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Abstract

This study investigates the validity and sensitivity of a novel model of instructional

efficiency: the parabolic model. The novel model is compared against state-of-the-art

models present in instructional design today; Likelihood model, Deviational model and

Multidimensional model. This models is based on the assumption that optimal mental

workload and high performance leads to high efficiency, while other models assume

that low mental workload and high performance leads to high efficiency. The investi-

gation makes use of two instructional design conditions: a direct instructions approach

to learning and its extension with a collaborative activity. A control group received

the former instructional design while an experimental group received the latter design.

A performance score was extracted for evaluation. The models of efficiency compared

were based upon both a unidimensional and a multidimensional measure of mental

workload, which were acquired through self-reporting from the participants. These

mental load measures in conjunction with the performance score contribute to the

calculation of efficiency scores for each model. The aim of this study is to determine

whether the novel model is able to better differentiate between the control and exper-

imental groups based on the resulting efficiency when compared to the other models.

The models were analysed and compared using various statistical tests and techniques.

Empirical evidence partially supports the proposed hypothesis that parabolic model

demonstrates validity, however lacks sufficient statistical evidence to suggest that the

model has better sensitivity and its capacity to differentiate between the two groups.

Keywords: Instructional design, Mental workload, Instructional efficiency, Valid-

ity, Sensitivity, Shift function, Classification.
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Chapter 1

Introduction

1.1 Background

Cognitive Load Theory is a widely known theory in educational psychology. It assumes

that working memory can process only explicit instructions. Explicit instructions are

direct and specific explanations aimed at facilitating problem solving or completion of

task. This is often referred to as the traditional teaching method and is structured.

Another method is the inquiry activity which is aimed at engaging learners by the

use of focused communication focused on cognitive trigger questions. This process

of forming knowledge is rather ill structured, as the goal is to reach an agreement

and construct knowledge collaboratively. Efficiency in learning and instruction is the

capacity to achieve established goals with minimum expenditure of effort or resources

(Hoffman & Schraw, 2010).

Efficiency is calculated based on the mental effort or workload exerted during a task

and the performance outcome. Ideally, any activity conducted should be as efficient

as possible. Research have been conducted on teaching methodologies that aims at

combining the traditional teaching method and a community of inquiry approach by

extending the former with the latter and comparing its efficiency (experimental) versus

the efficiency of traditional method alone (control). It is important to understand how

particular approaches to learning influence the performance of learners.

1



CHAPTER 1. INTRODUCTION

1.2 Research Problem

The comparison of groups typically involves the use of one central tendency value, e.g.

mean, which are not robust. It assumes that distributions differ only in the central

tendency, and not in other aspects. Tests on mean values are not robust to outliers,

skewness, heavy-tails, and for independent groups, differences in skewness, variance

and combinations of these factors (Wilcox & Keselman, 2003; Wilcox, 2012). There-

fore, it is important to consider and compare entire distributions. Considering there

are more informative statistics available, there is no particular reason why the mean

should be used to compare two different groups.

It has emerged in the past that in education, the assumption / rationale that

underpins efficiency is that low mental effort with high performance scores provides

the best efficiency. By contrast, high mental effort with low performance provides

the worst efficiency. Although the framework of optimal effort / mental workload is

applied widely in other fields, it is not widely used when it comes to instructional

efficiency. Another problem with the current models of efficiency is that either they

are affected by variability of all the observations in the group or that they are sen-

sitive to minor changes in the sample of observations. The parabolic model looks to

addresses these issues. The parabolic model assumes that optimal workload and high

performance provides the best efficiency. Currently there are no applications of the

parabolic model in the field of education.

The current research proposes introducing the parabolic model and comparing it

with other models of efficiency, the models can be compared and the model which best

differentiates the groups can be determined. The study must be limited to environ-

ments that only use the traditional method approach to learning so that the compar-

ison can be justified. There are a number of issues with small sample sizes such as

low reproduciblity and inflated effect size estimations which must be addressed where

possible.

2



CHAPTER 1. INTRODUCTION

1.3 Research Objectives

The aim of this research is to evaluate the effectiveness of the parabolic model and de-

termine whether it is able to distinguish between the control and experimental groups

better than the existing models of efficiency in third level education.

The objectives of this research are as follows:

1. Conduct a literature review and understand the state-of-the-art knowledge that

is present regarding the area of research.

2. Conduct a secondary empirical research.

• Form the research hypothesis.

• Explore, understand and process the data.

• Explain the various methods in the design.

• Determine the most suitable techniques.

3. Implement the design of the experiment in R and obtain the results.

4. Evaluate the results and discuss the findings to verify whether the research hy-

pothesis is accepted or rejected.

5. Identify and suggest future areas of research which may improve and assist in

determining a better understanding of the models of efficiency in third level

education.

1.4 Research Methodologies

This work involves summary, collation and analysis of existing research, and the use of

pre-existing data makes this a secondary research. The comparative study conducted

will be an empirical investigation on quantitative properties of the dataset, which are

direct and measurable. It is aimed at formulating and testing a hypothesis pertain-

ing to the features. The results will be plotted on a suitable graphical method for

3



CHAPTER 1. INTRODUCTION

comparison and a logical conclusion will be made from the available facts. The use

of empirical evaluation techniques, such as statistical methods and models employed,

establishes a deductive basis for future problems.

1.5 Scope, Limitations and Delimitations

The scope of this study is limited to lectures related to Computer Science in Technolog-

ical University Dublin, that use the in-person traditional direct instruction approach

to learning in third level education. Lectures delivered online and labs were outside

the scope of this research.

The number of participants from the different lectures varied each time and was in-

consistent, leading to inconsistent splitting of the groups and small sample sizes,which

means generalisability may not be possible. Another limitation faced is the number

of observations in the dataset (455). Due to the ongoing pandemic situation, the in-

person collection of data from lectures was no longer possible and had to cease from

February 2020.

Various methods of measuring mental workload such as Workload Profile and phys-

iological measures were rejected in favour of subjective measures such as RSME and

Raw NASA-TLX, because they were outside the scope of this research.

4



CHAPTER 1. INTRODUCTION

1.6 Document Outline

Chapter 2: Literature Review informs the reader on the related background that

originated this research. It describes the relevant literature related to key areas of this

research such as cognitive load theory, instructional design, models of instructional

efficiencies and mental workload measures.This chapter will conclude with identifying

the research gaps in the existing literature and the research question.

Chapter 3: Design and Methodology describes the design of the empirical

experimental framework and the methodology employed with the aim to solve the

research question. It will detail the collection of data, the models and statistics to be

employed and evaluation of the models. The strengths and limitations of the design

of this experiment will also be discussed in this chapter.

