
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Dissertations School of Computer Sciences

2021

Event-driven servers using asynchronous, non-blocking network I/Event-driven servers using asynchronous, non-blocking network I/

O: Performance evaluation of kqueue and epoll O: Performance evaluation of kqueue and epoll

Lorcan Leonard
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Leonard, L. (2021). Event-driven servers using asynchronous, non-blocking network I/O: Performance
evaluation of kqueue and epoll. Technological University Dublin. DOI: 10.21427/3K70-ZZ90

This Dissertation is brought to you for free and open
access by the School of Computer Sciences at
ARROW@TU Dublin. It has been accepted for inclusion in
Dissertations by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Event-driven servers using

asynchronous, non-blocking network

I/O: Performance evaluation of

kqueue and epoll

Lorcan Leonard

A dissertation submitted in partial fulfilment of the requirements of

Technological University Dublin for the degree of

M.Sc. in Computing (Advanced Software Development)

June 2021

I certify that this dissertation which I now submit for examination for the award of

MSc in Computing (ASD), is entirely my own work and has not been taken from the

work of others save and to the extent that such work has been cited and acknowledged

within the text of my work.

This dissertation was prepared according to the regulations for postgraduate study

of the Technological University Dublin and has not been submitted in whole or part

for an award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements

of the university’s guidelines for ethics in research.

Signed:

Date:

I

Abstract

This research project evaluates the performance of kqueue and epoll in the context of

event-driven servers. The evaluation is done through benchmarking and tracing which

are used to measure throughput and execution time respectively. The experiment is

repeated for both a virtualised and native server environment. The results from the

experiment are statistically analysed and compared. These results show significant

differences between kqueue and epoll, and a profound impact of virtualisation as a

variable.

Keywords: Benchmarking, Event-driven, Performance, Non-blocking Network

I/O, Tracing

II

Acknowledgments

I would like to thank my supervisor Jack O’Neill for all his help and guidance during

this process, my wife Andrea and my brother Oisín for their support throughout, as

well as the staff in the computing department of TUDublin who I was engaged with

directly and indirectly during this masters degree.

III

Contents

Abstract II

Acknowledgments III

Contents IV

List of Figures VII

List of Tables VIII

List of Acronyms IX

1 Introduction 1

1.1 Research Project . 2

1.2 Research Objectives . 2

1.3 Research Methodologies . 3

1.4 Scope and Limitations . 3

1.5 Document Outline . 4

2 Background research 5

2.1 System calls, network connections and file descriptors 5

2.2 The blocking I/O problem . 6

2.3 select and poll . 8

2.4 IOCP . 9

2.5 Kqueue and epoll . 11

IV

2.6 The C10K problem . 15

2.7 Summary . 15

3 Literature review 17

3.1 Event notification mechanisms . 17

3.1.1 Select and poll . 17

3.1.2 IOCP . 18

3.1.3 Epoll and kqueue . 19

3.2 Benchmarking . 25

3.2.1 Benchmarking server architectures 25

3.2.2 Benchmark frameworks, methodologies and tools 27

3.2.3 DevOps methodologies and tools 30

3.2.4 Virtualisation and benchmarking 31

3.3 Tracing and system observability . 32

3.4 Statistical methods and experimental evaluation 34

3.5 Summary . 36

4 Experiment design and methodology 38

4.1 Experimental hypotheses . 38

4.2 Experiment setup considerations . 40

4.2.1 System variability . 40

4.2.2 Reproducibility . 41

4.2.3 Virtual Machine Limitations . 42

4.2.4 Documentation . 43

4.2.5 Performance in an asynchronous context 43

4.3 Experiment Methodology . 43

4.4 Server Design . 45

4.5 Benchmarking layer . 49

4.5.1 Monitoring layer . 51

4.6 Tracing layer . 51

4.6.1 FreeBSD . 51

V

4.6.2 Linux . 52

4.7 Data collection and extraction . 54

4.8 Configurations and specifications . 56

4.8.1 DuT configurations . 56

4.8.2 Machine specifications . 57

4.9 Summary . 57

5 Results, evaluation and discussion 59

5.1 Results . 59

5.1.1 Throughput . 59

5.1.2 Tracing . 62

5.2 Evaluation and discussion . 65

5.3 Summary . 68

6 Conclusion 69

6.1 Research Overview . 69

6.2 Experiment Design . 70

6.3 Evaluation of Results . 71

6.4 Contributions and impact . 71

6.5 Future Work . 72

6.6 Recommendations . 73

6.7 Summary . 74

References 75

VI

List of Figures

3.1 Results from Lemon’s (2001) httperf benchmark for poll and kqueue . . 20

3.2 Results from Gammo et al.’s (2004) httperf benchmark on userver for

select, poll and epoll . 21

3.3 Bueso’s libevent server benchmark . 25

4.1 Experiment Workflows . 44

4.2 Statistical Analysis Workflow . 46

4.3 Epoll Custom Server Flow . 47

4.4 Kqueue Custom Server Flow . 48

5.1 Micro-benchmarks results (Native): kernel density estimate (KDE) plot 60

5.2 Macro-benchmark results (VM and Native): kernel density estimate

(KDE) plot . 64

VII

List of Tables

3.1 Results from Kerrisk’s (2010, p. 1365) performance comparison of select,

poll and epoll . 24

4.1 System Call Tracing Dataset . 55

4.2 VM host machine specifications . 58

5.1 Table of Micro-Benchmark Results . 60

5.2 Table of Macro-Benchmark Results . 62

5.3 Table of iperf Results . 63

5.4 Table of Tracing Results for Event Notification Mechanism System Calls 64

5.5 Table of Tracing Results for Network Syscalls 65

VIII

List of Acronyms

API Application Programming Interface

BPF Berkeley Packet Filter

BSD Berkeley Software Distribution

C10K Concurrently handling ten thousand connections (numeronym)

CPU Central Processing Unit

CSV Comma-Separated Values

DuT Device under Test

HTTP Hypertext Transfer Protocol

I/O Input/Output

IOCP I/O Completion Ports

ICP Inter-Process Communication

JIT Just-In-Time

KDE Kernel Density Estimate

KVM Kernel-based Virtual Machine

OS Operating System

TCP Transmission Control Protocol

VM Virtual Machine

IX

Chapter 1

Introduction

Kqueue and epoll are event notification mechanisms that are available on different

operating systems. An “event” is a software construct that dictates the flow in event-

driven programming. Event notification mechanisms are exposed to the application

by the kernel via system calls. They monitor “events” in an event-driven program for

activity. “Events” are returned to the application when they are ready for processing

(Fettig & McKellar, 2013, pp.12-14). Epoll is specific to Linux whereas kqueue started

on FreeBSD but has also been ported to the other *BSD systems as well as macOS.

The difference in implementation between kqueue and epoll mirrors a general trend of

divergence between FreeBSD and the Linux kernel, despite both aiming to implement

the UNIX programming interface (Bagherzadeh et al., 2018, p. 1541).

Event-driven programs are commonly based around an event-loop which is an infi-

nite loop that waits on new events. When events arrive to this loop, it asynchronously

dispatches them to their handlers (Fettig & McKellar, 2013, pp.12-14). This is known

as the reactor pattern. This pattern can be seen across a range of event-driven server-

side technologies such as the web server NGINX, the JavaScript runtime environment

Node.js, and the in-memory data store Redis (Wu, Long, & Wang, 2013; Zhao & Qin,

2014; G. Liu, Xu, Wang, & Zhang, 2018; D. Han & He, 2018).

1

CHAPTER 1. INTRODUCTION

1.1 Research Project

This research project aims to compare the performance of kqueue and epoll used in

the context of an event-driven server. One challenge of comparing these technologies

is that they differ both in their implementations and the operating systems they run

on.

Software performance can be tested through benchmarking. However, benchmark-

ing has limitations when evaluating the performance of kqueue and epoll. Benchmark-

ing treats the server as a black-box by only measuring the output and not individual

components like kqueue and epoll. Some degree of internal system observability is

required in order to quantify the impact of these individual components. This can

be achieved through tracing tools which can instrument code points across both ker-

nelspace and userspace for data collection, including system call entry and exit points

(Cantrill, Shapiro, & Leventhal, 2004).

1.2 Research Objectives

The research objectives of the experiment designed and executed in the following

chapters are:

1. Provide historical and theoretical background for the divergence in event notifi-

cation mechanism technology from select to kqueue and epoll

2. Develop a comparative framework for kqueue and epoll

3. Design an experiment to evaluate the performance of kqueue and epoll

4. Document the experiment and its sources so it can be reproduced

5. Analyse the performance of kqueue against epoll based on experiment results

These objectives aim to answer the following research question: How does the

performance of kqueue compare to epoll when used in the context of an event-driven

server?

2

CHAPTER 1. INTRODUCTION

1.3 Research Methodologies

Primary, secondary, quantitative and empirical are the key research methodologies

used here. The primary research involves developing software artefacts, in this case

event-driven servers, along with benchmarking them and employing tracing tools to

capture the specific performance of kqueue and epoll within the servers. The secondary

research relies on existing literature to inform the experiment design and results analy-

sis. The quantitative research involves analysing the experiment results using relevant

statistical tools. The empirical research is the process of gaining knowledge through

researching, creating, benchmarking and analysing software artefacts.

1.4 Scope and Limitations

The scope of this research is a performance evaluation of epoll and kqueue in the

context of an event-driven server.

This research is limited to the most recent stable version of Ubuntu 20.04 (Linux)

and FreeBSD 12.2 as of March 2021. However, Ren et al. (2019) have shown that

at least in the case of Linux kernel version can have a direct impact on performance

with epoll in particular declining in performance from kernel versions 4.13 to 4.15 in

the case of their experiment. Furthermore only FreeBSD is used for kqueue although

kqueue is supported on other operating systems.

I/O Completion Ports (IOCP) is a closely related event notification mechanism

which is not covered here. Single-threaded event loops are used in the custom imple-

mentations of event-driven driven servers. A multi-threaded architecture is not used

because it would add unnecessary complexity in terms of the research question asked

here. Multi-threaded architectures are also not well supported by epoll, see section

2.5.

Viewing software through a purely quantitative lens is inherently limiting. There

are qualitative aspects to software which will not be addressed in the current research.

For example, Linux and FreeBSD use different open-source licenses. Linux uses the

GNU General Public License (GPL) and FreeBSD uses the BSD license. FreeBSD

3

CHAPTER 1. INTRODUCTION

developer and NetFlix engineering manager Jonathan Looney has cited the more per-

missive BSD license as one of the motivations for NetFlix using FreeBSD in their

content delivery network (CDN) (Looney, 2019, min. 45).

1.5 Document Outline

The following chapters comprise the rest of this dissertation. Chapter 2 covers back-

ground research on this topic which is useful for providing historical and technical

coverage of the various event notification mechanisms discussed here. Chapter 3 is a

review of existing literature which further covers this technology along with approaches

to experiment design. Chapter 4 details the design of the experiment based on the lit-

erature review. Chapter 5 reports the experiment results from collection and analysis

to presentation and discussion. Chapter 6 is the conclusion and contains a reflection

on the experiment as well as recommendations for future work around this topic.

4

Chapter 2

Background research

Kqueue and epoll are exposed to an application via an interface that contains multiple

system calls. They can be used to efficiently monitor open network connections, which

are also referred to as sockets, for activity. Network connections are represented by

file descriptors.

This chapter firsts provides some background on system calls, network connections

and file descriptors. Next the blocking I/O problem, which event notification mecha-

nisms aim to solve, is detailed. Alternative solutions to this problem are also discussed.

The first generation of event notification mechanisms - select and poll - are described

before moving onto the development of IOCP, epoll and kqueue.

2.1 System calls, network connections and file de-

scriptors

A system call is a function used to request a service from a kernel. Examples of these

services are file access, process creation and network connection establishment. System

calls are executed by the kernel and are said to occur in kernelspace. Other functions

specific to the application occur in userspace. Kernelspace and userspace specifically

refer to the ranges of memory addresses where the code and data for the kernel and

user applications respectively reside. When a system call is invoked there is a context

5

CHAPTER 2. BACKGROUND RESEARCH

switch from userspace to kernelspace.

UNIX has a uniform interface for interacting with system objects as files via system

calls. For example, system calls such as read, open, write and close can operate on any

file regardless if the type of file is a pipe, document, socket, etc. This is because a file in

the UNIX domain is a sequential stream of bytes (Stevens, 1990, p. 28; Kerrisk, 2010,

pp. 29-30). Network connections are established through a series of system calls and are

represented as file descriptors. File descriptors are unique integers which identify open

files. Each process maintains its own table containing the file descriptors associated

with it. The file descriptors in these tables point to an entry in a system-wide table

of file descriptors (Stevens, 1990, pp. 306-307; Kerrisk, 2010, pp. 92-94).

2.2 The blocking I/O problem

1 // in this code example from Stevens and Rago

2 // the read blocks the write and vice versa

3 while ((n = read(STDIN_FILENO , buf , BUFSIZ)) > 0)

4 if (write(STDOUT_FILENO , buf , n) != n)

5 err_sys("write error");

6

Listing 2.1: Blocking I/O Problem (Stevens & Rago, 2013)

By default reading from and writing to an open file blocks the process until com-

pletion. This blocking can be undesirable. W. Richard Stevens gives an example of

this blocking I/O problem where a process needs to read input from two sources. This

process opens a socket for each source, but does not know when data will arrive on

either socket. Whenever the process tries to read from one source, it is blocking the

other, and vice versa. While it is blocking on one source, data may be arriving on the

other which needs to consumed (Stevens, 1990, p. 328). This problem is illustrated by

Stevens with the code example displayed in listing 2.1. Stevens describes four possible

solutions to this blocking I/O problem: polling, forking, signal-driven I/O and the

select system call.

6

CHAPTER 2. BACKGROUND RESEARCH

Polling relies on non-blocking sockets. Non-blocking means the socket is set to non-

blocking and control is immediately returned to the process. This means the process

is free to perform other actions, but needs to periodically check the socket for activity.

A problem with polling is it can be a drain on computer resources. Polling at a given

interval typically means putting the consuming thread to sleep. If the sleep interval

is too long, the thread may be asleep when data arrives. In that case, the data must

wait for the thread to wake up before being consumed, therefore forcing latency on

the application. On the other-hand, if the sleep interval is too short then it will create

unnecessary load on the CPU (Stevens, 1990, p. 328; Kerrisk, 2010, p. 1326).

Forking is where a parent process copies itself, creating what are known as child

processes. Forking is an expensive operation as the child inherits a copy of the parent’s

stack, data, heap, file descriptors and text segments. This expense may be deferred

through a technique called copy-on-write. Copy-on-write means the child will share a

read-only reference to the parent’s physical page frames in memory. These page frames

will only be copied for the child whenever an operation to modify any of them occurs

(Kerrisk, 2010, pp. 520-521). Another potential issue with forking is that the parent

and child need to communicate via an inter-process communication (IPC) mechanism

such as a pipe, socket, message queue or shared memory. IPC introduces further

complexity and overhead to the application (Kerrisk, 2010, p. 37, 1326).

Signal-driven I/O (also known as asynchronous I/O) is where the kernel sends a

SIGIO interrupt to the application. This interrupt indicates there is activity on a

socket. Signal-driven I/O is limited by the number of real-time signals the kernel is

permitted to queue for a process. The application may be monitoring a large number

of file descriptors. With signal-driven I/O, the application does not know which file

descriptor triggered the signal thus forcing it to check all of them (Kerrisk, 2010,

p. 1346-1350).

7

CHAPTER 2. BACKGROUND RESEARCH

2.3 select and poll

1 #include <sys/select.h>

2

3 int select(int nfds , fd_set *readfds , fd_set *writefds , fd_set *

exceptfds , struct timeval *timeout);

4

Listing 2.2: Select interface from Linux manual page (select(2) - Linux Manual Pages ,

2021)

The select system call is an early type of event notification mechanism. Like signal-

driven I/O, event notification mechanisms are asynchronous meaning they process

I/O events out-of-sync with when the events occur at their source in the system.

That is to say, for both signal-driven I/O and event notification mechanisms, the time

the event is processed depends on whenever the kernel passes it back to application.

The difference between signal-driven I/O and event notification mechanisms is signal-

driven I/O interrupts the application whereas event notification mechanisms wait on

the kernel to return events to it (Kerrisk, 2010, p. 1346-1347).

The select interface, shown in listing 2.2, allows the application register interest in

file descriptors for when they become ready for I/O. The kernel is then responsible for

returning the sockets back to the application when they are ready for processing. The

select interface segregates the file descriptors into three sets: readfds are file descriptors

monitored for when they are ready to read from; writefds are file descriptors monitored

for when they are ready to write to; and exceptfds are file descriptors monitored for

exceptional conditions such as errors.

