
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Dissertations School of Computer Sciences

2021

Improving a Network Intrusion Detection System’s Efficiency Improving a Network Intrusion Detection System’s Efficiency

Using Model-Based Data Augmentation Using Model-Based Data Augmentation

Vinicius Waterkemper Lodetti
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Lodetti, V. (2021). Improving a Network Intrusion Detection System’s Efficiency Using Model-Based Data
Augmentation. Technological University Dublin. DOI: 10.21427/EBCG-WS30

This Dissertation is brought to you for free and open
access by the School of Computer Sciences at
ARROW@TU Dublin. It has been accepted for inclusion in
Dissertations by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Improving a Network Intrusion

Detection System’s Efficiency Using

Model-Based Data Augmentation

Vinicius Waterkemper Lodetti

A dissertation submitted in partial fulfilment of the requirements of

Technological University Dublin for the degree of

M.Sc. in Computing (Data Science Stream)

March 2021

Declaration

I certify that this dissertation which I now submit for examination for the award of

MSc in Computing (Data Science stream), is entirely my own work and has not been

taken from the work of others save and to the extent that such work has been cited

and acknowledged within the text of my work.

This dissertation was prepared according to the regulations for postgraduate study

of the Technological University Dublin and has not been submitted in whole or part

for an award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements

of the Institute’s guidelines for ethics in research.

Signed:Vinicius W. Lodetti

Date:03/March/2021

I

Abstract

A network intrusion detection system (NIDS) is one important element to mitigate

cybersecurity risks, the NIDS allow for detecting anomalies in a network which may

be a cyberattack to a corporate network environment. A NIDS can be seen as a clas-

sification problem where the ultimate goal is to distinguish between malicious traffic

among a majority of benign traffic. Researches on NIDS are often performed using

outdated datasets that don’t represent the actual cyberspace. Datasets such as the

CICIDS2018 address this gap by being generated from attacks and an infrastructure

that reflects an up-to-date scenario.

A problem may arise when machine learning classification algorithms are trained

on a dataset that presents class imbalance towards a majority, which is the case of

CICIDS2018 data where the majority class is skewed to legitimate traffic. Such prob-

lem can be tackled by modifying a dataset probability distribution by augmenting

the existing data to achieve balance in the dataset. Many different methods can be

used to do so, ranging from naive approaches like random oversampling or undersam-

pling; Machine learning with SMOTE and Decision Trees; Or even sophisticated deep

learning models such as the GAN and CTGAN.

An evaluation of the different data-augmentation methods for training a random

forest classifier task showed that ROS and SMOTE are competitive in detecting at-

tacks, while CTGAN demonstrated to better recognize benign samples and provide

a balance between security and functionality for the network, however at a computa-

tional resource expense.

Keywords: CICIDS2018, Network Intrusion Detection System, Imbalanced Learn-

ing, Data Augmentation, Deep Learning

II

Acknowledgments

I would like to thank Dr. Jack O’Neill for the endless support, insights, motivation

and guidance that allowed me to produce such research.

A big thanks to my flatmates, family and especially to my partner that were always

there to support me.

III

Contents

Declaration I

Abstract II

Acknowledgments III

Contents IV

List of Figures VII

List of Tables VIII

List of Acronyms IX

1 Introduction 1

1.1 Background . 1

1.2 Research Project/problem . 3

1.3 Research Objectives . 4

1.4 Research Methodologies . 6

1.5 Scope and Limitations . 6

1.6 Document Outline . 7

2 Review of existing literature 8

2.1 Dataset . 8

2.2 Imbalanced Learning . 10

2.3 Random Forest IDS . 11

IV

2.4 Naive Strategies . 12

2.5 Machine Learning . 13

2.5.1 SMOTE . 13

2.5.2 CART . 14

2.6 Deep Learning . 14

2.6.1 GAN . 14

2.6.2 CTGAN . 17

2.7 Evaluation Methods . 20

2.7.1 Synthetic data quality . 20

2.7.2 Machine learning efficiency . 22

3 Experiment design and methodology 24

3.1 Dataset . 24

3.1.1 Data Preprocessing . 25

3.2 Data Augmentation . 27

3.2.1 ROS . 27

3.2.2 RUS . 27

3.2.3 SMOTE . 27

3.2.4 CART . 28

3.2.5 GAN . 28

3.2.6 CTGAN . 29

3.3 Experimental Design . 30

3.3.1 Synthetic data quality . 30

3.3.2 Machine learning efficiency . 31

3.4 Computational Environment . 32

4 Results, evaluation and discussion 33

4.1 Synthetic data generation . 33

4.2 Synthetic data quality . 35

4.3 Machine learning efficiency . 36

V

5 Conclusion 40

5.1 Research Overview . 40

5.2 Problem Definition . 40

5.3 Design/Experimentation, Evaluation & Results 41

5.4 Contributions and impact . 43

5.5 Future Work & recommendations . 44

References 45

A Additional Content 52

VI

List of Figures

2.1 CICIDS2018 Network Topology . 9

2.2 An imbalanced dataset with two classes 10

2.3 Random forest prediction. 12

2.4 SMOTE interpolation between samples. 13

2.5 Synthetic data generation based on CART. 14

2.6 GAN training objective. 15

2.7 GAN training flow . 16

2.8 CTGAN Conditional Generator. 18

2.9 Example of histogram comparison between real and fake data. 20

2.10 Example of correlation matrix . 21

3.1 Experiment Flow . 30

4.1 CTGAN comparison histogram . 35

4.2 Pairwise correlation figures the original data and synthetic data from

GAN, CTGAN. 36

A.1 GAN Histograms . 55

A.2 CTGAN Histograms . 56

A.3 GAN pairwise correlation matrix comparison with real data 57

A.4 CTGAN pairwise correlation matrix comparison with real data 58

VII

List of Tables

3.1 CICIDS2018 Class Labels . 25

3.2 GAN Architecture . 28

3.3 CTGAN Architecture . 29

3.4 List of external libraries used . 32

4.1 Number of traffic sample types per augmentation method 34

4.2 Pairwise Correlation . 36

4.3 Machine learning efficiency . 37

4.4 Number of Misclassified Samples . 39

A.1 CICIDS2018 Columns . 54

VIII

List of Acronyms

CART Classification and Regression Trees

CTGAN Conditional Tabular Generative Adversarial Neural Network

DDoS Distributed Denial of Service

FN False Negative

FP False Positive

GAN Generative Adversarial Neural Network

IDS Intrusion Detection System

IPS Intrusion Protection System

NIDS Network Intrusion Detection System

RF Random Forest

ROS Random Oversampling

RUS Random Undersampling

SMOTE Synthetic Minority Over-sampling Technique

TN True Negative

TP True Positive

WGAN Wasserstein Generative Adversarial Neural Network

WGAN-GP Wasserstein Generative Adversarial Neural Network with Gradient Penalty

VA Variational Autoencoder

IX

Chapter 1

Introduction

An anomaly-based network intrusion detection system looks for malicious traffic pat-

terns in a network, these malicious samples will be a minority regarding the legitimate

traffic produced by business softwares, internet browsing or any other non-malicious

network activity. A NIDS can be implemented as a classification algorithm to distin-

guish between malicious and benign traffic, but since minority of the traffic is malicious,

the classifier predictions may be biased towards the benign samples. This problem is

known as imbalanced learning or class imbalance problem.

1.1 Background

Cyber threats are a risk for the many business that rely on computer networks —

such as the internet — to perform day-to-day operations. These networks have many

benefits; they allow for integrate with other companies which potentially increases

business opportunities, market availability, and ultimately, revenue. On the other

hand, being part of a network also increases information security risks capable of

doing financial and reputation damage or even shutting down an entire company.

Technologies such as a network intrusion detection system (NIDS) can be placed

between the internet connection or in front of a company’s most risky assets to detect,

prevent and contain internal and external attacks. A NIDS can detect malicious

network traffic in two ways, signature-based by comparing traffic to known attack

1

CHAPTER 1. INTRODUCTION

patterns and anomaly-based for unknown attacks such as never seen before.

Network attacks generally follow similar patterns, often scripts and programmes

available to public use. New attacks are being launched and discovered every day,

signature-based detection requires regular maintenance on the NIDS signature database1,

obsolete signatures should also be deleted to assure a NIDS performance, by the other

hand signature-based detection is less susceptible to False Positives.

Zero-day are attacks which haven’t yet been seen and are immune to pattern-based

recognition, worse still known attacks may be altered slightly to avoid detection. Ma-

chine learning models can be taught to recognize these anomalous patterns, anomaly-

based detection looks for sudden unexplained differences in network traffic, meaning it

can detect previously unseen patterns. The attack detection can be performed using

different methods such as artificial neural networks, Bayesian nets, clustering, decision

trees, ensemble models, support vector machines, association and fuzzy rules. (Buczak

& Guven, 2016; Biswas, 2018).

It is expected that the major part of a company network traffic to be benign

and ideally the NIDS must not interfere with it, which could impact operations by

for example, disrupting critical business applications availability. However, machine

learning models can have their prediction ability negatively impacted when trained on

skewed data, thus favouring the most occurring class, this problem is also known as

imbalanced data or class-imbalance problem (Weiss et al., 2007; Parkinson de Castro,

2020).

A solution to the imbalanced data problem is to increase the number of minor-

ity class samples, for example hiring an external company to exhaustively attack a

network, which implies in costs and can impact business availability. That’s where

synthetic data generation can be an approach to achieve class balance and improve

NIDS performance, ranging from more basic implementations such as random oversam-

pling (ROS) and undersampling (RUS), to machine-learning based on k-nearest neigh-

bours and decision tree like Synthetic Minority Over-sampling Technique (SMOTE)

and Classification and Regression Trees (CART) respectively, to more advanced tech-

1https://www.ciscopress.com/articles/article.asp?p=133642

2

CHAPTER 1. INTRODUCTION

niques making use deep generative models such as Generative Adversarial Networks

(GAN) and its derivatives like the Conditional Tabular GAN (CTGAN).

Goodfellow et al. (2014) proposed the GAN, a generative model trained in an

adversarial way, the architecture consists of two Neural Networks, the generator and

discriminator trained simultaneously while competing a min-max game where the gen-

erator objective is to maximize the discriminator loss and, the discriminator objective

to minimize his own loss. The adversarial training can be exemplified as the gen-

erator being an art forger and the discriminator an detective specialized in art, at

beginning the generator will reproduce the real arts in a very poorly manner and the

discriminator will classify the generator work as fake, then eventually the generator

will improve based on the discriminator’s feedback. The discriminator will spot and

exploit weaknesses in the generated samples, the generator is then forced to overcome

that weaknesses to produce better samples. This training should continue until the

discriminator is no longer able to distinguish between real and fake/generated samples,

that’s when the min-max loss is achieved. This website 2 shows pictures of people that

doesn’t actually exist, they are all generated from a type of GAN (Karras et al., 2019).

1.2 Research Project/problem

Companies must protect themselves against cyber-attacks to avoid reputational and

financial damage, fines from compliance breaches and leakage of trade secrets3. A NIDS

is one of the components to assure network security, it should prefer to misclassify

benign traffic as malicious rather than malicious as benign, thus defining the main

metrics as recall, precision and F1-Score. The metrics should be maximized, if recall

is low it means attacks are not being detected, while lower precision will result in

a security analyst wasting time reviewing false positives, the F1-Score will give a

balanced score between recall and precision.