Chapter 4: Results, Evaluation and Discussion outlines the results, its anal-

ysis and interprets the data from the implementation of the experiment. The results

will be analysed and the models will be evaluated as described in Section 3.5. The

chapter will also discuss strengths and limitations of the results and evaluation from

this experiment and problems encountered.

Chapter 5: Conclusion will conclude the research by providing a summary of

the work carried out, highlighting the contribution to the general body of research

within instructional efficiency in third level education. Further areas of investigation

and research will be addressed in order to potentially improve on the results found for

future work.

5



Chapter 2

Literature Review

The aim of this chapter is to inform the reader with basic notions of cognitive load

theory, mental workload, instructional design, instructional efficiency and the different

models of efficiency used in the third level education setting. This theoretical content

is crucial to provide a clear layout of the proposed experiment as devised in chapter 3.

2.1 Cognitive Load Theory

Cognitive Load Theory (CLT) is a widely known theory in Educational Psychology,

which is used to enhance the learning phase by developing or applying instructional

teaching techniques based on the limitations of human cognitive architecture. This is

done by finding the optimum cognitive load imposed on working memory of learners

while performing a task. Cognitive Load Theory provides an effective framework for

designing and delivering work to learners of any standard. It is backed by empirical

research supporting different amounts and types of instruction according to the level

of learners and it enables instructors to provide well crafted guidance in their topics.

It states that effective learning can only take place where the cognitive capacity of

an individual in a particular domain is not exceeded. Human Cognitive Architec-

ture (HCA) provides a generic framework of the information-processing stages that

learners use to encode, store, and modify information for the purposes reasoning and

decision making (Atkinson & Shiffrin, 1968; Reed, 2012). It describes the necessary

6



CHAPTER 2. LITERATURE REVIEW

and sufficient conditions for a human to input, process and store the data which in

turn becomes information and output the results. Cognitive Load includes units of

knowledge and elements of relationship. The Cognitive Load of a task is created when

the units of knowledge interact with the relationship elements (Sweller, 2003).

Sensory Memory, Short-term Memory, also known as Working Memory, and Long-

term Memory are three essential dimensions of HCA. Atkinson and Shiffrin(1968)

propose that the input of data entered via sensory memory is processed in the working

memory and then proceeds to be stored in the Long-term memory through their Modal

model in Human Processing. Working memory is limited and it processes incoming

information from sensory memory, long term memory instead is unlimited, highly

structured and it stores relevant information as acquired knowledge (Miller, 1956;

Baddeley, 2001). Short term memory, as described by Miller(1956), has the capacity

to hold seven plus or minus two chunks of information at any given time. It is not

specified whether the chunks of information were novel or familiar, interrelated or

discrete; simply that a chunk is a unit of knowledge. Long-term memory is a permanent

store of experience, knowledge and process, all of which is held outside the conscious

awareness until recalled in the working memory. It does not have an executive function

(Baddeley, 2001). The information stored in the long-term memory in knowledge

structures of varying complexity is called ”Schemata” (Sweller, 2003). These schemata

makes the construction and transfer of knowledge possible. This is the goal of learning.

The more schemata an individual holds for a particular topic, the more advanced they

become in learning. Schema construction is believed to reduce the load in working

memory. Leaving sufficient cognitive resources in the working memory to process new

information is one of the core objectives of educational instructional design (Orru &

Longo, 2019b). Explicit instructions are required to process information and build

schemata of knowledge in working memory. Traditionally, cognitive load theory has

focused on instructional methods to decrease extraneous cognitive load so that the

available resources can be fully devoted to learning. Many methods have been devised

and will continue to be devised (Sweller, 2003).

7



CHAPTER 2. LITERATURE REVIEW

2.1.1 Types of Cognitive Load

Cognitive Load Theory distinguishes three types of cognitive load. They are Intrinsic

Load, Extraneous Load and Germane Load (Sweller, 2010; van Gog & Paas, 2008).

Intrinsic Load

Intrinsic Cognitive Load is concerned with the underlying complexity of informa-

tion which must be understood unencumbered by instructional issues (Sweller, 2010).

The intrinsic load is the degree of element interactivity during problem solving. El-

ement interactivity corresponds to the number of information to be simultaneously

processed by working memory in problem solving or in task learning (Orru & Longo,

2019b). Materials with a low element interactivity imposes low working memory load

because individual elements can be learned with minimal reference to other elements,

whereas high element interactivity imposes high working memory load because ele-

ments interact with each other heavily and so cannot be learned in isolation.

Every knowledge unit has an intrinsic cognitive load. While it can be reduced to

rote components initially, it still has a minimum, irreducible cognitive load (Van Mer-

rienboer & Sweller, 2005). For a long time, intrinsic load was considered unalterable by

instruction, but recently some research effort has been devoted to finding techniques

to manage this load (Pollock, Chandler, & Sweller, 2002), which may be unavoidable

in situations where tasks are extremely complex for learning to commence. Sweller,

Van Merrienboer, and Paas (2019) also acknowledge that for a given task and learner’s

knowledge level, intrinsic load is fixed and cannot be altered other than by either chang-

ing the basic task or changing knowledge level of the learner. They argue that it can

only be altered by changing the nature of what is learned or by the act of learning itself.

8



CHAPTER 2. LITERATURE REVIEW

Extraneous Load

Working memory load is not only imposed by the intrinsic complexity of the ma-

terial that needs to be learned. Extraneous cognitive load is imposed by instructional

procedures to the process of learning that are less than optimal. Unnecessary de-

tail, insufficient instruction, inappropriate orders of delivery and poor use of resources

can all contribute to extraneous cognitive load (Van Merrienboer & Sweller, 2005).

Beckmann (2010) suggests that element interactivity is a major source of working

memory load underlying extraneous as well as intrinsic cognitive load. ”If element

interactivity can be reduced without altering what is learned, the load is extraneous; if

element interactivity only can be altered by altering what is learned, the load is intrin-

sic” (Beckmann, 2010). In educational setting, especially in the context of third level

education, instruction material is often presented in split-attention format, which in-

creases extraneous cognitive load compared to physically integrated formats (Sweller,

Chandler, Tierney, & Cooper, 1990). For example, there is a split-attention effect,

Chandler and Sweller (1992), which occurs when cross-referencing sources from dif-

ferent places. Van Merrienboer and Sweller (2005) have shown that tasks such as

reading from slides or looking up data tables while reading textual information also

splits attention, known as the modality effect. They suggest that such effects can be

excluded from learning by instructional interventions such as providing materials with

all required information in one place.