8

CHAPTER 2. BACKGROUND RESEARCH

1 #include <poll.h>

2

3 int poll(struct pollfd *fds , nfds_t nfds , int timeout);

4

Listing 2.3: Poll interface from Linux manual page (poll(2) - Linux Manual Pages ,

2021)

The poll system call is another event mechanism. Despite its name, poll does not

using polling. Polling has been described in section 2.2. Poll first appeared in the

System V, a commercial UNIX OS (Stevens, 1997, pp. 849-850). The poll interface,

shown in listing 2.3, unifies the three sets of file descriptors used by select into a single

input - *fds. This input is a pointer to an array of pollfd structs. The poll interface

separates the input from the output. The input (interest list) and output (ready list)

are sets made up of pollfd structs. These structs contain the bit fields events for

events requests and revents for events returned. For example, the POLLNVAL bit in

the revents represents an invalid request (Stevens & Rago, 2013, pp. 506-507). There

is no limit on the number of file descriptors poll can monitor whereas select is by

default limited to 1024 although this can be configured (Kerrisk, 2010, p. 1344).

The newer features poll introduced over select, such as using a struct to represent

the event and using bit fields to identify the type of event, influenced the design of

kqueue and epoll. The main inefficiencies in select and poll are: repeated copying of

duplicate memory in system call invocations; and repeated iterations over every file

descriptor by the kernel and then again by the application (Lemon, 2001). These

limitations of select and poll are addressed in the next generation of event notification

mechanism: I/O Completion Ports (IOCP), kqueue and epoll.

2.4 IOCP

IOCP first appeared in Windows NT 3.5 (I/O Completion Ports , 2018) and has been

ported to Solaris (Benson, 2004). IOCP uses a threadpool to weave overlapping net-

9

CHAPTER 2. BACKGROUND RESEARCH

work packets arriving over sockets into events. These events are then added to event

notifications queues for consumption by the application. Pre-allocated buffers are used

in IOCP to store the completed I/O. These pre-allocated buffers distinguish IOCP from

kqueue and epoll which both use dynamically allocated buffers (D. Han & He, 2018,

p. 173).

Although IOCP is not the main focus of this research, it makes for an interesting

contrast with epoll and kqueue. The IOCP control flow is summarised by Han and He

(2018, p. 173) as:

1. Create an I/O completion port, associate sockets with that completion

port.

2. Use [an] I/O call to read/write sockets, i.e. a pointer to an [event]

structure is passed as a parameter to such I/O call.

3. Block current thread by polling on that completion port.

4. Retrieve [event] structures, process I/O results, associate or modify

sockets during processing, make new [...] I/O calls.

5. Go back to step 3 and wait for next completed [...] I/O operations.

The steps for kqueue and epoll are summarised and differentiated from IOCP as

(D. Han & He, 2018, p. 173):

1. Create a notification file descriptor, register events on the notification

file descriptor.

2. Poll events by blocking on polling the notification file descriptor, op-

tionally with a timeout limit.

3. Loop to process events received during step 2, perform actual I/O

operations, register or modify events during processing.

4. Go back to step 3 and wait for next upcoming events.

Although kqueue and epoll utilise the same flow, their design differs in certain key

aspects such as the number of system calls their interfaces expose and the parameters

these system calls accept.

10

CHAPTER 2. BACKGROUND RESEARCH

2.5 Kqueue and epoll

The design goals of kqueue, according to its original developer Jonathan Lemon (2001),

were to keep the interface scalable, flexible, portable, reliable and correct. Scalable

means to be able to seamlessly monitor thousands of file descriptors. Flexible means

being able to monitor many types of file descriptors rather than only specific types of

file descriptors such as sockets for example (Lemon, 2001).

Portable means being backwards compatible with the select and poll interfaces.

Portability is important in order to incentivise the replacing of select and poll with

kqueue. Furthermore, select and poll are level-triggered which means kqueue needs

to be level-triggered by default. Level-triggered means that a condition must be met

for the event to be triggered. For example, the condition may be unread data still

existing on a socket. This unread data re-triggers the event so it can be consumed

by the application. Level-triggered coalesces multiple packets into a single discrete

events. Kqueue also supports edge-triggered events. Edge-triggered is where only new

activity is considered to be an event. With edge-triggered any data that is not read

during the processing of the event is a potential issue given it will not re-trigger the

event for its consumption to be completed (Lemon, 2001).

Reliable means that the interface should not fail silently or return an inconsistent

state to the user. This is partially achieved in kqueue by not using fixed sized lists and

by defaulting to level-triggered (Lemon, 2001). Correct means not reporting an event

if it is not relevant. For example, if the application closed the file descriptor, then

no new events should be reported for that file descriptor and it should be removed

automatically from the file descriptors being monitored (Lemon, 2001).

11

CHAPTER 2. BACKGROUND RESEARCH

1 #inc lude <sys / types . h>

2 #inc lude <sys / event . h>

3 #inc lude <sys / time . h>

4

5 /∗ c r e a t e s a new ke rne l event queue and re tu rn s a d e s c r i p t o r : ∗/

6 i n t kqueue (void) ;

7

8 /∗ r e g i s t e r events with the queue and return any pending events to

the user : ∗/

9 i n t kevent (i n t kq , const s t r u c t kevent ∗ change l i s t , i n t nchanges ,

s t r u c t kevent ∗ e v e n t l i s t , i n t nevents , const s t r u c t t imespec ∗

t imeout) ;

10

11 /∗ The kevent s t r u c tu r e i s de f i ned as : ∗/

12 s t r u c t kevent {

13 uintptr_t ident ; /∗ i d e n t i f i e r f o r t h i s event ∗/

14 shor t f i l t e r ; /∗ f i l t e r f o r event ∗/

15 u_short f l a g s ; /∗ ac t i on f l a g s f o r kqueue ∗/

16 u_int f f l a g s ; /∗ f i l t e r f l a g value ∗/

17 int64_t data ; /∗ f i l t e r data value ∗/

18 void ∗udata ; /∗ opaque user data i d e n t i f i e r ∗/

19 uint64_t ext [4] ; /∗ ex t en s i on s ∗/

20 } ;

Listing 2.4: Kqueue interface (kqueue(2) - FreeBSD Manual Pages , 2021)

The kqueue interface, shown in listing 2.4, comprises two system calls: kqueue

which creates the instance where events are stored and returns a file descriptor pointing

to it; and kevent which is used by the application to register, unregister and retrieve

events. By combining the event registration and retrieval operations, the application

can reduce the number of system calls it needs to make (Lemon, 2001). The events

are represented by a struct which is also called kevent.

12

CHAPTER 2. BACKGROUND RESEARCH

1 #include <sys/epoll.h>

2

3 /* open an epoll file descriptor: */

4 int epoll_create(int size);

5 int epoll_create1(int flags);

6

7 /* control interface for an epoll file descriptor: */

8 int epoll_ctl(int epfd , int op, int fd, struct epoll_event *event);

9

10 /* wait for an I/O event on an epoll file descriptor: */

11 int epoll_wait(int epfd , struct epoll_event *events , int maxevents ,

int timeout);

12

13 /* User data variable */

14 typedef union epoll_data {

15 void *ptr;

16 int fd;

17 uint32_t u32;

18 uint64_t u64;

19 } epoll_data_t;

20

21 struct epoll_event {

22 uint32_t events; /* Epoll events */

23 epoll_data_t data;

24 };

Listing 2.5: Epoll interface from Linux manual page (epoll(7) - Linux Manual Pages ,

2021)

Epoll on Linux came after IOCP and kqueue. The epoll interface, shown in listing

2.5, comprises three system calls: epoll_create (and the newer version epoll_create1);

epoll_wait ; and epoll_ctl. Epoll_create creates a new epoll instance and returns the

file descriptor pointing to it. The epoll_wait call is used to retrieve events. Epoll_ctl

is used to modify events in the interest list.

Like kqueue, epoll events are represented by a struct called epoll_event and can be

13

CHAPTER 2. BACKGROUND RESEARCH

level-triggered or edge-triggered. However, unlike kqueue, registering/modifying events

and obtaining new events are two separate function calls. Also only certain kinds of

file descriptors are supported. For example, sockets are supported, but file-system file

descriptors are not. Duplicated file descriptors are not automatically removed when

closed by the application. Epoll_ctl with the op parameter EPOLL_CTL_DEL must

be used to explicitly remove the file descriptor from those being monitored (epoll(7) -

Linux Manual Pages , 2021).

File descriptors can be duplicated by system calls such as dup and fork. Dupli-

cated file descriptors are not automatically removed by epoll when closed. This is

because internally epoll registers a reference to the underlying entry in the process’s

file descriptor table. This table reference is not the same as the file descriptor. Take

the example of dup copying a file descriptor and returning a new integer identifier for

it. If the file descriptor reference used by epoll is passed to dup then the exact same

identifier gets returned. If the process is forked and the parent is closed, and then

data arrives on a file descriptor monitored by the child, this data will also incorrectly

arrive on the closed parent (Cantrill, 2017, min. 63-64). This issue is documented on

the epoll man page (epoll(7) - Linux Manual Pages , 2021).

Another issue epoll used to suffer from is the “thundering herd” problem (Bahmann

& Froitzheim, 2008). This is where an event within a multi-threaded environment

gets processed by all threads with a registered interest in it. Bahmann and Froitzheim

(2008) have proposed using the leader/follower pattern to solve the this problem.

Their solution involves having a thread acquire a token which allows it to become the

leader. This in turn allows the thread to consume events. After the thread is finished

consuming, it releases the token so another thread can acquire it (p. 22). Using the

leader/follower pattern is a work around for the underlying issue.

The “thundering herd” problem was fixed with the addition of the flags EPOL-

LONESHOT and EPOLLEXCLUSIVE (Baron, 2015; Bueso, 2019). EPOLLONESHOT

disables the file descriptor when the data is received (epoll(7) - Linux Manual Pages ,

2021), whereas EPOLLEXCLUSIVE only wakes up a single thread when there is

activity on the socket (Baron, 2015).

14

CHAPTER 2. BACKGROUND RESEARCH

The divergence between FreeBSD and Linux is not just limited to kqueue and

epoll. Bagherzadeh et al. (2018) found there is a clear divergence between FreeBSD

and Linux in system calls that share the same signature and functionality. They

specifically point out the case of kqueue and epoll, noting that kqueue aims to be more

abstract to achieve generality (Bagherzadeh et al., 2018, p. 1541). This divergence

must be kept in mind while comparing these two different operating systems.

2.6 The C10K problem

Event-driven servers were popularised by Dan Kegel in a blog post where he describes

the C10K problem. The C10K problem was a scalability challenge where web servers

that handle incoming network connections with dedicated threads could not scale

beyond 10,000 connections without severe performance degradation (D. Liu & Deters,

2009, pp. 168-9). Kegel argued for event-driven servers utilizing non-blocking network

I/O and event notification mechanism such as epoll and kqueue as a solution to this

problem (Kegel, 1999).

Since Kegel’s articulation of the C10K problem, there has been a proliferation of

server-side technology based around event-driven programming. This influence can

be seen across the spectrum of NGINX, Node.js and Redis to the inclusion of the

async keyword in languages such as C#, Python and Rust. The impact of event-

driven servers on the course of software development since Kegel’s blog post cannot be

understated. This is why a study on kqueue and epoll has relevance to both the aca-

demic study of event notification mechanisms and to the wider software development

industry that utilises this technology in its products.

2.7 Summary

Event notification mechanisms are a solution to the blocking I/O problem. Kqueue

and epoll did not develop in a vacuum. They were born out of and improved upon the

earlier generation of select and poll. There is a divergence between kqueue and epoll

15

CHAPTER 2. BACKGROUND RESEARCH

which is part of a wider divergence between FreeBSD and Linux.

16

Chapter 3

Literature review

This chapter is a review of existing literature for this area of research. This research

deals with event notification mechanisms and the event-driven software built from

them. The experiment will use benchmarking and tracing tools to measurement kqueue

and epoll. The experiment also in part uses virtualisation for the server environment.

Statistical tools are used to analyse the experiment results. These aspects are all

covered here in the literature review.

3.1 Event notification mechanisms

Literature on event notifications spans software design and architecture to practical

implementations and use cases. A common theme across the literature is the require-

ment for a server, or client, to scale beyond the number of connections that are possible

with non-event-driven architectures such as multi-threading architectures.

3.1.1 Select and poll

W. Richard Stevens’ book UNIX Network Programming (1990) is a classic text on its

subject. It is still relevant today in its content. This relevance serves as a reminder

of how little the UNIX interface has changed. This in contrast to how rapidly oper-

ating systems like Linux and FreeBSD, which implement this interface, have evolved.

17

CHAPTER 3. LITERATURE REVIEW

Stevens covers the select system call in detail as a solution to the problems caused by

blocking I/O in a network context (Stevens, 1990, p. 328).

Steven’s later books UNIX Network Programming - Networking APIs: sockets and

XTI (1997) and Advanced Programming in the UNIX Environment (2013) cover both

select and poll. Stevens uses an example of a TCP echo server to illustrate the use of

select and poll (Stevens, 1997, pp. 165-166, 172-174) in UNIX network programming.

Michael Kerrisk’s book The Linux Programming Interface (2010) covers Linux

system programming by describing over 500 system calls and libraries. The author

has maintained the Linux man pages since 2004 which have also served as essential

documentation for this dissertation. Kerrisk covers select, poll as well as epoll in detail.

In particular, Kerrisk covers the differences between select and poll such as the file

descriptor limit in select and how POLLNVAL in poll determines exactly which file

descriptor is closed (Kerrisk, 2010, pp. 1344-1345).

Neither select nor poll scale well (Lemon, 2001). For a start the application must

pass the entire lists of file descriptors to the system call in each invocation. This

results in a copying of memory between userspace and kernelspace. The kernel must

then iterate over the file descriptors to check them for activity. If there is no activity,

the kernel process will sleep and only be woken up when some activity happens on one

or more of the file descriptors. At this point, the kernel iterates over the file descriptors

again checking which of them caused the wakeup and why. During this iteration, the

kernel marks each file descriptor with the type of activity that may have occurred on

it. After this iteration, the kernel returns control to the application if there is file

descriptor activity for it to consume. Finally, the application needs to iterate over all

the file descriptors again to check them (Lemon, 2001).

3.1.2 IOCP

Wang and Yu (2010) apply IOCP to an intelligent traffic monitoring system in order

to improve server performance. The researchers demonstrate in their experiment that

using IOCP to manage network connections on a server with 10,000 connections pro-

cessing in parallel occupies less than 30% of the CPU (Wang & Yu, 2010, p. 659). These

18

CHAPTER 3. LITERATURE REVIEW

findings are backed up by Xu. et al. (2018) who apply IOCP as the network connec-

tion management mechanism to a railway Train Dispatching Command System. This

system is a network made up of hundreds of stations. These stations require thousands

of nodes in the real-time production system for controlling the railway network. Prior

to the researchers’ work, upgrades to the system were manually applied in batches.

This approach proved expensive and time-consuming in the mission critical system

(W. Xu et al., 2018, p. 1136). The researchers design and implement an automatic

upgrade system using IOCP. The researchers find from testing and monitoring their

automatic upgrade system, that IOCP is capable of high I/O transmission success

rate, low resource occupation rate, e.g. CPU time, and that the server can scale in a

stable manner as concurrent requests grow (W. Xu et al., 2018, p. 1140).

Heng (2015) analyses the effectiveness of IOCP using a pressure test. Their exper-

iment creates 10,000 connections. The speed at which the connections are established

and disconnected is analysed as is the server’s memory consumption (Heng, 2015,

p. 239). The researchers detail the underlying mechanism of IOCP, for example how

overlaying I/O is completed and how worker threads consume that completed I/O

(Heng, 2015, p. 236).

Han and He (2018) discuss certain details of IOCP, such as its use of pre-allocated

buffers, in terms of the libuv library. The researchers use libuv to implement a mul-

ticore I/O manager for the Haskell programming language. Libuv originated as a

replacement for libev. Libev is an earlier event notification library that provides an

event-loop implementation. Libev does not support Windows which is why libuv was

developed. In order to offer cross-platform support, libuv uses pre-allocated buffers as

kqueue and epoll are flexible enough to allow this (D. Han & He, 2018, p. 173).

3.1.3 Epoll and kqueue

Lemon (2001) introduces kqueue’s design and implementation. His experiment bench-

marks kqueue against select and poll. This benchmark uses LMbench to determine the

cost of the system call. Then httperf is used to test real-world scenarios on a thttpd web

server. Thttpd already supported poll and is modified by Lemon to support kqueue. In

19

CHAPTER 3. LITERATURE REVIEW

Figure 3.1: Results from Lemon’s (2001) httperf benchmark for poll and kqueue

the case of the httperf benchmark, the experiment uses a constant rate of 500 requests

per second as the server is loaded with an increasing number of idle connections from

0 to 10,000. See figure 3.1 which shows how poll suffers performance degradation in

the orders of magnitude compared to the relatively minor performance degradation of

kqueue.

Gammo et al. (2004) evaluate epoll for Linux by also using httperf to benchmark

userver which is an event-driven server. Gammo benchmarks epoll in level-triggered

(LT) and edge-triggered (ET) modes against select and poll. This benchmark uses

an increasing number of requests per second with three scenarios: no pre-loaded idle

connections; 10,000 pre-loaded connections with a one byte workload; and 10,000 pre-

loaded connections with a workload from the SPECweb99 benchmarking suite. This is

contrast to the experiment conducted by Lemon (2001) where there is one web server

scenario with number of requests kept consistent and the number of idle connections

20

CHAPTER 3. LITERATURE REVIEW

Figure 3.2: Results from Gammo et al.’s (2004) httperf benchmark on userver for

select, poll and epoll

increased over time. Lemon’s results clearly show how kqueue performance suffers very

minor performance degradation, but the results from the Gammo et al. experiment

show an interesting contrast between the three web server scenarios. See figure 3.2

for these experiment results. There is little difference in the results for select, poll,

epoll-LT and epoll-ET when there are no idle connections to the server. When there

are 10,000 idle connection, epoll performs the best for the one byte workload, but still

performs far better, compared to select and poll, for the SPECweb99 workload . The

one byte workload results show the main strength of epoll is to monitor and fetch

active connections from along many more idle connections. The SPECweb99 results

show that the network calls required to send and receive data are expensive enough to

bring the results for select, poll and epoll closer together. As such the network traffic

to a server is a levelling factor to some of the performance benefits of being able to

efficiently monitor connections with the likes of epoll.

