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Abstract

The year 1943 saw the introduction of the Morgan-Keenan (MK) classification scheme

and this replaced the existing Harvard Classification scheme. Both stellar classifica-

tion scheme are fundamentally grounded in the field of spectroscopy. The Harvard

Classification scheme classified stars based on stellar surface temperature. The MK

Classification scheme introduced the concept of a luminosity class that is intrinsically

linked to the surface gravity of a star. Temperature and luminosity class values are

estimated directly from the stellar spectrum.

Machine learning is a well-established technique in astronomy. Traditionally, a

spectrum is treated as a one-dimensional sequence of data. Techniques such as artificial

neural networks and principal component analysis are commonly used when classifying

spectra. Recent research has seen the application of convolutional neural networks in

this domain.

This research investigates the effectiveness of using convolutional neural networks

with folded spectra. Robust experimental and statistical techniques were used to test

this hypothesis. The result show that folded spectra and 2D convolutional neural

networks obtained a higher average classification accuracy when compared to spectra

processed with a 1D convolutional neural network. A ResNet V2 50 architecture

was also included in this experiment, but the results show that it did not match the

performance of shallower network architecture.

All data used in this research has been archived on github and is available by fol-

lowing this link https://github.com/D18124324/dissertation

Keywords: stellar classification, MK, convolutional neural network, folded spectra
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Chapter 1

Introduction

There are an estimated 200 billion stars in the Milky Way galaxy (Karttunen et al.,

2006, p. 7). Such large numbers of stellar objects mean automated classification is

a necessity for astronomers, machine learning being well established in the field of

astronomy (Fluke & Jacobs, 2020). Given the large distances to stars, the only data

available for study is the stellar spectrum. The MK Classification Scheme was devised

in 1943 and is still in use today (Morgan et al., 1943). This scheme classifies a star

based on a main class, sub-class and a luminosity class. Traditionally, classification is a

manual process of extracting stellar indices from a spectrum, estimating the strength

and width of emission lines, and comparing these to existing known stellar classes

(Karttunen et al., 2006). The amount of data collected by astronomical surveys con-

tinues to grow at a rate that requires automated processing, as the manual process

simply cannot scale to a level required to process all this new data. The application

of machine learning to stellar classification is established and continues to expand,

most recently using convolutional neural networks for stellar classification (Jiang et

al., 2020; Sharma et al., 2019), but other methods like principal component analysis

remain popular (Bazarghan, 2008).
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1.1 Background

The first analysis of the stellar spectrum was by Gustav Kirchhoff in 1860 (Corbally

& Gray, 2018). Since then, astronomers have come a long way and the classifica-

tion scheme in use today is the MK Classification Scheme. Classification of stellar

spectra is fundamentally grounded in the field of spectroscopy. Using a spectrograph,

astronomers can deduce a large amount of information just from starlight. The most

frequent features obtained from stellar spectra are chemical abundances and physi-

cal properties. Important physical properties include surface gravity (log g), surface

temperature (Teff) and metallicity (Fe/H) (Binney & Merrifield, 1998).

In 1918, the Henry Draper Catalogue (HD) was published (Cannon & Pickering,

1918) and this used the Harvard Spectral Classification scheme, the precursor of the

MK Classification Scheme. In this scheme, stars are classified based solely on their

surface temperature (Teff). Teff is derived through analysis of the strengths of spectral

lines. Stars are assigned a main class and a sub-class. The main class is a single

letter, and the sub-class is a number from 0 to 9. The sequence of the main class,

in descending order of temperature, is O, B, A, F, G, K and M, class O represents

the hottest stars and M represents the coolest. The 10 sub-classes indicate decreasing

temperature (Karttunen et al., 2006).

In 1943 the Morgan-Keenan Classification (MK) system was introduced (Morgan

et al., 1943). This extends the existing Harvard Classification scheme, and it includes

surface gravity (log g) to estimate the luminosity class of a star. The scheme retains

the main and sub classes defined by the Harvard Classification scheme and adds the

luminosity class, to represent the intrinsic brightness of a star. The luminosity class

is represented as Roman numerals from I (most luminous super-giants) to VII (white

dwarfs) (Greene & Jones, 2004).

1.2 Research Project/problem

Modern astronomical surveys capture massive amounts of data. For example, the

LAMOST telescope can capture spectra for up to 4000 different objects in a single
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exposure (Wang et al., 2017). It is impossible for the traditional manual approach of

stellar classification to scale to this level. It is also highly undesirable to leave such

massive amounts of data unprocessed, there could be a discovery in the data waiting

to be found.

Modern machine learning techniques have been applied to the domain of stellar

classification, and this is an established field (Fluke & Jacobs, 2020). Popular meth-

ods include artificial neural networks and principal component analysis. More recent

research is applying convolutional neural networks to this domain (Jiang et al., 2020;

Sharma et al., 2019). Typically, stellar spectra is always treated as sequential data.

For example, the first use of convolutional neural networks to this domain use a one-

dimensional kernel to process the input spectrum.

Convolutional neural networks have achieved state-of-the-art classification accu-

racy when processing images (Kelleher, 2019). There are two aims for this research;

one is to show that the advances in convolutional neural networks in the domain of

computer vision can be applied to the domain of automated stellar classification. The

second is to show that stellar spectra can be folded into a two-dimensional represen-

tation and processed by a two-dimensional convolutional neural network.

1.3 Research Objectives

The objectives of this research are:

1. Review the current literature in the domain of automated stellar classification
using the MK Classification scheme.

2. Determine the state-of-the-art classifier.

3. Obtain the data set(s) necessary to reproduce the state-of-the-art classifier and
attempt to reproduce the results in the literature.

4. Determine a suitable modification to the existing state-of-the-art classifier that
can be tested experimentally in a robust manner and present this as the hypoth-
esis.

5. Present the null hypothesis.

6. Design an empirical experiment to test the hypothesis.
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7. Design and train a classification model to classify stellar spectra based on the
MK Classification Scheme.

8. Evaluate the predictions obtained from the classification model and use robust
statistical methods to determine the statistical confidence in the results.

9. Present the results and accept/reject the null hypothesis.

1.4 Research Methodologies

This research is empirical, quantitative, and secondary research with inductive rea-

soning. It involves systematic review, summary, and extension of existing knowledge

in the published literature.

• Four data sets are used in this research, these are existing data sets collected as

part of third-party research, so this is secondary research.

• Quantitative methods are used to evaluate the accuracy of classification models

trained as part of this research.

• This research is Empirical Research as it is using data to answer a specific ques-

tion, it is being tested using a hypothesis with a prediction and is being tested

by experiment.

• Inductive Reasoning is used in this research as it is using neural networks to

construct a model that generalizes the training data (going from the specific to

the general)

1.5 Scope and Limitations

The scope of this research is the use of convolutional neural networks for stellar classifi-

cation using the MK Classification scheme. Four data sets are used in this experiment.

The first data set is the Jacoby-Hunter-Christian Atlas, created in 1984, and it con-

tains 161 spectra. The second data set is the MILES data set, captured between 2000

and 2001, and it contains 985 spectra. The Indo-U.S. Library of Coude Feed Stellar
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Spectra (CFLIB) data set was captured between 1995 and 2003 and it contains 1273

spectra. The ELODIE data set consists of 908 spectra. Issues were encountered ob-

taining the catalogue associated with this data set so a random selection from this

data set is used in this research. Each data set represents spectra for all classes from

O to M in the MK Classification system. Where object classifications are unclear, the

SIMBAD database is used as a source of truth.

This research is limited to MK Classification of stars using normalised spectra based

on the MK main class. The main classes are O, B, A, F, G, K and M. This research

is using two dimensional CNN classifiers and folded spectra. Spectra are normally

presented as a sequence of spectral flux values, whereas folded spectra represents

spectra in a two-dimensional format, allowing them to be processed as if they were

images. The assumption behind this strategy is that CNNs, being state-of-the-art

image classifiers, will also improve the accuracy of stellar classification when spectra

are represented in the folded representation. The spectra are processed using an

existing procedure and it is assumed that it is appropriate for the data used in this

research. The risks associated with this assumption appear low as this research is

using an existing normalisation process with existing data sets. This research also

assumes the published MK classification of objects in data sets is correct.

1.6 Document Outline

The remaining chapters of this research are structured as follows:

Chapter 2 - Review of existing literature

This chapter contains an introduction to the domain of stellar classification and classifi-

cation schemes. It is intended to inform the reader of necessary background knowledge

necessary to evaluate this research. It then presents the existing literature in the do-

main of automated stellar classification using the MK Classification scheme. Finally,

it identifies gaps in the literature and presents the research question.

Chapter 3 - Design and Methodology

This chapter presents the experiment design. It includes the spectral data sets used in
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this research, data cleaning, data normalization and the proposed experiment method-

ology. It concludes with the statistical evaluation methodology used to test the hy-

pothesis.

Chapter 4 - Results, Evaluation and Discussion

This chapter presents the results of the experiment. The result of the proposed solution

is compared to the baseline solution. The strengths and limitations of the proposed

solution are discussed to highlight areas of improvement.

Chapter 5 - Conclusion

In this final chapter, a summary of the research is presented, including key findings,

conclusions, and areas for future research.
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Chapter 2

Review of existing literature

2.1 Introduction

This chapter introduces the research on stellar classification. Stellar classification is

fundamentally grounded in the field of spectroscopy; therefore, this chapter begins with

an introduction of spectroscopy, followed by stellar classification schemes. Additional

background reading material on stars is contained in the Appendix in section A.4. A

literature review of the techniques used for stellar classification is presented, followed

by the gaps identified in the literature. Finally, the research question is presented.

2.2 Spectroscopy

Spectroscopy is the study of spectra. A spectrum is generated from a light source by

passing the emitted electromagnetic radiation through a spectrograph, an instrument

containing a glass prism or diffraction grating. The electromagnetic radiation is broken

into its constituent wavelengths and this is recorded by a photo-sensitive medium,

typically a charged couple device (CCD) in modern observatories, and the result is

called a spectrum. In astronomy, wavelength is typically represented by the symbol λ

and measurements are reported in units of Angstroms, Å, (10-10m) (Greene & Jones,

2004; Ohanian, 1989).

In spectroscopy, electromagnetic radiation is referred to as spectral flux and the
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amount of spectral flux recorded by the CCD is known as spectral flux density. Spectral

flux density is typically measured in units of Watts (1W = 1Js-1), or Ergs (1erg =

1x10-7J), at a specific wavelength over a unit area (1m2). This is typically reported in

units scaled to the wavelength region of interest e.g. Wm-2
μ

-1 for the infrared region

or Wm-2nm-1 for the visible region. Relative spectral flux density is a process to scale

the actual flux density relative to a reference value. This reference value is arbitrary

and is chosen by the astronomer (Karttunen et al., 2006).

2.2.1 Types of Spectra

There are three distinct types of spectra:

1. Emission Spectrum. A sparse spectrum showing distinct emission lines that

are represented as isolated bright lines. These lines characterise the elements

responsible for the emission of the spectral flux. An example of an emission

spectrum is shown at the top of Figure 2.11.

2. Absorption Spectrum. This spectrum shows distinct dark lines, indicating the

presence of elements that have absorbed light. An example of an absorption

spectrum is shown at the bottom of Figure 2.1.

3. Continuous Spectrum. This is a spectrum where spectral flux is emitted over

an unbroken range of wavelengths. Continuous spectra are the spectra that are

associated with starlight.

Emission and absorption spectra are both examples of line spectra as they are

characterised by the presence or absence of lines at specific wavelengths. Figure 2.1

is a traditional representation of a spectrum, where spectral flux is represented in

colours. Modern stellar spectra are plotted as graphs. The presence or absence of

lines at different wavelengths that can be grouped together to identify an element are

known as spectral indices. The most commonly used spectral indices were published

1Original image sourced from
http://khadley.com/Courses/Astronomy/ph205/topics/lightTelescopes/spectroscopy.html

8



CHAPTER 2. REVIEW OF EXISTING LITERATURE

Figure 2.1: Emission and Absorption spectrum of Hydrogen. Image credit:
khadley.com.

by Faber et al. (1985) and they define the indices wavelengths and expected intensity

(Binney & Merrifield, 1998).

Another type of spectrum is the black body spectrum. This is a specific type

of emission spectrum from a thermal source. A thermal source is defined as any

object that emits electromagnetic radiation because of its temperature, the amount

of electromagnetic radiation emitted increasing with temperature (Greene & Jones,

2004). Thermal sources are said to be opaque as the electromagnetic radiation emitted

inside the object is not immediately released. Instead, it is re-absorbed and emitted

many times before it eventually leaves the thermal source. Greene and Jones (2004)

describes this as electromagnetic radiation being trapped within the thermal source.

The effect of the continued emission and absorption effectively hides any spectral

signature in the electromagnetic radiation. When a black body spectrum is plotted as

a graph, it is represented as a perfect continuous curve, showing increasing spectral flux

intensity that reaches a peak at a specific wavelength, before the spectral flux intensity

decreases. Figure 2.22 shows black body spectra for objects of different temperatures.

Black body spectra are very useful in astronomy as stars are very good approximations

of black body objects (Karttunen et al., 2006).

2Original image sourced from https://cnx.org/contents/pZH6GMP0@1.409:OjoA1o37@3/Blackbody-
Radiation
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Figure 2.2: Examples of black body spectra. λ maximum represents the wavelength
associated with the peak radiation intensity. T represents the temperature of the black
body object, measured in Kelvin (K). Image credit: cnx.org.

2.2.2 Stellar Spectra

The last section introduced the different types of spectra and how each spectrum

type can be interpreted e.g. peak temperature, element presence/absence etc. For

stellar spectra, however, things are not so simple. Stars are a good representation

of black body objects, but they do not produce perfect black body spectra. The

atmospheres of stars are less dense than the core, and elements in the atmosphere

generate absorption and emission lines that are visible in the spectrum. As a result,

stellar spectra appear predominantly as black body spectra with distinct emission and

absorption lines (Karttunen et al., 2006). Figure 2.33 is a graphic representing a black

body spectrum showing Hydrogen absorption lines.

Figure 2.4 shows a real spectrum for star HD242908. This shows a black body

curve with distinct absorption lines. In Figure 2.4, the spectral flux is measured in a

unit called FLAM, a popular unit in astronomy defined as ergs per cm2 per second

per Angstrom (ergs/cm2/s/Å) (Binney & Merrifield, 1998).

3Original image sourced from https://www.physicsforums.com/attachments/absorption-
spectrum-of-hydrogen-gas-jpg.231851
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Figure 2.3: Black body spectrum showing Hydrogen absorption lines. Image credit:
physicsforums.com.

Figure 2.4: Spectrum of star HD242908 from the Jacoby-Hunter-Christian Atlas.

2.3 Stellar Classification Schemes

In 1860, Gustav Kirchhoff began interpreting dark lines in spectra generated from

sun light. The spectra were captured by Joseph von Fraunhofer in Munich four years
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earlier. Fraunhofer was the first ever observer of stellar spectra. These first tentative

steps were the beginning of the process of stellar classification (Corbally & Gray, 2018).

Classification of stellar spectra is fundamentally grounded in the field of spec-

troscopy with two very different approaches existing, spectrum analysis and spectral

classification. As the name suggests, spectrum analysis involves complex analysis of

a spectrum whereas spectral classification simply groups together different spectra

based on common morphologies (Binney & Merrifield, 1998). Spectral morphologies

are based on absorption lines that vary in strength, width and position (Gulati et

al., 1994). Grouping spectral morphologies resulted in the establishment of different

classification schemes, like the MK classification scheme that is in use today (Morgan

et al., 1943). The most frequent features obtained from stellar spectra are chemical

abundances, e.g. Magnesium to Iron ratio (Mg/Fe) or Silicon to Iron (Si/Fe) ratio,

and physical properties such a surface gravity (log g), surface temperature (Teff) and

metallicity (Fe/H) (Garcia-Dias et al., 2018).

2.3.1 Harvard Classification Scheme

In 1918, the Henry Draper Catalogue (HD) was published (Cannon & Pickering, 1918).

This catalogue formulated the Harvard Spectral Classification scheme, sometimes also

referred to as the Draper system (Corbally & Gray, 2018), especially in text books

from that time (Fath, 1934; MacPherson, 1926). This scheme was derived mainly

through the work of US astronomer Annie Jump Cannon and it classifies stars based

on surface temperature (Teff). Teff is derived through analysis of the strengths of

spectral lines. Stars are assigned a main class and a sub-class. The main class is a

single letter, and the sub-class is a number from 0 to 9. The sequence of the main class,

in descending order of temperature, is O, B, A, F, G, K and M, class O represents

the hottest stars and M represents the coolest. The 10 sub-classes indicate decreasing

temperature i.e. 0 is hotter than 9. Confusingly, sometimes a decimal value can be

used for the sub-class e.g. 2.5, and O class stars sub-class range only goes from 5 to

9.5. This means that O5 class stars are the hottest stars known to exist based on this

classification technique (Karttunen et al., 2006).
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Figure 2.5: Harvard Classification for star HD249.