A NIDS can be implemented as a classification model to distinguish between mali-

2https://thispersondoesnotexist.com
3https://www.nytimes.com/2018/07/20/business/suppliers-data-leak-automakers.html

3

CHAPTER 1. INTRODUCTION

cious and benign traffic, major part of a company network traffic should be benign —

so the traffic used to teach the NIDS — however machine learning models may bias

its predictions towards the most common class, which is benign traffic. One approach

to solve this bias/imbalanced learning problem is to increase the number of a minority

class on the training data of a classification model.

One of the simplest ways of dealing with class imbalance is by randomly copying

samples from the minority class into the dataset, or even randomly removing samples

from the majority class. SMOTE and CART are also two methods to deal with class

imbalance by augmenting the minority class in a machine learn fashion.

GANs have successfully generated synthetic images and tabular data but are known

to be difficult to train (Arjovsky et al., 2017), approaches like Wasserstein GAN

(WGAN), WGAN with Gradient Penalty (WGAN-GP) and CTGAN were designed

to address known issues from the GAN such as mode collapse, vanishing gradients and

non-convergence, further explained in section 2.6.1.

These deep generative methods will be explored as a synthetic data generator to

achieve class balance in a classifier model. The goal of this project is to evaluate

to what extent the different data generation methods will improve the NIDS recall,

precision and F1-Score.

1.3 Research Objectives

The motivation behind including the deep learning approaches in the tests is that

the GAN and its derivatives seems promising generator models given their ability to

generate high quality images. Rigaki and Garcia (2018) have used a GAN to adapt

malware to avoid being detected by a NIDS. Although it is necessary to simulate an

attacker capability against a target, the defence for such state-of-the-art offensives

must be planned. In how many other ways could such innovative use of GAN concepts

contribute to the protection of the cyberspace?

The CICIDS2018 (Sharafaldin. et al., 2018) is a benchmark dataset for network

intrusion detection systems. It was collected during a simulation of a company being

4

CHAPTER 1. INTRODUCTION

attacked. This fictional organization has 420 workstations and 30 servers among 5

departments, while the attacking infrastructure is made of 50 computers.

In a real company network major part of the traffic is benign and a minority would

be malicious, that’s also reflected in the CICIDS2018. A classifier trained on imbal-

anced data can have its predictions biased towards the majority class, and may not

detect malicious traffic to an acceptable degree. Although the dataset is imbalanced,

with 87% instances belonging to the negative class (benign); correctly classifying the

minority class (attack) is of great importance to NIDS. A false negative, allowing ma-

licious traffic is potentially catastrophic to a network. While a false positive, would

imply in inadvertently blocking benign traffic, usually causing minor inconveniences.

Modifying the training dataset distribution by augmenting the malicious samples is

one way to workaround the imbalanced learning issue. This experiment will compare

the performance of a NIDS implemented as a random forest (RF) classifier trained

on CICIDS2018, with different methods of data-augmentation such as ROS, RUS,

SMOTE, CART, GAN and CTGAN, these methods will be evaluated regarding their

precision, recall and F1-Score.

It is important that the generated samples follow the same distribution and feature-

interdependencies of the real data, leading to sub-question 1 : To what extent are

the synthetic generated samples capable of capturing the original data distribution

and correlations.

A random forest will distinguish between benign and malicious traffic regardless of

which attack type the malicious traffic represents, leading to sub-question 2 : Will

the data augmentation methods influence on the misclassification of each attack type?

Research objective: Compare the effect of adding GAN, CTGAN, ROS, RUS,

CART or SMOTE generated samples to augment the minority classes of CICIDS2018

dataset to train a random forest classifier model in terms of model recall, precision

and F1-score.

Research question: To what extent adding synthetic generated samples to aug-

ment the minority classes of CICIDS2018 dataset to train a random forest classifier

model is capable of improving the model precision, recall and F1-Score.

5

CHAPTER 1. INTRODUCTION

1.4 Research Methodologies

This project is a secondary research since it relies on network flow traffic data collected

by (Sharafaldin. et al., 2018) and available on Amazon4, they developed a benchmark

dataset with the latest attacks in a simulated organization, the CICIDS2018 allows

building and evaluation of a NIDS on this empirical experiment to answer the research

questions and hypothesis. Different NIDS models implemented as Random Forest clas-

sifier will be trained on the original data which is imbalanced and also on data balanced

with samples generated from ROS, RUS, SMOTE, CART, GAN and CTGAN. Recall,

precision and F1-Score of such models will then be compared, analysed and discussed

to answer the research question.

1.5 Scope and Limitations

The scope of this research is the creation of synthetic attack samples to address the

class imbalance issue present on CICIDS2018. Only a part of the dataset will be used,

further details are given in section 2.1, this reduced dataset will decrease experiment

time and facilitate GAN training which is known to be difficult and computationally

expensive.

This research will not focus on the creation or tuning of classification models for

the NIDS, it will use Random Forests (RF) trained on different data augmentation

techniques to distinguish between benign or malicious network traffic, the different RF

will then be evaluated regarding their recall, precision and F1-Score.

This work scope is dealing with imbalanced learning at data-level only, which

implies in modify the distribution of the training dataset, such as adding samples to

the training. The methods to deal with imbalanced learning at data-level are limited

here to ROS, RUS, SMOTE, CART, GAN and CTGAN. Not in the scope of this

work, but imbalanced learning can also be tackled at algorithm-level by for example

setting weights to the classes during classifier training or setting decision thresholds

on a classifier prediction.

4s3://cse-cic-ids2018/

6

CHAPTER 1. INTRODUCTION

Signature-based detection is out of the scope together with hybrid-based detec-

tion which is a mix of both anomaly and signature-based detections, although in a

production scenario the is more likely a NIDS would use a hybrid-based approach.

Host-based intrusion detection is also out of scope, it consists for example in analysing

usage of computational resources such as memory, processor, storage, processes and

network usage from an operating system or virtualizer perspective. This research will

focus on network-based intrusion detection systems only.

1.6 Document Outline

The following chapters of this dissertation are outlined below

Chapter 2: This chapter presents an overview of the existing literature and discus-

sions with respect to the imbalanced learned problem, how other research has dealt

with such, and what are the opportunities for improvement in this area.

Chapter 3: Details the proposed experiment framework designed to answer the

hypothesis and research questions towards the project objective.

Chapter 4: Presents an actual implementation of the proposed experiment, what

went well, limitations, issues, workarounds and outcomes that allow to draw conclu-

sions regarding the research.

Chapter 5: This chapter summarizes the results, observations and insights of the

findings, with potential extension for this research.

7

Chapter 2

Review of existing literature

A NIDS is an important piece to mitigate information security risks, a minority of the

traffic analysed by a NIDS would be malicious. The imbalance between minority and

majority class — respectively malicious and benign — can bias a NIDS decision to

the predict most frequent class. This research focuses on solving the class imbalance

problem by investigating the effect of applying different data-augmentation methods

to an imbalanced dataset.

In this chapter, it is explained the dataset used in the proposed experiment, the

problems underlying imbalanced data and how other research dealt with similar prob-

lems. The data-augmentation techniques employed range from Naive approaches to

sophisticated deep learning algorithms, where some techniques were applied to similar

datasets by other research. The implementation of a NIDS as a binary classification

problem using a Random Forest. Finally, the evaluation metrics, where conclusions

will be based on.

2.1 Dataset

Researchers often use outdated network intrusion datasets such as DARPA, KDD-

CUP and NSL-KDD (based on KDD-CUP), from 1998, 1999 and 2006 respectively

(Khraisat et al., 2019), the internet has changed a lot since then and so have the cyber

threats. Newer datasets such as the CICIDS2018 contemplate more recent attack

8

CHAPTER 2. REVIEW OF EXISTING LITERATURE

types and techniques often seen today. The CICIDS2018 is part of a project that has

created other IDS benchmark datasets1 in the past such as the ISCXIDS2012 (Shiravi

et al., 2012) and the CICIDS2017 (Sharafaldin et al., 2019).

The project creates datasets using a systematic approach based on profiles to gen-

erate benign (B-Profile) and malicious (M-Profile) traffic. B-Profile is composed of

data generated from users or from the CIC-BenignGenerator (Sharafaldin et al., 2017)

and M-Profile is derived from various attack types such as password guessing, web

application exploitation, Distributed Denial of Service (DDoS), internal and external

port scanning. The CICIDS2018 is available 10 different files in CSV format, which

was parsed to a network flow format using CICFlowMeter2 (Lashkari. et al., 2017;

Draper-Gil. et al., 2016) from PCAP files, a standard format of low-level network

traffic capture at interface level.

Figure 2.1: CICIDS2018 Network Topology (Sharafaldin. et al., 2018)

Leevy and Khoshgoftaar (2020) surveyed papers on classification models based on

CICIDS2018 and found a gap on how the class balance is dealt, this impact on the

researches reproducibility. The same author also mention works that used accuracy as

a metric for a classification task on CICIDS2018, the accuracy metric can be misleading

as it doesn’t take in consideration what the model have failed to identify and could

mask the problem of imbalanced learning thus an inefficient classifier for the given

domain.

1https://www.unb.ca/cic/datasets/index.html
2https://github.com/ahlashkari/CICFlowMeter

9

CHAPTER 2. REVIEW OF EXISTING LITERATURE

2.2 Imbalanced Learning

The imbalanced learning problem occurs when one of the classes of a dataset is less

frequent in proportion with the other(s), as shown in figure 2.2. For (Weiss et al., 2007)

classifiers trained on imbalanced datasets can have their predictions biased towards

the most common class, for example in credit card fraud detection, a minority of the

samples will be fraud and a classifier may not be able to predict when it is a fraud or

a just a normal transaction, to a level that matches a business risk appetite.

Figure 2.2: An imbalanced dataset with two classes

Prati et al. (2009) synthesizes the concepts, metrics and also methods to counter-

act underrepresentation of classes in datasets for inferring classification models, they

explain that the problem of imbalanced data can be tackled at either data-level by

modifying the train set distribution or at algorithm-level by providing misclassification

cost information prior to training or posterior by defining decision thresholds. The

same authors also mention a hybrid approach which is a mix of data and algorithm

level methods.

Japkowicz and Stephen (2002) researched on how different types of imbalanced data

in terms of training set size and imbalance proportion do affect classification algorithms

such as C5.0, neural networks and support vector machines (SVM), and found that

data and algorithm level methods to deal with class imbalance will have a different

effect based on the dataset size and complexity. Buda et al. (2018) explored imbalanced

data effects and possible counteracts for the problem at both data and algorithm levels

on a convolutional neural network (CNN) classifier trained on three different image

10

CHAPTER 2. REVIEW OF EXISTING LITERATURE

datasets, they found that ROS outperformed RUS and decision thresholding and then

recommended a hybrid approach of both data and algorithm level methods to deal

with class imbalance.