Germane Load

Germane load is the cognitive load on working memory generated by explicit in-

structional designs aligned to task difficulty. It is created by activities especially

designed to create scheme construction. (Sweller, Van Merrienboer, & Paas, 1998).

Worked examples at the appropriate stages of learning impose germane load. Ger-

mane cognitive load also can be specified in terms of element interactivity. In contrast

to the emphasis by intrinsic and extraneous cognitive load on the characteristics of
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the material, germane cognitive load is concerned only with learner’s characteristics.

It refers to the working memory resources that the learner devotes to cope with the

intrinsic cognitive load (Sweller, 2010). Germane load does not constitute an indepen-

dent source of cognitive load.

Sweller and colleagues, with their attempt to define cognitive load within the dis-

cipline of Educational Psychology and for instructional design, believed that the three

types of cognitive load are additive. This implies that the total cognitive load experi-

enced by a learner is the sum of all three types of cognitive load.

2.2 Instructional Design

Cognitive load theory has used the human cognitive architecture to devise cognitively

effective and efficient instructional procedures (P. A. Kirschner, Sweller, Kirschner, &

Zambrano R., 2018). Instructional design is a field of study that attempts to com-

bine education, psychology and communication to produce the most effective ways or

strategies for a specific group of learners. In other words, it is the design of instruc-

tional materials. The principles of instructional design also considers how participants

learn, what medium of delivering the topic will be most effective and meaningful so

that they can better understand the topics being taught.1 Sweller (2011) acknowledge

that while cognitive load theory is not unique in using human cognition to generate

instructional procedures, it is regrettably rare for instructional design to be based on

human cognitive architecture.

2.2.1 Direct Instructions

The premise for acquiring knowledge in CLT is that learners have to be instructed

by means of direct instructional designs (Sweller et al., 2019; Sweller, 2016). It as-

sumes that working memory can only process explicit and direct instructions. Direct

1Purdue University. What is instructional design? Retrieved from

https://online.purdue.edu/blog/education/what-is-instructional-design
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instruction has come to have many different meanings, all of which are associated

with some form of structured teaching. Direct instructional guidance is defined as

providing information that fully explains the concepts and procedures that students

are required to learn as well as learning strategy support that is compatible with hu-

man cognitive architecture (P. Kirschner, Sweller, & Clark, 2006). It is a systematic

attempt to build effective academic instruction that includes all of the school-based

components necessary to produce academic growth (Slocum, 2004). To teach effec-

tively and efficiently, big ideas must be conveyed to the learners in a way that clear,

simple, and direct. According to Peterson (1979), direct instruction has the follow-

ing characteristics: academic focus, little learner choice of activity, instructor-centered

focus, potential to cater for a large group, use of factual information and controlled

sessions.

According to the National Institute for Direct Instruction, direct instructions op-

erate on some key principles2, some of which are:

• All students can be taught.

• All details of instruction must be controlled to minimize the chance of students’

misinterpreting the information being taught and to maximize the reinforcing

effect of instruction.

2.2.2 Community of Enquiry Technique

Inquiry is proposed as teaching and learning technique that is deeply linked with a

continuous auto-corrective process of knowledge development. Through the process

of inquiry, an unsatisfactory situation can be converted into satisfactory by connect-

ing all of its constituent into a coherent and unified whole (Dewey, 2007). Inquiry

techniques are proposed in the educational context to improve the comprehension of

complex learning tasks (Garrison, 2007). The community of inquiry may be defined

2Engelmann, S. (n.d.).Basic philosophy of direct instruction (DI). Retrieved from

https://www.nifdi.org/what-is-di/basic-philosophy
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as ‘a teaching and learning technique, an instructional technique of a group of learners

who, through the use of dialogue, examine the conceptual boundary of a problem-

atic concept proceeding all the parts this problem is composed of in order to solve it’

(Orru, Gobbo, O’Sullivan, & Longo, 2018). The collective work of the group creates

what is known as a collective working memory effect which enables learners to share

the working memories among multiple participants that share the same task. The

assumption behind this effect is that the use of working memory of many individuals

can reduce the overall cognitive cost of the task at hand. This also implies that the

working memory capacity of the group may be increased (P. A. Kirschner et al., 2018).

A theory that is linked to the inquiry method is the Social Constructivism The-

ory, which is a variable of the Theory of Constructivism. Since learning is consid-

ered to be an active process with the learners constructing their knowledge based on

experience and reflecting on this experience, social constructivism focuses on the so-

cial and cultural context which shapes the construction of knowledge (Simina, 2012).

Social constructivism upholds the idea that human development is socially situated

and knowledge is constructed through interaction with others. Social constructivist

methods are implemented in educational institutions, including third level educational

institutions. Instructors encourage the students to actively participate in ongoing dis-

cussions and use the responses from the students to create lesson plans and modify

content where necessary. this allows opportunities for students to create associations

for the subject topic.

According to Sweller (2009), constructivism ignores the human cognitive architec-

ture. As a consequence, constructivism cannot lead to instructional design aligned to

the way humans learn, so they are set to fail due to lack of explicit instructional designs

(P. Kirschner et al., 2006). However, this idea is argued stating that in educational

psychology, there is no relationship between inquiry methods and direct instruction

(Jonassen, 2009). This is based on the premise that the direct instructions approach

and the inquiry approach come from different theoretical assumptions and they utilise

12



CHAPTER 2. LITERATURE REVIEW

different methods. In order for the two methodologies to be compared, they have to

share a learning outcome or same dependent variable.

The choice of instructional design / approach should depend on the educational

objective an instructor wishes to attain(Peterson, 1979). If the learning outcome is the

improvement of inquiry skills, then direct instructions should not be used. However, if

the outcome is to teach basic understanding of topics, then direct instructions would

be more appropriate. Another consideration would be the type of student who is being

taught. A student with low abilities might need the structured delivery of the direct

instructions, whereas a student with high abilities may benefit from the social inquiry

with others in a less direct approach. The effectiveness of the methods also requires

an element of decision making from the instructor.