Spectral Class Max Teff Spectral Features

O 35,000
Weak Hydrogen lines, Helium II visible,
Ionized elements visible, Carbon III,
Nitrogen III, Oxygen III, Silicon IV

B 15,000
Strong Helium I lines, Helium II lines absent,
Strong Hydrogen lines,
Carbon II, Oxygen II, Silicon III

A 9,000
Strong Hydrogen lines,
Strong Magnesium II,
Silicon II, Weak Calcium II

F 7,000
Weak Hydrogen lines,
Strong Calcium II,
1st ionized state elements

G 5,500
String Calcium II lines,
Hydrogen lines,
Prominent neutral metals

K 4,000
Hydrogen lines,
Neutral metallic lines

M 3,000
Strong Calcium I,
Strong molecular bands

Table 2.1: The Harvard Spectral classification system, main class description overview.

The full classification for star HD249 using the Harvard Classification scheme is

K1, as shown in Figure 2.5.

Table 2.1 provides an overview of the relationship of the main spectral class to

temperature and the prominent spectral features common to that class (Binney &

Merrifield, 1998).
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2.3.2 MK Classification Scheme

In 1943 the Yerkes Spectral Classification system was introduced (Morgan et al., 1943)

(MKK). This is an extension to the Harvard Classification scheme, and it includes the

surface gravity (log g) as well as Teff in the classification. In 1953 the Yerkes Spectral

Classification system was modified and renamed the Morgan-Keenan (MK) system

that is still in use today. The MK Classification is a description of how the spectrum

of a star appears at medium resolution in the blue-green wavelength region of the vis-

ible spectrum (Corbally & Gray, 2018). The scheme retains the main and sub-classes

defined by the Harvard Classification scheme and adds a luminosity class, to repre-

sent the intrinsic brightness of a star. The luminosity class is represented as Roman

numerals from I (most luminous super-giants) to VII (white dwarfs). Table 2.2 gives

more details of the luminosity classes. The MK Classification scheme has introduced

new main classes for specific types of low temperature stars e.g. L, T, C, R and S, but

these are considered sub-types of existing main class stars and represent less that 10%

of known stars (Karttunen et al., 2006, p. 210). The full classification for star HD249

using the MK Classification scheme is K1IV, as shown in Figure 2.6. The relationship

between the luminosity classes and the stellar atmospheric parameters is still an active

area of research, Malkov et al. (2020) recently determined new statistical relations to

estimate the atmospheric parameters (Teff, log g) using the MK classification scheme.

Luminosity Class Description
Ia+ Hyper-giants or extremely luminous super-giants
Ia Luminous super-giants
Iab Luminous super-giants (intermediate)
Ib Less luminous super-giants
II Bright giants
III Normal giants
IV Sub-giants
V Main sequence stars
VI Sub-dwarfs
VII White dwarfs

Table 2.2: The luminosity class introduced in the MK Classification scheme
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Figure 2.6: MK Classification for star HD249.

2.4 Convolutional Neural Networks

This section is intended to give an overview of the advances in convolutional neural

networks as they have become state-of-the-art in the area of computer vision.

2.4.1 2D Convolutional Neural Networks

The year 1989 saw the introduction of what we today would recognise as a convolu-

tional neural network (CNN) (LeCun et al., 1989). The system, known as LeNet-5, was

a fully interconnected CNN architecture with back propagation and was deployed to

automatically detect hand written zip codes on letters processed by the US Post Office

and for identifying hand-written numbers on checks in banks (Aggarwal, 2018). The

network architecture used in LeNet-5 is an example of a supervised learning algorithm.

Machine learning has two types of learning algorithms, supervised and unsupervised

learning. Supervised learning algorithms learn from labelled data and these algorithms

are used for regression and classification tasks. Unsupervised learning algorithms learn

without labelled data and these algorithms are typically used for clustering (Aggarwal,

2018; Kelleher, 2019).

It wasn’t until 2012 that CNNs came to prominence when a system known as

AlexNet dominated the annual ImageNet competition, more formally known as the Im-

ageNet Large Scale Visual Recognition Challenge (ILSVRC). The purpose of ILSVRC

is to evaluate algorithms for computer vision and it has been dominated by CNNs ever

since 2012. AlexNet used the RELU activation function and had a total of eight layers
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Figure 2.7: 2D CNN processing an image.

consisting of convolutional layers, dense layers and max-pooling layers (Krizhevsky

et al., 2017). AlexNet achieved an error rate of 15.4%, 10% less then that achieved

by the runner-up system (Aggarwal, 2018). In 2014 the Inception network from the

GoogLeNet team won the ILSVRC. The Inception network contained 22 convolutional

layers and reduced the ILSVRC error rate to 6.7% (Kiranyaz et al., 2021; Szegedy et

al., 2015). In 2015, Microsoft developed ResNet that beat the benchmark set by the

Inception network by utilising skip connections to allow even deeper learning (He et al.,

2016a; Kelleher, 2019). Resnet reduced the ILSVRC error rate to 3.08% (Aggarwal,

2018). Ever since AlexNet, CNNs have dominated image classification tasks.

LeNet-5, AlexNet and the Inception network are all examples of 2D CNNs. 2D

CNNs represent the input data in a matrix form and a kernel moves across the matrix

in two dimensions, left to right and top to bottom. This is illustrated in Figure 2.7.

As the kernel moves across the image, it is trying to identify spatial features that best

represent the input data. Through the use of supervised learning, the network learns

the kernel functions that best identify the spatial features of the input data that map

to the provided class labels. The size of the kernel determines how many input values

are used in the kernel function, and the depth describes the number of feature maps

that store the spatial features. Other hyper-parameters influence the learning process,

for example, stride determines the amount of overlap the kernel will have when moving

across the input. If stride is set to a value of 1, then the kernel will move across 1

input value at a time. If the stride is less then the kernel size, then overlap will occur

(Aggarwal, 2018).
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Figure 2.8: 1D CNN processing a signal.

2.4.2 1D Convolutional Neural Networks

Signal processing is a set of problems that require detection of features in a one di-

mensional domain e.g. an electrocardiogram (ECG), an ECG being an electrical signal

that varies over time (Kiranyaz et al., 2016). Attempts to use 2D CNNs with ECG

have drawbacks, including computational complexity. For example, attempts to use

2D CNNs for ECG classification requires a primary step to convert the signal into a

log-spectrogram for training and classification (Ruiz et al., 2019). 1D CNNs are net-

works that are designed to process 1D signals. They are more efficient networks when

compared to 2D CNNs because of the reduced complexity of the network. However,

the learning process is the same as that used for 2D CNNs. Here the input is in the

form of a vector and the kernel can only move across the input vector in one direction

(left to right). This is illustrated in Figure 2.8. The size of the kernel represents the

maximum number of input values used in the kernel. The same hyper-parameters, like

stride, also apply to 1D CNNs.

1D deep networks still suffer from the same drawbacks as 2D deep networks, requir-

ing the use of batch normalisation and dropout to overcome these limitations (Zhang

et al., 2018). However, there are distinct advantages to 1D CNNs over 2D, they are

less computationally complex and typically gain good results using shallow networks

(Kiranyaz et al., 2021). In recent years, 1D networks have demonstrated superior
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performance in areas such as early arrhythmia detection in electrocardiogram, fault

detection (Abdeljaber et al., 2019; Kiranyaz et al., 2019) and stellar classification

(Jiang et al., 2020; Sharma et al., 2019). It has also been shown that mixing 1D and

2D CNNs has helped increase efficiency and accuracy when processing hyperspectral

images (Li et al., 2019).

2.5 Machine Learning in Astronomy

Ever since 1610 when Galileo first looked at Jupiter through a telescope and plotted the

movement of the Jovian satellites, astronomers have been collecting data with modern

astronomical surveys collecting terabytes or petabytes of data (Fluke & Jacobs, 2020).

It is simply not possible to process all this data manually and computational processing

is a vital part of astronomy, Data Mining in Astronomy is now established with several

books being published in this area (Ivezić et al., 2020; Way, 2016).

Due to the immense distances involved in astronomical research, the data collected

in astronomical surveys are either photographic images or spectra, with most surveys

being ground based data collection projects e.g. the Sloan Digital Sky Survey (SDSS).

Satellites have been used in recent years to collect data, especially in areas of the

electromagnetic spectrum that are invisible to ground based detectors e.g. the Chandra

X-ray Observatory. At this point in time, the use of machine learning in astronomy is

considered an established field, specifically within the fields of solar astronomy, extra-

solar planet detection, stellar classification, variable star classification, transient object

detection and galaxy classification (Fluke & Jacobs, 2020).

2.5.1 Machine Learning in Stellar Classification

The application of machine learning in spectral classification is an established field and

has evolved as new machine learning techniques are introduced. Gulati et al. (1994)

pioneered an effort to apply the use of artificial neural networks to this domain. They

used 3 different data sets, the Jacoby, Hunter, Christian Atlas (JHC) (Jacoby et al.,

1984), Pickles Spectral Atlas (Pickles, 1985), and Silva & Cornell Atlas (SC) (Silva &

18



CHAPTER 2. REVIEW OF EXISTING LITERATURE

Cornell, 1992) spectral libraries for this purpose and reported an accuracy of 2 spectral

sub-classes.

They also pioneered a method to harmonise spectral data from the 3 different

libraries, a process that requires degrading the resolution of each library to that con-

taining the lowest resolution, then converting the spectra to a higher resolution using

interpolation. This is a process that is reused in more recent research (Sharma et al.,

2019). The stellar classification is based on the MK Classification scheme, the MK

classes being encoded in a novel method also pioneered by Gulati et al. (1994).

Weaver and Torres-Dodgen (1997) also used artificial neural networks to classify

stellar spectra using the MK Classification scheme. The data used in this paper was

captured by the authors using the 91cm MIRA telescope with a resolution of 15Å

across a wavelength range from 5750 to 8950Å and consists of 817 unique spectra.

This network used raw spectra as input. The result of their network shows an average

error of 1.26 sub-classes across all stellar types. As part of the classification, they were

attempting to classify spectral type simultaneously with the luminosity class and they

speculate that this could be contributing towards the poor performance.

At this time, Principal Component Analysis (PCA) became a popular method to

use as a data reduction technique when classifying spectra. Bailer-Jones et al. (1998)

used an artificial neural network to classify stellar spectra using the MK Classification

scheme. They used 5,000 spectra from the Michigan Spectral Survey and used PCA

as the data reduction technique, stating that it compresses the spectra by a factor

of over 30 while retaining 96% of the variance in the data. A total of 25 principal

components are used in this experiment. The resultant classification error rate from

their network was 0.82 sub-classes.

Singh et al. (1998) used an artificial neural network and PCA for stellar classifi-

cation using the MK Classification scheme. They use the JHC data set exclusively

for testing and the SC data set exclusively for training. PCA is used as the data

reduction technique and a total of 20 principal components are used. They tested ten

different ANN architectures containing between 1 and 2 hidden layers, and up to 256

nodes in the hidden layers. They also ran a test to compare the principal components
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inputs against the raw spectral data as inputs. The architecture that provided the

best results consists of 161 inputs, two hidden layers with 64 nodes each, and the

output layer. Note that this architecture is based on the raw spectrum input, not the

principal components. The best network has a correlation co-efficient r=99%.

Bazarghan (2008) developed a system using PCA and a Probabilistic Neural Net-

work (PNN) for stellar classification of the JHC and ELODIE data sets. The best

performance was achieved with only 26 principal components. Stellar class encodings

used are those introduced by Gulati et al. (1994). They report a classification accuracy

of 3.2 sub-classes.

As expert systems became popular, Manteiga et al. (2009) constructed a system

known as STARMIND that used the MK Classification scheme to classify stellar spec-

tra. This expert system evaluates stellar spectra based on spectral line ratios, line

strengths and band fluxes utilising a simple IF-THEN rule structure. The first set of

rules split the classification into two bins, the star is either binned as being class O, B,

A or F, or binned as being class G, K or M. Further rules then refine the classification

of the main class. The CFLIB data set is used to test STARMIND, which are spectra

from the visible wavelength range (3465 to 9469Å). STARMIND achieved an accuracy

of 79.5% when classifying to the sub-classes level, 92% within 1 sub-class and 98%

within 5 sub-classes. They note that most of the errors in their system are what they

describe as border problems, for example a spectrum is classified A0 but is labelled

B9.

Also using the expert system approach is Gray and Corbally (2014), they built a

system called MKCLASS. Data is fed through a series of modules in the inference en-

gine that are designed to classify a specific stellar type based on the MK Classification

scheme. This expert system implementation is similar to that used in Manteiga et al.

(2009) as it uses direct comparison of a sample with MK standard spectra, considering

the morphologies of existing classifications. The system processes spectra within the

visible wavelength range (3800–5600Å). The first step is to identify the main stellar

class by comparing the sample with the standard spectra of each stellar type. The

initial classifications are based on following distinctions O, B, A, F-G, K-M and Non-
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MK objects. Once the main class is identified, the sub-class is classified, resulting in

the complete stellar class for the object. The system was tested using 960 labelled

spectra from the NStars Project (Grey et al., 2003) and 280 published by Grey et al.

(2001). These are manually labelled spectra. For testing purposes, O class stars are

omitted due to the low number of samples available, but the system is designed to

classify them. This system is reported to have a precision of 0.6 sub-classes, no accu-

racy figures are reported so it is difficult to compare the performance of MKCLASS to

modern machine learning methods. The MKCLASS system was used to classify new

spectra (Gray et al., 2015).

Kheirdastan and Bazarghan (2016) wrote a system for bulk spectral classification.

Data from the SDSS catalogue (SEGUE-1 and SEGUE-2 releases, which consists of

400,000 spectra) is used to train and classify spectra, using Probabilistic Neural Net-

work (PNN) (Specht, 1990), k-means and SVM. The training data consists of 100,000

labelled samples. The remaining 300,000 are used as the test data set. The SDSS

release covers a wavelength range from 3850 to 8900Å and PCA is used as the data

reduction technique. They use 280, 400 and 700 principal components to see what

provides the best results. The use of PCA as a data reduction technique was shown to

work very well in previous studies (Bailer-Jones et al., 1998). The study is limited to

just 38 sub-classes of the MK system, rather than the full 70 sub-classes. Best classifi-

cation accuracy was achieved using 700 principal components in all models (k-means,

PNN and SVM), achieving an accuracy of 80%.

Liu et al. (2015) employed a support vector machine (SVM) for the purposes of

MK classification using spectra from the LAMOST data set. They used a feature

extraction process to extract line indices from the spectra. These line indices represent

the prominent spectral features for each stellar class. They train the SVM to classify

six main classes from the MK Classification scheme. In this case, classes O and B

are merged into a single OB class as there are very few O class samples. They select

3,134 spectra and cross reference the objects IDs with the SIMBAD database for the

appropriate MK classification, this is the data set for training and testing their model.

Approximately 1,500 spectra are reserved for testing. They report different levels of
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classification accuracy depending on the stellar class. For instance, classes A and

G had an accuracy rate of over 90% whereas the O and B classes only achieved an

accuracy of 44%. They cross reference their line indices with the same objects in

the MILES data set and find that the indices from one survey are not completely

compatible with another survey.

Wang et al. (2017) built a locally connected deep neural network for stellar clas-

sification and spectra recovery. They used 50,000 randomly selected spectra from the

Large Sky Area Multi-Object Fibre Spectroscopic (LAMOST) telescope, also known

as the Guo Shou Jing telescope, based in Xinglong Station, Hebei Province, China.

The 50,000 spectra are labelled and only comprise of F, G and K class stars. It makes

sense to choose these stellar classes as these are the most abundant stars, but it also

makes it more difficult to compare the results presented in this paper to those existing

in the literature. Wang et al. (2017) perform a data reduction technique by creating

what they describe as synthesized pixels by computing the average every five pixels.

In this way, they reduce the number of inputs to their network from 3601 to 721. They

use the Pseudo-inverse learning (PIL) algorithm, originally proposed by Guo and Lyu

(2004), stating that this is a more efficient learning process than the traditional back

propagation algorithm. The use of the locally connected DNN leads to a significant

decrease in the amount of network parameters to be trained but this is at the ex-

pense of missing connections in the data that are not local. The results reported are

favourable, their network accuracy being better than other traditional methods like

PCA, but they don’t compare their results to existing DNN results in the literature.