Seiffert et al. (2008) evaluated the effects of using four data-level manipulations:

ROS, RUS, SMOTE and borderline-SMOTE, and also algorithm-level approaches:

Cost-Sensitive Classifier and modifying the decision threshold of a classification algo-

rithm. The tests were executed on 15 datasets, where RUS performed significantly

better at higher imbalance ratios, and the algorithm-level approaches outperformed

ROS, SMOTE and borderline-SMOTE. The two algorithm-level Cost-Sensitive Clas-

sifier and modifying the decision threshold had similar performance.

Pawlicki et al. (2020) tested a RF to classify CICIDS2017 traffic, the authors tested

ROS, RUS, borderline-SMOTE and other undersampling techniques such as Tomek-

Links, and also at algorithm-level a weighted classification in the RF. Surprisingly RUS

outperformed the other data-level balancing methods. But in overall, the algorithm-

level approach had the best recall values.

Although literature suggest an algorithm-level (Pawlicki et al., 2020; Seiffert et al.,

2008) or hybrid (Prati et al., 2009) approach to the imbalanced learning problem, this

work is focusing only on the data-level scope, although the classifier proposed here

could be tested at different decision threshold levels, a data-level approach is agnostic

to one objectives for using the data. A data-level method to deal with imbalance

allows to train other classification models that are sensitive to class imbalance, such

as neural networks (Buda et al., 2018).

2.3 Random Forest IDS

Detecting anomalies in a computer network can be a challenge, because of the high

volume and dimensionality of data, false positive alerts caused by network traffic nor-

mal profile change and intruders adapting their attack techniques to evade detection,

making past detection methods obsolete (Chandola et al., 2009).

Random Forest (Breiman, 2001) is a type of ensemble model that is computation-

11

CHAPTER 2. REVIEW OF EXISTING LITERATURE

ally efficient and is less prone to imbalanced learning problems, RF can deal with high

dimensional data (Chen et al., 2004), such as network intrusion. A RF is composed

of many decision trees, as seen in figure 2.3, each tree will vote towards a target class,

these votes are weighted by the probability estimative for the analysed sample be a

malicious or benign network traffic, for example.

Figure 2.3: Random forest prediction.

RF have been used to classify IDS data on other similar datasets such as the

CICIDS2017 (Lee & Park, 2019b, 2019a), and other datasets such Kyoto 2006+ in

(Park et al., 2018) and NSL-KDD in (Tesfahun & Bhaskari, 2013), and outside of

cybersecurity by (Khalilia et al., 2011) to predict disease risks from highly imbalanced

data. In this work a RF will be implemented to act as the network intrusion detection

system.

2.4 Naive Strategies

Random Oversampling (ROS) is one of the simplest approaches to deal with imbal-

anced learn, it consists in copying random samples from the minority class until the

imbalance is solved, it is also known as sampling with replacement. The shortcoming

of ROS is that it increases the chance of overfitting models. Random Undersampling

12

CHAPTER 2. REVIEW OF EXISTING LITERATURE

(RUS), is another naive approach that is based on randomly removing samples from

the majority classes to achieve balance, with the shortcoming that valuable informa-

tion can be lost (Mishra, 2017). Both ROV and RUS are very easy to implement

because they don’t perform any heuristical decision to deal with data and can serve

as a baseline to compare more advanced methods.

2.5 Machine Learning

2.5.1 SMOTE

Proposed by (Chawla et al., 2002) SMOTE is one method to augment data to overcome

the imbalanced learning problem, by creating synthetic samples from an interpolation

between nearest neighbours.

A synthetic sample S is generated from the difference between a randomly chosen

sample Si and one other sample in its nearest neighbour Sn multiplied by a random

number between 0 and 1 and then added to the chosen sample, described in equation

below.

S = Si+ (|Sn− Si|) ∗ rand[0, 1]

SMOTE consists in selecting samples from a minority class clustering them into

k-nearest neighbours and creating new data points between the neighbours as shown

in figure 2.4 where the minority class is in red and the synthetic samples sit in between

the original samples.

Figure 2.4: SMOTE interpolation between samples.

SMOTE is simple to implement and the only heuristic required is clustering the

samples in k nearest neighbours. The downside of SMOTE is that it can create an

13

CHAPTER 2. REVIEW OF EXISTING LITERATURE

overlap with other similar classes leading to a fuzzy decision boundary which can cause

noise in the synthetic data. Such issue is mentioned in a research to improve detection

of Android malwares in an imbalanced dataset and was reworked by Y. Xu et al.

(2017) by increasing the number of minority samples near the decision boundaries.

2.5.2 CART

Classification and Regression Trees (CART) were proposed by (Breiman et al., 1984),

and used by (Reiter, 2003) to generate synthetic data to address privacy issues on

sensitive values of microdata, to allow its publication. Sabay et al. (2018) have used

CART to create a surrogate dataset to deal with class imbalance and privacy issues

in Breast Cancer and Nursery datasets and successfully trained a classifier model.

Synthetic data generation using CART consists in predicting the next feature based

on the previous features, so the last feature will be conditional on all the previous

features, thus preserving correlations, the first feature is a special case and is randomly

sampled with replacement from the original dataset (Nowok et al., 2016), as shown in

figure 2.5.

Figure 2.5: Synthetic data generation based on CART.

CART models are capable of working with non-gaussian distributions and captur-

ing non-linear relationships like network intrusion data, but can be hard to be interpret

the generated model (Caiola & Reiter, 2010), which is not a problem on this research

2.6 Deep Learning

2.6.1 GAN

A Generative Adversarial Network (GAN) is a machine learning architecture consist-

ing of two neural networks, the generator and the discriminator who compete against

14

CHAPTER 2. REVIEW OF EXISTING LITERATURE

each other in a min-max game. The generator wants to maximize and the discrimina-

tor to minimize the loss of the discriminator. These two neural networks are trained

simultaneously, from random noise the generator will learn how to produce fake sam-

ples that look like real data. These fake samples from the generator will feed to the

discriminator along with samples from a dataset of real data, the discriminator job

then is to distinguish/predict if a sample is real data or is a fake sample produced

from the generator. Again, the idea is that the generator should be able to produce

fake data that is very similar to the real data distribution so that the discriminator is

not able to distinguish between genuine and fake data, as shown in 2.7.

Figure 2.6: GAN training objective.

The training process for the generator consists in feeding the generator input layer

with random data of fixed size, for example an array 128 of random numbers between

-1 and 1, this values will then feed forward to the neural network layers until it reaches

the output layer, the output layer size should be of the same size of the original data,

for example the number of columns in a dataset, by this time the fake sample is ready

to be evaluated by the discriminator.

The discriminator will be trained by analysing samples from the generator and also

from real data, these samples will feed to the discriminator input layer that should

have the same size as the original data, the samples are then feed forward until it

reaches the discriminator output layer of size one, which will return a value of 1 for

real and 0 for fake, for example.

15

CHAPTER 2. REVIEW OF EXISTING LITERATURE

Figure 2.7: GAN training flow

The discriminator loss value will be calculated based on the misses and hits from

his predictions of real and fake samples, while the generator loss is based only on the

discriminator predictions of the fake samples, the generator doesn’t care about real

samples.

Each model having its separate loss value allows to calculate the derivative of the

error gradient and backpropagate adjustments to the layers of each model. GAN

training will occur until the generator is able to produce synthetic data that assembles

real data, for example in figure 2.6 one wants to the red portion (synthetic samples)

being the most similar as the green mass (real samples).

Lee and Park (2019b, 2019a) have implemented a GAN to generate data to solve

imbalanced data issues on CICIDS2017, the predecessor of CICIDS2018, with positive

results for some classes of attacks. To simulate a malware that leverages from artificial

intelligence Shu et al. (2020) used a GAN with a variational autoencoder (VA) as the

generator, the VA is type of model that maps raw data to a hyperspace, this GAN

produced simulated malicious samples capable of bypass a neural network classifier

model acting as a NIDS.

GAN Issues

The original GAN architecture is known be difficult to train and to be applied to

generate tabular data. GAN is a trending topic and researchers are working around

the issues and exploring GAN capabilities, researches mention some common prob-

lems such as mode collapse, vanishing gradients and non-convergence and propose

16

CHAPTER 2. REVIEW OF EXISTING LITERATURE

workarounds for such issues (Walia et al., 2020; Arjovsky et al., 2017; Karlsson &

Sjöberg, 2020; L. Xu et al., 2019).

Mode collapse is when the generator has learned to produce only a single type

or very similar outputs, and the discriminator is always fooled by this fake sample

causing the learning process to get stuck, the discriminator is not able to minimize

its loss function. For example in a GAN to generate tabular data with categorical

columns, that was the detect in the experiments conducted for this research, the GAN

learned the imbalance present in the original dataset and was producing only a single

traffic type.

Vanishing gradients happen when the discriminator is not able to provide useful

feedback for the generator, the generator loss value which is produced by the discrim-

inator is so small that the generator won’t improve. GANs work well with images

because of their range between 0 and 255. Applying min-max transformation to a

continuous value present in a tabular dataset will be likely to cause the gradients

vanishing (L. Xu et al., 2019).

As the generator objective is to produce fake samples similar to real, at certain

point the discriminator feedback will be of less importance, it is also hard to tell when a

GAN model is producing fake samples of good quality, there’s no definitive evaluation

metric (Borji, 2019). If the GAN is trained for too long the generator may start to

produce useless samples of poor quality, that’s called non-convergence.

2.6.2 CTGAN

Conditional Tabular Generative Adversarial Network (CTGAN) was proposed by

(L. Xu et al., 2019) to address issues arising when using a GAN to generate tabular

data, such as coexistence of continuous and categorical data in the same dataset; Non-

Gaussian distributions from continuous data that can’t go through min-max trans-

formations; Multi-modal distributions, vanilla GAN is not able to capture continuous

values multi-modes.

CTGAN estimate the continuous columns based on the number of modes present on

the distribution, which is given by fitting a Gaussian mixture model into the columns,

17

CHAPTER 2. REVIEW OF EXISTING LITERATURE

a value present in the third mode would be represented in a one-hot encoding vector

α = [0,0,1] vector, for example. This vector will be concatenated with a scalar β

representing the value inside that mode, that’s how a continuous column is presented

to the CTGAN generator.

The CTGAN takes in consideration that values from a categorical column may

be imbalance, and the generator may never learn the minority classes. Each cate-

gorical column value will be presented mutually excluded from any other categorical

value. Consider one row with columns D1 and D2 as ”marital status” (single, mar-

ried, divorced) and ”is employed” (yes, no) to one hot encoded vector D1=[0,0,1] and

D2=[0,1]. Between the two columns ”is employed” is randomly picked, the two vectors

D1 and D2 are concatenated into a mask M = [0,0,0,0,1] this mask will be mapped

from an original sample and presented to the discriminator. The generator is free to

populate the mask with any values it wants, but will get penalized thus forcing it to

eventually learn to pick only one categorical value of only a single column value, that

also forces the generator to learn the continuous values associated with the respective

categorical value.