2.3 Mental Workload

Despite all the years of research, no proven measure of the three cognitive loads have

emerged, based on empirical research. This has lead to the development of many mod-

els by employing many techniques (Longo, 2011, 2012, 2014; L. M. Rizzo & Longo,

2017). The concept of cognitive load is mainly employed in the education field, whereas

the concept Mental Workload, a psychological construct strictly connected to cognitive

load, is employed is mainly employed in ergonomics (Longo & Leva, 2017). The for-

mer relates to working memory resources only, whereas latter takes into account other

factors as the level of motivation, stress and the physical demand experienced by par-

ticipants as a consequence of the task. Despite of their different fields of research, they

both assume that working memory limits must be considered to predict performance

while accomplishing an underlying task. Although the field of educational psychology

is struggling to find ways of measuring mental workload of learning tasks, there is

an entire field within Ergonomics devoted to the design, development and validation

of reliable measures of mental workload. Mental Workload (MWL) is defined as the

volume of cognitive work necessary for an individual to accomplish a task over time

13



CHAPTER 2. LITERATURE REVIEW

(Longo, 2015; L. Rizzo, Dondio, Delany, & Longo, 2016).

The measurement of cognitive load is of crucial importance for instructional re-

search. The few efforts in instructional research to measure cognitive load are almost

exclusively concerned with performance measures (Paas, Van Merrienboer, & Adam,

1994). Different techniques, with different advantages and disadvantages, have been

proposed in education to measure mental workload (cognitive load) and they can be

clustered in two main groups: Subjective and Objective measures (Plass, Moreno, &

Brünken, 2010).

Subjective Measures are more suitable to be applied in an educational context and

in general are easy to administer and analyse, in contrast to objective measures. Sub-

jective Measures, also referred to as self-reported measures, rely on the individual’s

perceived experience of the interaction with a learning task. It is based on the assump-

tion that only the individual involved in the task can provide an accurate and precise

judgement about the experienced mental workload, as employed in a number of studies

(Junior, Debruyne, Longo, & O’Sullivan, 2019; Moustafa & Longo, 2019). The per-

ception of the individual can be gathered through means of a survey or questionnaire.

Subjective measures include both Uni-dimensional approaches and multidimensional

approaches, which have been conceptualised, applied and validated. The most com-

monly used subjective measures are uni-dimensional. They provide an index of overall

workload, but provide no information about its temporal variation. Multidimensional

measures can determine the source of mental workload. They seem to be the most

appropriate types of measurement for assessing mental workload because they have

demonstrated high levels of sensitivity and diagnosticity (Rubio Valdehita, Ramiro,

Garćıa, & Puente, 2004).

2.3.1 Uni-dimensional Measure

Paas (1992) equals the effort of learners to the overall cognitive load, thus mental effort

alone , one variable, can measure the different types of load (Paas, 1992). The modified
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Rating Scale of Mental Effort (RSME) (F. Zijlstra & Doorn, 1985) is a unidimensional

instrument used to measure subjective mental workload. This assessment procedure

is built upon the notion of effort exerted by a human over a task. A subjective

rating is required by an individual through an indication on a continuous line, within

the interval 0 to 150 with ticks each 10 units, each accompanied by a descriptive label

indicating a degree of effort (F. R. H. Zijlstra, 1993). Example of labels are ‘absolutely

no effort’, ‘considerable effort’ and ‘extreme effort’. The overall mental workload of

an individual coincides to the experienced exerted effort indicated on the line. RSME

requires no special device to record the measurements. The method is simple, and it

allows for quick response and applicability without interfering with the work of the

individuals (Ghanbary Sartang, Ashnagar, & Sadeghi, 2016). RSME has shown a poor

diagnostic power, nevertheless it has demonstrated a good degree of sensitivity across

different empirical studies (F. R. H. Zijlstra, 1993).

2.3.2 Multidimensional Measure

A well-known multidimensional subjective measure is the NASA Task Load Index

(NASA-TLX). Although widely employed in Ergonomics, this has been rarely adopted

in Education. (De Jong, 2010)(2010) argues that the use of this multidimensional

measure is exceptional in education. A few studies have confirmed its validity and

sensitivity when applied to educational context (Fischer, Lowe, & Schwan, 2008; Ger-

jets, Scheiter, & Catrambone, 2006; Kester, Lehnen, Van Gerven, & Kirschner, 2006).

It focuses on six different components of load. These represent independent clusters

of variables: mental, physical, and temporal demands, frustration, effort, and perfor-

mance (Hart & Staveland, 1988). In general, the NASA-TLX has been used to predict

critical levels of mental workload that can significantly influence the execution of an

underlying task.

To collect ratings for the dimensions, a twenty grade scale is utilised for each

dimension. A score from 0 to 100, at intervals of 5, is collected on each scale from

the respondents. Then a weighting procedure is used to connect all the individual
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ratings together. A paired comparison task is required from the respondent before the

workload calculation can be undertaken. These paired comparison allows to choose

the more pertinent dimension over all pairs of the six dimensions. A workload score

from 0 to 100 is calculated for each task by multiplying the weight by the individual

dimension scale score, summing aacross scales, and then dividing by 15 (the total

number of paired comparisons). The formula to calculate NASA-TLX score is as

follows:

NASA :
[
0..100

]
ε < NASA =

(∑6
n=1 di × wi

)
15

where di is the score of each question while wi is the weight for that question

generated by the pairwise comparison procedure. There is a modified version the

NASA-TLX, the raw NASA-TLX (RAWNASA). With this technique, the weighting

process is eliminated. (Hart, 2006)(2006) summarised the results of research conducted

along various studies in which the RAWNASA method was compared with the NASA-

TLX. Based on those studies, RAWNASA was found to be mode sensitive (Hendy,

Hamilton, & Landry, 1993), less sensitive (Liu & Wickens, 1994) or equally sensitive

(Bittner Jr., Byers, Hill, Zaklad, & Christ, 1989). NASA-TLX, RAWNASA and RSME

are reliable and valid measures of mental workload when applied in the educational

context (Longo & Orru, 2019).

2.4 Instructional Efficiency

Efficiency of instructional designs in education is a measurable concept (Longo &

Orrú, 2020). Efficiency in the context of problem-solving, learning and instruction is

the capacity to achieve established goals at the minimal expense of resources (Hoffman

& Schraw, 2010). Paas et al. (1993; 1994) suggest that combining performance and

mental effort measures allow the calculation of an index of mental efficiencies. Studies

that investigated processing instructional efficiency made use of uni-variate scores to

compare the impact of an experimental condition on a control group. Sweller(2010)

argues that instructional effectiveness will be compromised by the extent that instruc-
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tional choices require learners to devote working memory resources to dealing with

elements imposed by extraneous cognitive load. They also state that, at a basic level,

understanding efficiency is an essential precursor to assessing educational effectiveness

and improvement. Various studies that propose measures of efficiency have been con-

ducted in the past. The most common and widely used measures / models of efficiency

will be discussed below.