Sharma et al. (2019) is heavily influenced by the approach pioneered by Gulati

et al. (1994) but apply a 1D convolutional neural network and Random Forest to the

domain of spectral classification. They use 4 data sets, harmonising these data sets as

defined in (Gulati et al., 1994). The 4 data sets are the JHC, CFLIB, ELODIE and

MILES data sets, the CFLIB data set retained exclusively for testing their trained

classification model, an approach seen previously in Manteiga et al. (2009). Sharma

et al. (2019) pre-process the data sets to harmonise the spectral data. As a result

of this processing, they remove data from the data set. The criterion for removing
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data includes low signal-to-noise ratios, and gaps in spectral coverage. Additional

effort is made to retain data when an object classification is in conflict across the

different data sets. To resolve this, they use the SIMBAD online spectral database

as a source of truth and manage to retain more data in doing so. An auto-encoder

is also used on SDSS data, approximately 60,000 labelled spectra are downloaded for

this purpose. After training the auto-encoder, the trained weights are transferred to

the classifier before training with the already prepared data set. It is notable that the

data processing applied to the other data sets used in this paper are not applied to

the SDSS data set. Also, there are currently 16 different data releases from SDSS, it

is not stated what data release is used, meaning this step is impossible to recreate.

Sharma et al. (2019) create separate classifiers for the stellar temperature class (main

and sub-classes) and the luminosity class. They report a classification accuracy of 89%

for the main spectral class and an error rate of 1.23 sub-classes.

Jiang et al. (2020) use both 1D and 2D CNNs for spectral classification. The use

case is focused on a search for what they term unusual celestial bodies such as cata-

clysmic variables (compact binaries containing a white dwarf extracting atmospheric

material from a companion star, usually a main sequence K or M class star (Gänsicke

et al., 2009)). The use case in this paper is highly domain specific, but it boils down

to classification of M class stars to the sub-class range 0 to 4. They use labelled data

from the SDSS public Data Release 16 for training and testing. A total of 46,180 M

class spectra are selected from the SDSS data set. The classifier is then applied to

1,234,445 spectra from the LAMOST Data Release 7. Data is harmonised across the

two data sets, normalisation and resampling is applied, similar to that performed by

Sharma et al. (2019). The result is normalised raw spectra in vector format covering a

wavelength range of 5000Å. To format the data for the 2D CNN, the spectra is folded

into a matrix of order 50x100. Their system is called multi-scale coded convolutional

neural network (EMCCNN) and it uses an unusual architecture. It consists of two

parallel CNNs to help extract features and reduce noise. The output of the two CNNs

is merged and fed into a dense network for classification. For the 1D CNN architecture,

one CNN uses a kernel of size 3 and is two layers deep, using the RELU activation
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function between convolutional layers. The other CNN has a kernel of size 5 and is

also two layers deep, again using the RELU activation function between convolutional

layers. The 2D CNN architecture is the same as that used for the 1D architecture,

but the kernels are 3x3 and 5x5 respectively. They compare the 1D and 2D EMCCNN

architecture to ResNet and VGG16 architectures, also in 1D and 2D CNN flavours,

using data sets with different SNR ranges. They find that the 2D CNN architectures

outperform the 1D architectures in nearly all cases, the exception being that their 1D

EMCCNN architecture out performs their 2D EMCCNN architecture. The 1D ResNet

architecture outperformed the 2D equivalent when there was a high SNR, suggesting

that it was over fitting the training data. They report that the use of folded spectra

and 2D CNNs can achieve good classification results and are less likely to over-fit the

training data.

Brice and Andonie (2019) developed a system to classify spectra using the MK clas-

sification schema with a single classifier. This approach computes a scaled spectrum

for each object and then uses the k nearest neighbour (KNN) algorithm to classify

objects. A total of 168,982 spectra are available from the SDSS public Data Release

14 and this covers 46 of the 420 possible MK classes. This data set is imbalanced, so to

address this, different models are computed based on under-sampling, over-sampling

and a hybrid approach of under-sampling and over-sampling. They achieve a preci-

sion score of 80% using just K=3 for the KNN model trained using over-sampling.

Selecting a higher valuing of K does not increase the precision score. This is a fast

algorithm that takes only 90 seconds to perform feature selection, 7 seconds to train

and 3 seconds to test for K=3.

Dafonte et al. (2020) use the MK classification scheme and an ANN for the purpose

of stellar classification. The approach taken in this paper is to split the MK classifi-

cation scheme into its sub-components i.e., the main stellar class and the luminosity

class are classified using two separate classifiers, the same approach taken by Sharma

et al. (2019). Dafonte et al. (2020) use the same data sets used in Gulati et al. (1994)

i.e., JHC, Pickles and SC atlases, but they bolster the number of available spectra

by incorporating the 908 spectra from the ELODIE data set. Although data sets are
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reused across these papers, these data sets are not without their deficiencies, for ex-

ample, the same object can be assigned a different class in each atlas. The approach

taken by Dafonte et al. (2020) is to simply remove these spectra from the data set

which results in smaller data sets, For example, of 908 spectra incorporated from the

ELODIE data set, only 500 are selected for use. They also completely disregard all O

class stars in the atlases as they considered the small numbers present in the library

as a reason not to include them in their data set. The maximum number of training

instances for any of the remaining stellar classes is only 25, the minimum being 20,

meaning this experiment is using only limited amounts of data for all stellar classes.

Dafonte et al. (2020) do not use raw spectral data as input to their CNN, instead they

apply a feature extraction process to extract spectral indices. Up to 25 spectral indices

are used as inputs to the network (the actual number could be as low as 16, depending

on the wavelength range coverage in the spectrum). They report an average accuracy

rate of 75%, their best model obtaining an accuracy of 95%.

Sharma et al. (2020) turn their 1D CNN auto-encoder to outlier detection in spec-

tral catalogues. This network is trained to recognise spectral classes O, B, A, F, G, K

and M. The purposes of this system is to learn to reconstruct spectra, and assign an

expected spectral class, thereby detecting mis-labelled data. The system is trained on

53,956 spectra and tested with 6,627 spectra. The accuracy is measured by computing

the mean square error (MSE) and root mean square error (RMSE). They obtain a

mean MSE of 0.0006 and a mean RMSE of 0.0222, indicating that their network is

very capable of reconstructing spectra very accurately. This is a very welcome research

as it can lead to more accurate catalogues and better classifiers that are trained on

this data.

2.6 Summary

This section provides an overview of the literature review and presents the gaps iden-

tified in the literature.
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2.6.1 Overview

Stellar classification was formalised in 1918 with the creation of the Harvard Clas-

sification Scheme, sometimes referred to as the Draper Classification scheme. The

Harvard Classification Scheme divided stars into different classes based on surface

temperature. These classes consist of a main class and a sub-class. In 1943, the MK

Classification Scheme was created, it being an extension to the Harvard Classification

Scheme to include a luminosity class alongside the existing main and sub-classes. Tra-

ditionally, stars are classified using the MK Classification Scheme manually through

visual inspection of stellar spectra, a system ripe for automation.

The first application of neural networks to stellar classification was in 1994 (Gu-

lati et al., 1994). Since then, stellar classification is now considered an established

application of machine learning within astronomy (Fluke & Jacobs, 2020). Artificial

neural networks, principal component analysis and expert system technologies have

been used in this domain. There are two distinct approaches in the literature; one is

to automate the estimation of stellar atmospheric parameters (Teff, log g and Fe/H)

which are then used in the MK classification process. The second approach, which

was the focus of this chapter, is to automate the stellar classification directly. The

advantage of the first approach (estimation of stellar atmospheric parameters) is that

it allows the creation of catalogues of stellar parameters, which have further use out-

side of this domain, but the classification process is incomplete. The advantage of the

second is that the stellar classification is estimated directly. This is really important

given the vast amounts of spectral data generated by modern astronomical surveys.

For example, the LAMOST telescope can capture up to 4000 spectra in a single expo-

sure (Wang et al., 2017). CNNs are now being used in this domain. Most applications

of CNNs in this domain concentrate on 1D CNNs, spectral data is always treated as a

sequence of data. However, recent research has shown that a spectrum can be folded

into a two dimensional representation and used to train 2D CNN classification models

(Jiang et al., 2020).
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2.6.2 Gaps in the literature

Recurrent Neural Networks (RNNs) are specific neural networks that have been shown

to work with sequential and time series data. In astronomy, RNNs have been applied

to the domain of variable star classification (Becker et al., 2020; Mackenzie et al.,

2016; Naul et al., 2018). Traditionally in the domain of stellar classification, spectra

are processed as sequential data. RNN architectures like Long Short Term Memory

(LSTM) and Gated Recurrent Units (GRU) have the capacity to learn long-term

dependencies, which exist in stellar spectra. A gap exists to use a RNN for stellar

classification as the ability to learn long-term dependencies can help learning in a

context where features are not local.

Hidden Markov models (HMM) is an algorithm that is also good for classification

of sequential data. HMM have a proven track record in speech recognition and they

could be applied to the domain of stellar classification (Bishop, 2006).

Sharma et al. (2019) construct a 1D CNN for the purposes of stellar classification.

Their network architecture doesn’t follow the heuristic of increasing the number of

feature maps in deeper convolution layers. Scope exists here to address this concern

and test their network architecture that better follows the CNN architectural best

practices (Aggarwal, 2018).

2D CNNs have achieved state of the art results in image classification (Szegedy et

al., 2015). 2D CNNs have been applied in other fields of astronomy, such as variable

star classification (Mahabal et al., 2017). Jiang et al. (2020) applied 2D CNNs to

a stellar classification task, but this was not the complete MK Classification scheme.

They state that 2D CNNs show that they are a viable network for stellar classification.

Therefore, a gap exists to use 2D CNNs with folded spectra (from 1D sequence into

matrix format) for the purposes of stellar classification using the MK Classification

Scheme.

Reinforcement learning is a different learning algorithm that could be used for stel-

lar classification. While supervised learning uses examples of the target representation

in order to learn, reinforcement learning takes the approach of attempting to learn the

problem to be solved (Sutton & Barto, 1998). Prior to automated classification tech-
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niques, stellar classification was a manual task based on identifying spectral indices.

This problem seems highly appropriate for a solution based on reinforcement learning.

Optimization algorithms used in the papers presented in the previous section are

used with their default settings. Recent research suggests that the default values for

most optimizers do not produce the best results (Schmidt et al., 2020). Scope exists

to refine the use of optimization algorithm through fine tuning of their parameters.

None of the reviewed papers have tried using semi-supervised learning techniques,

a form of unsupervised learning that has achieved impressive performance learning

image representations (He et al., 2020). He et al. (2020) have shown impressive use of

Contrastive Self-Supervised Learning for unsupervised visual representation learning.

This is a technique that could be applied to the domain of stellar classification through

using folded spectra.

2.6.3 Research Question

The literature review and gap analysis resulted in the following research question:

To what extent can the accuracy of stellar classification using the MK Classification

Scheme be improved by using 2D CNNs with folded spectra?
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Experiment design and

methodology

This chapter introduces the research methodology of this research, a quantitative

empirical study into the use of convolutional neural networks in the domain of stellar

classification. This chapter states the null and alternative hypothesis, data preparation

methods and the experiment design used to test the hypothesis.

3.1 Hypothesis

H1: If a convolutional neural network with two-dimensional kernel is trained with

folded stellar spectra, the stellar classification performance will result in an average

accuracy score greater than 89% based on the main stellar class from the MK Clas-

sification scheme and this increased performance will be statistically significant at a

95% confidence level.

H0: A convolutional neural network with one-dimensional kernel, trained with stellar

spectra data for the task of stellar classification, provides the best possible average

accuracy score of 89% based on the main class of the MK classification scheme.
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3.2 Data Preparation

This section details the data sets and what data cleaning was performed on the dif-

ferent data sets. The term data set is used here to describe spectral data and the

corresponding catalogue containing meta-data associated with each spectra. Spectral

data is provided in the Flexible Image Transport System (FITS) file format.

3.2.1 Flexible Image Transport System

Spectra are supplied in a file format using the Flexible Image Transport System stan-

dard 1. This file format is endorsed by the International Astronomical Union (IAU)

for the interchange of astronomical data and defines a binary encoding for spectral

and image data. All the data sources used in this research project supply data in this

format. The Python library astropy.io2 is used in this research to process FITS files.

3.2.2 Data Sets Overview

Four different data sets are used in this research. Each data set consists of stellar

spectra in the FITS file format, and a catalogue that contains meta-data of each star,

such as the spectral type. These data sets are:

1. The Indo-U.S. Library of Coudé Feed Stellar Spectra (CFLIB) (Valdes et al.,
2004) 3.

2. MILES Spectral Library (Sanchez-Blazquez et al., 2006) 4.

3. ELODIE 3.1 Spectral Library (Prugniel et al., 2007) 5.

4. Jacoby-Hunter-Christian Atlas (JHC) (Jacoby et al., 1984) 6.

1https://fits.gsfc.nasa.gov/fitsdocumentation.html
2https://www.astropy.org
3https://www.noao.edu/cflib/
4http://miles.iac.es
5http://www.obs-hp.fr/www/guide/elodie/elodie-eng.html
6https://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-

tools/astronomical-catalogs/jacoby-hunter-christian-atlas.html
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Jacoby-Hunter-Christian Atlas (JHC)

The Jacoby-Hunter-Christian Atlas is the oldest data set used in this research. The

spectra was captured in December 1980 over 26 nights from the No.1 90cm telescope

at the Kitt Peak Observatory in Arizona, USA. Kitt Peak Observatory is in operation

since 1958 and is located at an altitude of 2096 m, coordinates 31°5730N 111°3548W.

The atlas was introduced in paper Jacoby et al. (1984) that describes a total of 161

spectra for spectral classes O-M. The spectra cover a wavelength range from 3510Å to

7427Å and was captured at a resolution of 4.5Å.

MILES Spectral Library

The MILES data set was captured in between 2000 and 2001 over a total of 25 nights

from the 2.5 m Isaac Newton Telescope (INT) at the Roque de los Muchachos Ob-

servatory, La Palma, Spain. Roque de los Muchachos observatory is in operation

since 1985 and is located at an altitude of 2396 m, coordinates 28°4549N 17°5341W.

Sanchez-Blazquez et al. (2006) describe a total of 985 spectra for spectral classes O to

M. The spectra cover wavelength range from 3525Å to 7500Å at a resolution of 2.3Å.

ELODIE Spectral Library

The ELODIE spectra are based on observations made on the 193cm telescope at the

Haute-Provence Observatory, France. The Haute-Provence Observatory was estab-

lished in 1958 and is located at an altitude of 650m, coordinates 43°5551N 5°4248E.

The original ELODIE catalogue consists of 908 spectra corresponding to 709 different

stars but no time frame is provided for their capture (Prugniel & Soubiran, 2001). An

updated version of this catalogue was released in 2007 (Prugniel et al., 2007), called

the ELODIE 3.1 release and is used in the research of Sharma et al. (2019). This new

catalogue contained 1962 labelled spectra of 1388 objects.

The ELODIE 3.1 data set is not publicly available. The catalogue is cited in a

paper that was never officially published, the paper only exists on the pre-print servers
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7 and the catalogue is not archived. This proved to be a major issue as this data set

contains the majority of the data used in the training phase of Sharma et al. (2019).

Requests to obtain the ELODIE 3.1 catalogue was issued to the lead authors of both

relevant papers, to no avail.

Even though the ELODIE 3.1 catalogue is not publicly available, all data from

the ELODIE survey is available for download from its website 8. This spectra spans

a wavelength range of 4000Å-6800Å which differs slightly to that reported in Sharma

et al. (2019), 3900Å-6800Å. In order to proceed, a data set was constructed from the

available ELODIE data, however, differences may exist between this data set and data

used in Sharma et al. (2019). Section 3.2.4 explores this constructed data set in more

detail and attempts to cross reference attributes of this data set against information

published in Sharma et al. (2019).

The Indo-U.S. Library of Coudé Feed Stellar Spectra

The Indo-U.S. Library of Coudé Feed Stellar Spectra (CFLIB) spectra are based on

observations made using the 0.9m Coudé Feed Telescope at Kitt Peak National Ob-

servatory, Arizona, U.S.A. This is the second catalogue that was created using in-

strumentation provided by the Kitt Peak National Observatory. The CFLIB provides

spectra for 1273 stars captured between 1995 and 2003 at a resolution of 1Å.

3.2.3 Data Cleaning

This section outlines what cleaning was applied to the catalogues. Cleaning specifi-

cally applies to catalogues containing spectra that are not classified using the main

class from the MK Classification scheme. The approach is to attempt to classify all

objects, thus maximising the amount of data available. Objects that have no official

classification are removed.

7http://arxiv.org/abs/astro-ph/0703658
8http://www.obs-hp.fr/www/guide/elodie/elodie-eng.html
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Jacoby-Hunter-Christian Atlas (JHC)

All objects in the JHC data set have assigned stellar classes 9 so no cleaning is neces-

sary. The distribution of the main spectral class within the JHC data set is shown in

Figure 3.1.

Figure 3.1: Main class distribution of the Jacoby-Hunter-Christian data set.