21

CHAPTER 3. LITERATURE REVIEW

Liu and Deters (2009) describe the C10k problem and apply it to client side network

connection management in web browsers using AJAX. The researchers use JMeter as

the benchmarking tool for their experiment because it can control the exact number

of concurrent running clients (p. 172). This is beneficial for creating a consistent test

load. This is a common feature in benchmarking tools. It is useful for mimicking

real-world load on a server in an experiment.

Hellström (2007) investigates how to optimise a network application running on

the Erlang programming language. Hellström compares operating systems and event

notification mechanisms, finding that both have a major impact on scalability. In

the experiment SuSE 9.3 (Linux kernel 2.6.11.4) using epoll can maintain 14% more

connections than NetBSD 3.1 using kqueue and 31% more connections than Solaris 10

using /dev/poll (Hellström, 2007, p. 81). Hellström finds that tuning of the TCP stack

including changing the TCP window size has little impact on application performance.

However, throughput is not tested and the amount of data being sent is small. The

clients send a single message with a large gap between messages (Hellström, 2007,

pp. 76-66). This large gap between messages does not mimic busy applications in a

congested network as would be the case with many real-world scenarios.

Paul et. al. (2019) use kqueue but not epoll for their distributed storage system

monitoring tool FSMonitor. The researchers instead use inotify for Linux. Inotify

provides a mechanism for monitoring filesystem events. However, as the researchers

point out, inotify has issues such as not supporting recursive monitoring and can suffer

from queue overflow errors. This is an example of how kqueue achieves a greater level

of abstraction compared to epoll (Bagherzadeh et al., 2018, p. 1541).

Xia et al. (2007), Soares and Stumm (2011) and Wu et al. (2013) have all found

that epoll_ctl can be a costly call in terms of time spent in kernel. Xia et al. (2007)

discuss the overhead of epoll, particularly in terms of time spent context switching to

the kernel whenever its epoll_ctl interface is called (p. 976). This context switching

is further exacerbated due to epoll_ctl requiring separate calls to register and dereg-

ister file descriptors. This forces a double context switch between the application and

kernel. The researchers develop an event notification mechanism called KSEQ. KSEQ

22

CHAPTER 3. LITERATURE REVIEW

is partially modelled on kqueue. Like kqueue, KSEQ uses a unified interface for regis-

tering and deregistering file descriptors called kseq_ctl. The researchers demonstrate

that kseq_ctl out-performs epoll_ctl using the Imbench load test (Xia et al., 2007,

pp. 972-980). KSEQ demonstrates that technology such as epoll can be improved.

Nevertheless, epoll remains the de-facto choice for event-driven technology on Linux.

This shows that stability and being part of the kernel source code are important mo-

tivators for adoption.

Whereas Xia et al. (2007) take inspiration from kqueue in creating KSEQ, Soares

and Stumm (2011) exploit exception-less system calls in their event notification mech-

anism which they call libflexsc. An exception-less system call does not switch into the

kernel when called, but instead uses a syscall page. A syscall page is shared between

the application and kernel for making requests and consuming responses from the ker-

nel. This syscall page is polled by libflexsc to check for event completion. Although

epoll is considered to be highly scalable, events are nonetheless split between the ker-

nel and application layer. This forces a context switch. Exception-less system calls

largely avoid such context switches.

Wu et al. (2013) take a different approach to that of Xia et al. (2007) and Soares

and Stumm (2011). Rather than create a new event notification mechanism, these

researchers explore how to optimise the performance of epoll in the context of its use

in the Redis event-loop. Wu et al. (2013) implement a strategy they call FlexPoll

when improves the performance of Redis by removing extra calls to epoll_ctl. These

extra calls change state in Redis between readable and writeable. FlexPoll adaptively

calculates if suppressing change to the writeable state will save on CPU cycles. This

calculation is based on the proportion of write events to be processed at any given

time (Wu et al., 2013, pp. 689-690). The problem with this approach is that it forces

complexity into the application.

Zhao and Qin (2014) discuss the use of epoll in asynchronous, event-driven web

servers that serve static content. The researchers show in their benchmarks that event-

driven web servers are faster than a multi-threaded Apache server in terms of average

response time and requests per second (pp. 680-1). The experiment uses a custom

23

CHAPTER 3. LITERATURE REVIEW

event-driven server, written in the c programming language, which utilizes epoll. The

researchers implement their own asynchronous file I/O for Linux instead trying to

exploit a pre-existing tool like the inotify system call.

Kerrisk (2010) covers the semantics of epoll interface along with a discussion of how

to use epoll to monitor file descriptors. Kerrisk includes a performance comparison

of select, poll, and epoll. This performance comparison increases the number of file

descriptors monitored from 10 to 100 to 1000 to 10,000 while randomly writing to

one at a time and measuring the CPU time for each mechanism. The results are

displayed in table 3.1. These results show that epoll is most effective at monitoring

large numbers of file descriptors, in this case 10,000, when compared to select and poll.

Number of descriptors monitored (N) poll() CPU time (seconds) select() CPU time (seconds) epoll CPU time (seconds)

10 0.61 0.73 0.41

100 2.9 3.0 0.42

1000 35 35 0.53

10000 990 930 0.66

Table 3.1: Results from Kerrisk’s (2010, p. 1365) performance comparison of select,

poll and epoll

There has been no research identified that compares the performance of epoll and

kqueue. The closest work identified is a Linux Foundation conference presentation by

Davidlohr Bueso (2019) on recent optimizations to epoll. Bueso is a Linux Kernel

developer who worked these optimizations. His presentation cites the custom bench-

mark from libevent1. This benchmark shows a libevent server using kqueue to be

approximately 20% faster than one using epoll. The benchmark increases the number

of file descriptors up to 15000 while maintaining 100 active connections executing a

1000 writes. The results of that benchmark are displayed in figure 3.3 (Bueso, 2019,

slide 6).
1https://libevent.org/ Retrieved 2021-05-31

24

https://libevent.org/

CHAPTER 3. LITERATURE REVIEW

Figure 3.3: Bueso’s libevent server benchmark

3.2 Benchmarking

Server benchmarking typically measures throughput, latency, response time, and re-

lated metrics. The server is treated as a blackbox meaning the internal bias of the

system under test is not clear in the results. Research on event notification mecha-

nisms and related applications of this technology tends to use benchmarking to gener-

ate data for quantitative analysis. Benchmarks may compare different versions of the

same application, similar applications or applications which differ in architecture, e.g.

multithreaded vs event-driven.

3.2.1 Benchmarking server architectures

Pariag et al. (2007) compare the performance of three categories of highly concurrent

web server architectures - event-driven, thread-per-connection, and a hybrid of events

25

CHAPTER 3. LITERATURE REVIEW

and threads - for serving static files. Much of the research is dedicated to tuning the

different servers in order to find the optimal performance configuration (Pariag et al.,

2007, p. 233-239). The older event notification mechanism poll is used with the library

Capriccio for event-driven disk I/O. The researchers experiment with an architecture

that runs event-driven servers in multiple processes. The aim of this architecture is

to mitigate blocking file I/O operations by distributing the server load across multiple

processors (Pariag et al., 2007, p. 232). This approach proves to be limited as the

more the processes there are, the more poll system calls are required and the fewer file

descriptors are returned by each individual call (Pariag et al., 2007, p. 238).

Harji et al. (2012) continue the research from Pariag et al. (2007) by benchmarking

the performance of userver’s event-driven server architecture and WatPipe’s pipelined

architecture. The benchmark tests the serving of large 2Gb and 4Gb static files using

httperf. Whereas the research of Pariag et al. (2007) is primarily concerned with con-

trasting the various possible server configurations and their impact on performance,

Harji et al. (2012) focus on the key differences in disk I/O access between the differ-

ent server architectures. Harji et al. (2012) find the blocking server achieves better

throughput than the non-blocking because its disk I/O tends to be contiguous. Con-

tiguous disk access allows the server take advantage of file read-ahead caching. The

non-blocking server is able to service more requests although it reads files in chunks

and interweaves reads which makes it less friendly to the filesystem cache.

Summers et al. (2012) apply the research of Pariag et al. (2007) to the domain

of video streaming. These researchers again use userver and WatPipe as contrasting

server architectures. The researchers acknowledge the improved version of sendfile for

FreeBSD. This version of sendfile does not block when reading from the file system,

instead it returns an error code. Summers et al. exploit this error code by delegating

the read operation to a helper thread (Summers et al., 2012). NGINX in partnership

with Netflix contributed this improvement version of sendfile. The improvement was

achieved by refactoring the existing flag SF_NODISKIO to make it no longer block

and returning the error code instead (Garrett, 2016). This solves the issue Harji et al.

(2012) encounter with non-blocking servers being less friendly towards the filesystem

26

CHAPTER 3. LITERATURE REVIEW

cache for FreeBSD.

The more recent work of Liu et al. (2018) uses ApacheBench to performance test

the serving of static files by NGINX, Apache and lighttpd web servers over 10GB and

40GB network connections. The file sizes are quite small, compared to the previous

research of Harji et al. (2012), with the largest file being 256KB. The researchers

find NGINX’s event-driven architecture out-performs the other web servers. This is a

further demonstration on how far NGINX has advanced in terms of serving static files

(p. 117).

The limitation of the work of Pariag et al. (2007), Harji et al. (2012), Summers et

al. (2012) and Liu et al. (2018) is the focus on serving static files and assets. Although

event-driven servers like NGINX support the serving of static files, it is not their typical

use case. NGINX is described in its documentation as a “HTTP web server, mail proxy

server, and reverse proxy and load balancer” 2. The non-blocking I/O nature of the

event notification mechanisms is a perfect fit for the intensive network I/O bound

workloads of load balancers and reverse proxy servers.

3.2.2 Benchmark frameworks, methodologies and tools

There are many popular benchmarking tools available. Pariag et al. (2007), Summers

et al. (2012) and Palit et el. (2016) use httperf in their experiments. Pariag et al.

(2007) modify httperf to generate files and logs required to analyse video-streaming

in their experiment (p. 125). Summers et al. (2012) modify httperf to enable the

ramp-up and ramp-down periods for their experiment. Liu et al. (2018) and Ren et

al. (2019) use ApacheBench. Ismail and Riasetiawan (2016) use stress-ng, SysBench,

UnixBench, and ApacheBench. Han and He (2018) use the wrk HTTP benchmark-

ing tool. Although using appropriate benchmarking tools is important, there is also

the framework and methodology used to design a benchmarking experiment to be

considered.

Benchmarking is a standard tool for comparing the performance of two compet-

ing systems (v. Kistowski et al., 2015, p. 333). Kistowski et al. (2015) describe the
2https://docs.nginx.com/nginx/ Retrieved 2021-06-15

27

https://docs.nginx.com/nginx/

CHAPTER 3. LITERATURE REVIEW

key characteristics of benchmarking as: relevance, reproducibility, fairness, verifiabil-

ity, and usability (p .334). Raumer et al. (2016) echo these characteristics in what

they describe as their three benchmarking requirements: validity, reproducibility, and

comparability (p. 56).

The scenario of the benchmark test is relevant to the use-case of the application.

In an ideal world, benchmark results would be perfectly consistent every time. How-

ever, the complexity of modern computer systems introduces significant variability,

for example thread scheduling, dynamic compilation, physical disk layout, network

contention. Some variability can be mitigated by running a benchmark for a long time

(v. Kistowski et al., 2015, p. 335).

Summers et al. (2012) use ramp-up and ramp-down periods in their benchmark

where the load increases and decreases respectively. They then exclude these periods

from the data they extract and analyse. The researchers find this produces repeatable

results. It removes variability such as cache warm-ups at the start of the experiment

and network connection dropping at the end of the experiment.

Documentation of the system hardware and software configuration are critical for

reproducibility according to Kistowski et al. (2015). Raumer et al. (2016) echo

this and emphasising the need for detailed documentation of all applied settings, the

operating system (OS), virtualization if applicable, and a description of the underlying

hardware (p. 57).

One approach to ensuring fairness is to place constraints on the applications being

benchmarked, for example on the configuration of the software and its environment.

A simple configuration is more desirable than an unrealistic, highly customised con-

figuration (v. Kistowski et al., 2015, p. 335). Han and Thant (2019) investigate the

impact of Linux configuration tuning when benchmarking media streaming content

served by NGINX using JMeter. The researchers note that TCP throughput is lim-

ited by the send and receive buffers of the connection and by TCP congestion window

size. Whereas Hellström’s (2007) experiment found TCP window had little impact

when there are large gaps between networks packets, video streaming pushes far larger

quantities of data over the network and so exposes the impact of TCP windows.

28

CHAPTER 3. LITERATURE REVIEW

Researchers may use a standardised framework to help ensure fairness. For exam-

ple, Kistowski et al. (2015) advocate for SPEC because they consider it to have the

most comprehensive use policy (pp. 336). Raumer et al. (2016) use the benchmarking

methodology outlined in RFC 25443 to compare the performance of of the network

stack for Linux and FreeBSD. The RFC 2544 methodology uses the key performance

indicators of throughput, latency, the longest duration without network packet frame

loss, and the percentage of dropped packet frames (Raumer et al., 2016, p. 56). The

researchers find that FreeBSD achieves lower latency than Linux but Linux achieves

higher throughput (Raumer et al., 2016, p. 58).

One issue with standardised benchmarks is that they not always kept up to date.

Palit et el. (2016) update the CloudSuite benchmark from 2.0 to 3.0 in their research.

They found 2.0 to be out of date with modern cloud-based deployments, in particular

with the increasing interactive and responsive nature of Web2.0 websites (pp. 122-

123).

Ren et al. (2019) survey the performance of Linux system calls and kernel func-

tions across a range of kernel versions. The researchers use a methodology that first

executes a custom micro-benchmark called LMBench. A micro-benchmark “tests the

performance of simple and artificial workloads”. A macro-benchmark “typically aims to

test a real-world and natural workload” (Gregg, 2020, p. 60). Ren et al. (2019) execute

their micro-benchmark in conjunction with strace to measure CPU, call-frequency and

latency of system calls. Latency is measured by collecting timestamps from strace. The

micro-benchmark is repeated 10,000 times. Macro-benchmarking of Redis, Apache and

Nginx web servers is then used to validate the micro-benchmark results. This valida-

tion involves reproducing the issues the micro-benchmark identified. For example, the

performance impact of forced context tracking, user page fault handling and the Spec-

tate and Meltdown security patches (Ren et al., 2019). Reproducing these issues with

a macro-benchmark allows the researchers identify how the these issues affect real-

world applications. The macro-benchmark shows that all three applications spend

significant time in the kernel (Ren et al., 2019). This illustrates the importance of
3https://datatracker.ietf.org/doc/html/rfc2544 Retrieved 2021-06-15

29

https://datatracker.ietf.org/doc/html/rfc2544

CHAPTER 3. LITERATURE REVIEW

analysing kernel performance when researching event-driven servers.

The use of micro and macro benchmarks as means to verify results has also been

employed by Borhani et al. (2014) and Varghese et al. (2016) for the benchmarking

of VMs and cloud providers. Borhani et al. (2014) run their macro-benchmark on

three different cloud providers: Amazon, Azure and Rackspace. The researchers then

use a CPU micro-benchmark to test for relationships between the macro-benchmark

results and CPU performance (Borhani et al., 2014, p. 106). The results of the macro-

benchmarks and micro-benchmarks are tested for variation among the samples using

a pairwise t-test (Borhani et al., 2014, pp. 106-107).

Varghese et al. (2016) explore both lightweight (micro) and heavyweight (macro)

benchmarking techniques for collecting metrics on VMs running on cloud provider

platforms. The researchers use Docker containers for their lightweight benchmarks

because Docker allows for stricter resource isolation (Varghese et al., 2016, p. 195).

The validity of the lightweight benchmarks is tested by ranking them against the

heavyweight benchmarks. This involves finding the correlation between the different

sets of results (Varghese et al., 2016, p. 198). The researchers find there is 90% corre-

lation for benchmarking results that were run sequentially versus an 86% correlation

when run in parallel. The researchers also observe that increasing container’s size

does not generally increase the rank correlation between macro and micro benchmarks

(Varghese et al., 2016, p. 199).

3.2.3 DevOps methodologies and tools

One of the advantages VMs bring to an experiment is the ability to more easily repli-

cate the environment in which the experiment is run. Stillwell and Coutinho (2015)

and Xuan et al. (2017) discuss the benefits of DevOps methodology. DevOps combines

development and operations workflows with the aim of achieving consistency between

development, staging and production environments. Tools and processes for automa-

tion of building, testing, integrating, configuring and releasing software are essential

to the DevOps methodology (Aderaldo, Mendonça, Pahl, & Jamshidi, 2017).