2.4.1 Models of Instructional Efficiency

Deviational model

In search of a single measure to determine the relative efficiency of instructional

conditions in terms of learning outcomes, Paas and Van Merrienboer (1993) devel-

oped a computational approach for combining measure of performance with measure

of mental effort to attain efficiency. This was characterised as the Instructional Condi-

tion Efficiency. This is referred to as the Deviational model of efficiency by Hoffman

and Schraw (2010) because this model computes the difference between a standard-

ised score of performance and a standardised score of effort. The reasoning behind

this formula is based on the assumption that the resulting efficiency is high when an

individual experiences high performance and low effort. Conversely, the resulting ef-

ficiency is low when an individual experiences low performance and high effort (Paas

& Van Merrienboer, 1993). The deviational model of efficiency computes a measure

of efficiency based on how the participant performs relative to the group (Hoffman &

Schraw, 2010). It measures the distance from the observed score to the ideal efficiency

slope. The deviational model provides a group-referenced score representing an indi-

vidual efficiency that requires scores to be converted to a common scale. Efficiency

score using the deviational model is computed using the following formula:

Efficiency =
(ZP − ZR)√

2

where ZP = Standardised Performance Score and ZR = Standardised Effort Score.
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If ZP - ZR > 0, then efficiency is positive. If ZP - ZR < 0, then efficiency is negative.

According to the authors, the highest efficiency condition occurs when performance

was maximum and effort was minimum. The lowest efficiency corresponds to the

lowest performance and highest effort(Paas & Van Merrienboer, 1993). There are con-

cerns expressed by Hoffman and Schraw(2010) that the efficiency score computed by

the deviational model is problematic because the standardised scores are affected by

variability and performance of others within the group. They also expressed that the

results should be interpreted cautiously although the results may be mathematically

identical in magnitude and direction, as they may be conceptually incommensurate.

The original formula of calculating instructional efficiency proposed by Paas and

Van Merrienboer (1993) was based on performance and mental effort invested to at-

tain this performance. Subsequently, further studies by other researchers, for example

(Tindall-Ford, Chandler, & Sweller, 1997), have combined mental effort spent during

training with performance to calculate the instructional efficiency. The original ap-

proach reflects learning efficiency, the latter approach is argued to reflect both training

and learning efficiencies (Tuovinen & Paas, 2004).

Likelihood model

One of the measures of efficiency developed within the education context is based

upon the likelihood model put forward by Hoffman and Schraw(2010). Efficiency is

this model is computed as a ratio of work output to input. In other words, a ratio of

performance to perceived mental effort. Output is identified with learning and input

is identified with time, work or effort (Smith & Street, 2005).

Efficiency score using the likelihood model is computed using the following formula:

Efficiency =
P

R

where P = Raw score of performance and R = Raw score of perceived effort.
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An estimation of the rate of change of performance is calculated by dividing P

by R and the resulting ratio represents the individual efficiency based on individual

scores of performance and effort (Hoffman & Schraw, 2010). The ratio ranges from

zero to extensive positive values; it goes towards zero when performance is low and

effort is high (low efficiency) and conversely, goes towards the extensive positive value

when performance is high and effort is low (high efficiency). The authors argue that,

compared to the deviational model of efficiency, the likelihood model provides an un-

ambiguous measure because the inputs are not standardised scores, and there is no

restrictions in the range of efficiency scores. However, the resulting efficiency here is

always going to be positive. it must be interpreted with caution because the formula

assumes that the work input is not zero (Hoffman, 2012). It is also acknowledged that

efficiency scores based on this model is supposedly more reliable and sensitive to minor

effect size changes compared to the deviational model. An extension on this likelihood

has been employed by Kalyuga and Sweller(2005) where an extra reference to a crit-

ical value is used, under or above which the efficiency can be considered negative or

positive(Kalyuga & Sweller, 2005). The authors suggest to obtain the critical value by

dividing the maximum performance score by maximum effort exerted by a learner in

order to establish whether that learner is competent or not. The ratio of the critical

is based on the underlying assumption that an instructional design is inefficient if a

learner invests maximum effort in a task without reaching maximum performance and

vice-versa. (Kalyuga & Sweller, 2005). Through this extended formula, the model

evolves from one being able to define only positive efficiency score to one capable to

defining a positive / negative efficiency.

Multidimensional model

Tuovinen and Paas(2004) extended the original deviational model formula pro-

posed by Paas and Van Merrienboer(1993) and the adapted deviational models of

other researchers by including a third dimension to the model. The authors referred

to this as the ”3D Instructional condition efficiency model”. This model was devel-
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oped on the assumption that it is feasible for two individuals to achieve the same

performance score, while experiencing different levels of mental effort. It is assumed

that the individual who experienced the least effort, while achieving the same perfor-

mance was able to learn the topic more efficiently compared to the other individual.

This three factor or dimension approach utilises a performance component as well as

effort expended during both learning and test conditions. The authors claim that the

proposed model should be more sensitive to the individual’s learning than the perfor-

mance score alone and therefore, provides a better efficiency. Efficiency score using

the model is computed using the following formula:

Efficiency =
(ZP − ZRL − ZRT )√

3

where ZP = Standardised Performance Score, ZRL = Standardised Learning Effort

Score and ZRT = Standardised Test Effort Score

In a comparison study conducted by Hoffman(2012), there exists a computational

difference in the formula originally proposed by Tuovinen and Paas(2004). In the

comparative study, the formula is given as follows:

Efficiency =
(ZP − ZRL + ZRT )√

3

According to the author, the 3D Instructional condition efficiency model uses subtrac-

tion to calculate a difference. This formula relies upon non-associative mathematical

properties, meaning that the inverse of mathematical operations will not produce the

same difference or quotient (Hoffman, 2012). However, there seems to be no evidence

to support this explanation contained within the research document. Efficiency scores

that rely on the standardised scores of performance and perceived effort are most use-

ful determining the magnitude of difference.
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Parabolic model

Johnes, Silva, and Thanassoulis (2017) state that high efficiency occurs when out-

puts from education (such as test results) are produced at the lowest level of financial,

cognitive or temporal resources (Johnes et al., 2017). The general assumption is that

as the difficulty of a task increases, so does the effort required to complete it; and as a

result, the performance usually decreases. Excessive workload caused by a task using

the same resource can create problems and result in errors or lower task performance.

When workload increases it does not mean that performance always decreases: perfor-

mance can also be affected by workload being too high or too low (Nachreiner, 1995).