MILES

The stellar classification of the MILES catalogue is incomplete, as can be seen in

Figure 3.2. There are 76 entries with no stellar class, 7 entries that are classified as S,

which is a sub-type of M. R class stars are a subclass of K class stars. Entries of class

I is not a valid main class, and may indicate a labelling error.

9https://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-
tools/astronomical-catalogs/jacoby-hunter-christian-atlas.html
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Figure 3.2: Main class distribution in the MILES data set.

SIMBAD 10 is an online spectral database maintained by the Centre de Données

Astronomiques de Strasbourg (CDS). This database contains information on approx-

imately 5.5 million stars, including the stellar class where available. The SIMBAD

database is queried using simple HTTP requests to retrieve data. For the purposes of

this research, the SIMBAD classification is given higher priority to that assigned in

the MILES catalogue. The methodology to assign classifications is as follows:

1. Query the SIMBAD database based on the object name in the MILES catalogue.

2. If MILES and SIMBAD classifications are the same, there is high degree of

confidence in the MILES classification and it is retained.

3. If no classification exists in MILES and SIMBAD, remove spectra from the cat-

alogue.

4. If MILES and SIMBAD classifications both exists but are different, the SIMBAD

classification is preferred over the MILES classification.

10http://simbad.u-strasbg.fr/simbad/
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5. If no SIMBAD classification exists but the object is classified in the MILES

catalogue, the MILES classification is retained.

The results of this processing is that:

1. 75 objects are not classified in MILES and SIMBAD, these are removed.

2. 737 object classifications are the same in MILES and SIMBAD.

3. 94 SIMBAD classifications are preferred over the MILES classification.

4. 77 object have no SIMBAD classification, therefore the MILES classification is
retained.

What remains are 908 classified objects that are used in this research. The new

main class distribution is shown in Figure 3.3.

Figure 3.3: Main class distribution in the MILES data set after cleaning.

CFLIB

There are nine objects in the CFLIB catalogue that are not assigned a stellar class.

These objects do not exist in the JHC or MILES catalogues. Cross referencing the

object names with the SIMBAD database shows that three of these stars are of class
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S and six are of class C, both of these classes are subclass of the M class, therefore the

classification assigned to these objects is M.

Further filtering is applied to the data set for spectra with the following issues

1. The wavelength coverage does not include the full range from 4000Å to 6800Å.

2. Spectra containing gaps greater than 50Å.

A total of 110 spectra meet this criteria and are removed, resulting in a catalogue

containing 1160 objects. The impact of this step is much smaller than that reported

in Sharma et al. (2019), this is addressed in Section 3.2.4. The resulting distribution

is shown in Figure 3.4.

Figure 3.4: Main class distribution in the CFLIB data set after cleaning.

ELODIE

No cleaning is necessary for the ELODIE data set as only labelled spectra are included

in the data set. The distribution of the main class is shown in Figure 3.5.
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Figure 3.5: ELODIE main class distribution.

A Note on Class Imbalance

The cleaning process above will have highlighted the fact that each data set is im-

balanced i.e. equal representation for each class does not exist. A summary of the

class distributions across the data sets is presented in Table 3.1. These distributions

are not the result of poor or biased surveys, but represent the relative abundances

of different stellar classes in the Milky Way i.e. there are less super-massive O class

stars than main sequence G class stars (Karttunen et al., 2006). Over-sampling is

a potential technique that would be useful in this situation (Kelleher et al., 2015).

However, Sharma et al. (2019), like other papers reviewed in Chapter 2, did not try

to balance the number of stars in each class. As a result, this research will use the

classes are they are in order to best follow the experimental procedure as outlined by

Sharma et al. (2019).
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Main Class JHC MILES ELODIE CFLIB
O 19 3 7 11
B 33 52 82 131
A 23 91 316 107
F 31 217 626 201
G 29 249 526 313
K 14 238 369 330
M 12 58 36 42

Table 3.1: The main class distribution across the data sets

3.2.4 Data Consistency

Signal To Noise Ratio Comparison

As stated previously, the ELODIE data set used in this research differs from that

used in Sharma et al. (2019). To try and gain insight into the difference between the

data sets, the signal-to-noise ratio (SNR) distribution of the ELODIE data used in

this research is compared to Sharma et al. (2019). This is not an exact comparison,

for reasons that will be outlined below, but it is a useful guide. The differences are

reported in Table 3.2 and it shows that 90% of the the data used by Sharma et al.

(2019) and 91% of the data used in this research are within the same SNR region (SNR

>15 and SNR <200). Sharma et al. (2019) makes no reference to the distribution of

the SNR values in the remaining data whereas the remaining 9% of data used in this

research has SNR <15.

SNR Range Sharma et al. (2019) This Research
<15 Not reported 9%
15-100 70% 67%
100-200 20% 24%

Table 3.2: SNR comparison of the ELODIE data used in this research and that used
in Sharma et al. (2019).

Reasons why the SNR values cannot be considered an exact comparison include:

1. Due to the unavailability of the ELODIE 3.1 catalogue, this comparison can

never be exact.
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2. In Sharma et al. (2019), data is removed due to missing classifications, resulting

in a smaller data set that could skew the results.

3. The percentages quoted in Sharma et al. (2019) are for the entire training data

set (ELODIE, MILES JHC). However, there are no published SNR values for

data sets other than ELODIE, so it is unclear how these figures were obtained.

4. Sharma et al. (2019) makes claims about the SNR distribution of the CFLIB

data set. This data set is generated by merging captures across different gratings

before normalising. In this context, it doesn’t make any sense to discuss SNR, for

instance, what capture does it refer too? Unless they reconstructed the CFLIB

data set from the original captures, measuring the SNR values for this data set

is not actually possible. This claim needs to be treated with caution.

It is encouraging that the data used in this research is similar to that reported in

Sharma et al. (2019) based on the SNR distribution, but this should be treated with

caution as it isn’t entirely clear what the figures reported by Sharma et al. (2019)

actually mean or how they were obtained.

CFLIB Data Set Comparison

As stated in Section 3.2.3, 110 spectra are removed from the CFLIB data set, compared

to 423 by Sharma et al. (2019). This is not a trivial difference, and, in fact, is critical

as this impacts directly on how the metrics are generated in this research (classification

accuracy). It is unclear why an additional 313 spectra are removed from the CFLIB

data set in Sharma et al. (2019) as no justification can be found to do so and this will

have a direct effect on the classification accuracy measurements. The difference in the

resulting distributions of the main classes is shown in Table 3.3.
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Main Class Sharma et al. (2019) This research
A 90 107
B 98 131
F 155 201
G 251 313
K 221 330
M 28 42
O 7 11
Total 850 1135

Table 3.3: Shows the difference in the main class distribution between the CFLIB data
set reported in Sharma et al (2019) and that used in this research.

3.2.5 Data Processing

Each spectra is processed according to the process as outlined in Sharma et al. (2019)

and this is based on an existing approach in the literature (Gulati et al., 1994). The

steps applied are:

1. Degrade all the spectra in the ELODIE, MILES and CFLIB data sets to the

same resolution as JHC by convolving with a Gaussian kernel.

2. Normalize flux values in all spectra to unity at 5550Å.

3. Use a cubic spline to interpolate available flux values over a wavelength range

from 4000Å to 6800Å at a resolution of 1Å.

4. Wavelength information is discarded and the data is saved as a vector of order

1x2800.

The Gaussian kernel above is computed based on the resolution of the individual

data set. The Full Width Half Maximum value (FWHM) value is computed based on

the Formula 3.1, where R is the native resolution of the data set.

FWHM =
√

4.52 −R2 (3.1)

The interpolated spectrum is saved to file to be used in the training and testing

phases.
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3.3 Neural Network Architecture

This section outlines the neural network architectures used in this research. These

architectures are trained to produce classification models. An overview of the hyper-

parameters that are configurable in a convolutional neural network architecture are

shown in Table 3.4. More details on the description of each layer is available on the

Keras API documentation website 11, the list in Table 3.4 is only the subset relevant

to this research.

Layer Name Description

Convolution

Activation function
Filters
Kernel
Padding
Strides

The activation function
The dimensionality of the output space
The dimensionality of the kernel
The padding to use
The length of the stride

Dense
Activation function
Units

The activation function
Dimensionality of the output space

Max Pooling
Pool size
Padding

Size of the pooling window
The padding to use

Dropout Rate Fraction of the input units to drop

Table 3.4: Available hyper-parameters in each layer in a CNN.

3.3.1 Baseline Network

The baseline network architecture is shown as Part A in Figure 3.6. While this research

attempts to reproduce this as accurately as possible, a design choice is required at this

point, specifically, the number of classes the model will predict. The reason this choice

is required is because Sharma et al. (2019) only report results (classification accuracy,

precision etc) for the main class (7 classes) but they train their network based on the

sub-class level (70 different classes). The design choice for this research is to classify

based on the main class only (7 classes) to best compare results with those presented

in Sharma et al. (2019).

This network architecture consists of a 1 dimensional kernel of width 4, this kernel

width is constant across all CNN layers. There are four convolutional layers that

11https://keras.io/api/layers/
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are interleaved with pooling layers. The output of the convolutional layers are fed

into a flattening layer before being passed into a two layer dense network. The first

dense layer has 64 nodes, the second has 32 nodes. The output of the dense layers is

the output layer that uses the softmax activation function to determine the predicted

main class based on the MK Classification scheme. The loss function is the mean

squared logarithmic loss. The optimizer is Adam, this being a stochastic gradient

descent method that is based on adaptive estimation (Aggarwal, 2018). Adam is a

popular optimizer but some have expressed concern that models created using Adam

generalise worse than regular stochastic gradient descent (Kingma & Ba, 2015; Wilson

et al., 2017). Adam is used with default configuration, as shown in Table 3.5.

Parameter Value
Learning Rate 0.001
beta 1 0.9
beta 2 0.999
epsilon 1 e-7

Table 3.5: Adam optimisation configuration parameters and default values.

All parameters in the baseline network are fixed as per the specification in Sharma

et al. (2019). All hyper-parameters are documented in Table A.5. Activation function

RELU is shorthand for the Rectified Linear Unit activation function.

3.3.2 Proposed Network

The network architecture proposed in this research is shown as part B in Figure 3.6.

This architecture is closely related to that in Sharma et al. (2019) but differs in some

significant ways:

1. A two dimensional convolutional kernel is used instead of a one dimensional

kernel. Different kernel sizes will be used during the hyper-parameter tuning

stage.

2. The number of convolutional and max pooling layers is reduced. This is necessary

as the dimensions of the input data to the proposed network architecture are not
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large enough to undergo four max pooling layers. To apply four such layers would

reduce the input shape to 1x1 before input data reached the dense layer. The

design decision is to only use half of the input layers of the baseline network

architecture in the proposed architecture.

3. Batch normalisation layers are included between convolutional layers. These are

absent in the baseline architecture.

4. Dropout layers are included between dense layers. These are absent in the base-

line architecture.

Batch Normalisation is a technique that prevents vanishing and exploding gradients

while Dropout is a technique that randomly drops connections in a dense network (Ag-

garwal, 2018). There is discussion about whether Batch Normalisation and Dropout

layers actually work together constructively when applied to image recognition (He et

al., 2016a; Ioffe & Szegedy, 2015). As the premise of this research is that a CNN will

perform better if the spectra is treated like an image compared to a one-dimensional

vector, this is something that will be evaluated when fine tuning the hyper-parameters

of this network. Hyper-parameters of the network will be tuned as part of the training

process, see Section 3.4.4 for more details.
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Figure 3.6: CNN architectures used in this research. ‘A’ represents the baseline archi-
tecture defined in Sharma et al. (2019) and ‘B’ represents the architecture proposed
by this research.

3.3.3 ResNet

The ResNet architecture was developed by Microsoft and it won the ILSVRC in 2015

(Aggarwal, 2018; He et al., 2016a). The insight provided by He et al. (2016a) was that

deep networks were hard to train as the optimisation process becomes too difficult.

To address this, they introduced the concepts of residual units and skip connections

(Géron, 2017). A residual unit is a self-contained unit of two convolutional layers
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and the RELU activation function. The skip connection allows the input data from

a residual unit to be merged with the output of the residual unit, thus ensuring the

residual units only needs to learn small changes to the input. By chaining together

these residual units, they were able to build very deep network architectures that were

also extremely efficient in terms of computational complexity. The original ResNet

architecture contained 34 layers. A ResNet 50 architecture was defined, also by He

et al. (2016a), using blocks that contain three convolutional layers.

As part of this research, a ResNet50 model will be trained and compared to the

proposed model. A ResNet50 V2 model is trained using the input shape that shows the

best accuracy performance. ResNet V2 was introduced in 2016 and includes changes

to reduce the complexity of training and improve generalisation (He et al., 2016b).

The ResNet V2 50 implementation is provided by the Keras.io framework12. Due to

the depth of the ResNet architecture, the time to train it is much higher than the

baseline or proposed network architectures. As a result, ResNet classification models

will be trained for 200 epochs rather than 1000.

3.4 Experimental Procedure

This section outlines the procedure used to build and evaluate the models.

3.4.1 Data Sampling

A mixture of hold-out sampling and K-fold cross validation is required to build and test

the classification models, and the data sets are setup accordingly. Hold-out sampling,

as shown in Figure 3.7, is a process to separate the test data set from all other data

used in the training process. This process ensures the test data is not available to

the modeller, resulting in a test process that provides an honest evaluation of the

model performance (Kelleher et al., 2015; Schorfheide & Wolpin, 2012). K-fold Cross

Validation is a process where the training and validation data sets are merged and

segregated into folds, that are used iteratively to build multiple models where each

12https://keras.io/api/applications/resnet/resnet50-function
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Figure 3.7: Hold-out Sampling.

model uses a different fold as the validation data set. All remaining folds make up the

training data set. Figure 3.8 shows how each successive fold is used as the validation

data set for different classification models.

3.4.2 Data Setup

The CFLIB data set is retained exclusively for experimenting on the trained classifi-

cation models while JHC, MILES and ELODIE data sets are used exclusively in the

training phase. For the purposes of hyper-parameter tuning, 15% of training data is

used as the validation data set. During the training phase, when K-Fold Cross Vali-

dation is used, ten folds are used (K=10), this being the best practice (Kelleher et al.,

2015).

A custom implementation of the Keras Dataset Preprocessing class13 is used to

access the data sets. Keras provides out of the box implementations for image, text

and time-series data sets, none of which can be used directly on the data sets used

in this research. This custom implementation is responsible for loading and reshaping

the data sets and it can randomly split data into training and validation data sets, the

random controller being seeded, meaning the random selection is repeatable as long

as the same seed is used. The seeding ability means this preprocessing class is used to

generate repeatable data sets for experimentation.

To use this custom implementation, spectra for different classes are arranged in a

directory structure, one directory per stellar class e.g. all A class spectra are added

into the A directory, etc. The custom dataset preprocessing class automatically loads

and labels data based on their folder name. The training data sets of JHC, MILES

13https://keras.io/api/preprocessing/
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Figure 3.8: K-Fold cross validation.

and ELODIE are merged into this directory structure and CFLIB is copied into a

separate, but identical, directory structure.

3.4.3 Spectra Input Dimensionality

Different input dimensions are used in this research. Figure 3.9 shows how the spectra

for K class star HD38 is represented using the different dimensions proposed by this

research.

1. Vector of order 1x2800. This is the shape of the data used by Sharma et al.

(2019).

2. Matrix of order 50x56. This is a two dimensional representation of 2800.

3. Matrix of order 40x70. This is also a two dimensional representation of 2800.

In order to test the effects of the chosen input dimensions on the accuracy of the

classification models, models with the opposite dimensions are also trained and tested.
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Figure 3.9: Different representations of the spectrum of star HD 38. A is a 50x56
matrix, B is 56x50, C is 40x70 and D is 70x40.

1. Matrix of order 56x50.

2. Matrix of order 70x40.

3.4.4 Hyper-parameter Tuning

The proposed CNN architecture is defined in Section 3.3.2. This network has several

hyper-parameters in the Dense and CNN layers that require tuning, as previously

described in Table 3.4. In the Dense layer, the dropout frequency value is configurable

while in the convolutional layer, filter size and kernel size are tuned. The activation

function used is RELU for all layers except for the output layer, where softmax is

used. The padding used is same. The specific hyper-parameters that will be tuned as

part of this research are shown in Table 3.6.

Layer Hyper-parameter

Convolution layer 1
kernel size
filter size
stride

Max Pooling layer 1 pool size

Convolution layer 2
kernel size
filter size
stride

Max Pooling layer 2 pool size
Dropout layer 1 frequency
Dropout layer 2 frequency

Table 3.6: Proposed model hyper-parameters tuned as part of this research.
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In total, 10 hyper-parameters are tuned as part of this research. The hyper-

parameters that provide the best training and validation accuracy are incorporated

into the architecture specification and used to training the classification models.