The continuous and categorical column representations are then concatenated and

feed to the discriminator as shown in figure 2.8

Figure 2.8: CTGAN Conditional Generator. (L. Xu et al., 2019)

CTGAN also leverages from other advancements in GAN research, it uses the

Wasserstein distance as loss on the discriminator, or critic as it’s known on the Wasser-

stein GAN (WGAN) (Arjovsky et al., 2017), this new loss function is the distance

18

CHAPTER 2. REVIEW OF EXISTING LITERATURE

between real data and generated data distributions, similar to figure 2.6, in contrast

to the cross entropy used by the vanilla GAN, the Wasserstein distance is a meaningful

metric to tell the distance. The generator objective is to minimize distance while the

discriminator looks to maximize the distance, once the loss function gets to a value

of zero the discriminator is no longer able to distinguish between real and fake. In

WGAN the critic output is linear and ranges between -1 and 1 respectively for fake

and real, in contrast with vanilla GAN that uses sigmoid in the discriminator output

layer thus limited between 0 and 1.

To avoid vanishing gradients, and also the inverse, exploding gradients, the authors

clipped the discriminator weights in the range between -0.01 and 0.01, which the

authors in (Gulrajani et al., 2017) found to be problematic and proposed to enforce

the same constraint in form of penalty on the gradient of the discriminator. This

constraint is known as Lipschitz constrain, explanation of such mathematical property

is outside of the proposed scope for this research and can be referred in the original

paper.

The CTGAN also incorporates the packing element (Lin et al., 2017), which consist

in presenting N more samples from the same class during the discriminator training,

for example it will present 10 real samples or 10 fake samples to be analysed by the

discriminator at once, which is an efficient method to avoid mode collapse thus forcing

the GAN to diversify on the generate samples.

Tang et al. (2020) have compared classifiers trained with CTGAN augmented data

to predict oil reservoirs quality which didn’t improved the classification task. GAN

based models have been used in the financial domain to generate synthetic data.

Karlsson and Sjöberg (2020) experimented with WGAN-GP as a baseline against CT-

GAN, that is designed to deal with tabular data, WGAN-GP (Gulrajani et al., 2017)

had better results on continuous simulated data and CTGAN on adult census, a more

categorical dataset. (Walia et al., 2020) have compared SMOTE as a baseline against

WCGAN-GP in the efficiency on machine learning tasks and on privacy metrics with

favourable results to WCGAN-GP on cardiovascular and credit card fraud datasets,

but not on adult census which have more categorical data than the previous datasets.

19

CHAPTER 2. REVIEW OF EXISTING LITERATURE

At the time of writing no other research on network intrusion detection made use of

CTGAN before.

2.7 Evaluation Methods

An evaluation framework is necessary to ensure the generated data is a reliable repre-

sentation of its origin. At a first stage the synthetic data is evaluated in how similar

it is to the real data, that’s done using histograms to visually judge the distribution

shapes while pairwise correlation allows both visual and numerical inspection on the

columns dependencies. The most important metric in this experiment is the machine

learning efficiency which tells the synthetic data suitability for a classification model

inference.

2.7.1 Synthetic data quality

Synthetic data evaluation can be done in a visual manner by plotting both real and

synthetic data to a histogram. However, the histograms, do not allow to check if the

synthetic data is following the same correlations as the real data does, that motivated

to use the pairwise correlation evaluation.

Histogram

Histograms will provide visual aid to check if the synthetic data is able to follow the

same ranges of original data distributions, a histogram will be generated for each real

and synthetic column pair. The synthetic data is represented in red, real data in green,

the grey parts is when both overlaps, meaning that the synthetic data generator is

able to capture that set. It is expected that the generated data would capture the

mean and modes and that can be evaluated using a histogram.

Figure 2.9: Example of histogram comparison between real and fake data.

20

CHAPTER 2. REVIEW OF EXISTING LITERATURE

Figure 2.9 is a small example of a histogram for one column, a full picture is

available in appendix A.1, the figure shows that the synthetic data has captured the

mode and some part of the real data distribution, although with the synthetic a bit

outside of the original data range.

Pairwise correlation

To tackle the histogram limitations, similarly to (Karlsson & Sjöberg, 2020) who

used a statistical measure to test synthetic data fidelity by using a correlation matrix

that provides both visual and numerical ways to evaluate. This evaluation is mainly

necessary to check if the deep learning methods are generating good quality data, since

GAN and derivatives may struggle to capture feature inter-dependencies.

The Pearson ”r” correlation coefficient tells how much two columns are correlated,

its value ranges between -1 and 1. A positive correlations value means that while one

variable X increases other variable Y will increase at similar proportion, for example

the number of times a clothes dryer machine appliance is used within a month and

the electric bill at the end of the moth. A negative value means that while a variable

X increases, other variable Y will decrease, for example the number of times one did

physical exercise will decrease chance of heart disease. A value of zero means there’s

no correlation. A matrix of correlations shows the correlation value for each pair of

variables, as shown in figure 2.10 a small example, the ones used later in this work

contain 68x68 squares and are available in the appendix A.3.

Figure 2.10: Example of correlation matrix

21

CHAPTER 2. REVIEW OF EXISTING LITERATURE

Each square of synthetic data is subtracted by its real data equivalent square,

which is then transformed to an absolute value to generate a new matrix, the mean of

this new matrix will return the correlation value for each feature, by calculating the

mean again, a single value is obtained and is used to facilitate the comparison between

different synthetic datasets. A value of zero for this coefficient means the synthetic

data does follow exactly the same correlation degrees as the real data does. Good

synthetic data should have the pairwise correlation value as close to zero as possible,

and avoid going any higher.

2.7.2 Machine learning efficiency

The objective of this research is to evaluate different synthetic data generation methods

to solve the imbalanced learn problem on a classification model, machine learning

efficiency is the key measure to assess the different methods experimented here, it tell

if the data augmentation methods are suitable for machine learning tasks.

There’s no definitive evaluation metric for a machine learning classifier, the metric

must be chosen taking in consideration the problem it is trying to solve, the accuracy

metric for example can be misleading when dealing with an imbalanced dataset (Saito

& Rehmsmeier, 2015; He & Garcia, 2009; Parkinson de Castro, 2020), while precision

metric can be used when false positives are a bigger concern than false negatives,

and recall metric should be used when false negatives are more prejudicial than false

positives. For example, it is preferable to say someone has cancer and forwarding this

person to do more tests which then can confirm s/he’s healthy, than saying that there’s

no disease and the person wouldn’t seek any treatment.

Precision and Recall

In the context of network intrusion detection a model precision relates to total number

of records that are correctly detected as attacks among all the traffic, while recall tells if

the samples classified as attacks were in reality just normal traffic, to assure maximum

detection and low noise the models should respectively have high precision and high

22

CHAPTER 2. REVIEW OF EXISTING LITERATURE

recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Considering attack the positive class and benign traffic the negative class, a true pos-

itive (TP) and a true negative (TN) respectively mean that an attack and a benign

traffic flow were correctly classified, a false positive (FP) would mean that a benign

traffic was misclassified as attack and a false negative (FN) that an attack was mis-

classified as benign. The impact in a real-world scenario is that a false positive could

break a legitimate business application and the false negative that an attacker suc-

cessfully by-passed detection mechanisms. Is up to each business to decide on the

trade-off between FP (Precision) and FN (Recall) to match with their network secu-

rity requirements.

F1-Score

Introduced by (Van Rijsbergen, 1979) F1-Score is a more robust metric for evaluating

an imbalanced classification task, it consists in the harmonic mean of precision and

recall, the F1-Score allows quicker decision process by looking at a single number per

class.

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

=
2 ∗ TP

2 ∗ TP + FP + FN

Misclassification per class

There are 12 different types of attack in the CICIDS2018, some are harder to detect

than others, by analysing the misclassification per class is possible to analyse how the

different data augmentation methods perform on different attack types.

23

Chapter 3

Experiment design and

methodology

The purpose of this chapter is to describe the experiment framework developed towards

the research objective, question, sub-questions. Here’s is discussed the steps taken to

build the test framework, issues found and workarounds, to assure reproducibility of

the study.

3.1 Dataset

The CICIDS2018 a dataset of network flows, which is a summarized sequence of pack-

ages from one host to one or more hosts in a computer network, the CICIDS2018

was generated in the network topology shown in Figure 2.1. The dataset contains 82

columns, fully listed in appendix A.1, and 16,232,943 samples representing network

flows of 14 types of attacks plus benign traffic, composing approximately 83% of be-

nign and 17% of malicious traffic flows. The CICIDS2018 was designed to be used

on network anomaly detection studies, like a classification model built to distinguish

between benign and malicious traffic to generate security alerts to contain attacks in

a hypothetical scenario. Most of the CICIDS2018 data is benign, reflecting the fact

that in a corporate network environment the vast majority of traffic is benign. As

shown in table 3.1 the target classes — attacks — are unbalanced in favour of benign

24

CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

samples, this can negatively impact classification models.

Traffic Type Total Percentage

Benign 12,817,082 83.07%

DDOS attack-HOIC 686,012 4.23%

DDoS attacks-LOIC-HTTP 576,191 3.55%

DoS attacks-Hulk 461,912 2.85%

Bot 286,191 1.76%

FTP-BruteForce 193,360 1.19%

SSH-Bruteforce 187,589 1.16%

Infilteration 161,934 1.00%

DoS attacks-SlowHTTPTest 139,890 0.86%

DoS attacks-GoldenEye 41,508 0.26%

DoS attacks-Slowloris 10,990 0.07%

DDOS attack-LOIC-UDP 1,730 0.01%

Brute Force -Web 611 0.00%

Brute Force -XSS 230 0.00%

SQL Injection 87 0.00%

Table 3.1: CICIDS2018 Class Labels

3.1.1 Data Preprocessing

According to Leevy and Khoshgoftaar (2020) there’s no detailed literature on how

CICIDS2018 can be cleaned and prepared for machine learning and the class imbalance

solved. It was noticed that some files had repeated header information on the body,

which may indicate that the parser to generate such datasets was executed more than

once or multiple files were appended to a single one. Another finding is that one of the

files ”Thuesday-20-02-2018” (sic) has more columns than the others, such as Network

Flow ID, Source IP, Source Port, Destination IP. Such columns could have been used

for designing other experiments that take into consideration where traffic is coming

25

CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

from and going to, in a real-world application these columns can be used to fine tune

a NIDS and reduce number of false positives.

The column timestamp is ignored since the problem is not analysed from a time-

series perspective, along with dst port since its pair src port is present only to a single

file on the dataset, other columns with no variance are also removed, resulting in a

68 column train and test sets. The dataset literally presented ”Infinite” values which

were are replaced by “NA”. The target variable indicates if traffic is benign or which

attack type it represents, the target variable is then expanded to two columns, the first

a boolean flag indicating if it’s an attack or benign traffic and the second, a numeric

code for the traffic type.

Data is then split into 80% for training and 20% for test using stratified sampling,

NA values are then replaced by the respective column median. Stratified sampling

allows each split to have a proportional percentage of target classes.

It is important to scale and normalize the data since some machine learning algo-

rithms can be sensitive working with data that is not normal, such as neural networks,

which implies in the GAN and CTGAN. Standard scaler is chosen since L. Xu et al.

(2019) used a MinMax scaler to train a GAN but found that the test models didn’t

capture the distribution modes. Standard scaler normalization is fitted on the training

set and transformed both training and test sets.