A high level of mental workload can be related with a high level of focus on the task

whereas a low level might means little or no mental resource allocated to a task. Since

the working memory is limited in its capacity, it is important not to exceed its limits in

order to get the best performance. An optimal level of mental workload facilitates the

learning process, whereas a high level (overload) or a low level (underload), hampers

the learning phase (Longo, 2016). Motivated by these statements, and the general

assumption of what constitutes high / low efficiency, this novel model of instructional

efficiency was developed by Dr. Luca Longo, Technological University Dublin.

The underlying principle behind the parabolic model of efficiency is an assumption

based on the expected relationship between performance and mental workload. This

is represented as a parabola (curved black line) in Figure 2.1. The expectation with

this parabola is that for an amount of exerted mental workload, a certain performance

should be achieved and vice-versa; to achieve specific performance, a certain amount

of mental workload should be exerted. Another important assumption for this model

is that the individual is expected to have no prior knowledge on the activity / topic.

According to the parabola, the Maximum Efficiency is expected to be achieved when

the mental workload exerted is at 50% of maximum capacity (MWLmax / 2) and the

performance is at maximum or 100% (Pmax). This is referred to as the ideal point.

Additionally, the point on the plane is where a person achieves zero performance and
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exerts zero mental workload, zero efficiency, is referred to as the worst point.The

way that the mental workload should be measured for this particular model is not

specified, however it is expected that any measure of mental workload could be used,

as long as it is defined clearly.

Figure 2.1: Graphical representation of the parabolic model of efficiency proposed by

Dr. Luca Longo, Technological University Dublin

Four points are represented over a two-dimensional Cartesian coordinate system.;

ideal point, worst point, the expected point and the observed point. They are as

follows:

Ideal ((MWLmax / 2) , Pmax)

Worst (MWL0 , P0)

Expected (Expected MWL , Expected P) [on the parabola]

Observed (Actual MWL , Actual P)

where MWL = Mental Workload and P = Performance.

The parabolic model calculates an efficiency score on the premise of distance between
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the various points as specified above. Efficiency score using the parabolic model is

computed using the following formula:

Efficiency =

[
1− D(Lox,ideal)

D(worst,ideal)

]
+
[
1−

∣∣D(Lox,Lex)
∣∣

MWLmax/2

]
2

where D = a measure of distance between two specified points, MWLmax = Maxi-

mum rating of Mental workload, o = observed point, e = expected point, ideal = ideal

point, worst = worst point. There are two other elements to note from this formula

which are provided for reference; L = The reference learner and x = nth observation.

These can be observed in Figure 2.1 for better understanding.

The idea behind this model of efficiency is very theoretical and much more complex

than meets the eye and certainly more empirical research is required to prove the

validity and sensitivity of this model (Longo, 2018). According to CLT, the parabolic

model could be potential indicator of Germane load. For example, an individual who

achieves zero performance after exerting maximum workload would receive a very low

efficiency score, but not zero. This is because the individual would be engaged in

the activity to the point where there is an overload of mental workload but failed

to achieve any performance. However, the activity / instruction delivery should not

be penalised for such an outcome. The instruction delivery would still be considered

somewhat efficient because there is active participation from the individual. There is

no concept of a negative efficiency with this model, similar to the likelihood model,

because it is not a relative scale. The range of values for efficiency score based on this

model of efficiency is between 0 and 1.
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2.5 Gaps and Research Question

It is vital to develop models of efficiency that are relevant to education and a wide

range of other disciplines. Research in education and psychology currently relies on

competing models, despite the fact that little attention has been paid to differences

among these models and the implications of these differences for understanding and

improving efficiency (Hoffman & Schraw, 2010).

Formulas of instructional efficiency exist for the evaluation of instructional condi-

tions, based upon combinations of performance and perceived mental effort / workload.

However, the gap that emerged from the literature review points to the lack of compar-

ison between the different models of efficiency in the third-level educational domain.

Moreover, a lack of literature on the parabolic model exists. The parabolic model is

not a proven model yet, it is only a theoretical concept. Therefore, to be recognised

and gain credibility, the model needs to be examined, evaluated and compared with

other state-of-the-art models to determine it’s validity and sensitivity. All the models

are theoretically different to each other and should not behave like each other. There-

fore, the assumption here is that there would be moderate correlation between them.

A moderate correlation is expected to ascertain that the different models of efficiency

are measuring the same conceptual outcome.

Research Question

The research question being proposed in this study is as follows:

To what extent can we compare and discriminate between the control and experimental

groups using the parabolic model when compared to the other models of instructional

efficiency in third-level classes?
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Design and Methodology

This chapter explains the design of the experimental framework with the aim to solve

the empirical research question.

3.1 Research Hypothesis

Given the research question in chapter 2, a primary research experiment was designed,

and the following research hypothesis was set:

“H1: IF the Parabolic model of efficiency (PM) is employed to compute teaching and

learning instructional efficiencies in 3rd level classrooms, THEN it is expected that

it exhibits higher Sensitivity AND higher Discriminant Validity than the Likelihood

(LM) and Deviational (DM) models AND moderate to strong Concurrent Validity

with them.”

The implementation of the experiment will take place in several stages. The first

stage is data understanding which includes data gathering. The second stage consists

of data preparation to proceed with the study. The third stage consists of data mod-

elling which describes the different models of instructional efficiency employed and

how the efficiencies will be calculated. The final stage consists of model evaluation

which explains the various ways in which the models will be evaluated. Figure 3.1

25



CHAPTER 3. DESIGN AND METHODOLOGY

illustrates the flow of the experiment.

Figure 3.1: Flow of Experiment Design

3.2 Data Understanding

Data for this experiment was collected by Giuliano Orru from various classes and

modules in Technological University Dublin (Orru et al., 2018; Orru & Longo, 2019a,

2019b, 2020). The participants associated to the modules were informed of the crite-

ria for the voluntary participation in the experiment and complete anonymity of any

published data. Study Information, along with participant form were distributed to

each participant at the beginning. The consent form was approved by the Ethical

Committee of Technological University Dublin. After the participants completed the

study information and consent forms, the participants were divided into two groups at

random: control and experimental. The participants in each class were divided evenly

as far as practicable.

The experiment compares two instructional design conditions. The first design fol-

lowed the direct instruction approach to learning, while the second design extended
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that with a collaborative inquiry activity designed to replicate the community of in-

quiry approach to learning. The former approach involved a theoretical explanation

of a chosen topic, whereby the instructor presented the information through direct

instructions. The direct instructions were specific and clear, aimed at facilitating the

learning and problem solving. The latter approach extended the instructions with a

guided inquiry activity amongst participants based on some cognitive trigger ques-

tions. Both groups received direct instructions, while only the experimental group

subsequently participated in the collaborative inquiry activity. The purpose of this

design is to establish whether the extension improves the efficiency of learners com-

pared with learners who receive direct instructions only.