Vagrant is software for building, maintaining and reproducing portable VMs used

30

CHAPTER 3. LITERATURE REVIEW

by both Stillwell and Coutinho (2015) and Xuan et al. (2017). Other tools DevOps

tools include Docker, Ansible and Chef. For example, Chef is used by Scheuner and

Leitner (2018) to provision and configure virtual machines in the cloud for benchmark-

ing which allows the testing environment to be made more reproducible (p. 162).

3.2.4 Virtualisation and benchmarking

DevOps methodology and tools can bring a lot of benefit to an experiment, particu-

larly in terms of reproducibility. However, the use of virtualisation may introduce a

performance overhead. Ye et al. (2014) find through their benchmarking suite of VMs

that the main overhead in the VM hypervisor layer is the enter-and-exit operations.

These operations can incur significant overhead, particularly for I/O processing (Ye et

al., 2014, pp. 65-66). The researchers use a three-layer methodology of benchmarking,

monitoring and profiling in order to collectively provide comprehensive performance

data for an entire VM system (Ye et al., 2014, pp. 66-67).

Xu et al. (2014) survey and benchmark VM performance in single-server virtu-

alization, single mega data centre, and multiple geo-distributed data centre contexts,

They find that resources like CPU cache space, memory bandwidth, network, and

disk I/O bandwidth are hard to isolate in existing hypervisors. As a result, contention

occurs on these resources between VMs running on the same host (p. 13).

Ismail and Riasetiawan (2016) carry out a performance analysis of CPU and mem-

ory allocations for the VM XenServer on Xen Cloud Platform. The researchers find

that Priority Weight CPU and Cap CPU allocation give up to 75% better performance

compared to default CPU allocation when benchmarking with SysBench. However,

default CPU allocation performs better by around 45% for CPU bound operations

when benchmarking with stress-ng. This difference in results between different bench-

marking tools demonstrates how bias can be introduced to a measurement by the act

of taking the measurement itself.

Benchmarking can only try to answer “which” application is faster. It cannot

answer “why” an application is faster than another one. One approach to addressing

that “why” question is by using tracing tools to observe the performance characteristics

31

CHAPTER 3. LITERATURE REVIEW

and collect related data.

3.3 Tracing and system observability

“The origins of the software observability problem, as with so many other

software problems, can be found in software’s strange duality as both in-

formation and machine: Software has only physical representation, not

physical manifestation. That is, running software doesn’t reflect light or

emit heat or attract mass or have any other physical property that we

might use to see it.” (Cantrill, 2006, p. 28)

System observability aims to understand a system through probing its execution

state. It is typically accomplished through tools for profiling, monitoring, and tracing

(Gregg, 2020, p. 7). Tracing tools can be used to capture and record instructions

executed by user-level programs and kernel, including system calls. Tracing tools tend

to be designed for a specific OS, for example strace, ftrace, systemtap and bpftrace

have been specifically developed for Linux. Truss, ktrace and DTrace are available for

FreeBSD but not on Linux. There is the exception of DTrace which has been ported to

Linux but not as an component of the kernel source code (dtrace(1) — Linux manual

page, 2021). The heterogeneity of tracing tools across operating systems presents a

challenge when using them to compare epoll and kqueue.

Tracing tools can cause an overhead on application performance. This overhead

can skew experiment results (Liao & Langweg, 2014, p. 33). A goal of more advanced

tools like DTrace and bpftrace is to be safe to run on production servers (Cantrill,

2006, pp. 30-31; Gregg, 2019, p. 6). DTrace had this goal as a requirement from

the outset as stated by its designer Bryan Cantrill et al. (2004). DTrace features

include speculative tracing. Speculative tracing is where data is tentatively recorded

before later deciding whether it requires committing or should be discarded. The

data is committed to a buffer which the tracing tool holds in memory. This approach

results in a lower runtime overheads on the process being observed. In his later paper

concerning tracing, Cantrill (2006) describes the software observability problem (p. 28-

32

CHAPTER 3. LITERATURE REVIEW

29), the design of DTrace (p. 30-34) and how DTrace can be used to debug production

server issues (p. 34-35).

Zhuang et al. (2014) find that the overhead incurred by strace is negligible and

not perceptible when run on a large application like Skype. This finding is based on

the use of strace while developing the network diagnoses tool NetCheck. On the other

hand, Liao and Langweug (2014) find in their experiment that strace cost an extra

1525% in performance in 32-bit OS architecture (p. 31). Their experiment uses the

tool Trinity to generate system calls (p. 28). This disparity regarding the performance

overhead of strace indicates measuring the impact of a tracing tool on the observed

process is potentially non-deterministic and tricky. Liao and Langweug do note in

the defence of both strace and SystemTap that these tools are highly flexibility and

valuable for probing runtime environments (Liao & Langweg, 2014, p. 31-33).

The scientific study of measurement known as metrology is concerned “with the

general problem of measuring with imperfect instruments and procedures” (Pereira,

Brasileiro, & Sampaio, 2016). Seeking to address this problem, Pereria et al. (2016)

define a method for accessing the precision and bias of a tracing tool. Determining

the precision of a tracing tool involves an F-test between the measurements captured

by the tool and reference measurements of the same metrics captured by the appli-

cation. The bias is the difference between the tracing and reference measurements.

A calibration procedure is proposed by Pereria et al. to correct errors introduced by

any imprecision and bias from a tracing tool. A drawback to this method is the ref-

erence measurements are acquired through instrumenting application code to capture

the same measurements as the tracing tool. This sort of application modification may

not be possible in some scenarios, for example in a third-party compiled binary such

as libevent when installed via a package manager.

Chahal and Nambiar (2017) use strace to analysis the performance of MySQL’s

concurrency in kernelspace. Their method extracts the features of randomness in

read and write operations, job duration, the distribution of I/O chunk size and the

total number of I/O operations (Chahal & Nambiar, 2017, p. 318). They validate

their results by repeating a standard benchmark called TPC-C against an open-source

33

CHAPTER 3. LITERATURE REVIEW

project - JPetStore (Chahal & Nambiar, 2017, p. 319). This approach of repeating

an experiment against open-source code base has benefits. For example, it can verify

that results on custom developed code can be reproduced in pre-existing software that

is easy to access.

Wang et al. (2019) implement their own tracing tool, also called Dtrace, for Linux.

This tool is based on Intel’s Processor Trace. It captures the machine instructions callq

and retq which are executed by NGINX and Redis. This approach is more low-level

than using more common tracing tools such as strace or SystemTap. It targets machine

instructions rather than system calls. An interesting consequence of this approach is

it is at a lower-level of abstraction than the OS. As such when comparing two different

OS like FreeBSD and Linux, there is merit in comparing them at machine instruction

level as opposed to OS level. Although higher-levels of abstraction like operating

systems are by design easier and less complex to work with.

Brendan Gregg has been a contributing software developer to both DTrace and

bpftrace. Gregg has written multiple books on these tracing tools and also on software

performance in general including: DTrace: Dynamic Tracing in Oracle Solaris, Mac

OS X and FreeBSD (2011) with Jim Mauro, BPF Performance Tools: Linux System

and Application Observability (2019), and Systems Performance: Enterprise and the

Cloud (2020). Gregg’s books tend to follow a concise structure. After giving a technical

background including the performance tools to be covered, Gregg demonstrates use of

these tools plus alternatives to them. He covers different system contexts where tracing

tools can be used. For example, to measurement the performance of CPUs, memory,

file systems, disk I/O, networking, security, programming languages, applications, the

kernel, and for more recent books containers and VM hypervisors.

3.4 Statistical methods and experimental evaluation

Touati et al. (2013) propose a methodology for using Student’s t-test for software

performance benchmark analysis. This methodology involves first running the exper-

iment at least 30 times in order to build a large enough dataset. The samples are

34

CHAPTER 3. LITERATURE REVIEW

tested for normality using a statistical tool like the Shapiro-Wilk test or the Kol-

mogorov–Smirnov test. If the data samples are normally distributed and the p-value

is greater than the risk level according to Fisher’s F-test, then the paired sample Stu-

dent’s t-test is used; otherwise Welsh’s version of the Student’s t-test is used (pp. 5-6).

The reasoning for the inclusion of the F-test in this methodology is to prove the two

samples have the same variance. This proof was done in the original version of Stu-

dent’s T-test. In the case where the variance of the two samples are not equal Welch’s

t-test is used as it is designed to be more reliable for such a situation (Touati et al.,

2013, p. 5). This methodology is employed by Nogueira et al. (2014) in their experi-

ment to test for OS Jitter, i.e. execution time variance, in a program they developed

for the purposes of their research.

Blackburn et al. (2016) demonstrate how environment variables and memory lay-

out can greatly impact experiment results (pp. 7-8). These researchers propose a

framework for eliminating unsound claims (p. 14). This framework scrutinises the

level of exposition behind a research claim and whether it is inadequate (Blackburn et

al., 2016, pp.5-6). Steps for reproducing the experiment are scrutinised to see if they

omit, distort or are ambiguous in anyway (Blackburn et al., 2016, p. 6). Beyond issues

with any of the steps, there may also be data or variables that are overlooked which

would support a counter claim to the findings of the research paper (Blackburn et al.,

2016, p. 8).

Comparing different systems in an inconsistent manner is another area to watch

out for (Blackburn et al., 2016, pp. 11-13). Inappropriate metrics or tools may have

been used in the measurements for an experiment. Measurement tools can introduce

their own bias as previously noted. This issue been demonstrated in the experiment

of Ismail and Riasetiawan (2016) with the inconsistent results between the SysBench

and stress-ng benchmarks. Blackburn et al. (2016) give the example of profilers that

ignore garbage collection hotspots as a form of measuring tool bias (pp. 11-12). Bias

introduced by a profiling tool is also pertinent when using tracing tools. This bias

has been highlighted by Pereria et al. (2016). It presents a challenge when making

claims about data samples captured using different tracing tools on different OS like

35

CHAPTER 3. LITERATURE REVIEW

FreeBSD and Linux. The requirement for consistency when comparing two different

systems is another important consideration that needs to be taken in the following

chapter on the design of the experiment (Blackburn et al., 2016, pp. 12).

3.5 Summary

This chapter has covered the research literature around event notification mechanisms.

Wider research literature around approach to benchmarking, tracing and statistical

analysis has also been examined. The development of kqueue and epoll was born out

of the need to improve the earlier generation of event notification mechanisms - select

and poll. Both kqueue and epoll were presented with the same challenges and each

took different approaches in order to solve these challenges.

There is plenty of research that benchmarks event-driven servers and the alterna-

tives. Such research is often at a high level and fails to examine the actual dynamics

between components. Research that does use techniques like tracing to understand

the performance of individual components may survey changes in performance over

different software versions. It may also focus on the impact of the tool being used on

the system being observed. There has been no research identified here that directly

compares the performance of kqueue and epoll as the central premise of the paper.

There are key differences between kqueue and epoll which have been outlined here.

The performance impact of extra calls to epoll_ctl has been highlighted by Xia et

al. (2007), Soares and Stumm (2011) and Wu et al. (2013). A comparative study of

kqueue and epoll is difficult given the software and environmental differences, such as

implementation and resource availability, can easily bias an experiment. In terms of

designing an experiment that compares kqueue and epoll, the importance of pre-loading

a server idle connections has been demonstrated by Lemon (2001) and Gammo et al.

(2004). The research of Ye et al. (2014), Xu et al. (2014) and Ismail and Riasetiawan

(2016) has shown performance limitations when using VMs. This also needs to be

considered in designing a benchmarking experiment, as do the characteristics of a

comprehensive benchmark outlined by Kistowski et al. (2015) and Raumer et al.

36

CHAPTER 3. LITERATURE REVIEW

(2016).

37

Chapter 4

Experiment design and methodology

Epoll and kqueue achieve the same goal, but differ in API, implementation and in

the operating systems they target. For example, the kqueue interface exposes two

system calls whereas epoll exposes three. The focus of this research is a performance

analysis of kqueue and epoll as event notification mechanisms within client-server

architectures. As such, a server application and a method to conduct performance

analysis are required. Based on the literature reviewed in the previous chapter, the

methods used to collect data will be benchmarking and tracing. The methods used to

analysis the data will be the Shapiro-Wilk test, F-test and T-test.

4.1 Experimental hypotheses

There are different contexts in which server performance can be analysed. For the

purposes of this research, server performance will be analysed both externally and

internally. The external being how fast the server can service requests from the client.

This speed is measured in terms of throughput. Throughput is defined as the “highest

rate [of data transfer] that the device under test (DuT) can serve without loss” (Raumer

et al., 2016, p. 56).

If viewed as a blackbox, the external server performance perceived by a client is all

that matters. The client does not need to care about the underlying architecture of

the server. However, analysing a server from a purely external perspective says little

38

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

about the performance of the event notification mechanism being used. An event

notification mechanism may be slower than a comparable one running on a different

OS, but the overall server may still be faster. This is because the event notification

mechanism is only one piece of the overall puzzle.

Tracing tools can be used to evaluate the performance of kqueue and epoll more

directly by captures the execution of the various system calls involved. This includes

the event notification mechanisms and the network system calls. Network system calls

are used within a server to accept new client connections, and receive and send data

over them.

The hypothesis the experiment intends to test is whether there is a significant

difference in performance between an event-driven server based on kqueue and one

based on epoll using benchmarking. A further and related hypothesis to be tested is

whether there is a significant difference in time spent in kernelspace between kqueue

and epoll using tracing tools.

Hypothesis A

Hypothesis H0: (µ1 = µ2) There is no significant difference in throughput between

kqueue and epoll when monitoring network connections in a client-server architecture.

Hypothesis H1: (µ1 6= µ2) There is a significant difference in throughput between

kqueue and epoll when monitoring network connections in a client-server architecture.

Hypothesis B

Hypothesis H0: (µ1 = µ2) There is no significant difference in time spent in ker-

nelspace between kqueue and epoll when monitoring network connections in a client-

server architecture.

Hypothesis H1: (µ1 6= µ2) There is a significant difference in time spent in ker-

nelspace between kqueue and epoll when monitoring network connections in a client-

server architecture.

39

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

4.2 Experiment setup considerations

Performance analysis is challenging for many reasons. There is the context-bound

nature of server performance, i.e. the specific environment consisting of hardware,

software and connected networks. The complexity of systems results in multifaceted

contributing factors to performance (Gregg, 2020, pp. 5-6). Given the challenges

presented by this performance comparison of kqueue and epoll, the following issues

have been taken into consideration in the design of the experiment.

4.2.1 System variability

There are many ways a system may vary between experiments. Two important ways

are discussed here: process scheduling and kernel versions.

Software systems have a natural variability by design. For example, the Linux

process scheduler uses a priority algorithm that gives a weight to a process and time

slices on the CPU accordingly (Love, 2010, pp. 46-49; Love, 2007, p. 177-179). How

much CPU time a process is scheduled will impact performance. In order to try

and guarantee as much CPU time as possible to the process running the server, the

commands cpuset is used for for FreeBSD and taskset for Linux. These commands

try to bind a process to a CPU and keep it there for long as possible, however, they

cannot guarantee CPU time (cpuset(1) - FreeBSD Manual Pages , 2021; taskset(1) -

Linux Manual Pages , 2021).

Software systems do not just vary in terms of how their execution state changes

over time. The execution state also varies from version to version as the result of

code changes. Some examples of potential code changes between versions are features

and bug fixes. The impact of this version to version variability is well illustrated

by Bagherzadeh et al. (2018) and Ren et al. (2019). Maintenance of code such as

bug fixes and improvements necessitate change over time and such change can impact

performance (Bagherzadeh et al., 2018, pp.1533-1535). For example, the Spectre1

security patch caused severe performance degradation to select, poll and epoll with
1https://meltdownattack.com/ Retrieved 2021-05-31

40

https://meltdownattack.com/

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

poll and epoll suffering an 89% and 72% slow down respectively (Ren et al., 2019).

It is also worth noting that the case of Spectre illustrates how hardware also impacts

performance given Spectre is a vulnerability in certain branch prediction circuits on

microprocessors.

The survey methodology used by Bagherzadeh et al. (2018) and Ren et al. (2019) is

a highly comprehensive approach to the performance analysis of system calls. However,

this methodology requires time beyond the scope of this research. As such the latest

long-term support versions of FreeBSD 12.2 and Ubuntu 20.04 (Linux) are used.

4.2.2 Reproducibility

Software performance is evaluated within a context, in this case a server running within

an environment. Initially this experiment was designed to use Virtual Machines (VMs)

so that the environment could be more easily reproduced. Vagrant is used to automate

and provision the VMs. Scripts are to run the benchmarks as well as the tracing.

The VM provider used is Virtualbox which uses a type-2 hypervisor (see section

4.2.3). Both the Ubuntu and FreeBSD snapshots are pulled from VagrantCloud. Va-

grantCloud is an online registry of pre-built VMs which can be pulled by a Vagrantfile

using the config.vm.box setting. Vagrant also locks down the specific VM snapshot

version in the Vagrantfile using the config.vm.box_version setting so that the exact

same build can be pulled by whoever using the given Vagrantfile.