Although most of the CICIDS2018 columns are numeric/continuous, it was noticed

on some columns that their top 5 most common values comprised a threshold of 99% of

the dataset, and that’s how categorical columns are defined for CART in this research,

namely columns: ack flag cnt, cwe flag count, down up ratio, ece flag cnt, fin flag cnt,

fwd psh flags, fwd urg flags, psh flag cnt, rst flag cnt, syn flag cnt, urg flag cnt. A

similar method will be applied to define categorical columns to the CTGAN, which is

explained later.

26

CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

3.2 Data Augmentation

3.2.1 ROS

Random oversampling augmented attacks to 100,000 samples for each attack type by

copying the samples with replacement until the desired number. ROS is very simple

to implement and cheap in computational requirements since no complex calculations

are required, which scales well to big datasets, in contrast to other robust machine

learning approaches. Although it may cause the classification model to overfit thus

leading to bias towards few samples from the training data, which may prejudice the

model generalization to unseen data.

3.2.2 RUS

Random undersampling limited each attack type and benign traffic to a maximum

of 50,000 samples, which is half of what was asked for ROS, SMOTE, CART, GAN

and CTGAN to generate. Like ROS, it is also very simple to implement with the

same benefits for both methods. The downside is that valuable samples may be ran-

domly removed, which may negatively impact on the model predictions, RUS per se

doesn’t allow to delete only samples that won’t prejudice a machine learning model,

for example.

3.2.3 SMOTE

This method one could call a smart approach to oversampling when compared to ROS

and RUS. SMOTE requires a simple training of k-nearest neighbours algorithm, after

that it is possible to specify the desired number of samples to generate for each class,

which was set to 100,000. The downside of SMOTE is that it can create samples

that overlap with other classes and that may prejudice the decision boundary of the

classifier.

27

CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

3.2.4 CART

With CART it was possible to generate 100,000 samples for each attack type, but not

for SQL Injection and DDoS attacks-LOIC-HTTP attacks due to highly correlation

in columns, causing the algorithm to halt and sometimes crashing the application.

Fortunately, that didn’t interfere with final experimentation results as seen later in

table 4.4

Benign samples were excluded from CART training due to performance issues.

CART allows to define which columns to treat as categorical, these were selected

based on if their five most common values do comprise 99% of the distribution as

explained in 3.1.1.

3.2.5 GAN

A GAN was trained for each type of attack, batch size was dependant on the number

of training samples. The batch size was set to 32, 64, 128 for classes with less than 500,

2,000, 10,000 samples respectively, and batch size of 512 for when higher than 10,000.

All the GANs were trained for 10,000 epochs, which took a total of three hours.

The GAN architecture and parameters are detailed in table 3.2, the architecture

used on the experiments was defined based on tests using 4 to 6 columns randomly

selected from the dataset and also from a random data distribution of 4 columns. The

same tests showed that a generator input layer of size 128 produced better samples

and showed more stability than 32 and 256 neurons.

Parameter Generator Discriminator

Input Layer -Number of neurons 128 68 (Number of columns in training dataset)

Hidden Layer 1 128 Leaky ReLu (Dropout, alpha: 0.2) 512 Leaky ReLu (Dropout, alpha: 0.2)

Hidden Layer 2 256 Leaky ReLu (Dropout, alpha: 0.2) 256 Leaky ReLu (Dropout, alpha: 0.2)

Hidden Layer 3 512 Leaky ReLu (Dropout, alpha: 0.2) 128 Leaky ReLu (Dropout, alpha: 0.2)

Output Layer - Number of neurons 68 (Number of columns in training dataset) - Linear 1 - Linear

Loss function: Binary Cross Entropy. Optimizer: Adam rate at 0.0002, betas b1 = 0.9, b2 = 0.999

Table 3.2: GAN Architecture

It is worth mentioning the number of neurons on the output layer of the generator

28

CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

and the input layer of the discriminator are the same, as per table 3.2, these must be

the same number of the columns from the data one is looking to generate.

3.2.6 CTGAN

Like the GAN, individual CTGAN models were trained per attack category, the num-

ber of epochs and batch size was dependant on the number of samples available in the

training dataset.

Similar to CART, CTGAN also allows to specify the categorical columns, these

were defined after a number of tests using different thresholds for considering a column

categorical or continuous. If the top 5 most common values did comprise — a threshold

of — 80% of the column, then consider the column as categorical, for example. The

issue is that depending on the threshold set, if the number of samples for a class was

too high the application would run out of memory and crash.

The default CTGAN architecture is two layers of 256 neurons for the generator

and discriminator, but after tests it was observed that the respective crescent and

decrescent pattern for generator and discriminator did improved the results, as shown

in table 3.3, on the flip side this larger architecture had increased the training time to

72 hours.

Generator Discriminator

Input Layer -Number of neurons 128 68 * 10 (Packs)

Hidden Layer 1 128 ReLu (BatchNorm 1D) 128 Leaky ReLu (Dropout, alpha: 0.5)

Hidden Layer 2 256 ReLu (BatchNorm 1D) 256 Leaky ReLu (Dropout, alpha: 0.5)

Hidden Layer 3 512 ReLu (BatchNorm 1D) 512 Leaky ReLu (Dropout, alpha: 0.5)

Output Layer - Number of neurons 68 - Linear 1 - Linear

Gradient Penalty Adam - Decay (L2) 0.000006 Lipschitz Constraint

Loss function: Wasserstein Distance. Optimizer: Adam rate at 0.0002, betas b1 = 0.9, b2 = 0.999

Table 3.3: CTGAN Architecture

Similar to the GAN, the same principle of the number of neurons in the output and

input layers of the generator and discriminator applies to the CTGAN. However, as

29

CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

explained in section 2.6.2 the CTGAN uses the idea of packs, which means that in this

case is that 10 samples will be presented to the discriminator in each epoch, which is

one workaround against the known issue of mode collapse present in the vanilla GAN.

3.3 Experimental Design

Figure 3.1 shows the experiment flow, the train data will feed the generator methods,

the generators will be trained where applicable, once trained the generators will pro-

duce synthetic data to be evaluated regarding the generation method ability to capture

the original data distribution and correlations. To then augment the original dataset to

solve class imbalance and train a random forest, leading to a more robust test which is

the machine learning efficiency, this last test will tell which data-augmentation method

is doing a better job in solving the class imbalance problem.

Figure 3.1: Experiment Flow

3.3.1 Synthetic data quality

By analysing a histogram that plots the generated data against its real counterpart,

it is possible tell if the generator method was able to capture the data ranges and

different modes from the original data it was trained on. In the case the GAN and

30

CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

CTGAN one should look if the synthetic data is stuck to a single mode, which may

indicate mode collapse, that in practice means the generator only learned to output a

single or a limited set of samples.

The pairwise correlation can be checked either in the plots or in coefficient values,

it tells how good the generation method has captured the data correlations. The goal

is to get the synthetic data correlation plot as similar as possible to the real data plot,

while the coefficient value should be as close to zero as possible.

3.3.2 Machine learning efficiency

Machine learning efficiency metric is obtained after training a random forest to classify

the network flows as benign or malicious regardless of which attack type the sample

represents, assuming that the classifier would be able to capture new attacks that

doesn’t exist today regardless of the attack type. The data generator output is summed

with its own training data, this bigger and balanced dataset will serve as training data

for the RF, as pictured in Figure 3.1

Misclassification per class

There’s only few samples for some attack types, table 3.1 shows only 87 samples for

SQL Injection, for example. To get a better understanding and a fair comparison of

which attack categories the RF is able to detect a detailed misclassification report is

also provided.

Research Question

Machine learning efficiency is the key metric to answer the research question, as clas-

sification algorithms are negatively affected by the imbalanced learning problem. This

metric allows to evaluate To what extent adding synthetic generated samples to aug-

ment the minority classes of CICIDS2018 dataset to train a random forest classifier

model is capable of improving the model precision, recall and F1-Score

31

CHAPTER 3. EXPERIMENT DESIGN AND METHODOLOGY

3.4 Computational Environment

CART training and data generation was performed in R Studio with an Intel i7 pro-

cessor and 16gb of RAM. All the other experiments were computed using Python 3.6

in a Google Colab notebook hosted with 25gb of Ram, 4x Intel Xeon CPU at 2.30GHz

and randomly allocated GPUs between Nvidia K80s, T4s, P4s and P100s 1. Where

applicable the random seed was set to the number 42. Table 3.4 lists the external

software used on the experiments.

Software/Package Version Purpose

Tensorflow 2.4.1 Deep learning

Pytorch 1.4 Deep learning

CTGAN 0.3.1 Deep learning

Sklearn 0.23 Machine Learning

Imblearn 0.4.3 Machine Learning

Numpy 1.19.5 Vector and matrix operations

Pandas 1.1.4 Dataset operations

Matplotlib 3.2.2 Visual Graphics

Seaborn 0.11.1 Visual Graphics

ml-ids NA CSV Processing, Visual Graphics

Synthpop 1.6.0 Machine Learning

Table 3.4: List of external libraries used

Due to computational lab environment memory limitations only the first 100,000

lines on nine out of the ten CICIDS2018 files will be read to allow CTGAN to be

trained and fairly compared to other methods. This caused to leave Infilteration (sic),

SSH and FTP Bruteforce attacks out of the experiment, still 900,000 samples to be

used 80% for training and 20% for test.

1https://research.google.com/colaboratory/faq.html

32

Chapter 4

Results, evaluation and discussion

A classifier trained on a dataset with imbalanced data can lead to biased predictions

towards the majority class, data-augmentation techniques are one approach to deal

with such problem. The experiment evaluates the use of naive, machine learning

and deep learning approaches to deal with class imbalance when training a random

forest. This section presents results and comparisons of the implementation of such

data-augmentation techniques.

4.1 Synthetic data generation

In an early experiment it was noticed that the data generations methods CART, GAN

and CTGAN learned the class imbalance when trained with all the data, which may

indicate that these methods are sensible to class imbalance. To solve that problem,

each method trained one model per attack class, resulting in 11 different model for

GAN and CTGAN methods. For CART it was 9 models as it couldn’t learn SQL

Injection and DDoS attacks-LOIC-HTTP as explained in section3.2.4.

The two most basic techniques were ROS with RUS, the first consists in duplicating

existing samples until the class balance is achieved, the second reduces the number

of the majority class samples, to 50,000 in the case of this experiment. SMOTE was

other method applied, by generating data samples in between the lines of 5 k-nearest

neighbour clusters of a minority class to upsample the minority samples to 100,000

33

CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

instances each attack class.

It took 15 minutes to train nine CART models individually per attack class except

SQL Injection and DDoS attacks-LOIC-HTTP, these two classes have columns with

high correlation and caused the algorithm to halt, leaving these classes out of the

experiment didn’t interfere, as showed later in this section.

Eleven GAN models were trained for each attack class for 10,000 epochs which

took around three hours in total, the GAN was called to generate 100,000 samples

per class. Another eleven models were produced using a CTGAN, which took a total

of 72 hours of training, in a bespoke approach per attack class, defining batch size,

epochs and which columns to treat as categorical. The CTGAN was called to generate

100,000 samples per class.