After the topic was presented to the class by the instructor, the control group par-

ticipants received questionnaires aimed at quantifying the effort and mental workload

they experienced, using Rating Scale Mental Effort (RSME) and the NASA task load

index (NASA-TLX) factors respectively, along with a multiple-choice questionnaire

(MCQ) associated to the topic taught. The experimental group was split into teams

of three or four participants for the inquiry activity. The participants discussed and

exchanged information related to the topic and formed informed agreements collabo-

ratively. The participants then wrote the shared answers individually to the cognitive

trigger questions. After the activity, the experimental group participants received

questionnaires aimed at quantifying the effort and mental workload they experienced,

along with a multiple-choice questionnaire (MCQ) associated to the topic taught, sim-

ilar to the control group. Once the participants in both groups completed the MCQ,

they were provided with a further questionnaire aimed at quantifying the effort and

mental workload they experienced after completing the MCQ. Filling the questionnaire

on both occasions allows the researcher to compute both the training efficiency and

the learning efficiency, as they are related to different stages of the learning process.
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3.3 Data Preparation

The dataset will be inspected for missing values and any cases with missing values will

be considered for removal. The possibility of removing a variable will also be consid-

ered for any with consistent missing values across a range of cases, if the variable is

not considered important for any of the efficiency models employed.

Outliers and any possible anomalies will be detected. Removal of outliers will be

considered as they could potentially influence the outcome. Removal of outliers will

also depend on the variable under consideration.

Standardised PRE-MCQ effort scores, POST-MCQ effort scores and MCQ scores will

be computed for use with some of the models of efficiency and will be added to the

dataset as separate variables.

The raw NASA task load index (RAWNASA) scores will be computed for each case,

both before the MCQ (PRE-MCQ) and after the MCQ (POST-MCQ) using the an-

swers provided by the participants in the questionnaire. The 6 individual ratings of

NASA-TLX variables will be transformed into an overall combined score for RAW-

NASA. There is no calculations necessary for RSME scores. It is a unidimensional,

subjective rating indicated by the participant on a continuous line, with the interval

of 0 to 150 with ticks every 10 units. It is simple and sensitive.

3.4 Modelling

The principal aim of this stage is to create different models of instructional efficiency

widely used in instruction & education and compute efficiency scores using these mod-

els to determine which model best discriminates between the control and experimental

groups, as well as compute the instructional efficiency more accurately.
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Five models of instructional efficiency will be modelled to compute the efficiency scores

for each observation. The models are as follows:

1. Likelihood model of efficiency

2. Parabolic model of efficiency

3. Deviational model of efficiency

4. Multidimensional model of efficiency (Original)

5. Multidimensional model of efficiency (Modified)

Both training and learning efficiency scores will be computed for the following

models of efficiency: Likelihood model, Parabolic model and Deviational model.

Since the multidimensional model utilises both Learning and Test efforts to compute

the efficiency, only Instructional Efficiency, will be computed. An instructional effi-

ciency score will be computed for each variant of multidimensional model, resulting in

two instructional efficiency scores.

Since two measures of effort / mental workload is being considered in this experi-

ment, efficiency scores will be calculated using both RSME and RAWNASA for each

model of efficiency, resulting in a total of 16 different efficiency scores. They are as

follows:

• Likelihood model of efficiency

– Training efficiency with RAWNASA (TR.EFF LM RAWNASA)

– Learning efficiency with RAWNASA (LR.EFF LM RAWNASA)

– Training efficiency with RSME (TR.EFF LM RSME)

– Learning efficiency with RSME (LR.EFF LM RSME)
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• Parabolic model of efficiency

– Training Efficiency with RAWNASA (TR.EFF PM RAWNASA)

– Learning Efficiency with RAWNASA (LR.EFF PM RAWNASA)

– Training Efficiency with RSME (TR.EFF PM RSME)

– Learning Efficiency with RSME (LR.EFF PM RSME)

• Deviational model of efficiency

– Training efficiency with RAWNASA (TR.EFF DM RAWNASA)

– Learning efficiency with RAWNASA (LR.EFF DM RAWNASA)

– Training efficiency with RSME (TR.EFF DM RSME)

– Learning efficiency with RSME (LR.EFF DM RSME)

• Multidimensional model of efficiency (Original)

– Instructional efficiency with RAWNASA (INS.EFF 3DM RAWNASA)

– Instructional efficiency with RSME (INS.EFF 3DM RSME)

• Multidimensional model of efficiency (Modified)

– Instructional efficiency with RAWNASA (INS.EFF 3DM RAWNASA2)

– Instructional efficiency with RSME (INS.EFF 3DM RSME2)

Once the efficiency scores are computed, they will be added to the dataset as sep-

arate variables.

The dataset will be explored and inspected for normality and skewness. To deter-

mine the normality of the distribution, a uni-variate analysis will be performed. The

analysis will include graphical representations and skewness tests. The variable will

be considered as normally distributed if the standardised score of skewness is between

+/- 2 (George & Mallery, 2010).The Shapiro Wilk test will not be used to check for
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normality as the test is sensitive and has a bias by sample size of the dataset. 1 Small

sample sizes result in low statistical power for normality tests. This means that sub-

stantial deviations from normality will not result in statistical significance. Normality

tests are only needed for small sample sizes, but this is also the situation in which

they perform poorly.

Validity is an important aspect of effective research. Validity is the extent to which

an instrument measures what it is meant to measure (Krabbe, 2017). To assess the

validity of the different Efficiency Scores, two sub-forms were selected, namely Con-

current and Discriminant.

Concurrent validity is a type of criterion-related validity which endeavours to re-

late results of one particular instrument to another external criterion. Concurrent

validity can be demonstrated, if the efficiency scores from one model correlates highly

with the efficiency score from another model. The advantage of concurrent validity

is that concurrent validity between two instruments can be demonstrated simultane-

ously (L. Cohen, Manion, & Morrison, 2005). Concurrent validity will be assessed

by performing a correlation test between the training efficiency scores of all three

2-dimensional models (LM, PM and DM) in pairs and the learning efficiency scores

of three 2-dimensional models in pairs. Concurrent validity will be tested for both

RSME and RAWNASA measures. Both parametric (Pearson) and non-parametric

(Spearman) tests will be considered based on the normality of the distributions and

other assumptions of the tests.