In order to avoid restricting the VMs used in the experiments, Vagrant has been

instrumented to allocate extra CPU and memory resources using the Vagrantfile. In

Vagrant documentation the CPUs allocated for a single VM are 50% of the available

CPUs on the host. This is the setting used for the VMs in this experiment with 2 out

of the 4 host CPUs being allocated, see listing 4.1.

41

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

1 Vagrant.configure("2") do |config|

2 ... # previous config steps omitted for brevity

3 config.vm.provider "virtualbox" do |v|

4 v.memory = 4096

5 v.cpus = 2

6 end

7

8 end

Listing 4.1: Vagrant file resource allocation

4.2.3 Virtual Machine Limitations

There are drawbacks to using VMs. There are many different virtualisation products

available which may implement a type-1 or type-2 hypervisor. Type-1 hypervisors

run directly on the host machine’s hardware. Type-2 hypervisors run as a process

on the host machine. Third-party products like Virtualbox and VMware use type-2

hypervisors. Kernel-based Virtual Machine (KVM) for Linux and bhyve for FreeBSD

blur the line between type-1 and type-2 as they are kernel modules that can directly

access the host’s hardware but at the same run as process within the host (Gregg,

2020, pp. 689-690). The choice of virtualisation product is itself a variable within the

experiment which can affect the results.

Given the drawbacks to using a VM, this experiment also ended up being run on

a native OS for both FreeBSD and Linux. The drawback to using a native OS is

that it automatically makes the experiment harder to reproduce. However, ultimately

the results presented in the next chapter will show that running the experiment on a

native OS provides a far more comprehensive view of the server’s behaviour compared

to the same server running within a VM environment.

42

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

4.2.4 Documentation

The Device under Test (DuT) configurations which in the case of the experiments

conducted here are VMs are documented as is the host machine specifications, see

section 4.8. This is to aid in any reproduction of the experiment as part of the method

used by Kistowski et al. (2015) and Raumer et al. (2016).

4.2.5 Performance in an asynchronous context

The C10K problem is not simply that there are 10,000 connections to be serviced, but

that the majority of them are likely to be idle (Lemon, 2001). As result, performance

testing should also account for the absence of activity on a connection. Benchmarking

software does the opposite of idle activity by placing a load on the server. A practical

solution to overcoming this limitation is to pre-load the server being tested with idle

connections (Gammo et al., 2004).

4.3 Experiment Methodology

The experiment methodology employed here is influenced by the three layer approach

used by Ye et al. (2014, pp. 66-67) and the the two-stage approach of Ren et al.

(2019). Both of these approaches are described in detail below. These layers are

shown in figure 4.1 within the experiment workflow.

The experimental architecture proposed by Ye et al. (2014) consists of three layers:

benchmarking, monitoring and profiling. The benchmarking layer targets the VM

directly to stress the CPU, memory, disk and network I/O with intensive workloads.

The monitoring layer then collects data on resource consumption, communication

traffic and VM scheduling. The profiling layer is used to target more fine-grained

performance data (Ye et al., 2014, pp. 66-68).

The purpose of research by Ye et al. (2014) is to develop a performance benchmark-

ing methodology for the VM itself. The experiment described in this chapter targets

a server and more specifically a subsection of the server’s architecture that relies the

43

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

Figure 4.1: Experiment Workflows

event notification mechanism. This limits the scope of the three layers. The bench-

marking layer focuses on the server and specifically the throughput of requests. The

monitoring layer collecting data on the resource consumption of the VM with the CPU

usage being of particular interest. What is the profiling layer for Ye et al. is swapped

for a tracing layer in this experiment. The tracing layer captures the execution times

of the system calls involved. The difference between profiling and tracing according

to Gregg (2020) is that profiling uses tools that sample measurements whereas tracing

uses tools that capture event data (pp. 10-11). For Gregg the tools used for profiling

have more in common with those used to monitor systems.

Ren et al. (2019) use micro-benchmarking and macro-benchmarking in conjunction

with tracing to analyse a wide range of Linux system calls across multiple kernel

versions. The system calls analysed include select, poll and epoll. That experiment

methodology is employed here but specifically targeting epoll and kqueue. Only single

recent versions of FreeBSD and Ubuntu are used. A survey of the impact of the various

FreeBSD kernel versions on the performance of kqueue would be an interesting study

44

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

but is outside the scope of this particular research.

The benchmarking requirements of Raumer et al. (2016, pp. 56-57) - validity,

reproducibility and comparability have influenced this particular experiment. In par-

ticular the documentation of the Device-under-test (DuT) and the use of Vagrant and

scripts to allow the experiment be reproduced. In order to keep the experiment con-

sistent as required by (2016, pp. 12), the benchmark is run from the same external

machine connect to the host of the server via a physical networks, see section 4.5.

Furthermore, the TCP windows are configured to be the same for both FreeBSD and

Linux, see section 4.8.1. This is because Han and Thant (2019) have found TCP

windows to impact performance in their experiment.

The tracing approach used by Pereria et al. (2016) of first collecting reference

values for the experiment where no tracing of the application has been used and

then re-running the experiment with tracing, has also influenced the design of the

how tracing is used in this experiment. The impact of tracing on performance will

be discussed in chapter 4 along with the rest of the results. Although the same

benchmark is run against both FreeBSD and Linux servers, the difference in the two

systems requires two different tracing tools to be used. This presents an issue of

potential inconsistency in the results as outlined by Blackburn et al. (2016, p. 12).

Unfortunately, the inconsistency in the tracings tools used here is unavoidable and

should be considered when evaluating the results.

The statistical analysis employed here is influenced by the methodology described

by Touati et al. (2013) and Nogueira et al. (2014). The statistical analysis workflow

is outlined in figure 4.2.

4.4 Server Design

Two HTTP echo servers are implemented for the purposes of testing the hypotheses.

The first - Server A - directly implements its own event loop to interact with the event

notification mechanism. This server has no third party dependencies. The second -

Server B - uses the third-party library libevent which implements its own event loop.

45

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

Figure 4.2: Statistical Analysis Workflow

Both servers are examples of the reactor pattern which it comes to their event-loop

implementation.

The flow control of Server A is displayed as a sequence diagram for epoll in figure

4.3 and for kqueue in figure 4.4.

Server A is composed of four modules:

• httpserver - contains the main and event_loop functions

• event_lib - contains functions for interacting with the event notification mecha-

nism

• net_lib - contains functions for working with network connections

• http_lib - contains functions for parsing HTTP requests and creating the re-

sponse

46

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

Figure 4.3: Epoll Custom Server Flow

47

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

Figure 4.4: Kqueue Custom Server Flow

48

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

The key functions used by Server A are:

• httpserver.main - first sets up a socket listening for incoming connections on a

port number passed from the commandline; then starts the event_loop.

• httpserver.event_loop - creates an instance of the event notification mechanism;

registers a socket to listen for incoming connections with instance; fetches and

iterates over new events in an infinite loop which registers new connections from

events on the listening sockets and dispatches read, write and error events to

handler function from event_lib. event_lib.handle_read calls net_lib.echo_recv

which reads the HTTP requests and sets the response; if read is successful

then registers the socket as writeable, otherwise closes the socket on error.

event_lib.handle_write calls net_lib.echo_send which sends the response; closes

the socket to end the request-response lifecycle.

The main difference between the kqueue and epoll versions of the Server A is

kqueue uses only one call to kevent, see the single call to kevent contained in the

module sys/event in figure 4.4. This one call both fetches and registers events at the

same time. For epoll, these are two separate calls to epoll_wait and epoll_ctl, see the

extra calls to epoll_ctl contained in the module sys/epoll in figure 4.3 .

Server B is based on the sample http server code 2 provided by libevent. This

sample code has been modified to map an echo callback function - echo_request_cb

- to the url /echo. This function reads the content-type in the request headers and

sets it in the response header. It then sets the response body to be that of the request

body.

4.5 Benchmarking layer

Benchmarks are broken into micro and macro. The micro-benchmarks are run against

the custom build HTTP echo server - Server A from the previous section. The bench-
2https://github.com/libevent/libevent/blob/release-2.1.11-stable/sample/

http-server.c Retrieved 2021-05-31

49

https://github.com/libevent/libevent/blob/release-2.1.11-stable/sample/http-server.c
https://github.com/libevent/libevent/blob/release-2.1.11-stable/sample/http-server.c

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

marking tool ApacheBench is used for the micro-benchmark. ApacheBench allows the

user to specify the exact number of requests which is useful for determining a small

load. The wrk benchmark is used for the macro-benchmark. The wrk benchmark

allows the user to specify the duration of the test. This is used for setting an extended

period of load on the server. Like JMeter, ApacheBench and wrk both allow for the

number of concurrent clients to be set (D. Liu & Deters, 2009, p. 172).

The micro-benchmark pre-loads the server with a 2000 idle connections using the

tool TCPKali. The micro-benchmark then runs a short burst of 2000 requests with

2 concurrent clients using ApacheBench. The micro-benchmark is run twice: once

to measure throughput with a monitoring script collecting data on the resource con-

sumption of the VM and once with a tracing script collecting the execution times of

system calls.

The macro-benchmarks are run against the HTTP libevent echo server - Server

B. The macro-benchmark pre-loads the server with 20,000 idle connections also using

TCPKali. The macro-benchmark then a runs a sustained load for 200 seconds using

200 concurrent clients powered by 20 threads using the wrk benchmark. In the context

of this research, the wrk benchmark also uses an event notification mechanism such as

epoll and kqueue in conjunction with multi-threads. The 20,000 idle connections have

been chosen as they are double the 10,000 used in previous benchmarks by Lemon

(2001), Gammo et al. (2004) and Kerrisk (2010, p. 1365).

Both micro and macro benchmarks send the same message in the HTTP body

within a POST request to the /echo endpoint. The message is a JSON object with a

single key message containing a value of 64 dollar signs as a string. A JSON content-

type header is included in the HTTP request. The benchmark runs on a separate

machine to the server. These two machines are connected over a wired connection

through a network switch. After each benchmark has been run, the server being

tested is restarted to keep the environment as consistent as possible.

Throughput data is the target of the benchmark tests and is measured as requests

per second. The measurement is provided by the benchmarking tools. The benchmarks

are run 100 times each with the intention of trying to generate a normal distribution

50

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

in the data. The benchmark is then repeated again 100 times but with the inclusion

of the tracing script.

4.5.1 Monitoring layer

The monitoring uses the top command to periodically collect data on the VM running

the server from the perspective of the host machine. The interval between samples

taken by top is one second, however this sampling interval proved limited in length,

see 5.2 in Chapter 5. The data output by top is filtered using the grep command to

capture VirtualBox’s VBoxHeadless process.

4.6 Tracing layer

Tracing scripts are used to capture the executions of the event notification mechanism

system calls along with the network calls to accept new connections, and retrieve and

send data: accept, recv and send.

4.6.1 FreeBSD

For FreeBSD, DTrace is used to capture the executions times of kevent. DTrace

supports both static and dynamic instrumentation without modifying the software it

is observing . Tracing tools created prior to DTrace only used static instrumentation

which can adversely impact performance even when the tool is not collecting data

(Gregg & Mauro, 2011, p. 4). This is because these older tracing tools, such as truss on

FreeBSD and strace on Linux, rely on the C library ptrace. ptrace inserts breakpoints

at the start and end of system calls. These breakpoints pause the application whenever

the system call begins and ends, resulting in the negative impact on performance

((Chahal & Nambiar, 2017); Gregg, 2019, pp. 284; truss(1) - FreeBSD Manual Pages ,

2021).

DTrace uses providers and probes. Providers are loadable kernel modules which

communication with the DTrace kernel module via probes. Probes are potential in-

51

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

strumentation points identified by a tuple with 4 fields: provider, module, function,

name. Probes are targeted by DTrace for example to target the entry and exit point

of a function (Cantrill et al., 2004).

The DTrace script is based on an example from Gregg and Mauro (2011, pp. 47-

48). It traces the execution time of kevent by setting a timestamp on entry to the

function and then deducts that entry timestamp from the current timestamp at the

point of exit from the function, see listing 4.2. The built-in timestamp in DTrace is

the nanoseconds since system boot (Gregg & Mauro, 2011, p. 31).

1 #!/usr/sbin/dtrace -s

2 ...

3 syscall :: kevent:entry

4 / pid == $1 /

5 {

6 self ->kevent_start = timestamp;

7 }

8

9

10 syscall :: kevent:return

11 /self ->kevent_start/

12 {

13 self ->kevent_iotime = (timestamp - self ->kevent_start);

14 printf("%d,kevent ,%d\n", timestamp / 1000000 , self ->kevent_iotime

);

15 }

Listing 4.2: dtrace kevent tracing script

4.6.2 Linux

For Linux, bpftrace is used to capture the execution times of epoll_wait and epoll_ctl.

bpftrace is based on Linux’s Berkeley packet filter (BPF) technology which originated

back in 1992. BPF aims to improve the performance of packet capture tools (Gregg,

2019, p. 1). BPF uses a VM which is executed by the kernel. This VM filters packets

52

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

based on an expression provided by the user-level process. This approach avoids the

need to copy the packets and the overhead such copying entails (Gregg, 2019, p. 16).

The bpftrace script is based on an example from Gregg (2019, pp. 270-271). It uses

the same approach as the script for DTrace by deducting the exit time from the enter

time of the system calls epoll_wait and emphepoll_ctl, see listing 4.3. The built-in

variable necs is used which is the equivalent of timestamp for DTrace: nanoseconds

since boot 3.
3https://github.com/iovisor/bpftrace/blob/v0.12.1/docs/reference_guide.md#24

-strftime-formatted-timestamp Retrieved 2021-05-31

53

https://github.com/iovisor/bpftrace/blob/v0.12.1/docs/reference_guide.md#24-strftime-formatted-timestamp
https://github.com/iovisor/bpftrace/blob/v0.12.1/docs/reference_guide.md#24-strftime-formatted-timestamp

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

1 #!/snap/bin/bpftrace

2 ...

3 BEGIN

4 {

5 @pid = (uint64) $1;

6 @start_time = nsecs;

7 }

8 ...

9 tracepoint:syscalls:sys_enter_epoll_wait

10 / tid == @pid /

11 {

12 @start_time_epoll_wait[tid] = nsecs;

13 }

14

15

16 tracepoint:syscalls:sys_exit_epoll_wait

17 / @start_time_epoll_wait[tid] /

18 {

19 $time_now = nsecs;

20 @dur_epoll_wait = $time_now - @start_time_epoll_wait[tid];

21 @time_since_start = ($time_now - @start_time) / 1000000;

22

23 printf("%ld,epoll_wait ,%ld\n", @time_since_start , @dur_epoll_wait

);

24 }

Listing 4.3: bpftrace epoll tracing script

4.7 Data collection and extraction

The data output by both the benchmark and tracing scripts requires further processing

in order to extract the results used to test the hypotheses. Before the data can be

processed, it must first be collected.

The output data from both the micro and macro benchmarks is textual and nor-

54

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

mally printed to stdout, i.e. the terminal command-line from where the test was run.

The tracing script data is also printed to stdout but is already formatted by the script

to be comma separated. The output from the benchmark and tracing commands is

directed to a file which uses a timestamp as the file name.

After the data is collected, the results need to be extracted from it; including the

micro and macro-benchmarks along with the tracing scripts for Linux and FreeBSD,

all output data in various formats. The throughput is extracted from the output

using the grep command to match the line with the number of requests per second

measurement and the awk command to extract the column from that line containing

the number.

For the tracing scripts an intermediate dataset is created from which the final

results can be queried and computed. This intermediate dataset is built from the files

output by the tracing scripts using a Python script. This Python script filters out

all data prior to the first instance of the send system call and all data after the last

instance of send. This filters out the data from the pre-loading of the server with idle

connection. The Python script sums and counts every system call and calculates the

average time each call took during the experiment.

Column Type Description

FileName Ordinal → String File containing the trace data

SysCallName Nominal → String System call name, e.g. kevent, epoll, send, etc.

SysCallExecutionTime Ordinal → Integer
Total time spent executing system call

in milliseconds

SysCallCount Ordinal → Integer Number of times called

SysCallAverageExecutionTime Ordinal → Float
Average execution time per call:

SysCallExecutionTime / SysCallCount

Table 4.1: System Call Tracing Dataset

55

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

4.8 Configurations and specifications

This section documents the configurations and specifications of the environments used

to run the experiment.

4.8.1 DuT configurations

The configuration changes of the DuTs are detailed here.

FreeBSD

FreeBSD has a default TCP send and receive buffers of 32KiB and 64 KiB respectively

with the max value being 2048 KiB for each, see listing 4.4.

1 $ sysctl -a | grep "net.inet.tcp" | grep -E "sendspace|recvspace|

sendbuf_max|recvbuf_max"

2 net.inet.tcp.sendspace: 32768

3 net.inet.tcp.recvspace: 65536

4 net.inet.tcp.sendbuf_max: 2097152

5 net.inet.tcp.recvbuf_max: 2097152

Listing 4.4: FreeBSD TCP buffer sizes

Linux

Linux has a default TCP send and receive buffers of 16KiB and 128KiB respectively

with the max values being 4096 and 6144. These have been adjusted to 32KiB, 64

KiB and 2048 KiB to bring them in line with FreeBSD’s settings, see listing 4.5.