By this time seven different datasets: Original, ROS, RUS, SMOTE, CART, GAN

and CTGAN were ready to be evaluated in terms of how well it did capture the

original data correlation and probability distributions. Table 4.1 shows how many

samples were available for the machine learning efficiency test.

Data Augmentation Method

Traffic Type Original CART ROS RUS SMOTE GAN CTGAN

Benign 375157 375157 375157 50000 375157 375157 375157

Bot 64146 100000 60000 50000 100000 100000 100000

Brute Force -Web 489 100000 60000 489 100000 100000 100000

Brute Force -XSS 184 100000 60000 184 100000 100000 100000

DDOS attack-HOIC 76851 100000 60000 50000 100000 100000 100000

DDOS attack-LOIC-UDP 1384 100000 60000 1384 100000 100000 100000

DDoS attacks-LOIC-HTTP 79934 79934 60000 50000 100000 100000 100000

DoS attacks-GoldenEye 33206 100000 60000 33206 100000 100000 100000

DoS attacks-Hulk 6640 100000 60000 6640 100000 100000 100000

DoS attacks-SlowHTTPTest 73147 100000 60000 50000 100000 100000 100000

DoS attacks-Slowloris 8792 100000 60000 8792 100000 100000 100000

SQL Injection 70 70 60000 70 100000 100000 100000

Total 720,000 1,355,161 1,035,157 300,765 1,475,157 1,475,157 1,475,157

Table 4.1: Number of traffic sample types per augmentation method

34

CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

4.2 Synthetic data quality

Evaluation of the synthetic is one of the steps towards the research question, these

evaluations were designed with the deep learning methods in mind, the GAN is known

to be difficult to train and to be applied to tabular data. CTGAN is a GAN variant

that is designed to address known issues from the GAN, the synthetic data quality

evaluation will provide support to detect and workaround such issues.

The histograms illustrated if the generated data managed to capture real data dis-

tribution column by column. The original data which was used to train the generator

model is shown in green, the generator output in red. Where the generator managed

to capture the distribution is shown in grey, which is an overlap between real and syn-

thetic data distributions. Figure 4.1 shows only five columns, while a full comparison

of the 68 features for each method is available in the appendix A.

Figure 4.1: CTGAN comparison histogram

By analysing the histograms in figure 4.1, it is observed in flow duration column

that both GAN and CTGAN went beyond the ranges of the original data distribution.

In column fwd pkt len max the GAN also went beyond the original data range. While

CTGAN was able to capture very specific data points between 2.7 and 5 in X axis. In

column tot fwd pkts the GAN created data points were there’s no real data, between

3 and 6. In column fwd pkt len min is the GAN struggled on that distribution that

looks to be categorical data, while the CTGAN did a good job covering the real data

points. Mode collapse, when the generator learns to produce a limited set of outputs,

35

CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

is visible in idle mean and occurred for GAN, meaning the generator models is able

to produce limited values for this column. While CTGAN managed to capture the

different modes of idle mean.

As described in section 2.7.1 the pairwise correlation has the objective to assess if

the data generation method captured the relationships between variables from which

it was trained on. A value of zero means that the dataset is exactly the same, so the

low the number the better. As shown in table 4.2 and figure 4.2 the CTGAN captured

the correlations better than GAN. The goal in figure 4.2 is to have the generator

method correlation matrix as close as possible to the original data, full size images are

available in appendix 2.6.

ROS RUS SMOTE CART GAN CTGAN

0.09540 0.0462 0.0958 0.1051 0.2283 0.0593

Table 4.2: Pairwise Correlation

Figure 4.2: Pairwise correlation figures the original data and synthetic data from GAN,

CTGAN.

4.3 Machine learning efficiency

With the synthetic data quality inspected, the experiment continued to the most

important tests. Seven IDS models were trained on different datasets, of which six

36

CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

used data augmentation techniques as described in section 3.2, while the remaining

model used the original dataset. The models were evaluated on the same test set

in terms of precision, recall and F1-Score. Three possible scenarios are presented

as interpretations to the results, to fulfil one objectives towards the security of a

hypothetical network environment, where the objective can be one of the following:

a) have the safest environment

b) the most functional environment

c) a balance between security and functionality

Precision Recall F1

CART 99.3964% 99.9049% 99.6500%

SMOTE 99.0686% 99.9362% 99.5005%

ROS 99.0914% 99.9385% 99.5132%

RUS 99.6585% 99.8620% 99.7601%

GAN 99.7403% 99.8063% 99.7733%

CTGAN 99.9014% 99.9084% 99.9049%

Original 99.7231% 99.8353% 99.7792%

Table 4.3: Machine learning efficiency

Security is priority

If one is focusing to have the most secure environment, then the recall metric should

be maximized. Low recall would imply in attacks being classified as benign traffic.

The results available in table 4.3, show that ROS and SMOTE respectively have

the highest recall among all the methods, thus letting a minimal number of attacks

passing through the network. In general, every method had good performance on

recall. ROS and SMOTE recall was followed by CTGAN, CART, RUS, Original and

GAN methods.

37

CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

Functionality is priority

Although not the most performant for recall, CTGAN and GAN scored respectively

the best precision. In a real-world scenario, a high precision means they are the less

obstructive methods, with the lowest false positives. CTGAN and GAN precision were

followed by Original, RUS, CART, ROS and SMOTE. If aiming for a less obstructive

environment, the precision metric should be maximized, but with the possible downside

of being less secure. Low precision implies in legitimate traffic being classified as attack

while a low recall will not detect attacks correctly, leading to higher number of false

negatives.

Balance between security and functionality

The F1-Score is the harmonic mean between precision and recall. If one is looking for

balance between security and functionality of the network, one should maximize the

F1-Score. It is evident that CTGAN showed the best trade-off between precision and

recall, followed by Original, GAN, RUS, CART, ROS and SMOTE.

Misclassifications

Some traffic types could be more easily detected than others as shown in table 4.4.

From the bottom of the table, the traffic types DDOS attack-LOIC-UDP, DoS attacks-

SlowHTTPTest, DDoS attacks-LOIC-HTTP, DoS attacks-GoldenEye were 100% de-

tected by all the different NIDS models. The GAN was the only one that didn’t

improve detection of DoS attacks-Hulk and increased Brute Force-XSS and SQL In-

jection misclassification.

Interestingly CTGAN was the only data-augmentation technique that improved

DDOS attack-HOIC detection, while other methods lead to worse — higher misclas-

sifications — on DDOS attack-HOIC. Similar to DoS attacks-Slowloris CTGAN was

the only one that showed improvement.

The only method capable of improving bot detection was ROS, although further

investigation is required to check if ROS didn’t cause the model to overfit. The other

38

CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

Number of Samples Misclassified

Original ROS RUS SMOTE CART GAN CTGAN

Benign 295 790 500 810 523 224 90

Brute Force -Web 69 10 27 8 28 72 35

DoS attacks-Slowloris 24 24 24 25 24 25 18

Bot 9 4 11 9 11 30 13

DDOS attack-HOIC 2 13 14 12 14 15 2

SQL Injection 8 2 4 1 3 10 2

Brute Force -XSS 5 0 0 0 2 13 3

DoS attacks-Hulk 2 0 0 0 0 2 0

DoS attacks-GoldenEye 0 0 0 0 0 0 0

DDoS attacks-LOIC-HTTP 0 0 0 0 0 0 0

DoS attacks-SlowHTTPTest 0 0 0 0 0 0 0

DDOS attack-LOIC-UDP 0 0 0 0 0 0 0

Total Attacks 119 53 80 55 82 167 73

Total Benign 295 790 500 810 523 224 90

Total 414 843 580 865 605 391 163

Table 4.4: Number of Misclassified Samples

methods lead to worse or no difference in results for bot. SMOTE and ROS showed

competitive results for Brute Force-Web.

The deep learning methods were the only ones that reduced misclassification on

benign samples, all other methods lead to increased benign traffic misclassification,

which relates to findings discussed in previous subsection.

39

Chapter 5

Conclusion

5.1 Research Overview

The objective of this research was to compare the effect of using data augmentation

techniques to generate samples to augment the minority classes of the CICIDS2018.

The impact was measured by using the augmented dataset to train a random forest

classifier model, which was then in terms of precision, recall and F1-Score.

The experiments were performed on CICIDS2018, a big dataset and one of the

newest network intrusion detection benchmarking datasets available for public use.

The experiment was composed of three main parts: augmenting an imbalanced dataset

using different methods; evaluating the quality of the synthetic data in terms of sim-

ilarity to the real data counterpart; and finally comparing how much influence each

data balancing method had on a binary classification task executed by a random forest,

measured in terms of precision, recall and F1-Score.

5.2 Problem Definition

The internet increases opportunities for businesses. On the other hand, being con-

nected to the internet also increases the risks related to information security, which

may be associated to a regulatory requirement or protection of trade secrets, for ex-

ample. A network intrusion detection system is capable of mitigating the risks coming

40

CHAPTER 5. CONCLUSION

from being connected to the internet by detecting or even better, containing intruders.

A NIDS can be implemented as a classification model to detect for anomalous patterns

by listening to the traffic flow of an enterprise computer network. In such network

many business applications would be running and exchanging information with nodes

inside and outside the company network boundaries, like a messaging application or

even an employee navigating the internet. It is expected that minority of the network

traffic would be malicious, being very small in proportion to the legitimate traffic.

Many classification problems have to deal with class imbalance which can have

a negative impact on a classifier performance, one example is the data of a network

intrusion detection system. The CICIDS2018 is a NIDS benchmark dataset that com-

prises of attacks and a network infrastructure that reflect the actual cyberspace, in

counterpart of datasets from twenty years ago that are still used by researchers.

As expected, major part of CICIDS2018 is comprised of benign traffic leading to

imbalanced learn issues that can be solved by augmenting the data using classic ap-

proaches like ROS, RUS, SMOTE, CART and also deep learning approaches such as

GAN and its derivative, CTGAN. GANs are a sophisticated neural network architec-

ture capable of generating synthetic/fake data that can’t be distinguished between

real and fake, usually applied to images GANs are known to be difficult to train and

to be applied to tabular data. CTGAN is designed to improve the vanilla GAN to

generate synthetic tabular data, and can be used to overcome the imbalanced learn

problem in CICIDS2018.

5.3 Design/Experimentation, Evaluation & Results

The evaluation of synthetic data quality in section 4.2 allowed to answer the sub-

question 1: To what extent are the synthetic generated samples are capable of

capturing the original data distribution and correlations? The histograms allowed

to understand the deep learning method’s behaviour and to workaround with exper-

iments towards answering the research main question. It was possible to check that

the vanilla GAN did suffer from mode collapse, since some columns got stuck to a

41

CHAPTER 5. CONCLUSION

single mode. Thus, limiting the quality of the samples generated by the GAN and

consequently impacting the classifier efficiency.

Pairwise correlation measures the capability of the synthetic generation method

to capture the real data distribution it was trained on. RUS had the best pairwise

correlation which is expected since it is a subset of the original data. RUS pair-

wise correlation was followed by CTGAN, ROS, SMOTE being similar to CART, and

GAN with the lowest results. Showing that the capability of capturing feature inter-

dependencies were important to some extend but it’s not necessarily enough to assure

machine learning efficiency, given the good pairwise correlation results for RUS and

CART.

