAN

0.0017 0.7802 0.7802 0.7802 0.7802

0.0024 0.7750 0.7770 0.7274 0.7798

0.0034 0.7906 0.7860 0.7465 0.7864

0.0044 0.7972 0.7939 0.7883 0.7723

0.0054 0.7854 0.7867 0.7955 0.7717

0.0064 0.8031 0.7958 0.7753 0.7794

0.0074 0.7937 0.7959 0.7845 0.7702

0.0084 0.8037 0.7829 0.7664 0.7881

0.0100 0.8064∗ 0.7982 0.7853 0.7565

0.0150 0.7914 0.7712 0.7695 0.7503

0.0200 0.7719 0.7376 0.7791 0.7512

0.0250 0.7648 0.6912 0.7591 0.7463

0.0300 0.7374 0.6970 0.7438 0.7670

* Best average F1 score across all oversampling methods
and imbalance ratios



Table 5.2: Naive Bayes: Average F1 Results Over Imbalance Ratios

Imbalance Ratio SMOTE ADASYN WGAN CTGAN

0.0017 0.1079 0.1079 0.1079 0.1079

0.0024 0.1071 0.0985 0.108 0.1058

0.0034 0.107 0.0932 0.1075 0.1066

0.0044 0.1063 0.0896 0.1088 0.1089

0.0054 0.1058 0.0874 0.1067 0.105

0.0064 0.1057 0.0854 0.1081 0.1077

0.0074 0.1061 0.0841 0.1082 0.1152∗

0.0084 0.1057 0.0822 0.1079 0.1073

0.01 0.1053 0.0804 0.1062 0.1075

0.015 0.1043 0.0765 0.1083 0.111

0.02 0.1039 0.0746 0.1061 0.1095

0.025 0.1033 0.0728 0.1065 0.1046

0.03 0.103 0.0717 0.1054 0.1099
* Best average F1 score across all oversampling methods
and imbalance ratios



Table 5.3: Logistic Regression: Average F1 Results Over Imbalance Ratios

Imbalance Ratio SMOTE ADASYN WGAN CTGAN

0.0017 0.6493 0.6493 0.6493 0.6493

0.0024 0.7045 0.6692 0.6796 0.6602

0.0034 0.7244 0.7225 0.7391 0.6578

0.0044 0.7351 0.73 0.7498 0.6874

0.0054 0.7489 0.7478 0.7607 0.6876

0.0064 0.7536 0.7478 0.7491 0.6874

0.0074 0.764 0.7426 0.7609 0.6628

0.0084 0.7691 0.7426 0.7641 0.6951

0.01 0.7672 0.7337 0.7821∗ 0.6933

0.015 0.7692 0.7038 0.7658 0.6906

0.02 0.7656 0.6565 0.7561 0.6375

0.025 0.7564 0.5886 0.7221 0.6635

0.03 0.743 0.5886 0.7305 0.6944
* Best average F1 score across all oversampling methods
and imbalance ratios



Table 5.4: Random Forest: Average F1 Results Over Imbalance Ratios

Imbalance Ratio SMOTE ADASYN WGAN CTGAN

0.0017 0.7694 0.7694 0.7694 0.7694

0.0024 0.774 0.777 0.784 0.7824

0.0034 0.7953 0.786 0.8001 0.791

0.0044 0.7993 0.7939 0.7998 0.7951

0.0054 0.803 0.7867 0.8074 0.7913

0.0064 0.8065 0.7958 0.8033 0.7934

0.0074 0.8121 0.7959 0.8094 0.7815

0.0084 0.8161∗ 0.7829 0.8092 0.7833

0.01 0.8102 0.7982 0.8139 0.7785

0.015 0.8103 0.7712 0.8055 0.7976

0.02 0.8014 0.7376 0.8083 0.78

0.025 0.7973 0.6912 0.8021 0.7965

0.03 0.8135 0.697 0.7998 0.8105
* Best average F1 score across all oversampling methods
and imbalance ratios



Table 5.5: XGBoost: Average F1 Results Over Imbalance Ratios and Upsampling
Techniques

Imbalance Ratio SMOTE ADASYN WGAN CTGAN

0.0017 0.8198 0.8198 0.8198 0.8198

0.0024 0.8213 0.8149 0.816 0.8096

0.0034 0.8153 0.8148 0.8173 0.8152

0.0044 0.82 0.8079 0.819 0.8089

0.0054 0.8172 0.7994 0.8223 0.8124

0.0064 0.8219 0.7914 0.821 0.8155

0.0074 0.8007 0.7964 0.8234∗ 0.8104

0.0084 0.8069 0.7816 0.8166 0.8103

0.01 0.8106 0.7703 0.8159 0.8162

0.015 0.7969 0.7429 0.8198 0.8064

0.02 0.7886 0.712 0.8078 0.8056

0.025 0.7836 0.6883 0.8072 0.8037

0.03 0.7734 0.6615 0.8036 0.8078
* Best average F1 score across all oversampling methods
and imbalance ratios
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