56

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

1 $ sysctl -a | grep -E "net.core|net.ipv4" | grep -E "rmem_default|

wmem_default|wmem_max|rmem_max|tcp_rmem|tcp_wmem"

2 net.core.rmem_default = 212992

3 net.core.rmem_max = 2097152

4 net.core.wmem_default = 212992

5 net.core.wmem_max = 2097152

6 net.ipv4.tcp_rmem = 4096 131072 6291456

7 net.ipv4.tcp_wmem = 4096 16384 4194304

8 $ sudo -i su

9 # echo ’net.core.rmem_default =65536 ’ >> /etc/sysctl.conf

10 # echo ’net.core.wmem_max =2097152 ’ >> /etc/sysctl.conf

11 # echo ’net.core.wmem_default =32768 ’ >> /etc/sysctl.conf

12 # echo ’net.core.rmem_max =2097152 ’ >> /etc/sysctl.conf

13 # echo ’net.ipv4.tcp_rmem = 4096 65536 2097152 ’ >> /etc/sysctl.conf

14 # echo ’net.ipv4.tcp_wmem = 4096 32768 2097152 ’ >> /etc/sysctl.conf

15 # sysctl -p

Listing 4.5: Adjusting Linux TCP buffer sizes

The Ubuntu Linux servers used have a default soft file descriptor limit of 1024. This

has increased from 65535 to facilitate the number of connections required by the macro-

benchmark. It is increased with setting the value 65535 for DefaultLimitNOFILE in

the files /etc/systemd/system.conf and /etc/systemd/user.conf.

4.8.2 Machine specifications

The specifications of the machines used to host the VM and used for the native OS

environment are detailed in table 4.2.

4.9 Summary

The experiment is split into three layers from which data is collected: benchmarking,

monitoring, and tracing. The experiment is repeated using both VM and native OS

are environments for the servers. The VMs are automated and provisioned using

57

CHAPTER 4. EXPERIMENT DESIGN AND METHODOLOGY

Specification VM Host Environment Native OS Environment

Machine model Lenovo ThinkPad-T480 Dell Optiplex 3050 SFF

OS Name and Version Ubuntu 20.04.2 LTS FreeBSD 12.2-STABLE

OS Version 5.8.0-53-generic (Kernel) r369603

OS Type 64-bit 64-bit

Processor Intel Core i5-8250U CPU @ 1.60GHz × 8 Threads Intel Core i5-6500 6th Generation @ 3.2GHz x 4 Threads

Memory 7.5 GiB 4GB

disk Capacity 256.1 GB 240GB (SSD (SSD)

Table 4.2: VM host machine specifications

Vagrant to allow this part of the experiment be more easily reproduced. The machine

specifications and configurations are also documented to help with reproducing the

experiment. The results of this experiment are outlined in Chapter 5.

58

Chapter 5

Results, evaluation and discussion

This chapter presents, evaluates and discusses the results from the experiment outlined

previously.

5.1 Results

Note that the statistics are rounded to four decimal places where possible. This is

for display purposes in the tables within this chapter. Six decimals places are used in

some cases when dealing with small numbers, particularly for results from the native

environment. Numbers that are too small to round to six decimal places are expressed

as <0.000001.

5.1.1 Throughput

An independent (Welch’s) t-test has been used in all cases when testing the throughput

results as there is no case where both the results from FreeBSD and Linux were

normally distributed for throughput.

Micro-benchmark

The micro-benchmark results are displayed in table 5.1 for both VM and native envi-

ronments. The native environment results are displayed in the kernel density estimate

59

CHAPTER 5. RESULTS, EVALUATION AND DISCUSSION

Statistical Test kqueue v epoll
kqueue v epoll
with tracing kqueue v epoll

kqueue v epoll
with tracing kqueue v epoll

kqueue v epoll
with tracing

Environment VM VM VM VM Native Native

Measurement Throughput Throughput CPU Usage CPU Usage Throughput Throughput

Sample size 100 v 100 100 v 100 300 v 300 300 v 300 100 v 100 100 v 100

Sample average 870.19 v 890.1329 867.359 v 789.033 140.815 v 118.319 128.9577 v 161.0737 6115.6444 v 8291.2935 6266.7868 v 8161.6318

Sample median 866.535 v 882.819 867.89 v 793.105 198 v 166.3 183.1 v 224.8 6051.455 v 8421.715 5949.3099 v 8278.94

Standard Deviation 41.508 v 41.155 25.3205 v 74.9079 86.5124 v 33.858 80.646 v 101.5949 293.255 v 479.7735 555.2933 v 431.6057

Shapiro-Wilk (p) 0.417 v 0.0111 0.0105 v 0.0956 <0.000001 v <0.000001 <0.000001 v <0.000001 0.00002 v <0.000001 <0.000001 v 0.00007

Normal distribution? True v False False v True False v False False v False False v False False v False

F-test (p) 0.9325 0.004 0.01299 0.0056 0.000002 0.0129

F-test (α) < (p) True False False False False False

T-test type Independent Independent Independent Independent Independent Independent

T-test (p) 0.00078 <0.000001 0.0007 0.0088 <0.000001 <0.000001

µ1 6= µ2 True True True True True True

Table 5.1: Table of Micro-Benchmark Results

Figure 5.1: Micro-benchmarks results (Native): kernel density estimate (KDE) plot

60

CHAPTER 5. RESULTS, EVALUATION AND DISCUSSION

(KDE) plot in figure 5.1. These results show that, without any tracing enabled, the

Linux server is significantly faster than the FreeBSD server for both the VM and native

environments. For the VM environment, Linux has an average of 890.13 requests per

second and a median of 882.819 which is an increase of 2.29% and 1.88% on FreeBSD’s

870.19 and 866.53. For the native environment, Linux’s average of 8291.2935 and me-

dian of 8421.71 are 35.575% and 39.158% faster than 6115.64 and 6051.45 for FreeBSD.

When tracing is enabled, Linux is slower than FreeBSD in the VM environment,

but still faster in the native environment. For the VM environment, Linux has an

average of 789.03 requests per second and a median of 793.11 whereas FreeBSD has

an average of 867.36 and median of 867.89. For the native environment, Linux has

an average of 8161.63 and a median of 8278.94 and FreeBSD has 6266.79 and 5949.31

respectively. Linux drops in performance by 11.357% for average throughput on the

VM with tracing compared to without tracing, but FreeBSD only drops by 0.325%.

On the native environment, Linux drops by only 1.56% when tracing is enabled and

FreeBSD surprisingly increases by 2.47%.

The monitoring results show the FreeBSD VM consumes more CPU with an average

of 140.815% CPU usage and a median of 198% to 118.32% and 166.3% for Linux.

When tracing is enabled CPU usage increases significantly for Linux, with an average

of 161.07% and median of 224.8%. However, for FreeBSD the CPU usage decreases

when tracing is enabled with an average of 128.96% and a median of 183.1%.

Macro-benchmark

The macro-benchmark results are displayed in table 5.2 for both VM and native envi-

ronments. The native environment results are displayed in the KDE plot in figure 5.2.

These results, like the micro-benchmark results, show a significant difference between

FreeBSD and Linux. For the VM environment, the median and average for FreeBSD

are 16409.83 requests per second and 16625.61 respectively. For Linux, the median and

average are 22663.03 and 22862.46. This is a huge increase in throughput compared to

FreeBSD. In order to verify these results given the difference between them, the tool

iperf has been used to measure the TCP bandwidth on both VMs. These results are

61

CHAPTER 5. RESULTS, EVALUATION AND DISCUSSION

Statistical Test kqueue v epoll kqueue v epoll

Environment VM Native

Measurement Throughput Throughput

Sample size 100 v 100 100 v 100

Sample average 16409.835 v 22663.0308 121440.486 v 80976.7904

Sample median 16625.615 v 22862.46 121280.45 v 82434.215

Standard Deviation 826.704497 v 1231.206105 968.0831 v 8729.8301

Shapiro-Wilk (p) <0.000001 v 0.0061 0.0228 v <0.000001

Normal distribution? False v False False v False

F-test (p) 0.00009 <0.000001

F-test (α) < (p) False False

T-test type Independent Independent

T-test (p) <0.000001 0.0

µ1 6= µ2 True True

Table 5.2: Table of Macro-Benchmark Results

displayed in table 5.3. For FreeBSD, the median is 1.2 Gbits/sec and for Linux it is

4.07 which show the same trend of Linux achieving far greater throughput.

For the native environment, there is again a large difference between FreeBSD and

Linux, however, it is reversed with FreeBSD having an average of 121440.486 requests

per second and median of 121280.45 against 80976.7904 and 82434.215 for Linux.

5.1.2 Tracing

The tracing results are displayed in table 5.4. The comparison of the average execution

for kevent against epoll running in the VM environment is the only case were both

samples that both have normal distributions as verified by the Shapiro-Wilk test. They

also have a (α) < (p) verified by the F-test. As such, the dependent paired T-test is

62

CHAPTER 5. RESULTS, EVALUATION AND DISCUSSION

Statistical Test FreeBSD v Linux

Environment VM

Measurement Bandwidth(Gbits/sec)

Sample size 100 v 100

Sample average 1.1649 v 4.0853

Sample median 1.2 v 4.07

Standard Deviation 0.1671 v 0.1043

Shapiro-Wilk (p) <0.000001 v 0.5583

Normal distribution? False v True

F-test (p) 0.000002

F-test (α) < (p) False

T-test type Independent

T-test (p) <0.000001

µ1 6= µ2 True

Table 5.3: Table of iperf Results

used. This T-test has a p-value of 0.0029 meaning that on average epoll is significantly

faster than kevent. For the native environment, neither distribution is normal and so

the independent (Welch’s) T-test is used. In terms of the number of times kevent and

epoll are called, the count for kevent is less than half that of epoll with a medians of

5066.5 for kevent and 11449 for epoll on the VM environment, and medians of 5540

and 11570 for the native. In terms of the total time spent in the kernel, kevent spends

significantly less time than epoll with medians of 2032.15 and 2119.47 respectively on

the VM, and then 296.99 and 363.79 respectively on the native environment. That is

4.3% longer for epoll on the VM and 22.49% longer on the native environment.

The network system calls are displayed separately in table 5.5. For the VM envi-

ronment, the only network system call which is faster on FreeBSD both in terms of

average and median values is accept. The average and median for FreeBSD are 0.0062

63

CHAPTER 5. RESULTS, EVALUATION AND DISCUSSION

Figure 5.2: Macro-benchmark results (VM and Native): kernel density estimate (KDE)

plot

Statistical Test

kqueue (kevent)
v

epoll (wait + ctl)

kqueue (kevent)
v

epoll (wait + ctl)

kqueue (kevent)
v

epoll (wait + ctl)

kqueue (kevent)
v

epoll (wait + ctl)

kqueue (kevent)
v

epoll (wait + ctl)

kqueue (kevent)
v

epoll (wait + ctl)

Environment VM VM VM Native Native Native

Measurement Call Count Total Execution Time Average Execution Time Call Count Total Execution Time Average Execution Time

Sample size 100 v 100 100 v 100 100 v 100 100 v 100 100 v 100 100 v 100

Sample average 5110.93 v 11457.43 2026.9713 v 2119.4692 0.3967 v 0.3886 5498.74 v 11297.56 282.3572 v 361.973 0.052 v 0.0646

Sample median 5066.5 v 11449 2032.149 v 2119.4692 0.3961 v 0.3876 5540 v 11570 296.9896 v 363.794 0.0539 v 0.0632

Standard Deviation 129.5087 v 279.91 92.7114 v 88.851 0.0179 v 0.021 438.1999 v 609.0111 29.0374 v 41.2888 0.0089 v 0.0105

Shapiro-Wilk (p) <0.000001 v 0.00008 0.0252 v 0.1754 0.1911 v 0.1962 0.000001 v <0.000001 <0.000001 v 0.0351 <0.000001 v 0.0142

Normal distribution? False v False False v True True v True False v False False v False False v False

F-test (p) <0.000001 0.673 0.1078 0.0012 0.0005 0.1

F-test (α) < (p) False True True False False True

T-test type Independent Independent Dependent Independent Independent Independent

T-test (p) <0.000001 <0.000001 0.0029 <0.000001 <0.000001 <0.000001

µ1 6= µ2 True True True True True True

Table 5.4: Table of Tracing Results for Event Notification Mechanism System Calls

and 0.0061 against 0.0102 and 0.0104 for Linux. The average for FreeBSD is 0.0069

against 0.0058 for Linux. For the native environment, the results are reversed: all

64

CHAPTER 5. RESULTS, EVALUATION AND DISCUSSION

Statistical Test
accept

(FreeBSD v Linux)
recv

(FreeBSD v Linux)
send

(FreeBSD v Linux)
accept

(FreeBSD v Linux)
recv

(FreeBSD v Linux)
send

(FreeBSD v Linux)

Environment VM VM VM Native Native Native

Measurement Average Execution Time Average Execution Time Average Execution Time Average Execution Time Average Execution Time Average Execution Time

Sample size 100 v 100 100 v 100 100 v 100 100 v 100 100 v 100 100 v 100

Sample average 0.0062 v 0.0102 0.0069 v 0.0058 0.0273 v 0.0223 0.00086 v 0.0022 0.00075 v 0.00095 0.00173 v 0.00288

Sample median 0.0061 v 0.0104 0.0067 v 0.0057 0.0269 v 0.0223 0.0009 v 0.0019 0.00075 v 0.00089 0.00173 v 0.00274

Standard Deviation 0.0006 v 0.0027 0.0008 v 0.0016 0.0023 v 0.0023 0.00002 v 0.00053 0.00003 v 0.00015 0.00008 v 0.00039

Shapiro-Wilk (p) <0.000001 v <0.000001 <0.000001 v 0.00003 0.0002 v 0.9267 0.0321 v <0.000001 0.7754 v <0.000001 0.00003 v <0.000001

Normal distribution? False v False False v False False v True False v False True v False False v False

F-test (p) <0.000001 <0.000001 0.823 <0.000001 <0.000001 <0.000001

F-test (α) < (p) False False True False False False

T-test type Independent Independent Independent Independent Independent Independent

T-test (p) <0.000001 <0.000001 <0.000001 <0.000001 <0.000001 <0.000001

µ1 6= µ2 True True True True True True

Table 5.5: Table of Tracing Results for Network Syscalls

network system calls on FreeBSD are faster than Linux. The only exception being the

average time for accept being this time faster on Linux, although not in terms of the

median value.

5.2 Evaluation and discussion

The results presented in the previous section raise a number of questions, particularly

about the impact of virtualisation, the effectiveness of micro-benchmarking, the pecu-

liar effect of DTrace as the a tracing tool, and the dichotomy between the two sets of

macro-benchmarking results on the VM and native environments.

Virtualisation clearly impacted the performance of the server for this experiment in

an order of magnitude. Take for example the throughput from the micro-benchmark

without tracing for Linux. For this benchmark the average increases from 2119 requests

per second for the VM environment to 11298 for the native. That is an increase in

throughput of 433%. There are differences in the hardware between the VM and

native environment. There has also been no performance tuning of configuration.

Even so, the large disparity in performance shows that virtualisation is a variable that

profoundly influences the results of the experiment.

65

CHAPTER 5. RESULTS, EVALUATION AND DISCUSSION

Micro-benchmarking can be complementary to tracing. Tracing in conjunction with

a macro-benchmark would potentially generate gigabytes of data. This could become

a memory issue. For the micro-benchmark, the data produced is more manageable in

terms of its size. When it comes to measuring throughput, the macro-benchmark has

the advantage of more thoroughly testing the capacity of the server. This can be seen

in the far higher levels of throughput both FreeBSD and Linux servers achieve with

the macro-benchmark.

In the micro-benchmark results FreeBSD is slower than Linux for both the VM and

native environments. With the macro-benchmark, FreeBSD is slower on the VM but

faster on the native. Part of this difference must be the virtualisation as a variable.

However, virtualisation does not account for why FreeBSD would be slower in the

micro-benchmark. One possible explanation for the slowness is the results are not an

accurate reflection of the potential throughput FreeBSD and Linux are both capable

of. The 1000 requests served in the micro-benchmark may not produce the resolution

required to accurately gauge throughput. The system calls are recorded in the tracing

results as being faster in most cases on FreeBSD. This further suggests there may be an

issue with the accuracy of the lower throughput for FreeBSD in the micro-benchmark.

Kistowski et al’s. (2015) argument that running a benchmark for an extended duration

to address variability may result in a more accurate resolution for the measurement of

throughput. The micro-benchmark for this experiment failed to mirror the trends of

the macro-benchmark.

What is particularly noteworthy about the micro-benchmark with tracing results

is how little impact DTrace has on the FreeBSD server. For the VM, the average

decreases by 0.32%, and for the median it actually increases by 0.156%. For the native

environment, the average increases again by a significant 2.47% whereas the median

decreases by 1.6%. Zhuang et al. (2014) have found tracing to have a negligible impact

overall in their experiment, and this seems to also be the case here for DTrace. For

the Linux the average and median values dropped when tracing is enabled, as would

be expected. Tracing logically has a performance hit on the server. This impact

on performance is expected and has been demonstrated by both Liao and Langweug

66

CHAPTER 5. RESULTS, EVALUATION AND DISCUSSION

(2014) and Pereria et al. (2016). The performance impact of the tracing on the

throughput results is within the 5% margin of error.