From the results in table 4.3, the machine learning efficiency metric allowed to

answer sub-question 2: Will the data augmentation methods influence on the mis-

classification of each attack type? CTGAN was capable of improving the detection of

one attack type, DoS attacks-Slowloris that no other methods were capable of doing

so.

Machine learning efficiency metric also answers the Research question: To what

extent adding synthetic generated samples to augment the minority classes of CI-

CIDS2018 dataset to train a random forest classifier model is capable of improving

the model precision, recall and F1-Score?

It was provided three interpretations to the results, depending on one strategy and

risk appetite to cyber security, ultimately is up to a business to decide what risks can

be accept and match with their requirements.

A more restrictive scenario could leverage from the methods that scored higher

on recall, such as ROS and SMOTE, the top 2 that scored similarly (ROS: 99.9385%,

SMOTE: 99.3262%). While a high score in precision, achieved by the CTGAN (99.9014%),

indicate that the method is the best at keeping a business running smoothly, since it

trains a less intrusive NIDS (RF) that is better at detecting benign traffic, the down-

side may be less security. The balance between security and functionality can be

achieved by leveraging the methods that scored the best F1-Score, which was the

CTGAN (99.9049%).

42

CHAPTER 5. CONCLUSION

Hence there’s information to contribute towards answering the research question, it

is possible to use data-augmentation methods to improve a random forest classification

task on the CICIDS2018 dataset.

The research question remains partially answered since this experiment didn’t pro-

vide statistical tests for the machine learning efficiency metric. Other limitation is

that due to computational resources restrictions only 5% of the dataset was used.

Considerable efforts was needed to use CTGAN to achieve such results, a bespoke

CTGAN model was trained for each attack category, demanding experimentation and

consumption of expensive computational resources that are required for such method.

Also using the CICIDS2018 Pawlicki et al. (2020) had better results with an

algorithm-level approach to deal with class imbalance. The results here are similar to

(Lee & Park, 2019a, 2019b) who successfully improved a random forest by augmented

data using deep learning methods on the CICIDS2017 (Sharafaldin et al., 2019), the

previous version of the dataset presented in this work.

5.4 Contributions and impact

This research tested different data augmentation methods to deal with imbalanced

learn in an up-to-date network intrusion detection benchmark dataset. The augmen-

tation methods include CTGAN (L. Xu et al., 2019) a state-of-the-art improvement

of GAN to generate synthetic tabular data. The experiments demonstrated the capa-

bility of the CTGAN model to generate synthetic data for the CICIDS2018.

Through evaluation, it was found that synthetic data generated from a CTGAN

model, to deal with class imbalance did improve the classification task performance

in terms of precision, F1-Score, and still keep a high recall score. While much simpler

methods such as ROS and SMOTE performed better in recall than state-of-the-art

approaches.

This work has contributed towards dealing with the class imbalance problem present

on CICIDS2018, which was highlighted by (Leevy & Khoshgoftaar, 2020). Also ex-

tending the research on deep learning algorithms for synthetic data generation for the

43

CHAPTER 5. CONCLUSION

specific dataset.

5.5 Future Work & recommendations

CTGAN took a long time to train, with sometime spent on fitting Gaussian mixture

models to capture the modes of continuous columns, other methods to capture distri-

bution modes could be explored. Hyperparameter tuning for the GAN and CTGAN

models was not fully explored and could produce substantial research. Both GAN and

CTGAN take a long time to train and also require more computational resources than

the other methods, while SMOTE still an interesting method to augment data due to

its simplicity to implement and fast training and sample generation. GAN and vari-

ants may be an interesting approach if one is looking to address privacy issues within

the data, which SMOTE doesn’t so well (Walia et al., 2020). GAN and derivatives

work well with images (Karras et al., 2019), which have a limited data range (0-255)

and may be difficult to generalise with broader data ranges.

Due to constraints of time and resources it was not possible to use enough data and

computational power to carry out the repeated measures necessary for tests of statis-

tical significance, future work should look to work on results through statistical tests

thus providing a more robust case. Other classification models could be implemented

as a NIDS and class weights could be specified as an algorithm-level approach to deal

with the imbalanced learning problem, as mentioned in the literature review. Due to

the CICIDS2018 dataset size on around 10gb, a big data approach to the experiments

is an interesting path. CTGAN looks promising in generating synthetic tabular data

and in addressing the mode collapse issue.

44

References

Arjovsky, M., Chintala, S., & Bottou, L. (2017, 06–11 Aug). Wasserstein generative

adversarial networks. In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th

international conference on machine learning (Vol. 70, pp. 214–223). International

Convention Centre, Sydney, Australia: PMLR. Retrieved from http://proceedings

.mlr.press/v70/arjovsky17a.html

Biswas, S. (2018). Intrusion detection using machine learning: A comparison study.

International Journal of Pure and Applied Mathematics (IJPAM), 118 (19), 101–114.

Borji, A. (2019). Pros and cons of gan evaluation measures. Computer Vision and

Image Understanding , 179 , 41-65. Retrieved from https://www.sciencedirect

.com/science/article/pii/S1077314218304272 doi: https://doi.org/10.1016/j

.cviu.2018.10.009

Breiman, L. (2001). Random forests. Machine learning , 45 (1), 5–32. Retrieved from

https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:1010933404324

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and

regression trees. doi: 10.1201/9781315139470

Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learn-

ing methods for cyber security intrusion detection. IEEE Communications Surveys

Tutorials , 18 (2), 1153-1176. doi: 10.1109/COMST.2015.2494502

Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class

imbalance problem in convolutional neural networks. Neural Networks , 106 , 249–

259.

45

http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
https://www.sciencedirect.com/science/article/pii/S1077314218304272
https://www.sciencedirect.com/science/article/pii/S1077314218304272
https://doi.org/10.1023/A:1010933404324

REFERENCES

Caiola, G., & Reiter, J. P. (2010, April). Random forests for generating partially

synthetic, categorical data. Transactions on Data Privacy , 3 (1), 27–42.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey.

ACM computing surveys (CSUR), 41 (3), 15. doi: 10.1145/1541880.1541882

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote:

synthetic minority over-sampling technique. Journal of artificial intelligence research,

16 , 321–357.

Chen, C., Liaw, A., & Breiman, L. (2004). Using random forest to learn imbalanced

data (Technical Report No. 666). Department of Statistics: University of California,

Berkeley. Retrieved from https://statistics.berkeley.edu/tech-reports/666

Draper-Gil., G., Lashkari., A. H., Mamun., M. S. I., & Ghorbani., A. A. (2016). Char-

acterization of encrypted and vpn traffic using time-related features. In Proceedings

of the 2nd international conference on information systems security and privacy -

volume 1: Icissp, (p. 407-414). SciTePress. doi: 10.5220/0005740704070414

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., . . . Bengio, Y. (2014). Generative adversarial nets. In Proceedings of the 27th

international conference on neural information processing systems - volume 2 (pp.

2672–2680). Cambridge, MA, USA: MIT Press. Retrieved from http://dl.acm.org/

citation.cfm?id=2969033.2969125

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C.

(2017). Improved training of wasserstein gans. In I. Guyon et al. (Eds.),

Advances in neural information processing systems (Vol. 30). Curran Asso-

ciates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2017/file/

892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf

He, H., & Garcia, E. A. (2009, Sep.). Learning from imbalanced data. IEEE

Transactions on Knowledge and Data Engineering , 21 (9), 1263-1284. doi: 10.1109/

TKDE.2008.239

46

https://statistics.berkeley.edu/tech-reports/666
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://dl.acm.org/citation.cfm?id=2969033.2969125
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf

REFERENCES

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic

study. Intell. Data Analytics., 6 , 429-449.

Karlsson, A., & Sjöberg, T. (2020). Synthesis of tabular financial data using genera-

tive adversarial networks (Unpublished master’s thesis). KTH, Mathematical Statis-

tics.

Karras, T., Laine, S., & Aila, T. (2019, June). A style-based generator architecture

for generative adversarial networks. In Proceedings of the ieee/cvf conference on

computer vision and pattern recognition (cvpr).

Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from

highly imbalanced data using random forest. BMC medical informatics and decision

making , 11 (1), 1–13.

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of

intrusion detection systems: techniques, datasets and challenges. Cybersecurity , 2 (1),

1–22.

Lashkari., A. H., Gil., G. D., Mamun., M. S. I., & Ghorbani., A. A. (2017). Character-

ization of tor traffic using time based features. In Proceedings of the 3rd international

conference on information systems security and privacy - volume 1: Icissp, (p. 253-

262). SciTePress. doi: 10.5220/0006105602530262

Lee, J., & Park, K. (2019a). Ae-cgan model based high performance network intrusion

detection system. Applied Sciences , 9 (20). Retrieved from https://www.mdpi.com/

2076-3417/9/20/4221 doi: 10.3390/app9204221

Lee, J., & Park, K. (2019b). Gan-based imbalanced data intrusion detection system.

Personal and Ubiquitous Computing , 1–8. doi: 10.1007/s00779-019-01332-y

Leevy, J. L., & Khoshgoftaar, T. M. (2020). A survey and analysis of intrusion

detection models based on cse-cic-ids2018 big data. Journal of Big Data, 7 (1), 1–

19.

47

https://www.mdpi.com/2076-3417/9/20/4221
https://www.mdpi.com/2076-3417/9/20/4221

REFERENCES

Lin, Z., Khetan, A., Fanti, G., & Oh, S. (2017, 12). Pacgan: The power of two samples

in generative adversarial networks. IEEE Journal on Selected Areas in Information

Theory , PP . doi: 10.1109/JSAIT.2020.2983071

Mishra, S. (2017). Handling imbalanced data: Smote vs. random undersampling.

International Research Journal of Engineering and Technology (IRJET), 4 (8).

Nowok, B., Raab, G. M., & Dibben, C. (2016). synthpop: Bespoke creation of

synthetic data in r. Journal of Statistical Software, Articles , 74 (11), 1–26. Retrieved

from https://www.jstatsoft.org/v074/i11 doi: 10.18637/jss.v074.i11

Park, K., Song, Y., & Cheong, Y. (2018, March). Classification of attack types for

intrusion detection systems using a machine learning algorithm. In 2018 ieee fourth

international conference on big data computing service and applications (bigdataser-

vice) (p. 282-286). doi: 10.1109/BigDataService.2018.00050

Parkinson de Castro, E. (2020). An examination of the smote and other smote-based

techniques that use synthetic data to oversample the minority class in the context

of credit-card fraud classification (Master’s thesis, Technological University Dublin).

doi: https://doi.org/10.21427/wj33-n221

Pawlicki, M., Choraś, M., Kozik, R., & Ho lubowicz, W. (2020, 06). On the impact of

network data balancing in cybersecurity applications. In (p. 196-210). doi: 10.1007/

978-3-030-50423-6 15

Prati, R. C., Batista, G. E., & Monard, M. C. (2009). Data mining with imbalanced

class distributions: concepts and methods. In Iicai (pp. 359–376).

Reiter, J. P. (2003). Using cart to generate partially synthetic, public use microdata.

Journal of Official Statistics , 441–462.