3.4.5 Training Classification Models

All classification models are trained using Python 3.8, Keras 2.4.3 with Tensorflow

2.3.0 backend and the Nvidia CUDA Deep Neural Learning library. The Scikit Learn

KFold 14 module is used when KFold Cross Validation is used. A DELL XPS 9500

with Nvidia GeForce GTX 1650 Ti GPU that has 4GB dedicated RAM and 16GB of

shared RAM is used to train the classification models.

The loss function is an important part of the learning configuration, the mean

squared logarithmic loss function is used in this research alongside the Adaptive Mo-

mentum (Adam) optimiser. Adam is used with its default configuration settings as

shown in Table A.5. Batch size is 256 and the number of epochs is 1000. Early stop-

ping is not used as this was not used in Sharma et al. (2019). The following Keras

callbacks are used when training the classification models:

1. ModelCheckPoint. Only models with a better validation accuracy are saved.

This is important to ensure the best models are retained, there is no guarantee

that the final model after 1000 epochs will be the best model.

2. Tensor Board Callback to store Tensor Board logs.

K-fold cross validation is used in the training phase. Cross validation is used to

produce 10 classification models (K=10) based on different selections of data within

the training data set. The ten best performing classification models (highest training

and validation accuracy) are used in the evaluation phase.

3.4.6 Evaluating Models

The input to the evaluation stage are the ten classification models produced by the

K-Fold Cross Validation process. Each of these classification models are tested using

14https://scikit-learn.org/stable/modules/generated/sklearn.modelselection.KFold.html
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the same data sets. The average classification accuracy of each model is then used to

determine the best performing model and input shape.

It is important that the data sets used for testing are consistent to ensure the

classification accuracy results are comparable regardless of the fold or input dimension

used. To achieve this, 100 random seeds are generated using the Python random

library. These seeds are stored in a file and used to control the preprocessing class

described in Section 3.4.2. This preprocessing class uses the supplied seed to select

data consistently, resulting in 100 experimental data sets, each data set contain 8%

of the spectra in the CFLIB data set. Classification accuracy is a measure of how

good a model is at correctly classifying input, and is calculated based on Equation

3.2 (Kelleher et al., 2015) where TP is the number of True Positive classifications,

FP is the number of False Positive classifications, TN is the number of True Negative

classifications and FN is the number of False Negative classifications.

ClassificationAccuracy =
(TP + TN)

(TP + TN + FP + FN)
(3.2)

The Scikit Learn 15 function accuracy score is used to automatically compute the

classification accuracy for each experiment. The classification accuracy is stored to file

for statistical evaluation. Other metrics reported for each architecture are Precision,

F1 Score and Recall.

Precision is a measure of how often a positive classification is correct compared

to the total number of positive classifications. It is the ratio of true positive classi-

fications to the total number of true positive (correctly classified) and false positive

(incorrectly classified as positive) classifications for a target class, as shown in Equa-

tion 3.3 (Kelleher et al., 2015). A high precision reflects a models ability to make

correct predictions.

Precision =
TP

(TP + FP )
(3.3)

Recall is a measure of the rate at which the model correctly classifies a target

15https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracyscore.html
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class. It is the ratio of true positive classifications to the total number of true positive

(correctly classified) and false negative (incorrectly classified as a different class) clas-

sifications for a target class, as shown in Equation 3.4 (Kelleher et al., 2015). A high

recall reflects a models ability to distinguish between different classes.

Recall =
TP

(TP + FN)
(3.4)

F1 Score is a performance metric that combines precision and recall, as shown in

Equation 3.5 (Kelleher et al., 2015). It is also referred to as the harmonic mean and

is less sensitive to large outliers. Higher F1 Score values indicate better classification

performance.

F 1Score = 2 ∗ (precision ∗ recall)
(precision+ recall)

(3.5)

3.4.7 Statistical Evaluation

An α value of 0.05 is defined for the significance test. It is assumed that the classifica-

tion scores generated follow a normal distribution as this is required to use parametric

methods. It is necessary to verify this assumption of normality using the appropriate

statistical methods such as checking the skew and kurtosis of the distribution and

performing Levene’s test for homogeneity of variance. Assuming the classification

accuracy scores are normally distributed, a independent T-test will compare the clas-

sification accuracy ranges from the baseline model and proposed models to compute

the t-statistic with sample size N=91, degrees of freedom=90. The t-statistic has an

associated p-value which is compared to the pre-defined α value for statistical signif-

icance. The zeta squared value is used as the size effect that will ultimately accept

or reject the null hypothesis. If any of the assumptions required for the parametric

independent t-test are not met, a Mann-Whitney U Test for non-parametric distribu-

tions is used. The size effect is estimated by converting the z statistic into Pearson’s

r (Field et al., 2012).
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3.5 Summary

Presented in this chapter are the neural network architectures used to test the hypoth-

esis that 2D CNNs can provide higher accuracy performance than that of a 1D CNN

in the domain of stellar classification using the main class of the MK Classification

scheme. The baseline model is that defined in Sharma et al. (2019). The proposed

model is a 2D CNN version of that in Sharma et al. (2019), but with only two con-

volutional layers. Four different input shapes are defined, resulting in four slightly

different flavours of the proposed model. The input shapes are 40x70, 70x40, 50x56

and 56x50. Each of these shapes are whole number representations of a sequence of

length 2800 folded into a matrix format. The ResNet50 architecture is also used to

test this hypothesis. The ResNet V2 50 architecture is only applied to the input shape

that shows best classification accuracy.

Four data sets are used in this research. These are The Indo-U.S. Library of

Coudé Feed Stellar Spectra, the MILES Spectral Library, ELODIE spetral data and

the Jacoby-Hunter-Christian Atlas. These spectral libraries represent four different

spectral surveys across three different locations over a duration of almost 20 years.

Each library has a different resolution and cover different wavelength ranges. As a

result, the individual spectra are pre-processed and normalised.

The experiment design ensures robust evaluation of the classification models. 10-

fold cross validation is used to produce ten classification models for each input shape.

The classification model with the best validation accuracy score is retained for testing.

The testing procedure uses a reproducible method to select data from the CFLIB data

set. Each selection represents a test set and is approximately 8% of the total data set.

There are one hundred test data sets and these data sets follow a distribution of main

stellar class that is very close to the CFLIB data set.

A robust statistical procedure is defined to test the generated accuracy distribu-

tions from the models. Independent T-test (parametric) and the Mann-Whitney U

Test (non-parametric) are used depending on the distributions of the accuracy scores.

Levene’s test for homogeneity of variance is applied to check for homogeneity of vari-
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ance, a necessary step to understand if parametric tests are suitable.

3.5.1 Strengths

The strengths of this research are:

• Availability of labelled data: There are numerous data sets available in

astronomy. The data sets used in this research are well known and in the public

domain. they are used extensively in the literature.

• Independent source of truth: The SIMBAD database ensures that a trusted

source of truth is available if the MK Classification of any object is in question.

• Documented methodology: The process of merging different data sets that

span different wavelength ranges and resolutions exists in the literature since

1994.

• Availability of CNN framework: Using the Keras.io framework ensures the

coding aspect of this research is focused on the production of models using

a tried and tested code base. The likelihood of bugs being introduced into

the code is reduced and the amount of code needed to produce and test the

classification models is modest. The use of an Nvidia CUDA library increases

the computational efficiency and thus reduces the overall time required to train

and test the classification models. Other frameworks such as astropy.io and

scikit-learn are also used in this research.

• Domain knowledge: Deep domain knowledge of spectroscopy is not required

for this research. The spectra used are already classified by professional as-

tronomers.

• Hyper-parameter tuning: In the course of this research, the hyper-parameters

of the neural network are tuned to find the values that work best with this data.

• Robust Statistical Evaluation: This research will use robust statistical meth-

ods to compare the accuracy distributions. The independent T-test and the
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Mann-Whitney U Test are robust statistical procedures used in this research to

determine the difference of the means across two different distributions.

3.5.2 Limitations

The limitations of this research are:

• Catalogue unavailability: The ELODIE catalogue used by Sharma et al.

(2019) is no longer available. This means the spectra used in this research

will differ slightly to that used by Sharma et al. (2019), possibly impacting on

accuracy of the classification models.

• Limited comparison Sharma et al. (2019) report an average accuracy score of

89% for main MK class classification. However, there is no distribution of accu-

racy scores provided. For example, the minimum or maximum accuracy scores

are not documented, nor are the number of accuracy scores in their distribution.

• No optimiser tuning: This research will tune the hyper-parameters for the

neural network, but the optimiser is using default settings. This is following the

procedure as outlined in Sharma et al. (2019) but default optimiser settings are

not always the best settings to use.
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Results, evaluation and discussion

As the amount of astronomical data being captured year after year increases, the

requirement for an automated classification system for stars is necessary. This re-

search is focused on improving existing classification techniques specifically through

the application of convolutional neural networks on stellar spectra.

This chapter presents the results of the experiments and compares the performance

of the baseline classification model to the one proposed in this research. The difference

in the results is evaluated and the limitations of this study and findings are presented.

4.1 Experiment Data Distribution

The results presented below are produced after generating 100 experimental data sets

from the CFLIB data set, each data set containing 91 randomly selected instances

(8% of the total data set). As stated previously, the data sets are not balanced as

they do not contain the same number of instances for each class. Therefore randomly

selecting from this data set could result in an even more imbalanced distribution of

stellar classes over the course of 100 experiments. A comparison of the distributions

is shown in Table 4.1.
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Main Class CFLIB Test
Count % Count %

A 107 9.4 852 9.4
B 131 11.5 1034 11.4
F 201 17.7 1597 17.5
G 313 28.0 2559 28.1
K 330 29.0 2644 29.0
M 42 3.7 327 3.6
O 11 0.9 87 0.9

Total 1135 9100

Table 4.1: This table shows the distribution of the stellar classes in the CFLIB data
and in the 100 experimental data sets randomly selected from CFLIB.

Stellar classes G and K have the highest representation in the CFLIB data set

and this is also true in the experimental data sets. Stellar class O has the lowest

representation. The number of stellar classes, as percentages of the total, is very

similar in CFLIB and the experimental data set, so it is clear that the generated data

sets used in the experiments are a very good representation of the CFLIB data set.

4.2 Experimental Results

A high level overview of the experiment results are presented in Table 4.2. This

table includes the minimum, maximum and average accuracy measurements of each

classification model. A detailed review of the results for each classification model is

presented in the following sections. A boxplot chart of these distributions is shown in

Figure 4.1.

Model Input Size Min 1st Qrt Mean 3rd Qrt Max
Baseline Model 1x2800 0.58 0.73 0.77 0.80 0.91
Proposed Model 50x56 0.65 0.77 0.80 0.84 0.92

70x40 0.66 0.79 0.82 0.85 0.93
40x70 0.58 0.75 0.78 0.82 0.92
56x50 0.62 0.75 0.79 0.84 0.93

ResNet V2 50 70x40 0.52 0.66 0.71 0.75 0.87

Table 4.2: Overview of the experimental accuracy scores for each model.
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Figure 4.1: Boxplot of the accuracy scores obtained from all models created in this
research.

4.2.1 Baseline Model Results

The experiments on the baseline model generated 1000 accuracy scores (0.76, sd=0.05)

across the 10 models generated using the K-Fold Cross Validation process. The min-

imum accuracy score achieved was 0.58, and the maximum was 0.91. A histogram

showing the distribution of the accuracy scores from the baseline models is shown in

Figure 4.2. The accuracy distribution has a skew value of -0.12 and a kurtosis value of

-0.15. The standardised skew is -1.61 and the standardised kurtosis is -1.00. As both

the standardised skew and kurtosis are within a range of ±2, this distribution can

be considered to follow the normal distribution and can be analysed using parametric

statistical methods. The breakdown of the distribution for each model is shown using

boxplots in Figure 4.3.
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Figure 4.2: Histogram and boxplot of the classification accuracy scores obtained by
testing the baseline models.

Figure 4.3: Classification accuracy results for the 10 fold baseline models.
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Figure 4.4: Confusion matrix showing the test results for the baseline model.

Main Class Precision Recall F1 Score
A 0.71 0.82 0.76
B 0.84 0.75 0.79
F 0.84 0.84 0.84
G 0.80 0.59 0.67
K 0.72 0.89 0.79
M 0.88 0.82 0.84
O 0.24 0.12 0.15

Table 4.3: Evaluation scores for the baseline model.

Table 4.3 shows the evaluation statistics of the baseline model, precision, recall

and F1 score, broken down by stellar class. Figure 4.4 shows the confusion matrix 1

for the baseline model and the accuracy per class.

1Confusion matrix derived from code on stackoverflow.com
https://stackoverflow.com/questions/23891140/r-how-to-visualize-confusion-matrix-using-the-
caret-package

59



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

4.2.2 Proposed Model

The first step for the proposed models was to determine the hyper-parameters that

produced the best validation results. To obtain these, the training data was separated

into training and validation data sets, with 15% of training data being retained exclu-

sively for validation. The proposed models are generated using different input shapes,

matrix of order 50x56, matrix of order 56x50, matrix of order 40x70 and matrix of

order 70x40. The hyper-parameters are tuned separately for each input shape. The

experiments on the proposed models followed the same process as that of the baseline

model, generating 1000 accuracy scores across the 10 classification models using the

K-Fold Cross Validation process.

Model with input shape 50x56

The hyper-parameters that provided the best validation accuracy are shown in Table

A.1. The best validation accuracy was obtained by gradually increasing the filter

size in each convolutional layer, an opposite approach to the baseline model. This

also dramatically reduced the time required to train the model. Figure 4.5 shows

the histogram of the 1000 accuracy scores generated from the experiments on the

proposed model using input size 50x56 (0.80, sd=0.05). The minimum accuracy was

0.65 and the maximum was 0.92. The accuracy distribution has a skew of -0.06 and a

kurtosis of -0.34, standardised skew of -0.81 and standardised kurtosis of -2.19. As the

standardised kurtosis is not within a range of ±2, more investigation is necessary to

ascertain if the data distribution can be considered to follow the normal distribution.

The next step is to see if 95% of the standardised accuracy scores falls within a standard

score. As there are more than 80 observations, the score of ± 3.29 is used. There are no

standardised accuracy scores that fall outside a score of ± 3.29, therefore this data can

be considered to follow the normal distribution and can be analysed using parametric

statistical methods. The breakdown of the distribution for each model is shown using

boxplots in Figure 4.6.
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Figure 4.5: Histogram and boxplot of the classification accuracy scores obtained by
testing the proposed classification models with input shape 50x56.

Figure 4.6: Classification accuracy results for the 10 fold proposed models using input
shape 50x56.
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Figure 4.7: Confusion matrix showing the test results for the proposed model for input
shape 50x56.

Main Class Precision Recall F1 Score
A 0.82 0.81 0.81
B 0.92 0.86 0.89
F 0.81 0.90 0.85
G 0.75 0.79 0.76
K 0.83 0.76 0.78
M 0.92 0.61 0.71
O 0.76 0.78 0.76

Table 4.4: Model evaluation scores for proposed model for input shape 50x56.

Table 4.4 shows the evaluation statistics of the model broken down by stellar class.

Figure 4.7 shows the confusion matrix for the model and the accuracy per class.

Model with input shape 70x40

The hyper-parameters that provided the best validation accuracy are shown in Table

A.2. This model also obtained better validation accuracy when using increased number

of filters in each subsequent convolution layer. Figure 4.8 shows the histogram of the

1000 accuracy scores generated from the experiments on the proposed model using
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Figure 4.8: Histogram and boxplot of the classification accuracy scores obtained by
testing the proposed classification models with input shape 70x40.

input size 70x40 (0.82, sd=0.04). The minimum accuracy was 0.66 and the maximum

was 0.93. The accuracy distribution has a skew of -0.25 and a kurtosis of -0.06,

indicating a negative skew and kurtosis. The standardised skew has a value of -3.24

and the normalised kurtosis has a value of 0.42. As the standardised skew is not within

the range of ±2, more investigation is necessary to ascertain if the data distribution

can be considered to follow the normal distribution. The next step is to see if 95% of

the standardised the accuracy scores falls within a standard score. As there are more

than 80 observations, the score of ± 3.29 is used. There are 2 observations that fall

outside the score of ± 3.29, representing 0.2% of the total. As this is less than 5%, this

data can be considered to follow the normal distribution and can be analysed using

parametric statistical methods. The breakdown of the distribution for each model is

shown using boxplots in Figure 4.9.

63



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

Figure 4.9: Classification accuracy results for the 10 fold proposed models using input
shape 70x40.

Main Class Precision Recall F1 Score
A 0.86 0.84 0.84
B 0.94 0.89 0.91
F 0.85 0.87 0.85
G 0.73 0.85 0.78
K 0.88 0.74 0.79
M 0.91 0.76 0.82
O 0.90 0.79 0.78

Table 4.5: Model evaluation scores for proposed model for input shape 70x40.