Perhaps the most striking result is the large disparity in throughput between

FreeBSD and Linux in the macro-benchmark. These results have been verified in

the iperf results which show the Linux VM to be capable of far greater throughput.

Poor network performance on FreeBSD VMs compared to Linux has been previously

reported on forums.freebsd.org 1 2 3 4. Why this poor performance occurs is not

clear. The better performance from the recv and send system calls suggests the virtu-

alised TCP network stack is a factor. The poor performance is limited to the VM as

the native environment sees FreeBSD perform better in terms of throughput. These

are the only results that show FreeBSD to have significantly higher throughput. Since

the variable of virtualisation is removed, these are perhaps some of the most important

results. Here kqueue is shown to be faster than epoll in terms of handling connections.

These native environment results show for this experiment that FreeBSD is more ef-

ficient at handling a heavy load along with a large number of idle connections than

Linux. The macro-benchmark uses libevent for the server compared to the micro-

benchmark which uses a code written specifically for this research. Given that libevent

is a mature, production ready codebase and the macro-benchmark exerts a heavy,

more sustained load on the server, these results look more reliable than those of the

micro-benchmark.

With the tracing results, kevent is called less than half the number of times epoll is.

This suggests that the combination of fetching and registering events is returning more

file descriptors with calls to kevent. This could be the result of kevent spending more

time in the kernel on average for the VM environment. The significant increase in speed
1https://forums.freebsd.org/threads/freebsd-speed-terrible-compared-to-ubuntu

.53488/ Retrieved 2021-05-31
2https://forums.freebsd.org/threads/slow-network-performance-compared-to-linux

.67200/ Retrieved 2021-05-31
3https://forums.freebsd.org/threads/slow-network-performance-compared-to-linux

-again.71679/ Retrieved 2021-05-31
4https://forums.freebsd.org/threads/networking-freebsd-12-1-vs-ubuntu-20-04

.77240/ Retrieved 2021-05-31

67

forums.freebsd.org
https://forums.freebsd.org/threads/freebsd-speed-terrible-compared-to-ubuntu.53488/
https://forums.freebsd.org/threads/freebsd-speed-terrible-compared-to-ubuntu.53488/
https://forums.freebsd.org/threads/slow-network-performance-compared-to-linux.67200/
https://forums.freebsd.org/threads/slow-network-performance-compared-to-linux.67200/
https://forums.freebsd.org/threads/slow-network-performance-compared-to-linux-again.71679/
https://forums.freebsd.org/threads/slow-network-performance-compared-to-linux-again.71679/
https://forums.freebsd.org/threads/networking-freebsd-12-1-vs-ubuntu-20-04.77240/
https://forums.freebsd.org/threads/networking-freebsd-12-1-vs-ubuntu-20-04.77240/

CHAPTER 5. RESULTS, EVALUATION AND DISCUSSION

on the native environment for all system calls on both FreeBSD and Linux is consistent

with the increase in throughput for the benchmarking on the same environment. The

unknown factor in these tracing results is to what extent the tracing tools were precise

or biased. As such, any claim about these results is tentatively made. The 22.5%

increase for the total time spent in the kernel by kevent compared to epoll for the native

environment is likely outside the region of error given Linux only took a 1.56% hit in

average throughput with tracing compared to without tracing in this environment.

The monitoring results have a parallel with the tracing results in that the CPU

usage for FreeBSD decreases with the tracing enabled rather than increases. An in-

crease in CPU usage would be the conventional wisdom: the tracing process should

in theory eat extra CPU time alongside the server process, resulting in an increase

of CPU usage. The monitoring results have a caveat that they were sampled every

second. The benchmark only took 2.3 seconds on average for FreeBSD and 2.25 on

average for Linux. The tracing results on the other hand capture every instance of the

system call they were targeting. The tracing results were aggregated for each second

giving them a far greater degree of resolution compared to the monitoring results.

Comparisons drawn between these datasets should be considered tentative at best. A

higher sampling rate of the CPU would have been desirable here.

5.3 Summary

The results presented in this chapter show different outcomes when the experiment

is run in a VM environment and when it is run in a native environment. When the

experiment is run on a VM with Linux as the host OS, then Linux achieves significantly

higher throughput. The network system calls recv and send are faster for Linux

suggesting that the virtualisation of I/O within TCP network stack is one of the key

differentiators. When the experiment is run native FreeBSD and Linux, the micro-

benchmark results remain consistent with the VM run with Linux again achieving

significantly higher throughput. The macro-benchmark results are a different story on

the native run with FreeBSD achieving significantly higher throughput than Linux.

68

Chapter 6

Conclusion

The challenge this research has faced is how to fairly compare kqueue and epoll. These

two similar yet distinct technologies both aim to solve the same problem. That is the

problem of how to efficiently monitor open sockets in a network environment where

many may be idle. This problem has guided the design of this technology over time

as well as the academic research around it.

This conclusion which gives an overview of the research conducted here, define

again the problem addressed and reflect on the experiment design and results be-

fore consisting the contribution and impact made. Finally potential future work and

recommendations which be covered.

6.1 Research Overview

This research aimed to evaluate the performance of kqueue and epoll when used as the

basis for an event-driven server. The central problem kqueue and epoll seek to solve

in the context of an event-driven server is how to efficiently monitor open network

connections at scale. At scale means a large number of these open connections often

with the vast majority of them being idle. The central question this research has

asked: is there a statistical difference between these two technologies both in terms of

throughput and time spent executing in the kernel. This evaluation faces its challenges

of how to compare kqueue and epoll in a fair and consistent way given they have

69

CHAPTER 6. CONCLUSION

different implementations and run on different operating systems. These challenges

have helped shaped the experiment design.

The research conducted has included background research both on the development

and functionality of these technologies along with a review of related literature. During

the background research and literature review there were no studies identified that

explicitly compared the performance of kqueue and epoll. The background research

and literature review has been used to frame the experiment and the methodology

adopted. Benchmarking and tracing have been employed as methods of analysing

performance along with the statistical tools - the Shapiro-Wilk test, F-test and T-

tests.

6.2 Experiment Design

Given the differences between kqueue and epoll, and between FreeBSD and Linux, the

experiment design aimed to be as fair and balanced as possible. The experiment took a

layered approach based on the methodology employed by Ye et al. (2014, pp. 66-67).

The experiment also took a two-staged approach consisting of micro-benchmarking

and them macro-benchmarking based on the methodology of Ren et al. (2019).

Two different server implementations were used. The first server has been devel-

oped specifically for this experiment. This server contains a bare-bones implementa-

tion of an event-loop in the style of the reactor pattern. It has been benchmarked

using a micro-benchmark both with and without a tracing script enabled to collect

the execution times of the various system calls involved in its control flow. The second

server uses the libevent library which provides a production-ready event-loop imple-

mentation. This server has been benchmarked using a macro-benchmark to test it

with a far more intensive workload of requests.

The experiment used both VMs and native environment to run. For both bench-

marks, the servers were pre-loaded with idle-connections. The benchmarks were run

from a separate machine connected to the machine running the server via a physi-

cal network. Due to the heterogeneity of tracing tools for FreeBSD and Linux, two

70

CHAPTER 6. CONCLUSION

separate tools were used for each: DTrace and bpftrace.

Configuration changes have been kept to a minimum. Tuning a server can yield

better performance as Pariag et al. (2007), Han and Thant (2019) and Hellström

(2007) have demonstrated in their research. However, out-of-the-box settings are used

where possible in order to remove the variability of tuning configurations.

6.3 Evaluation of Results

Although kqueue was faster than epoll for both the micro and macro benchmarks

according to the tracing results, the Linux server achieved a higher throughput in all

cases apart from the macro-benchmark on native FreeBSD. This should not be taken

to mean the Linux is faster and the native FreeBSD results are an anomaly or outliers.

These results show a severe impact on performance when using virtualisation. The

results also show inconsistencies in the measurements taken between the micro and

macro benchmarks. This may suggest the micro benchmark does not put a heavy

enough load on the server to accurately measure throughput.

6.4 Contributions and impact

An experiment design based on previous research has been developed here. This

experiment provides a framework for comparing kqueue and epoll. This framework

may be extended to cover other comparable technologies across different operating

systems. This framework is a starting point given the lack of existing research that

compares kqueue and epoll, and other system calls on FreeBSD and Linux. This

framework can be further refined in future work.

The results from the experiment have shown that there is a significant statistical

difference in performance between kqueue and epoll. The impact of virtualisation on

performance has been demonstrated in the disparity between the results for VM and

native environments. The impact of virtualisation on performance has been in the

orders of magnitude. This raises questions of when and where virtualisation is appro-

71

CHAPTER 6. CONCLUSION

priate for a research experiment. When selecting a cloud provider, the virtualisation

method and infrastructure should be checked. This is particularly true when using a

virtualised FreeBSD server as the the underlying host OS may be Linux and may be

introducing a similar performance penalty as seen in the experiment here.

The use of tracing tools has produced interesting results, particularly in the case

of DTrace whose impact on performance has been miniscule at best. This defies the

expectation that tracing tools, by necessity of their design, introduce a performance

penalty and bias. Pereria et al. (2016) have investigated the extent to which strace and

SystemTap are biased as tracing tools. A possible offshoot to that investigation would

be the take the assumption that tracing tools introduce bias and flip it on its head

with the inverted hypotheses: DTrace does not introduce a statistically significant

biases to a benchmark. Given these results, the overall design of DTrace is something

to be studied when developing a tracing tool.

If tracing tools should be calibrated, for example using the method of Pereria et al.

(2016), then perhaps micro benchmarks should be too. Given the divergence in results

for throughput between the micro and macro benchmarks, a calibration produce for

micro-benchmarking could also of been merited here or at least more fine-grained

tuning of the micro-benchmarking load placed on the servers.

6.5 Future Work

There is a broad range of future work that may be derived from the results and

experience of this research. These include conducting the experiment:

• Using different bands of idle connections, for example 10,000, 20,000, 30,000, etc

• Across multiple version of FreeBSD and the Linux kernel, as well for kqueue on

macOS, NetBSD and OpenBSD, and for epoll on other popular Linux distros

such as Debian and Fedora

• Using different virtualisation technologies such as bhyve for FreeBSD, KVM for

Linux and Hyper-V for Windows, as well as on Cloud platforms such as AWS

72

CHAPTER 6. CONCLUSION

and DigitalOcean, in order to try and quantify the impact of virtualisation in

related to the type and provider. This experiment may then be repeated on

native environment to provide a comparison.

• To assess the measurement precision and bias of DTrace and bpftrace using the

method set out by Pereria et al. (2016).

• Using a single tracing tool to analyse the lower-level machine instructions, rather

than system calls, based on the method used by Wang et al. (2019).

A key purpose of the above future work is to further evaluate the broad range of

variables within this experiment. This in order to achieve a more comprehension view

of the performance of kqueue and epoll.

6.6 Recommendations

Comparing technologies like kqueue and epoll, as stated from the outset, is complex

because of the many crucial differences. The most notable and complex difference

is that of the operating systems involved and the vast variance that entails. This

complexity is a challenge that may be addressed through trying to enure a fair and

comprehensive experiment design. This section provides some recommendations based

on the experience of this research.

Idle connections are a critical factor in any experiment concerning this technology

given event notification mechanisms aim to efficiently monitor connections. This is an

area which has not been fully covered by the experiment conducted here. The approach

used was similar to that of Gammo et al. (2004), where the requests are increased

over time has been used and the idle connections kept consistent. Ramping up the

number of idle connections over time, as Lemon (2001) did in his paper on kqueue, and

mixing this with the approach of Gammo et al. (2004) by also increasing the number

of requests, may be a more comprehensive approach to this sort of experiment design.

The bias introduced by tracing tools is another critical factor which this experiment

has not covered in a comprehensive manner. As stated in section 6.5, the methodology

73

CHAPTER 6. CONCLUSION

of Pereria et al. (2016) for determining the bias of tracing tools and their calibration

procedure, may be employed as a technique for addressing any biases in the tracing

tools.

Idle connections and tracing tools bias may be shortcomings of this research on

reflection. However, two aspects where the experiment design worked well in terms of

being comprehensive and reflecting real world workflows is the use of both virtualised

and native environments, and the use of separate machines and a physical network. By

running the experiment on both a virtualised and native environment, the performance

impact of virtualisation was illustrated. The use of the physical network ensure the

OS network stack was tested. Running the experiment from the same machine would

have bypassed the network interface and raised another issues such as how to fairly

compare results when the benchmark run on two different OS which in turn where

essentially measurement themselves.

6.7 Summary

This research has been limited to a quantitative analysis of performance. It has tried

to establish a comparative framework of kqueue and epoll. The problem of how to

approach this comparison is pertinent to the philosophy of measurement and metrology

in general. As Bryan Cantrill puts it “running software doesn’t reflect light or emit

heat or attract mass or have any other physical property that we might use to see it”

(Cantrill, 2006, p. 28). This illustrates the overarching challenge of how to measure

the event notification mechanisms. The experiment design aspired towards fairness

and a comprehensive approach. Those are moving goals which future iterations on

this area of research can continue to refine.

74

References

Aderaldo, C. M., Mendonça, N. C., Pahl, C., & Jamshidi, P. (2017, May). Benchmark

requirements for microservices architecture research. In Proceedings of the 1st inter-

national workshop on establishing the community-wide infrastructure for architecture-

based software engineering (p. 8–13). IEEE Press.

Bagherzadeh, M., Kahani, N., Bezemer, C.-P., Hassan, A. E., Dingel, J., & Cordy,

J. R. (2018, Jun). Analyzing a decade of linux system calls. Empirical Software

Engineering , 23 (3), 1519-1551. doi: 10.1007/s10664-017-9551-z

Bahmann, H., & Froitzheim, K. (2008, July). Extending futex for kernel to user

notification. SIGOPS Operating Systems Review , 42 (5), 18—26. doi: 10.1145/

1400097.1400100

Baron, J. (2015). epoll: add epollexclusive flag. Retrieved 2021-03-09, from https://

lwn.net/Articles/667087/

Benson, R. (2004, July). The event completion framework for the solaris

operating system. Retrieved 2021-05-14, from https://web.archive.org/

web/20110719052845/http://developers.sun.com/solaris/articles/

event_completion.html

Blackburn, S. M., Diwan, A., Hauswirth, M., Sweeney, P. F., Amaral, J. N., Brecht,

T., . . . Zeller, A. (2016, October). The truth, the whole truth, and nothing but the

truth: A pragmatic guide to assessing empirical evaluations. ACM Transactions on

Programming Languages and Systems , 38 (4). doi: 10.1145/2983574

75

https://lwn.net/Articles/667087/
https://lwn.net/Articles/667087/
https://web.archive.org/web/20110719052845/http://developers.sun.com/solaris/articles/event_completion.html
https://web.archive.org/web/20110719052845/http://developers.sun.com/solaris/articles/event_completion.html
https://web.archive.org/web/20110719052845/http://developers.sun.com/solaris/articles/event_completion.html

REFERENCES

Borhani, A. H., Leitner, P., Lee, B., Li, X., & Hung, T. (2014). Wpress: An

application-driven performance benchmark for cloud-based virtual machines. In 2014

ieee 18th international enterprise distributed object computing conference (p. 101-

109). doi: 10.1109/EDOC.2014.23

Bueso, D. (2019, July). Epoll kernel performance improvements. Retrieved 2020-12-

14, from https://events19.linuxfoundation.org/wp-content/uploads/2018/

07/dbueso-oss-japan19.pdf

Cantrill, B. (2006, February). Hidden in plain sight: Improvements in the observ-

ability of software can help you diagnose your most crippling performance problems.

Queue, 4 (1), 26–36. Retrieved from https://doi.org/10.1145/1117389.1117401

doi: 10.1145/1117389.1117401

Cantrill, B. (2017). Ubuntu slaughters kittens | bsd now 103. Retrieved 2021-03-09,

from https://www.youtube.com/watch?v=l6XQUciI-Sc

Cantrill, B., Shapiro, M. W., & Leventhal, A. H. (2004, June). Dy-

namic instrumentation of production systems. In Proceedings of the annual

conference on usenix annual technical conference. USA: USENIX Associa-

tion. Retrieved from https://www.usenix.org/legacy/publications/library/

proceedings/usenix04/tech/general/full_papers/cantrill/cantrill.pdf

Chahal, D., & Nambiar, M. (2017). Cloning io intensive workloads using synthetic

benchmark. In Proceedings of the 8th acm/spec on international conference on per-

formance engineering (p. 317–320). New York, New York, United States: Association

for Computing Machinery. doi: 10.1145/3030207.3030238

cpuset(1) - freebsd manual pages. (2021). Retrieved 2021-04-03, from https://

www.freebsd.org/cgi/man.cgi?query=cpuset&sektion=1&format=html

dtrace(1) — linux manual page. (2021). Retrieved 2021-05-22, from https://man7

.org/linux/man-pages/man1/dtrace.1.html

76

https://events19.linuxfoundation.org/wp-content/uploads/2018/07/dbueso-oss-japan19.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/dbueso-oss-japan19.pdf
https://doi.org/10.1145/1117389.1117401
https://www.youtube.com/watch?v=l6XQUciI-Sc
https://www.usenix.org/legacy/publications/library/proceedings/usenix04/tech/general/full_papers/cantrill/cantrill.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix04/tech/general/full_papers/cantrill/cantrill.pdf
https://www.freebsd.org/cgi/man.cgi?query=cpuset&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=cpuset&sektion=1&format=html
https://man7.org/linux/man-pages/man1/dtrace.1.html
https://man7.org/linux/man-pages/man1/dtrace.1.html

REFERENCES

epoll(7) - linux manual pages. (2021). Retrieved 2021-03-01, from https://man7

.org/linux/man-pages/man7/epoll.7.html

Fettig, A., & McKellar, J. (2013). Twisted network programming essentials (2nd ed.).