Rigaki, M., & Garcia, S. (2018). Bringing a gan to a knife-fight: Adapting malware

communication to avoid detection. In 2018 ieee security and privacy workshops (spw)

(p. 70-75). doi: 10.1109/SPW.2018.00019

48

https://www.jstatsoft.org/v074/i11

REFERENCES

Sabay, A., Harris, L., Bejugama, V., & Jaceldo-Siegl, K. (2018). Overcoming small

data limitations in heart disease prediction by using surrogate data. SMU Data

Science Review , 1 (3), 12.

Saito, T., & Rehmsmeier, M. (2015, 03). The precision-recall plot is more infor-

mative than the roc plot when evaluating binary classifiers on imbalanced datasets.

PLOS ONE , 10 (3), 1-21. Retrieved from https://doi.org/10.1371/journal.pone

.0118432 doi: 10.1371/journal.pone.0118432

Seiffert, C., Khoshgoftaar, T. M., Hulse, J. V., & Napolitano, A. (2008, Dec). A com-

parative study of data sampling and cost sensitive learning. In 2008 ieee international

conference on data mining workshops (p. 46-52). doi: 10.1109/ICDMW.2008.119

Sharafaldin, I., Gharib, A., Habibi Lashkari, A., & Ghorbani, A. (2017, 01). Towards

a reliable intrusion detection benchmark dataset. Software Networking , 2017 , 177-

200. doi: 10.13052/jsn2445-9739.2017.009

Sharafaldin., I., Lashkari., A. H., & Ghorbani., A. A. (2018). Toward generating a

new intrusion detection dataset and intrusion traffic characterization. In Proceedings

of the 4th international conference on information systems security and privacy -

volume 1: Icissp, (p. 108-116). SciTePress. doi: 10.5220/0006639801080116

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2019). A detailed analysis of the

cicids2017 data set. In P. Mori, S. Furnell, & O. Camp (Eds.), Information systems

security and privacy (pp. 172–188). Cham: Springer International Publishing.

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing

a systematic approach to generate benchmark datasets for intrusion detection. Com-

puters & Security , 31 (3), 357-374. Retrieved from https://www.sciencedirect

.com/science/article/pii/S0167404811001672 doi: https://doi.org/10.1016/

j.cose.2011.12.012

Shu, D., Leslie, N. O., Kamhoua, C. A., & Tucker, C. S. (2020). Generative

adversarial attacks against intrusion detection systems using active learning. In

49

https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://www.sciencedirect.com/science/article/pii/S0167404811001672

REFERENCES

Proceedings of the 2nd acm workshop on wireless security and machine learning

(p. 1–6). New York, NY, USA: Association for Computing Machinery. Retrieved from

https://doi.org/10.1145/3395352.3402618 doi: 10.1145/3395352.3402618

Tang, J., Fan, B., Xu, G., Xiao, L., Tian, S., Luo, S., . . . others (2020). A new tool

for searching sweet spots by using gradient boosting decision trees and generative

adversarial networks. In International petroleum technology conference.

Tesfahun, A., & Bhaskari, D. L. (2013, Nov). Intrusion detection using random

forests classifier with smote and feature reduction. In 2013 international conference

on cloud ubiquitous computing emerging technologies (p. 127-132). doi: 10.1109/

CUBE.2013.31

Van Rijsbergen, C. (1979). Information retrieval: theory and practice. In Proceedings

of the joint ibm/university of newcastle upon tyne seminar on data base systems (pp.

1–14). doi: https://doi.org/10.1002/asi.4630300621

Walia, M. S., Bredan, T., & Susan, M. (2020). Synthesising tabular datasets using

wasserstein conditional gans with gradient penalty. Technological University Dublin.

doi: 10.21427/e6wa-sz92

Weiss, G. M., McCarthy, K., & Zabar, B. (2007). Cost-sensitive learning vs. sam-

pling: Which is best for handling unbalanced classes with unequal error costs? In

Proceedings of the 2007 international conference on data mining, DMIN 2007, june

25-28, 2007, las vegas, nevada, USA (pp. 35–41). CSREA Press.

Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K.

(2019). Modeling tabular data using conditional gan. In Advances

in neural information processing systems (Vol. 32). Curran Associates,

Inc. Retrieved from https://proceedings.neurips.cc/paper/2019/file/

254ed7d2de3b23ab10936522dd547b78-Paper.pdf

Xu, Y., Wu, C., Zheng, K., Niu, X., & Yang, Y. (2017). Fuzzy–synthetic minority

oversampling technique: Oversampling based on fuzzy set theory for android mal-

50

https://doi.org/10.1145/3395352.3402618
https://proceedings.neurips.cc/paper/2019/file/254ed7d2de3b23ab10936522dd547b78-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/254ed7d2de3b23ab10936522dd547b78-Paper.pdf

REFERENCES

ware detection in imbalanced datasets. International Journal of Distributed Sensor

Networks , 13 (4), 1550147717703116. Retrieved from https://doi.org/10.1177/

1550147717703116 doi: 10.1177/1550147717703116

51

https://doi.org/10.1177/1550147717703116
https://doi.org/10.1177/1550147717703116

Appendix A

Additional Content

52

APPENDIX A. ADDITIONAL CONTENT

Feature Name Description

ack cnt Number of packets with ACK

atv avg Mean time a flow was active before becoming idle

atv max Maximum time a flow was active before becoming idle

atv min Minimum time a flow was active before becoming idle

atv std Standard deviation time a flow was active before becoming idle

bw blk rate avg Average number of bulk rate in the backward direction

bw byt blk avg Average number of bytes bulk rate in the backward direction

bw hdr len Total bytes used for headers in the forward direction

bw iat avg Mean time between two packets sent in the backward direction

bw iat max Maximum time between two packets sent in the backward direction

bw iat min Minimum time between two packets sent in the backward direction

bw iat std Standard deviation time between two packets sent in the backward direction

bw iat tot Total time between two packets sent in the backward direction

bw pkt blk avg Average number of packets bulk rate in the backward direction

Bw pkt l avg Mean size of packet in backward direction

Bw pkt l max Maximum size of packet in backward direction

Bw pkt l min Minimum size of packet in backward direction

Bw pkt l std Standard deviation size of packet in backward direction

bw pkt s Number of backward packets per second

bw psh flag Number of times the PSH flag was set in packets travelling in the backward direction (0 for UDP)

bw seg avg Average size observed in the backward direction

bw urg flag Number of times the URG flag was set in packets travelling in the backward direction (0 for UDP)

bw win byt # of bytes sent in initial window in the backward direction

cwe cnt Number of packets with CWE

down up ratio Download and upload ratio

ece cnt Number of packets with ECE

fin cnt Number of packets with FIN

fl byt s flow byte rate that is number of packets transferred per second

fl dur Flow duration

fl iat avg Average time between two flows

fl iat max Maximum time between two flows

fl iat min Minimum time between two flows

fl iat std Standard deviation time two flows

fl pkt s flow packets rate that is number of packets transferred per second

Fw act pkt # of packets with at least 1 byte of TCP data payload in the forward direction

fw blk rate avg Average number of bulk rate in the forward direction

fw byt blk avg Average number of bytes bulk rate in the forward direction

fw hdr len Total bytes used for headers in the forward direction

fw iat avg Mean time between two packets sent in the forward direction

fw iat max Maximum time between two packets sent in the forward direction

53

APPENDIX A. ADDITIONAL CONTENT

Feature Name Description

fw iat min Minimum time between two packets sent in the forward direction

fw iat std Standard deviation time between two packets sent in the forward direction

fw iat tot Total time between two packets sent in the forward direction

fw pkt blk avg Average number of packets bulk rate in the forward direction

fw pkt l avg Average size of packet in forward direction

fw pkt l max Maximum size of packet in forward direction

fw pkt l min Minimum size of packet in forward direction

fw pkt l std Standard deviation size of packet in forward direction

fw pkt s Number of forward packets per second

fw psh flag Number of times the PSH flag was set in packets travelling in the forward direction (0 for UDP)

fw seg avg Average size observed in the forward direction

fw seg min Minimum segment size observed in the forward direction

fw urg flag Number of times the URG flag was set in packets travelling in the forward direction (0 for UDP)

fw win byt Number of bytes sent in initial window in the forward direction

idl avg Mean time a flow was idle before becoming active

idl max Maximum time a flow was idle before becoming active

idl min Minimum time a flow was idle before becoming active

idl std Standard deviation time a flow was idle before becoming active

pkt len avg Mean length of a flow

pkt len max Maximum length of a flow

pkt len min Minimum length of a flow

pkt len std Standard deviation length of a flow

pkt len va Minimum inter-arrival time of packet

pkt size avg Average size of packet

pst cnt Number of packets with PUSH

rst cnt Number of packets with RST

subfl bw byt The average number of bytes in a sub flow in the backward direction

subfl bw pkt The average number of packets in a sub flow in the backward direction

subfl fw byt The average number of bytes in a sub flow in the forward direction

subfl fw pk The average number of packets in a sub flow in the forward direction

syn cnt Number of packets with SYN

tot bw pk Total packets in the backward direction

tot fw pk Total packets in the forward direction

tot l fw pkt Total size of packet in forward direction

urg cnt Number of packets with URG

Table A.1: CICIDS2018 Columns (Sharafaldin. et al., 2018)

54

APPENDIX A. ADDITIONAL CONTENT

F
ig

u
re

A
.1

:
G

A
N

H
is

to
gr

am
s

55

APPENDIX A. ADDITIONAL CONTENT

F
ig

u
re

A
.2

:
C

T
G

A
N

H
is

to
gr

am
s

56

APPENDIX A. ADDITIONAL CONTENT

F
ig

u
re

A
.3

:
G

A
N

p
ai

rw
is

e
co

rr
el

at
io

n
m

at
ri

x
co

m
p
ar

is
on

w
it

h
re

al
d
at

a

57

APPENDIX A. ADDITIONAL CONTENT

F
ig

u
re

A
.4

:
C

T
G

A
N

p
ai

rw
is

e
co

rr
el

at
io

n
m

at
ri

x
co

m
p
ar

is
on

w
it

h
re

al
d
at

a

58

	Improving a Network Intrusion Detection System’s Efficiency Using Model-Based Data Augmentation
	Recommended Citation

	Declaration
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Research Project/problem
	Research Objectives
	Research Methodologies
	Scope and Limitations
	Document Outline

	Review of existing literature
	Dataset
	Imbalanced Learning
	Random Forest IDS
	Naive Strategies
	Machine Learning
	SMOTE
	CART

	Deep Learning
	GAN
	CTGAN

	Evaluation Methods
	Synthetic data quality
	Machine learning efficiency

	Experiment design and methodology
	Dataset
	Data Preprocessing

	Data Augmentation
	ROS
	RUS
	SMOTE
	CART
	GAN
	CTGAN

	Experimental Design
	Synthetic data quality
	Machine learning efficiency

	Computational Environment

	Results, evaluation and discussion
	Synthetic data generation
	Synthetic data quality
	Machine learning efficiency

	Conclusion
	Research Overview
	Problem Definition
	Design/Experimentation, Evaluation & Results
	Contributions and impact
	Future Work & recommendations

	References
	Additional Content