Table 4.5 shows the evaluation statistics of the model broken down by stellar class.

Figure 4.10 shows the confusion matrix for the model and the accuracy per class.

Model with input shape 40x70

The hyper-parameters that provided the best validation accuracy are shown in Table

A.3. This model also obtained better validation accuracy when using increased number

of filters in each subsequent convolution layer. Figure 4.11 shows the histogram of the

1000 accuracy scores generated from the experiments on the proposed model using
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Figure 4.10: Confusion matrix showing the test results for the proposed model for
input shape 70x40.

input size 40x70 (0.78, sd=0.06). The minimum accuracy was 0.58 and the maximum

was 0.92. The accuracy distribution has a skew of -3.30 and a kurtosis of -0.12,

indicating a negative skew and kurtosis. The standardised skew has a value of -4.26

and the normalised kurtosis has a value of -0.79. As the standardised skew is not within

a range of ±2, more investigation is necessary to ascertain if the data distribution can

be considered to follow the normal distribution. The next step is to see if 95% of

the standardised the accuracy scores falls within a standard score. As there are more

than 80 observations, the score of ± 3.29 is used. There are 2 observations that fall

outside the score of ± 3.29, representing 0.2% of the total. As this is less than 5%, this

data can be considered to follow the normal distribution and can be analysed using

parametric statistical methods. The breakdown of the distribution for each model is

shown using boxplots in Figure 4.12.
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Figure 4.11: Histogram and boxplot of the classification accuracy scores obtained by
testing the proposed classification models with input shape 40x70.

Figure 4.12: Classification accuracy results for the 10 fold proposed models using input
shape 40x70.
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Main Class Precision Recall F1 Score
A 0.74 0.83 0.77
B 0.91 0.84 0.87
F 0.84 0.81 0.82
G 0.73 0.73 0.71
K 0.77 0.74 0.73
M 0.76 0.60 0.65
O 0.94 0.58 0.65

Table 4.6: Model evaluation scores for proposed model for input shape 40x70.

Figure 4.13: Confusion matrix showing the test results for the proposed model for
input shape 40x70.

Table 4.6 shows the evaluation statistics of the model broken down by stellar class.

Figure 4.13 shows the confusion matrix for the model and the accuracy per class.

Model with input shape 56x50

The hyper-parameters that provided the best validation accuracy are shown in Table

A.4. This model also obtained better validation accuracy when using increased number

of filters in each subsequent convolution layer. Figure 4.14 shows the histogram of the

1000 accuracy scores generated from the experiments on the proposed model using
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input size 56x50 (0.79, sd=0.05). The minimum accuracy was 0.62 and the maximum

was 0.93. The accuracy distribution has a skew of -0.21 and a kurtosis of -0.25,

indicating a negative skew and kurtosis. The standardised skew has a value of -2.69

and the normalised kurtosis has a value of -1.62. As the standardised skew is not within

a range of ±2, more investigation is necessary to ascertain if the data distribution can

be considered to follow the normal distribution. The next step is to see if 95% of

the standardised the accuracy scores falls within a standard score. As there are more

than 80 observations, the score of ± 3.29 is used. There are no observations that fall

outside the score of ± 3.29, indicating that this data can be considered to follow the

normal distribution and can be analysed using parametric statistical methods. The

breakdown of the distribution for each model is shown using boxplots in Figure 4.15.

Figure 4.14: Histogram and boxplot of the classification accuracy scores obtained by
testing the proposed classification models with input shape 56x50.
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Figure 4.15: Classification accuracy results for the 10 fold proposed models using input
shape 56x50.

Main Class Precision Recall F1 Score
A 0.73 0.83 0.76
B 0.87 0.80 0.83
F 0.81 0.83 0.82
G 0.65 0.81 0.71
K 0.79 0.56 0.63
M 0.80 0.50 0.57
O 0.81 0.47 0.52

Table 4.7: Model evaluation scores for proposed model for input shape 56x50.

Table 4.7 shows the evaluation statistics of the model broken down by stellar class.

Figure 4.16 shows the confusion matrix for the model and the accuracy per class.
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Figure 4.16: Confusion matrix showing the test results for the proposed model for
input shape 56x50.

ResNet V2 50 model

There is no hyper-parameter tuning for the ResNet V2 50 model, this is supplied by

the Keras.io framework 2. 10 fold cross validation was applied to this model. ResNet

was only trained with an input shape of 70x40 as this input shape provided the best

mean accuracy performance of all the input shapes used in this research. Figure 4.17

shows the histogram of the 1000 accuracy scores generated from the experiments on

the ResNet model using input size 70x40 (0.71, sd=0.06). The minimum accuracy was

0.52 and the maximum was 0.87. The accuracy distribution has a skew of -0.07 and a

kurtosis of -2.66, indicating a negative skew and kurtosis. The standardised skew has

a value of -0.88 and the normalised kurtosis has a value of -1.72. As the standardised

skew and kurtosis are within a range of ±2, this data can be considered to follow the

normal distribution and can be analysed using parametric statistical methods. The

breakdown of the distribution for each model is shown using boxplots in Figure 4.18.

2https://keras.io/api/applications/resnet/resnet50v2-function
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Figure 4.17: Histogram and boxplot of the classification accuracy scores obtained by
testing the ResNetV250 model with input shape 70x40.

Table 4.8 shows the evaluation statistics of the ResNet V2 50 model broken down

by stellar class. Figure 4.19 shows the confusion matrix for the model and the accuracy

per class.

Main Class Precision Recall F1 Score
A 0.67 0.80 0.72
B 0.84 0.69 0.75
F 0.79 0.85 0.82
G 0.63 0.78 0.69
K 0.75 0.56 0.61
M 0.91 0.53 0.67
O 0.42 0.31 0.36

Table 4.8: ResNet V2 50 model mean evaluation scores.
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Figure 4.18: Classification accuracy results for the 10 fold ResNet V2 50 models using
input shape 70x40.

Figure 4.19: Confusion matrix showing the test results for the ResNetV250 classifica-
tion models for input data 70x40.
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4.3 Statistical Evaluation

All the accuracy distributions obtained during the experiments have been shown to

follow the normal distribution. Levene’s test for homogeneity of variance is applied to

each accuracy distribution of the proposed model and the baseline model, to ascertain

if a t-test or a Mann-Whitney U test was the most appropriate. An α value of 0.05

is defined for the significance test. Additional supporting information about the sta-

tistical evaluation performed in this research is provided in the Appendix in Section

A.3.

Proposed Model with input 50x56

A Levene’s test for homogeneity of variance was conducted and indicated equality of

variance for accuracy scores for the baseline model and the proposed model with input

shape 50x56 (F(1,1998)=0.82, p=.36). An independent-samples t-test was conducted

to compare accuracy scores for the baseline model and proposed model. A significant

difference in the accuracy scores was found (M=0.80, SD=.05 for the proposed model

and M=0.77, SD=.05 for the baseline model), (t(1998)=-0.04, p<.05). The eta square

statistic also indicated a small effect size (.12).

Proposed Model with input 70x40

A Levene’s test for homogeneity of variance was conducted and indicated inequality

of variance for accuracy scores for the baseline model and the proposed model with

input shape 70x40 (F(1,1998)=27.89, p<.05). After performing a Mann-Whitney U

test, the accuracy scores in the baseline model (Mdn=0.77) did differ significantly from

the proposed model (Mdn=0.82), (U=214579, z=22.14, p<.05, r=.49).

Proposed Model with input 40x70

A Levene’s test for homogeneity of variance was conducted and indicated inequality

of variance for accuracy scores for the baseline model and the proposed model with

input shape 40x70 (F(1,1998)=14.18, p<.05). After performing a Mann-Whitney U

73



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

test, the accuracy scores in the baseline model (Mdn=0.77) did differ significantly from

the proposed model (Mdn=0.78), (U=415458, z=6.56, p<.05, r=.14).

Proposed Model with input 56x50

A Levene’s test for homogeneity of variance was conducted and indicated inequality of

variance for accuracy scores for the baseline model and the proposed model with input

shape 56x50 (F(1,1998)=4.03, p<.05). After performing a Mann-Whitney U test, the

accuracy scores in the baseline model (Mdn=0.77) did differ significantly from the

proposed model (Mdn=0.79), (U=368320, z=10.22, p<.05, r=.22).

ResNet V2 50 Model with input 70x40

A Levene’s test for homogeneity of variance was conducted and indicated inequality

of variance for accuracy scores for the baseline model and the ResNet V2 50 model

with input shape 70x40 (F(1,1398)=34.77, p<.05). After performing a Mann-Whitney

U test, the accuracy scores in the baseline model (Mdn=0.77) did differ significantly

from the ResNet50 model (Mdn=0.70), (U=769840, z=20.92, p<.05, r=.49).

4.4 Discussion

The best performing neural network architecture was the architecture proposed by

this research, achieving a mean accuracy value of 0.82. The baseline neural network

architecture achieved a mean classification accuracy of 0.77. After using the appro-

priate statistical tests, this result is confirmed as a statistically significant result and

the size effect is deemed as medium, r=.49. The criteria for a medium size effect is

an r value >.3 and <.5. The result of this research indicates that the use of the 2D

architecture did contribute to the increase in accuracy performance.

4.4.1 Strengths

This research demonstrated the ability of the proposed neural network architecture

to learn the necessary features from, and generalise across, the different data sets.
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Jiang et al. (2020) indicated that 2D CNN network architectures could be used for

this purpose and this work reinforces this finding. The results presented here show

that the approach for merging different data sets, first introduced by Gulati et al.

(1994), does work. The validation accuracy observed while training the classification

models indicates that this procedure can be improved, a point addressed in the next

section. During training, the best validation accuracy achieved was 0.85 for the base-

line architecture, 0.84 for the proposed architecture and 0.79 for the ResNet V2 50

architecture. Each network was trained using 1,805 spectra across the 7 different main

stellar classes, indicating that the best baseline classification model failed to learn to

classify 270 spectra, which is poor.

Sharma et al. (2019) was the first application of CNNs to the domain of stellar

classification using the MK Classification scheme, producing very good results. Jiang

et al. (2020) then applied 2D CNNs to a sub-domain of stellar classification, indicating

that 2D CNNs could outperform 1D CNNs. In this research, the proposed 2D con-

volutional neural network architecture out performed both the baseline and ResNet

network architectures. The proposed network architecture used two convolutional lay-

ers, this shallow approach out performing the deeper network architectures used in

the baseline architecture and the ResNet V2 50 architecture. ResNet architectures are

trained for many of thousands of epochs, something that was infeasible to do in this

research (He et al., 2016a). It is possible that the ResNet architecture will perform

better after more training.

4.4.2 Limitations

The data described in Sharma et al. (2019) are different to that used in this research

due to the unavailability of the ELODIE 3.1 catalogue. While the ELODIE data is

used in this research, there is no way to know how this compares to the data used by

Sharma et al. (2019).

The data sets used is imbalanced, meaning that stars of each class are not equally

represented, previously shown in Table 3.1. The confusion matrix for each classification

model generated by the 10 fold cross validation process shows that some classification
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models were unable to identify O class stars at all. This was mainly a problem for the

ResNet V2 50 architecture where 4 of the 10 classification models could not identify O

class stars, but it also affected the proposed architecture. The small number of O class

stars in the test data set means that this issue didn’t impact the over all classification

accuracy score as much as it should have if the test data set was balanced.

The process for normalising and merging different data sets used in Sharma et al.

(2019) was first introduced in 1994 by Gulati et al. (1994). This process is designed

to degrade spectra to a common resolution. The common resolution is that of the

data set with the lowest resolution. Interpolation using a cubic spline is then used to

generate spectra with a resolution of 1Å. When this process was introduced in 1994, 3

of the 4 data sets used in this research did not exist. The only existing data set, JHC,

was used by Gulati et al. (1994) in their research. There are limitations in this process,

however, as it doesn’t seem to account for the exposure of each spectra. Figure 4.20

shows samples of processed spectra (after interpolation) for all four data sets used in

this research, each one of these images represents an O class star. It is clear to see that

the exposure, or brightness, of the spectra are highly variable which would impact on a

neural networks effectiveness to learn common features across these images. Contrast

these images with that presented in Figure 3.9, where the features of the star are more

prominent.

Figure 4.20: Different O class spectra showing different levels of brightness.
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The architecture of the neural network used by Sharma et al. (2019) uses a smaller

number of feature maps for each subsequent convolution layer. While there is no hard

and fast rule about this, the heuristic is that CNN architectures increase the number of

feature maps for deeper convolutional layers (Aggarwal, 2018). The reason for this is to

maximise the models ability to learn features in deeper layers. The MaxPooling layers

are used to decrease the input data dimensions, meaning each subsequent layer has less

data to learn from, therefore, increasing the number of learned features is important.

It is not clear why Sharma et al. (2019) configured the network architecture this way.

The proposed network architecture used in this research followed a different approach.

During hyper-parameter tuning, it was quickly observed that using the approach used

by Sharma et al. (2019) did not give better accuracy results. The approach taken

by Sharma et al. (2019) also increased the computational time required to train the

classification models by front loading all the computations into the first convolutional

layer (large input and deep feature maps).

Another point about the architecture used by Sharma et al. (2019) is that it con-

tains 4 convolutional layers. He et al. (2016a) pointed out that deeper network archi-

tectures lead to higher training errors. Reviewing the training errors for the baseline

network, it is clear to see that this is indeed the case here. Shown in Figure 4.21 is

an example of the training and validation loss for a single classification model based

on the baseline architecture. This shows the distinct pattern of diverging training and

validation loss.

The ResNet V2 50 architecture didn’t perform well on this type of data, this result

is consistent with that reported by Jiang et al. (2020). Of the three architectures

used in this research, it provided the poorest classification accuracy results. The mean

accuracy for the baseline classification model was 0.77, the best performing proposed

classification model obtained a mean accuracy of 0.82, but the ResNet classification

model only achieved a mean accuracy of 0.71. When the ResNet architecture was

introduced, it was trained and tested on images with dimensions 224 pixels wide by

224 pixels high. This represents significantly more input pixels (80,176) than the input

used in this research (2,800). It is possible that the ResNet architecture doesn’t work
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so well with smaller input dimensions. The ResNet classification model was also only

trained for 200 epochs compared to 1000 for the other classification models. This may

also have impacted on the overall performance.

Figure 4.21: Training error rates for one of the baseline classification models.

The proposed approach uses four different input shapes when folding the spectra

into the matrix format, 50x56, 40x70, 70x40 and 56x50. All classification models

obtained statistically significant results. The effect size for classification models for

three of the four input shapes is small, the remaining effect sizes are medium. It is

unclear why an input shape of 70x40 should produce a bigger effect size than the

other input shapes. In reality, the input shapes are somewhat arbitrary, so it is not

clear why this input shape out performed the other three, or whether this shape is

meaningful when applied to other data sets. Jiang et al. (2020) fold spectra into a

matrix of order 50x100, which is larger than any matrix orders used in this research.

This is by necessity as there was insufficient data to create an input shape the same

as Jiang et al. (2020).

The accuracy results reported by Sharma et al. (2019) could not be replicated.
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4.5 Summary

In this section, the experimental results are presented, including statistical testing, for

the baseline network architecture, the proposed architecture and the ResNet V2 50

architecture. The proposed network architecture produced the classification models

that obtained the highest average accuracy of 0.82. When this is compared to the

baseline classification models, the result is statistically significant with a medium effect

size.
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Conclusion

This chapter discusses the overall dissertation, the results obtained by this research

and compares these results to those reported by Sharma et al. (2019). It also attempts

to understand the difference in results and the reasons why these differences occurred.

Finally, the contributions and impact of this work is discussed.

5.1 Research Overview

The aim of this research was to apply modern machine learning techniques to the

problem of stellar classification using the MK Classification scheme and produce a

state-of-the-art classification model. The current state-of-the-art classification model

uses a 1D CNN to directly classify stellar spectra without the need for an explicit

feature extraction process. Introduced in 1918, the Harvard Classification Scheme

classifies stars based on surface temperature (Teff). In 1943, the MK Classification

Scheme was introduced, introducing the concept of a stellar luminosity class. This is

derived from stellar surface gravity (log g), since the luminosity is correlated with the

surface density of a star. Other stellar attributes are used to further refine classifica-

tions. Traditionally, stars were classified manually, the process requiring extraction of

stellar indices from a spectrum, these are then classified by comparing them against

previously classified spectra. As modern astronomical surveys begin to capture more

and more data, the manual classification approach simply cannot keep pace with the
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rate at which data is being collected.

5.2 Problem Definition

There are an estimated 200 billion stars in the Milky Way galaxy (Karttunen et al.,

2006, p. 7). Not all stars are the same, they differ widely in terms of size, colour,

distance and brightness. To discuss stars, it is necessary to have a classification scheme

to be able to discuss the star in context. The MK Classification Scheme provides this

context and has been in use since 1943.