O’Reilly Media, Inc.

Gammo, L., Brecht, T., Shukla, A., & Pariag, D. (2004, July). Comparing and

evaluating epoll, select, and poll event mechanisms. In Proceedings of the 6th annual

ottawa linux symposium (Vol. 1, pp. 216–226). San Francisco, California, United

States: Linux Foundation. Retrieved from https://www.kernel.org/doc/ols/

2004/ols2004v1-pages-215-226.pdf

Garrett, O. (2016, January). Nginx and netflix contribute new sendfile(2) to

freebsd. Retrieved 2021-05-20, from https://www.nginx.com/blog/nginx-and

-netflix-contribute-new-sendfile2-to-freebsd/

Gregg, B. (2019). Bpf performance tools: Linux system and application observability

(1st ed.). Addison-Wesley Professional.

Gregg, B. (2020). Systems performance: Enterprise and the cloud (2nd ed.). USA:

Prentice Hall Press.

Gregg, B., & Mauro, J. (2011). Dtrace: Dynamic tracing in oracle solaris, mac os x

and freebsd (1st ed.). USA: Prentice Hall Press.

Han, D., & He, T. (2018, September). A high-performance multicore io manager

based on libuv (experience report). SIGPLAN Notices , 53 (7), 172–178. doi: 10.1145/

3299711.3242759

Han, K. T., & Thant, P. T. (2019, November). Qoe optimization of a/v streaming

using linux os fine tuning. In Proceedings of the international conference on advanced

information science and system. New York, NY, USA: Association for Computing

Machinery. doi: 10.1145/3373477.3373484

77

https://man7.org/linux/man-pages/man7/epoll.7.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://www.kernel.org/doc/ols/2004/ols2004v1-pages-215-226.pdf
https://www.kernel.org/doc/ols/2004/ols2004v1-pages-215-226.pdf
https://www.nginx.com/blog/nginx-and-netflix-contribute-new-sendfile2-to-freebsd/
https://www.nginx.com/blog/nginx-and-netflix-contribute-new-sendfile2-to-freebsd/

REFERENCES

Harji, A. S., Buhr, P. A., & Brecht, T. (2012, June). Comparing high-performance

multi-core web-server architectures. In Proceedings of the 5th annual international

systems and storage conference. New York, NY, USA: Association for Computing

Machinery. doi: 10.1145/2367589.2367591

Hellström, O. (2007, October). Optimising tcp/ip connectivity. In Proceedings of

the 2007 sigplan workshop on erlang workshop (p. 73–84). New York, NY, USA:

Association for Computing Machinery. doi: 10.1145/1292520.1292532

Heng, S. (2015). The network model based on iocp memory control key tech-

nical analysis. In 2015 14th international symposium on distributed computing

and applications for business engineering and science (dcabes) (p. 236-239). doi:

10.1109/DCABES.2015.66

I/o completion ports. (2018). Retrieved 2021-05-14, from https://docs.microsoft

.com/en-gb/windows/win32/fileio/i-o-completion-ports

Ismail, H. A., & Riasetiawan, M. (2016). Cpu and memory performance analysis

on dynamic and dedicated resource allocation using xenserver in data center envi-

ronment. In 2016 2nd international conference on science and technology-computer

(icst) (p. 17-22). doi: 10.1109/ICSTC.2016.7877341

Kegel, D. (1999). The c10k problem. Retrieved 2021-02-28, from http://www.kegel

.com/c10k.html

Kerrisk, M. (2010). The linux programming interface: A linux and unix system

programming handbook (1st ed.). USA: No Starch Press.

kqueue(2) - freebsd manual pages. (2021). Retrieved 2021-02-28, from

https://www.freebsd.org/cgi/man.cgi?query=kqueue&apropos=0&

sektion=0&format=html

Lemon, J. (2001, June). Kqueue - a generic and scalable event noti-

fication facility. In Proceedings of the freenix track: 2001 usenix annual

78

https://docs.microsoft.com/en-gb/windows/win32/fileio/i-o-completion-ports
https://docs.microsoft.com/en-gb/windows/win32/fileio/i-o-completion-ports
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
https://www.freebsd.org/cgi/man.cgi?query=kqueue&apropos=0&sektion=0&format=html
https://www.freebsd.org/cgi/man.cgi?query=kqueue&apropos=0&sektion=0&format=html

REFERENCES

technical conference. Berkeley, California, United States: USENIX Associa-

tion. Retrieved from https://www.usenix.org/legacy/publications/library/

proceedings/usenix01/freenix01/full_papers/lemon/lemon.pdf

Liao, Y.-C., & Langweg, H. (2014, June). Cost-benefit analysis of kernel tracing

systems for forensic readiness. In Proceedings of the 2nd international workshop on

security and forensics in communication systems (p. 25–36). New York, NY, USA:

Association for Computing Machinery. Retrieved from https://doi.org/10.1145/

2598918.2598921 doi: 10.1145/2598918.2598921

Liu, D., & Deters, R. (2009). The reverse c10k problem for server-side mashups.

In G. Feuerlicht & W. Lamersdorf (Eds.), Service-oriented computing – icsoc 2008

workshops (pp. 166–177). Berlin, Heidelberg: Springer Berlin Heidelberg.

Liu, G., Xu, J., Wang, C., & Zhang, J. (2018). A performance comparison of http

servers in a 10g/40g network. In Proceedings of the 2018 international conference

on big data and computing (p. 115–118). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/3220199.3220216

Looney, J. (2019). Netflix and freebsd using open source to deliver streaming video.

Retrieved 2021-05-19, from https://www.youtube.com/watch?v=vcyQBup-Gto

Love, R. (2007). Linux system programming: Talking directly to the kernel and c

library (2nd ed.). O’Reilly Media, Inc.

Love, R. (2010). Linux kernel development (3rd ed.). Addison-Wesley Professional.

Nogueira, P. E., Matias, R., & Vicente, E. (2014). An experimental study on execu-

tion time variation in computer experiments. In Proceedings of the 29th annual acm

symposium on applied computing (p. 1529–1534). New York, NY, USA: Association

for Computing Machinery. doi: 10.1145/2554850.2555022

Palit, T., Shen, Y., & Ferdman, M. (2016, April). Demystifying cloud benchmark-

ing. In 2016 ieee international symposium on performance analysis of systems and

software (p. 122-132). IEEE. doi: 10.1109/ISPASS.2016.7482080

79

https://www.usenix.org/legacy/publications/library/proceedings/usenix01/freenix01/full_papers/lemon/lemon.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix01/freenix01/full_papers/lemon/lemon.pdf
https://doi.org/10.1145/2598918.2598921
https://doi.org/10.1145/2598918.2598921
https://www.youtube.com/watch?v=vcyQBup-Gto

REFERENCES

Pariag, D., Brecht, T., Harji, A., Buhr, P., Shukla, A., & Cheriton, D. R. (2007,

March). Comparing the performance of web server architectures. SIGOPS Operating

Systems Review , 41 (3), 231–243. doi: 10.1145/1272998.1273021

Paul, A. K., Chard, R., Chard, K., Tuecke, S., Butt, A. R., & Foster, I. (2019,

September). Fsmonitor: Scalable file system monitoring for arbitrary storage systems.

In 2019 ieee international conference on cluster computing (p. 1-11). IEEE. doi:

10.1109/CLUSTER.2019.8891045

Pereira, T. E., Brasileiro, F., & Sampaio, L. (2016, June). A study on the errors

and uncertainties of file system trace capture methods. In Proceedings of the 9th acm

international on systems and storage conference. New York, NY, USA: Association

for Computing Machinery. doi: 10.1145/2928275.2928288

poll(2) - linux manual pages. (2021). Retrieved 2021-03-10, from https://man7.org/

linux/man-pages/man2/poll.2.html

Raumer, D., Gallenmüller, S., Wohlfart, F., Emmerich, P., Werneck, P., & Carle,

G. (2016, July). Revisiting benchmarking methodology for interconnect devices. In

Proceedings of the 2016 applied networking research workshop (p. 55–61). New York,

NY, USA: Association for Computing Machinery. doi: 10.1145/2959424.2959430

Ren, X. J., Rodrigues, K., Chen, L., Vega, C., Stumm, M., & Yuan, D. (2019, Octo-

ber). An analysis of performance evolution of linux’s core operations. In Proceedings

of the 27th acm symposium on operating systems principles (p. 554–569). New York,

NY, USA: Association for Computing Machinery. doi: 10.1145/3341301.3359640

Scheuner, J., & Leitner, P. (2018, April). A cloud benchmark suite combining micro

and applications benchmarks. In Companion of the 2018 acm/spec international con-

ference on performance engineering (p. 161–166). New York, NY, USA: Association

for Computing Machinery. doi: 10.1145/3185768.3186286

select(2) - linux manual pages. (2021). Retrieved 2021-03-10, from https://man7

.org/linux/man-pages/man2/select.2.html

80

https://man7.org/linux/man-pages/man2/poll.2.html
https://man7.org/linux/man-pages/man2/poll.2.html
https://man7.org/linux/man-pages/man2/select.2.html
https://man7.org/linux/man-pages/man2/select.2.html

REFERENCES

Soares, L., & Stumm, M. (2011, June). Exception-less system calls for event-driven

servers. In Proceedings of the 2011 usenix conference on usenix annual technical

conference (p. 10). USA: USENIX Association. Retrieved from https://www.usenix

.org/legacy/events/atc11/tech/final_files/Soares.pdf

Stevens, W. R. (1990). Unix network programming. USA: Prentice-Hall, Inc.

Stevens, W. R. (1997). Unix network programming: Networking apis: Sockets and

xti (2nd ed.). USA: Prentice Hall PTR.

Stevens, W. R., & Rago, S. A. (2013). Advanced programming in the unix environment

(3rd ed.). Addison-Wesley Professional.

Stillwell, M., & Coutinho, J. G. F. (2015). A devops approach to integration of

software components in an eu research project. In Proceedings of the 1st inter-

national workshop on quality-aware devops (p. 1–6). New York, NY, USA: As-

sociation for Computing Machinery. Retrieved from https://doi.org/10.1145/

2804371.2804372 doi: 10.1145/2804371.2804372

Summers, J., Brecht, T., Eager, D., & Wong, B. (2012, June). Methodologies for gen-

erating http streaming video workloads to evaluate web server performance. In Pro-

ceedings of the 5th annual international systems and storage conference. New York,

NY, USA: Association for Computing Machinery. doi: 10.1145/2367589.2367602

taskset(1) - linux manual pages. (2021). Retrieved 2021-04-03, from https://man7

.org/linux/man-pages/man1/taskset.1.html

Touati, S.-A.-A., Worms, J., & Briais, S. (2013). The speedup-test: a statistical

methodology for programme speedup analysis and computation. Concurrency and

Computation: Practice and Experience, 25 (10), 1410-1426. doi: https://doi.org/

10.1002/cpe.2939

truss(1) - freebsd manual pages. (2021). Retrieved 2021-03-17, from https://www

.freebsd.org/cgi/man.cgi?truss

81

https://www.usenix.org/legacy/events/atc11/tech/final_files/Soares.pdf
https://www.usenix.org/legacy/events/atc11/tech/final_files/Soares.pdf
https://doi.org/10.1145/2804371.2804372
https://doi.org/10.1145/2804371.2804372
https://man7.org/linux/man-pages/man1/taskset.1.html
https://man7.org/linux/man-pages/man1/taskset.1.html
https://www.freebsd.org/cgi/man.cgi?truss
https://www.freebsd.org/cgi/man.cgi?truss

REFERENCES

Varghese, B., Subba, L. T., Thai, L., & Barker, A. (2016). Container-based cloud

virtual machine benchmarking. In 2016 ieee international conference on cloud engi-

neering (ic2e) (p. 192-201). doi: 10.1109/IC2E.2016.28

v. Kistowski, J., Arnold, J. A., Huppler, K., Lange, K.-D., Henning, J. L., & Cao,

P. (2015). How to build a benchmark. In Proceedings of the 6th acm/spec inter-

national conference on performance engineering (p. 333–336). New York, NY, USA:

Association for Computing Machinery. doi: 10.1145/2668930.2688819

Wang, H., & Yu, X. (2010). Research and implementation of an intelligent traffic

monitoring system based on iocp mechanism. In 2010 international conference on

computer application and system modeling (iccasm 2010) (Vol. 12, p. V12-656-V12-

659). doi: 10.1109/ICCASM.2010.5622448

Wang, X., Huang, F., & Chen, H. (2019, Jan 14). Dtrace: fine-grained and efficient

data integrity checking with hardware instruction tracing. Cybersecurity , 2 (1), 1–15.

doi: 10.1186/s42400-018-0018-3

Wu, X., Long, X., & Wang, L. (2013, December). Optimizing event polling for

network-intensive applications: A case study on redis. In 2013 international con-

ference on parallel and distributed systems (p. 687-692). doi: 10.1109/ICPADS.2013

.122

Xia, H., Sun, W., Zhou, J., Huang, Y., & Yu, J. (2007). Kseq: A new scalable syn-

chronous i/o multiplexing mechanism for event-driven applications. In I. Stojmenovic,

R. K. Thulasiram, L. T. Yang, W. Jia, M. Guo, & R. F. de Mello (Eds.), Parallel and

distributed processing and applications (pp. 970–981). Berlin, Heidelberg: Springer

Berlin Heidelberg. doi: 10.1007/978-3-540-74742-0_85

Xu, F., Liu, F., Jin, H., & Vasilakos, A. V. (2014). Managing performance overhead of

virtual machines in cloud computing: A survey, state of the art, and future directions.

Proceedings of the IEEE , 102 (1), 11-31. doi: 10.1109/JPROC.2013.2287711

82

REFERENCES

Xu, W., Zhao, H., Song, P., Zhou, X., & Wang, T. (2018). Research on auto-

matic upgrade of tdcs software based on iocp. In 2018 33rd youth academic an-

nual conference of chinese association of automation (yac) (p. 1135-1140). doi:

10.1109/YAC.2018.8406542

Xuan, N. P. N., Lim, S., & Jung, S. (2017). Centralized management solution

for vagrant in development environment. In Proceedings of the 11th international

conference on ubiquitous information management and communication. New York,

NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/

10.1145/3022227.3022263 doi: 10.1145/3022227.3022263

Ye, K., Wu, Z., Zhou, B. B., Jiang, X., Wang, C., & Zomaya, A. Y. (2014). Virt-

b: Towards performance benchmarking of virtual machine systems. IEEE Internet

Computing , 18 (3), 64-72. doi: 10.1109/MIC.2013.104

Zhao, J., & Qin, L. (2014, June). Design and implementation of static server based

on event-driven. In 2014 ieee 5th international conference on software engineering

and service science (p. 679-682). IEEE. doi: 10.1109/ICSESS.2014.6933659

Zhuang, Y., Gessiou, E., Portzer, S., Fund, F., Muhammad, M., Beschastnikh, I.,

& Cappos, J. (2014, April). Netcheck: Network diagnoses from blackbox traces.

In Proceedings of the 11th usenix conference on networked systems design and im-

plementation (p. 115–128). USA: USENIX Association. Retrieved from https://

www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-zhuang.pdf

83

https://doi.org/10.1145/3022227.3022263
https://doi.org/10.1145/3022227.3022263
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-zhuang.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-zhuang.pdf

	Event-driven servers using asynchronous, non-blocking network I/O: Performance evaluation of kqueue and epoll
	Recommended Citation

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Research Project
	Research Objectives
	Research Methodologies
	Scope and Limitations
	Document Outline

	Background research
	System calls, network connections and file descriptors
	The blocking I/O problem
	select and poll
	IOCP
	Kqueue and epoll
	The C10K problem
	Summary

	Literature review
	Event notification mechanisms
	Select and poll
	IOCP
	Epoll and kqueue

	Benchmarking
	Benchmarking server architectures
	Benchmark frameworks, methodologies and tools
	DevOps methodologies and tools
	Virtualisation and benchmarking

	Tracing and system observability
	Statistical methods and experimental evaluation
	Summary

	Experiment design and methodology
	Experimental hypotheses
	Experiment setup considerations
	System variability
	Reproducibility
	Virtual Machine Limitations
	Documentation
	Performance in an asynchronous context

	Experiment Methodology
	Server Design
	Benchmarking layer
	Monitoring layer

	Tracing layer
	FreeBSD
	Linux

	Data collection and extraction
	Configurations and specifications
	DuT configurations
	Machine specifications

	Summary

	Results, evaluation and discussion
	Results
	Throughput
	Tracing

	Evaluation and discussion
	Summary

	Conclusion
	Research Overview
	Experiment Design
	Evaluation of Results
	Contributions and impact
	Future Work
	Recommendations
	Summary

	References