Given the vast distances to stars the only information astronomers have about them

is the light they emit. Through the application of spectroscopy, astronomers have been

able to gain vast amounts of information about individual stars. Astronomers use an

instrument called a spectrograph to produce a spectrum from a light source. The light

source is passed through a diffraction grating or prism and a spectrum is created based

on a physical process called diffraction. The spectrograph measures the spectral flux

density at specific wavelengths. Each spectrograph has a defined wavelength range and

a resolution. The resolution determines how many wavelength points are recorded over

the wavelength range. Stars are classified by extracting features from their spectrum.

Common features are surface temperature (Teff), surface gravity (log g) and metallicity

(Fe/H). The presence or absence of lines at different wavelengths that can be grouped

together to identify an element are known as spectral indices and these are also used

in the classification process.

Machine learning is an established technology in the domain of stellar classifica-

tion and has been used to both predict stellar atmospheric properties and to directly

classify stars based on the MK Classification Scheme. Recent research has focused on

the application of CNNs to the domain of stellar classification. Supervised learning

techniques allow the training of classification models directly from the stellar spec-

tra without the need for specialized knowledge required for complex spectral analysis.

There are also numerous data sets and databases available with labelled data that

can be used for this process. Traditionally, spectra are considered as sequential data,
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meaning that the wavelength data must be in a sequence for it to be meaningful. 1D

CNN was the first CNN architecture applied to stellar spectra classification. 1D CNNs

also have the benefit of being less computationally complex than 2D CNNs.

This research makes the claim that spectra data can be treated in a two-dimensional

(folded) representation for the purposes of stellar classification and this claim is backed

up by research by Jiang et al. (2020). The results of this research are compared with

the state-of-the-art 1D CNN classification model.

The research question posed was: To what extent can the accuracy of stellar clas-

sification using the MK Classification Scheme be improved by using 2D CNNs with

folded spectra?

5.3 Design/Experimentation, Evaluation & Results

This section discusses the experiment design, how the results were evaluated and the

overall results. The final conclusion is presented about this research.

5.3.1 Design/Experimentation

The experiment uses four existing data sets as set out by Sharma et al. (2019). These

data sets are the CFLIB, JHC, ELOIDE and MILES data sets. The CFLIB data set

is retained exclusively for testing the trained classification models. Each of these data

sets contain labelled stellar spectra. The ELODIE 3.1 catalogue was unavailable, so

it was necessary to recreate a data set from the publicly available data.

Each data set was captured at a different resolution and have different wavelength

ranges. It is necessary to harmonise these data sets to use them together. The har-

monisation process consisted of degrading each spectra the lowest resolution in the

data sets, then using interpolation with a cubic spline to create spectra at a common

resolution of 1Å.

The first classification model created was that of the baseline model. This is a

1D CNN model, the specification is outlined in Sharma et al. (2019). All the hyper-

parameters for this model are fixed, as is the input shape of the data. 10-fold cross
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validation was used to train the baseline classification models. The baseline models

were trained for 1000 epochs using the root mean squared error as the loss function.

The baseline classification model with the best validation and training accuracy for

each fold was retained for testing.

The proposed 2D CNN architecture contained ten tuneable hyper-parameters, as

discussed in Section 3.4.4. In order to determine the hyper-parameters that provide the

best classification accuracy, the training data was split into a training and validation

data set. Different hyper-parameter values were used to train classification models,

and these models were evaluated with the validation data set. The hyper-parameter

that provided the best classification accuracy on the validation data set were retained.

The model hyper-parameters are determined for four different data input shapes, these

are 50x56, 40x70, 70x40 and 56x50. Once the hyper-parameters were fixed, 10-fold

cross validation was used to train the classification models. Models were trained for

1000 epochs using the root mean squared error as the loss function. The classification

models with the best training accuracy for each fold are retrained for testing.

The testing procedure consists of generating 100 different test data sets from the

CFLIB data set, this is selection with replacement, meaning that the same sample will

be reused multiple times. Each selection contains 8% of the total CFLIB data set.

There are 10 models for each input shape, and each of these models are tested with

the 100 test data sets, resulting in 1,000 classification accuracy scores for each input

shape. The average of the 1,000 accuracy scores is then used to determine what input

shape model performs best. The best model is then compared to the results reported

by Sharma et al. (2019). A ResNet V2 50 model was trained using the input shape

that provided the best average classification accuracy. The performance of this model

is compared to the other classification models.

5.3.2 Evaluation

The output of the experiment was a list of 1,000 classification accuracy scores for each

of the baseline classification models, the proposed models for each input shape (4x1,000

accuracy scores), and for the ResNet V2 50 model. An accuracy score can have a value
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anywhere between 0 and 1, inclusive, so this is a ratio data type. The distributions

for each classification accuracy set was checked to see if they conformed to the normal

distribution, this is a pre-requisite before parametric statistical methods can be used

on the data. Each data set was found to conform to the normal distribution.

The statistical evaluation process compared the classification accuracy scores of

the baseline model with the 4 proposed classification models and the ResNet model.

A Levene’s test for homogeneity of variance was conducted on the baseline model

accuracy score against each of the proposed classification models and ResNet. Where

equality of variance was confirmed, an independent t-test was used to compare the two

distributions. Where inequality of variance was confirmed, a Mann-Whitney U-test

was used to compare the two distributions. The appropriate effect size was calculated

depending on the type of test performed on the data.

5.3.3 Results

This section discusses the results of this research and then compares these to the

results presented in Sharma et al. (2019).

Results of this research

All the results obtained by this research were statistically significant. This is to be

expected as there are 1,000 results for each classification model, a sufficient amount to

guarantee statistical significance (Field et al., 2012). However, the effects size for the

models is small, except for the classification model that used the input shape 70x40

and the ResNet model.

Based on the experiments, the best performing neural network architecture was

the architecture proposed by this research using the input shape 70x40, achieving a

mean accuracy value of 0.82. The baseline neural network architecture achieved a

mean classification accuracy of 0.77. After using the appropriate statistical tests, this

result is confirmed as a statistically significant results and the size effect is deemed as

medium, r=.49. The criteria for the size effect is an r value >.3 and <.5, so the result

of this research indicates that the use of the 2D architecture did contribute to the
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increase in accuracy performance. Interestingly, the ResNet architecture performed

worse than the baseline classification model (m=.71), and the size effect was medium

(.49).

Comparing results to Sharma et al. (2019)

Sharma et al. (2019) report a mean accuracy of 89% for their classification model.

Their model was reproduced in this research, labeled the baseline model, and used

to compare with the results from the proposed model. This research was unable to

reproduce the mean classification accuracy obtained by Sharma et al. (2019). Differ-

ences were introduced over the course of this research that diverged from the process

as outlined by Sharma et al. (2019) that were unavoidable. For example, Sharma et al.

(2019) used the ELODIE 3.1 catalogue in their research, but this catalogue was never

officially published and existing links to this are now dead, so this could not be used.

Sharma et al. (2019) also performed weight transfer from an auto-encoder model

before the training process. This step was not replicated in this research as it was not

possible to replicate the data set used in this step. The data set generated from the

SDSS archive; there are currently 16 different data releases from SDSS, it is not stated

what data release is used. Their data set consisted of 60,000 spectra, however, these

objects are not document. Further more, the SDSS data is not normalised in the same

way that the CFLIB, ELODIE, JHC or MILES data sets are, so it is not clear why

this weight transfer is of any benefit in this context.

Another significant difference was in the cleaning process of the test data set.

Sharma et al. (2019) removed 313 more samples from this data set than were removed

in this research. Although the same criteria was applied for the removal of data, no

justification could be found for the removal of the extra 313 samples. This must impact

on the classification accuracy scores and go somewhere to explaining the difference in

the results of this research and those published by Sharma et al. (2019). Table 5.1

outlines the F1 scores published by Sharma et al. (2019) and those achieved by this

research. It is clear to see that the results reported by Sharma et al. (2019) for every

stellar class out perform those obtained in this research, especially the baseline model.
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Class Sharma Baseline 50x56 40x70 56x50 70x40 ResNet
A 0.90 0.76 0.81 0.77 0.76 0.84 0.72
B 0.93 0.79 0.89 0.87 0.83 0.91 0.75
F 0.88 0.84 0.85 0.82 0.82 0.85 0.82
G 0.85 0.67 0.76 0.71 0.71 0.78 0.69
K 0.88 0.79 0.78 0.73 0.63 0.79 0.61
M 0.93 0.84 0.71 0.65 0.57 0.82 0.67
O 1.00 0.15 0.76 0.65 0.52 0.78 0.36

Table 5.1: Comparing the F1 scores for this research and the values reported by Sharma
et al. (2019)

5.3.4 Summary

This research has shown that folded stellar spectra outperforms the traditional 1D

representation, regardless of the input shape used. The network architecture used

in this research was also less complex than that used in the state-of-the-art classifier

(Sharma et al., 2019). This research, however, was unable to reproduce the original

results presented by Sharma et al. (2019), obtaining only an average classification

accuracy of 77% for the baseline classification model, compared to 89% reported in

Sharma et al. (2019). The data used in this research did differ from that used in

Sharma et al. (2019). This is especially significant when the differences affect the test

data set which can explain the difference in the reported classification accuracy results.

Based on the results generated by this research, the conclusion is that there is not

enough evidence to support rejecting the null hypothesis.

5.4 Contributions and impact

This research builds on work from Sharma et al. (2019) and Jiang et al. (2020) to show

that CNNs can be applied to the domain and that 2D CNNs have the ability to learn

features in data that was previously considered sequential. By folding spectra into a

matrix representation, it is possible to get higher classification accuracy using a 2D

CNN. This research also showed that the ResNet V2 50 architecture provided a lower

classification accuracy result, meaning that very deep neural networks might not be a
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suitable approach in this domain.

5.5 Future Work & recommendations

The data processing procedure introduced by Gulati et al. (1994) works well but

limitations were observed in the spectra produced. An opportunity exists here to

extend this procedure to take into account the exposure levels of different surveys.

For example, it was observed in this research that spectra with lower exposures tend

to have a lower mean pixel value compared to those with longer exposures, building this

check into the process is an area worth further investigation. Another area for future

work is to use larger data sets e.g. SDSS data, that would not require data processing

at all. Spectra that cover a wider wavelength range would also allow researchers

to better understand the behaviour of deeper neural network architectures, such as

ResNet, which didn’t perform favourably in this research. Finally, other domains

where one-dimensional data is classified, e.g. E.C.G, may benefit from this technique

of classifying folded data with 2D CNNs.
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Appendix A

Additional content

A.1 Tuned Hyper-parameters

The tables in the following pages contain the hyper-parameters used to train the CNNs

in this research. Static values for the activation function (RELU) padding (SAME)

are used for all models.

Layer Hyper-parameters Values

Convolution layer 1
Filters
Kernel
Strides

16
5
1,1

Max Pooling layer 1 Pool size 2,2

Convolution Layer 2
Filters
Kernel
Strides

32
3
2,2

Max Pooling layer 2 Pool size 1,1

Dense Layer 1 Units 64

Dropout 1 Rate 0.01

Dense Layer 2 Units 32

Dropout 2 Rate 0.01

Table A.1: Proposed model hyper-parameters for input shape 50x56.
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Layer Hyper-parameters Values

Convolution layer 1
Filters
Kernel
Strides

16
7
1,1

Max Pooling layer 1 Pool size 2,2

Convolution Layer 2
Filters
Kernel
Strides

32
5
1,1

Max Pooling layer 2 Pool size 2,2

Dense Layer 1 Units 64

Dropout 1 Rate 0.01

Dense Layer 2 Units 32

Dropout 2 Rate 0.01

Table A.2: Proposed model hyper-parameters for input shape 70x40.

Layer Hyper-parameters Values

Convolution layer 1
Filters
Kernel
Strides

16
5
1,1

Max Pooling layer 1 Pool size 2,2

Convolution Layer 2
Filters
Kernel
Strides

32
5
1,1

Max Pooling layer 2 Pool size 2,2

Dense Layer 1 Units 64

Dropout 1 Rate 0.01

Dense Layer 2 Units 32

Dropout 2 Rate 0.01

Table A.3: Proposed model hyper-parameters for input shape 40x70.
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Layer Hyper-parameters Values

Convolution layer 1
Filters
Kernel
Strides

16
5
1,1

Max Pooling layer 1 Pool size 2,2

Convolution Layer 2
Filters
Kernel
Strides

32
5
1,1

Max Pooling layer 2 Pool size 2,2

Dense Layer 1 Units 64

Dropout 1 Rate 0.01

Dense Layer 2 Units 32

Dropout 2 Rate 0.01

Table A.4: Proposed model hyper-parameters for input shape 56x50.
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A.2 Baseline model hyper-parameters

Layer Hyper-parameters Values

Convolution layer 1

Activation function
Filters
Kernel
Padding
Strides

RELU
128
4
Same
2

Max Pooling Pool size 2

Convolution Layer 2

Activation function
Filters
Kernel
Padding
Strides

RELU
64
4
Same
2

Max Pooling Pool size 2

Convolution Layer 3

Activation function
Filters
Kernel
Padding
Strides

RELU
32
4
Same
2

Max Pooling Pool size 2

Convolution Layer 4

Activation function
Filters
Kernel
Padding
Strides

RELU
16
4
Same
2

Flatten N/A

Dense Layer 1
Activation function
Units

RELU
64

Dense Layer 2
Activation function
Units

RELU
32

Output Layer
Activation function
Units

softmax
7

Table A.5: Baseline network hyper-parameter settings.

A.3 Statistical Information

This section provides more information about the statistical checks that were per-

formed on the classification accuracy score distributions for each model. These checks

include checks for normality, Levene’s test for homogeneity of variance, t-test and

Mann-Whitney U test outputs. QQPlots and histograms of the standardised accuracy
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scores are included for each accuracy score distribution. The QQPlot is used as a

visual reference to see how the accuracy score distribution varies from a theoretical

normal distribution (Field et al., 2012).

A.3.1 Baseline model

Figure A.1: QQPlot of the accuracy scores for the baseline model.

Figure A.2: Histogram of the standardised accuracy scores for the baseline model.
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A.3.2 Proposed model with input shape 50x56

Figure A.3: QQPlot of the accuracy scores for the proposed model with input shape
50x56.

Figure A.4: Histogram of the standardised accuracy scores for the proposed model
with input shape 50x56.
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Figure A.5: Output of the Levene’s test for homogeneity of variance for the model
with input shape 50x56.

Figure A.6: Output of the independent t-test for the model with input shape 50x56.

A.3.3 Proposed model with input shape 70x40

Figure A.7: QQPlot of the accuracy scores for the proposed model with input shape
70x40.
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Figure A.8: Histogram of the standardised accuracy scores for the proposed model
with input shape 70x40

Figure A.9: Output of the Levene’s test for homogeneity of variance for the model
with input shape 70x40.

Figure A.10: Output of the Mann-Whitney U test for the model with input shape
70x40.
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A.3.4 Proposed model with input shape 40x70

Figure A.11: QQPlot of the accuracy scores for the proposed model with input shape
40x70.

Figure A.12: Histogram of the standardised accuracy scores for the proposed model
with input shape 40x70.
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Figure A.13: Output of the Levene’s test for homogeneity of variance for the model
with input shape 40x70.

Figure A.14: Output of the Mann-Whitney U test for the model with input shape
40x70.

A.3.5 Proposed model with input shape 56x50

Figure A.15: QQPlot of the accuracy scores for the proposed model with input shape
56x50.
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Figure A.16: Histogram of the standardised accuracy scores for the proposed model
with input shape 56x50.

Figure A.17: Output of the Levene’s test for homogeneity of variance for the model
with input shape 56x50.

Figure A.18: Output of the Mann-Whitney U test for the model with input shape
56x50.
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A.3.6 Resnet model with input shape 70x40

Figure A.19: QQPlot of the accuracy scores for the ResNet model with input shape
70x40.
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Figure A.20: Histogram of the standardised accuracy scores for the ResNet model
with input shape 70x40.

Figure A.21: Output of the Levene’s test for homogeneity of variance for the ResNet
model with input shape 70x40.

Figure A.22: Output of the Mann-Whitney U test for ResNet model with input shape
70x40.

A.4 The Stars

This section gives an overview of stars, their attributes and how astronomers measure

stellar attributes.
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A.4.1 The stellar life cycle

Stars are formed when molecular clouds undergo gravitational collapse, the size of the

star depending on the amount of material within the molecular cloud. The gravita-

tional force that causes the collapse becomes so large that nuclear fusion begins in the

core of the proto-star, resulting in the core being extremely hot. As a result of the

fusion process, radiation is emitted, and it is the radiation pressure from the fusion

process that counteracts the gravitational collapse. From this point, the stars core is

in a constant fight between gravity and radiation pressure, these two forces cancelling

each other out (Greene & Lambourne, 2006).

Hydrogen is the primary source of fuel for the nuclear fusion process, but the

amount of hydrogen is limited. Once this fuel source is extinguished, heavier elements

begin to fuse, but this requires more and more energy. Eventually the star reaches a

point where iron is the main source of fuel in the core. At this point, fusion stops,

because fusion of iron requires more energy as input than it can output. The radiation

pressure disappears and the force of gravity takes over, causing the stars core to

collapse. This collapse can be dramatic in the case of large stars, a supernova explosion

destroying the star. If the star is 11 times the mass of the Sun or more, this can result in

a stellar remnant in the form of a neutron star or even a black hole, if anything survives

at all. For less massive stars the explosion simply blows most of the atmosphere into

space and leaves a the exposed stellar core, known as a white dwarf, that slowly grows

cold and fades. The atmospheric material ejected from the star forms a planetary

nebula, a cloud of dust and gas, that will eventually collapse again and form new

stars. The life time of a star can be as little as 1 million years for super massive stars,

but much longer for less massive stars (the estimated life time of the Sun is around 9

billion years, it being halfway through this cycle already) (Binney & Merrifield, 1998;

Greene & Jones, 2004).
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A.4.2 Stellar Attributes

A prerequisite for any classification scheme is an understanding of measurable at-

tributes of the objects to be classified. This section presents an overview of stellar

attributes. Some of these attributes are intrinsic to the star being measured e.g.

brightness, but some are relative e.g. distance.

Colour

Looking up at the night sky, it is not always obvious that stars shine in different

colours. This is partially because of light pollution, but also because stars appear

in the sky as points of light that are difficult to compare. A simple photograph of

the night sky will reveal the intrinsic colours of stars. The colour of a star is related

to its surface temperature, cooler stars appear red while hot stars appear white/blue

(Greene & Lambourne, 2006).

Distance

The distance to the stars from Earth are almost incomprehensible when measured in

standard units. For example, the average distance between the Earth and the Sun,

our nearest star, is 1.5x1011m. To make these numbers user friendly, astronomers have

come up with their own units to represent the vast distances to, and between, objects

in space (Greene & Jones, 2004).

The average distance between the Earth and the Sun is used as a measurement

unit, and is known as a Astronomical Unit (AU). A light year (ly) is the distance

travelled by electromagnetic radiation in a vacuum in one year. This is 9.46x1015m.

Another common unit of measurement is the parsec (pc). A parsec is approximately

3.25 light years, and is the distance if an angle of 1 arc-second is projected onto a width

of 1AU, as shown in Figure A.23. The AU, light year and the parsec are not standard

units (SI units), but these are used by astronomers all the time to keep distance values

manageable (Greene & Lambourne, 2006).
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Figure A.23: The definition of a parsec.

Size

Probably the most basic attribute of a star is its size. This is important to understand

as the life cycle of a star is directly influenced by this attribute, smaller stars fade

away whereas large stars end their lives spectacularly in massive explosions known

as novas. When thinking about the size of a star, two important attributes need to

be considered, its mass and radius. Counter-intuitively, these two attributes are not

always correlated. Red Giant stars are an example of a star that has reached the

point in its life cycle where its surface undergoes massive expansion, increasing its

radius, to maintain the nuclear fusion process, but its mass remains constant (Greene

& Lambourne, 2006).

Motion

Despite their appearance, all stars in the sky are moving relative to each other. The

observed motion of a star without the effects of the movement of the observer is

known as proper motion. In reality, all observers are in motion relative to the stars

they observe. The measured motion of a star is known as its space velocity. The space

velocity vector is a combination of the star’s radial velocity (movement along the line

of sight) and transverse velocity (change in velocity perpendicular to the line of sight).

The transverse velocity is inversely proportional to the distance, so this measurement

is useful when determining distances to stars (Greene & Jones, 2004).
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Brightness & Temperature

All stars have an intrinsic brightness, also known as luminosity, that is relative to

their surface temperature. Surface temperature is also related to the colour of the

star. When referring to brightness, the convention is to refer to the region known

as the photosphere, the area of the star that corresponds to the region that we see

visually. On the Sun, this is a region approximately 500 Km deep, where temperatures

vary from 9000K at the bottom to 4500K at the top. Most of the light is emitted from

a region where the temperature is approximately 5600K, and this is used by convention

to refer to the surface temperature (Greene & Jones, 2004). This is used with caution

as there is no real definition of a surface for a star, there being no solid component

that can be referenced as a surface.

The apparent brightness of a star is not uniform across its surface, the brightness

reducing as a function of distance from its equator. This is known as limb darkening

and is related to the observers view of the stellar surface rather than an actual phe-

nomenon on the surface. Magnetic activity can also affect the perceived brightness of

a star, sunspots and flairs are examples of this (Greene & Jones, 2004).

Stars in the sky are very faint, making the measurement of brightness difficult.

To help resolve this problem, astronomers use a technique called Standard Candles.

Standard candles are objects with a known brightness. When the brightness of an

object is known, it can be used to determine the distance to an object by comparing

the actual brightness and the measured brightness. Certain types of variable stars are

Standard Candles. Cepheid variables were used by Edwin Hubble in 1922 to determine

the distance to the Andromeda Galaxy. Up to that point, the Andromeda Galaxy was

classified as a nebula within the Milky Way Galaxy. After Hubble’s discovery, it was

clear that the universe was made up of multiple galaxies. Type 1a supernovae are

also standard candles. As these violent explosions are so massive, they are also very

bright, meaning they can be used to estimate distances for objects that are at great

distances. Type 1a supernova are commonly used to estimate distances to far away

galaxies. Studying distant type 1a supernova is the main purpose of the James Web

telescope, due to be launched in October 2021 (Binney & Merrifield, 1998; Greene &
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Lambourne, 2006).

Chemical composition

The chemical composition of a star depends on when the star was formed, and the

contents of the stellar medium from which it formed. Stars are categorized based on

the percentage content of heavy elements in the stellar constituents, this is known

as the stellar metallicity. The term ‘heavy elements’ refers to any element heavier

than Helium. Depending on the measured metallicity, stars are assigned to distinct

Populations; Population I represents young to moderately ages stars, these contain a

metallicity value of up to 3%. Population II stars are older stars and have a metallicity

value of less than 1%. Theoretically Population III stars can exist, these being stars

made from the original primordial material leftover after the big bang (Karttunen et

al., 2006). There is no observational evidence for the existence of Population III stars

but this is still an active area of research (Chandra & Schlaufman, 2021; Placco et al.,

2021).

Magnetic field

Stars are made of rotating plasma which generates a vast magnetic field, stretching

many astronomical units. Stars do not have a solid surface, meaning that areas closer

to the equator rotate faster than the polar regions. This is known as differential

rotation and is the result of centrifugal forces generated by the rotation of the star. As

a result, magnetic field lines become twisted and stretched, leading to very interesting

phenomena such as magnetic field re-connection and solar flares (Greene & Jones,

2004). To understand the true size of the Sun’s magnetic field, after 36 years travel,

the Voyager 1 space craft, on 25th August 2012, entered interstellar space, a region

of space outside the influence of the Sun, including its magnetic field (Izmodenov &

Alexashov, 2020). The Voyager 1 space craft had travelled a distance of 122 AU to

reach this point.
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A.4.3 Measuring Stellar Attributes

This section details the measurable attributes of a star, how they are measured and

the units of each measurement.

Right Ascension and Declination

Stars are mapped onto the celestial sphere, an imaginary sphere used as a projection

surface. The Earths equator is projected onto the celestial sphere to create a plane

known as the celestial equator. From here it is a simple exercise to create a coordi-

nate system, containing celestial north and south poles. Any line passing from the

celestial north pole, through the equator to the celestial south pole is known as a

meridian. The angular separation of a star from the celestial equator is known as the

declination and is denoted by the symbol δ. Declination is analogous to geographi-

cal latitude. The analogue of longitude in celestial terms is known as right ascension

(R.A.). Right ascension is measured as the angular distance, counterclockwise, from

a meridian from both poles passing through a point on the celestial equator known

as the vernal equinox, which is in the constellation of Aries. Using declination and

right ascension, the positions of stars in the sky can be accurately mapped. As these

measurements are both angular separations, they are measured in terms of degrees,

hours, minutes, and seconds (Greene & Jones, 2004).

Distance

Different techniques are used to measure the distance to stars, depending on how far

away they are. The simplest technique is known as stellar parallax. This technique

uses the Earth’s own orbit as a basis to perform different observations, 6 months apart.

Due to the movement of the Earth along its orbit, the position of nearby stars appear

to move when compared to the stars in the background. The apparent shift of position

of the star is calculated using the small angle formula as shown in Equation A.1:

D =
1

p
(A.1)

115



APPENDIX A. ADDITIONAL CONTENT

where D is the distance and p is the angular displacement measured in arc seconds

(Greene & Jones, 2004).

For objects that are further away, standard candles can be used to determine

their distance. This distance is calculated using the known luminosity, expressed as

magnitude, and the measured luminosity, using the Equation A.2 where M is the

stars absolute magnitude, m the apparent magnitude and d is the distance measured

in parsecs (Greene & Jones, 2004).:

M = m− 5logd+ 5 (A.2)

The standard candle technique is especially useful as there are several different

standard candles, including certain types of super-nova, and these can be seen across

great distances. Equation A.3 shows how the distance, d, to an object with known

luminosity is calculated, where L is the luminosity and F is the spectral flux density

(Greene & Jones, 2004).

d =

√
L

4πF
(A.3)

Combining accurate measurements of distance with right ascension and declination

has produced amazing three dimensional maps of the local galaxy. For example, the

GAIA space craft has accurately measured the positions of the closest one million stars

(Gilmore et al., 2012) and the information is publicly available as an app 1.

Radius

Computing the radius of a star depends on the proximity of the star to the observer.

If the star is close enough, and the distance between the star and observer is known,

then it is computed using the small angle formula where d is the distance to the star

and α is the angular diameter of the star, as shown in Equation A.4 (Greene & Jones,

2004).

1https://zah.uni-heidelberg.de/gaia/outreach/gaiasky
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R =
(α

2

)
∗ d (A.4)

Computing the angular diameter is simple in theory, but not so simple in prac-

tice. Very large telescopes are required to capture images at the necessary resolution.

Ground based telescopes suffer from effects of atmospheric distortion, meaning images

may not be crisp enough to determine the angular diameter. Astronomers have de-

veloped a system known as active optics to help work around atmospheric distortion.

Active optics is a system that uses a targeting laser and computers to deform the pri-

mary mirror in a telescope to reverse the effects of atmospheric distortion (Karttunen

et al., 2006).

Stellar radius values, R, are reported relative the radius of the Sun (6.96x108m),

denoted by the symbol R�, as shown in Equation A.5 (Greene & Jones, 2004)

R =
(α/2) ∗ d
R�

(A.5)

It is not possible to use direct imaging to measure the radius of stars that are

the same size of the Sun, or smaller. Astronomers have developed methods using

interferometry as a way around this problem. Occultation, the transit of another body

across the line of sight of a star, can also be used to measure its radius (Karttunen

et al., 2006).

Luminosity

Stellar luminosity is a measure of the power a star radiates over all wavelengths and is

measured in Watts. Stellar luminosities are reported relative to the luminosity of the

Sun, denoted by the symbol L�, (3.84x1026W). The luminosity of a star is estimated

using Equation A.6 where L is the estimated luminosity, R is the radius, σ is the

Stefan-Boltzmann constant and T is the temperature (Greene & Jones, 2004).

L = 4πR2σT 4 (A.6)

The problem with Equation A.6 is that the radius of the object is required and in
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practice this is very difficult to measure. A more robust method to estimate luminosity

based on spectral flux density is shown in Equation A.7 where F is the spectral flux

density and d is the distance to the object (Greene & Jones, 2004).

L =
4πd2

F
(A.7)

Equation A.7 removes the need to know the stellar radius, only the distance be-

tween the observer and object is required (Greene & Lambourne, 2006).

Light curve

The light curve of a star is the plot of the luminosity of a star over time. The light

curve is a useful tool to detect changes in luminosity. Variable stars are detected this

way, the first Cepheid variable being detected in 1784. Variable stars are often used

as standard candles (Greene & Jones, 2004).

Mass

The mass of a star is a measure of how much material is contained within the star

and is measured in Kilograms (kg). When dealing with mass on a stellar scale, the

numbers become very large. For example the mass of the Sun, denoted by the symbol

M�, is 1.99x1030 kg. For convenience, astronomers report stellar masses relative to

the mass of the Sun as shown in Equation A.8 where Ms is the mass of the star, M�

is the mass of the Sun and M is reported relative mass (Greene & Jones, 2004).

M =
Ms

M�
(A.8)

Mass can be measured by direct observations of binary systems by measuring the

period of the rotation of a system, the sum of the masses can be determined using

Equation A.9 where M and m represent the masses of the object in the binary system,

r is the radius of the distance between the two objects, G is the Gravitational Constant

and P is the orbital period (Greene & Jones, 2004).
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M +m =
42r3

GP 2
(A.9)

Temperature

Objects that emit continuous spectra are known as thermal sources. Thermal sources

have a property that produce a specific type of continuous spectrum known as a black-

body spectrum (also sometimes referred to as a Planck Spectrum). Black-body spectra

produce a very distinctive thermal light curve, appearing as a smooth line with an

obvious peak at a specific wavelength. This peak wavelength is directly proportional to

the temperature of the object. The peak wavelength and temperature are related using

Wien’s Displacement Law, shown in Equation A.10 where λ is the peak wavelength

and T is the temperature in Kelvin (Greene & Jones, 2004).

T =
2.90x10-3

λ
(A.10)

Continuous spectra from stars are not perfect black-body spectra, but they are a

very good approximation. Using Wien’s Displacement Law shown in Equation A.10,

the surface temperature can be approximated with very good accuracy from spectra.

However, if the luminosity and radius are known, then the temperature can be es-

timated directly as shown in Equation A.11, which is a rearrangement of Equation

A.6

T =

(
L

4πR2σ

)
1/4 (A.11)

The effective surface temperature is denoted with the abbreviation Teff (Binney &

Merrifield, 1998; Greene & Jones, 2004).

Surface gravity

The force of gravity at the surface of a star depends on the mass of the star and

its radius. As already outlined in section A.4.2, these values are not fixed, and as a

result of this two stars with the same mass can have different surface gravity values.
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Equation A.12 calculates the surface gravity for a star where g is the force of gravity,

G is the Gravitational Constant, M is the stellar mass and R is the stellar radius

(Greene & Jones, 2004).

g =
GM

R2
(A.12)

The surface gravity exerts pressure on the stellar plasma, and thus influences the

density of this material, and the densities at which the spectral lines are formed. This

can be directly measured from the spectrum. Surface gravity is reported in a log scale,

typically reported in units of cms-1 and denoted with the abbreviation log g (Binney

& Merrifield, 1998).

Metallicity

The chemical composition of a star is measured by comparing the abundance of Hy-

drogen (H) to any other heavy element in that star. Heavy element in this context

means an element heavier than Helium (He). Stars rich in iron (Fe) also tend to be

rich in other heavy elements, therefore the metallicity of a star is typically reported as

the abundance of Hydrogen to Iron using the abbreviation Fe/H. It can be measured

directly from the stellar spectra and is reported relative to the metallicity value of the

Sun, as shown in Equation A.13. As this is a ratio, it does not have any units (Binney

& Merrifield, 1998).

[Fe/H] = log10

(
n(Fe)

n(H)

)
star − log10

(
n(Fe)

n(H)

)
sun (A.13)

Motion

The space velocity of a star is a vector that is broken into two components, its radial

velocity and its transverse velocity. The radial velocity is measured directly from the

spectrum. This is commonly referred to as the red shift if the star is moving away

from the observer, or blue shift if the star is moving towards the observer. The word

’shift’ gives a clue to how this is actually measured, spectral lines for known elements
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appear to be shifted to either the blue or red parts of the spectrum. This phenomena

is known as the Doppler effect (Greene & Lambourne, 2006). The magnitude of this

shift is proportional to the radial velocity of the star. Spectral shifting can also be

influenced by the expansion of space (dark energy) but this is not a concern for objects

within a galaxy. The radial velocity is calculated using Equation A.14 where vr is the

radial velocity, λ’ is the measured wavelength, c is the speed of light in a vacuum and

λ is the actual wavelength (Greene & Jones, 2004).

vt = c

(
λ’ − λ
λ

)
(A.14)

To measure the transverse velocity, the angular distance the star has travelled is

used in Equation A.15

vr = dµ (A.15)

where d is the distance and μ is the angular displacement. This is the small angle

formula in use again. Velocities are reported in standard SI units of Kms-1 (Binney &

Merrifield, 1998).
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