Discriminant validity validates the degree to which the two scores of efficiency,

expected to be theoretically unrelated, are in fact unrelated (Carlson & Herdman,

2012). Discriminant validity will be assessed by performing a correlation test between

the training and learning efficiency scores for all three 2-dimensional models. Dis-

1Stephanie Glen. ”Shapiro-Wilk Test: What it is and How to Run it” from

https://www.statisticshowto.com/shapiro-wilk-test/
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criminant validity will be tested for both RSME and RAWNASA. Both parametric

(Pearson) and non-parametric (Spearman) tests will be considered based on the nor-

mality of the distributions and other assumptions of the tests.

Sensitivity is the extent to which the efficiency scores can detect changes in the

instructional design and discriminate between the groups. Sensitivity will be assessed

by checking whether the distributions of all efficiency scores are statistically significant

different across the modules and the groups. Sensitivity will be assessed in three ways;

Known Groups validity, Shift function and Classification.

Known Groups validity, also known as extreme-groups validity, is a strategy that

indirectly assesses the validity of a set of observations by demonstrating that the set’s

output varies systematically depending upon known performances of the construct that

the scale is intended to measure (Virues-Ortega, Montaño-Fidalgo, Froján-Parga, &

Calero-Elvira, 2011). Known Groups validity can be demonstrated when a test can

discriminate between the control and experimental group which are known to differ

on the basis of the instructional design. Known Groups validity will be assessed by

checking whether the distributions of all efficiency scores are statistically significant

different across the modules. ANOVA and their non-parametric equivalent, Kruskal-

Wallis will be considered based on the normality of the distributions and assumptions

of the tests, as well as the relevant Post-Hoc tests.

In addition to the Known Groups validity, which analyses differences between dis-

tributions based on a central tendency measure, e.g., the median, a shift function will

also be employed in the experiment. The general assumption when comparing two

distributions is that they differ only in central tendency, not in other aspects. This

consideration is not robust as there is no reason a priori to assume this. Effects can

occur in the tails of the distributions too. To account for this, the entire distribution

needs to be compared. The shift function plots the differences between quantiles of two

different groups as a function of one group. This is used to visualise the comparison
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between two groups and determine how, and by how much, two distributions differ.

The shift function will be employed on all models to identify which model differenti-

ates the differences between the groups better. The Shift Function will be employed

for all 16 efficiency scores across all modules.

In an effort to understand which efficiency score provides the most information

about whether the observation belongs to the control or experimental group, Entropy

and Information gain will be calculated on the dataset using the 16 scores of efficiency.

Entropy is a measurement of uncertainty in the data (Murphy, 2012). It provides a

measure of purity and quantifies how much information there is in a random variable,

or more specifically its probability distribution. Entropy of a dataset can be viewed

in terms of the probability distribution of observations in the dataset belonging to

one class or another. In this case, the probability distribution of observations in the

dataset belonging to the control group v experimental group. In the context of clas-

sification, entropy measures the diversification of the class labels 2. Entropy for the

”group” variable will be calculated over the complete, unsegmented dataset, as well

as over data sets segmented by modules.

Information gain, or I.G., is a measure of reduction in Entropy by transforming

the dataset in some way. Information gain is calculated by comparing the Entropy of

the dataset before and after a transformation. It measures how much ”information”

a variable provides about the class. It is commonly used in training a decision tree by

evaluating the information gain for each variable, and selecting the variable that max-

imizes the information gain, which in turn minimizes the entropy and best splits the

dataset into groups for effective classification. 3. Information gain will be calculated

for each efficiency score variable over the complete, unsegmented dataset, as well as

over data sets segmented by modules.

2Information Gain, Gain Ratio and Gini Index (Phung, 2020)
3Information Gain and Mutual Information for Machine Learning (Brownlee, 2019)

33



CHAPTER 3. DESIGN AND METHODOLOGY

To determine the discriminating capacity of the different models of efficiency, dif-

ferent classification models, or classifiers, will be built for each efficiency score variable

within the dataset. This will be split into two classification problems:

1. Classify the group

2. Classify the module

For each classification problem, a classifier will be built for each efficiency score,

where the efficiency score will be the predictor variable and the group or module will

the target variable.

The classification models will be built using two different learning approaches:

1. Logistic regression

2. Support vector machine

Logistic Regression (LR) is a powerful statistical way of modelling qualitative out-

come with one or more predictor variables. It measure the relationship between the

target variable and the predictors by estimating probabilities using a logistic function.

To predict the group, a binomial logistic regression model will be employed because

there are 2 categories in the group variable. To predict the modules, a multinomial

logistic regression model will be employed because there are 20 categories in the mod-

ule variable. A total of 16 binomial regression models and 16 multinomial regression

models will be built.

Support vector machines (SVM) are supervised learning models that partition a

feature space into two or more groups. This is achieved by finding an optimal means

of separating the groups based on the known class labels. Support vector machines

apply a simple linear method to the data but in a high-dimensional feature space

non-linearly related to the input space (Karatzoglou, Meyer, & Hornik, 2006). Sup-

port vector machines are capable of carrying out non-linear partitioning by means of

the kernel function which transform the data in order to accommodate a non-linear
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boundary between the classes. The SVM classifiers will be modelled separately with 4

different types of kernels: Linear, Radial, Polynomial and Sigmoid. The SVM models

will be used to predict both group and module using each type of kernel. A total of

128 SVM models will be built, 32 per kernel type.

Once the above modelling steps are carried out, the various models of instructional

efficiency will be evaluated as outlined in Chapter 3.5.

3.5 Model Evaluation

The central tendency of all the numeric variables will be examined. Central tendency

measures include, but not limited, the following:

• Mean (M)

• Median (Mdn)

• Standard Deviation (SD)

• Inter-Quartile Range (IQR)

A significance level α of 0.05 will be adopted for this research. If the p-value is

< 0.05, then it will be deemed statistically significant.

Cohen’s heuristics on effect size will be adopted for all relevant statistical tests.

Cohen suggests to employ the following rule of thumb for interpreting results related

to effect size of correlation (J. Cohen, 1988; J. Cohen, Cohen, West, & Aiken, 2003):

• x < 0.1 = neutral correlation

• 0.1 ≤ x ≤ 0.3 = small/weak correlation

• 0.3 ≤ x ≤ 0.5 = medium/moderate correlation

• x > 0.5 = large/strong correlation
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Concurrent validity will be tested as described in Chapter 3.4 and will be evalu-

ated. Concurrent validity will be demonstrated by the resulting spearman’s rho (rs).

The correlations between PM and other models (LM & DM) should be statistically

significant and have an average rs ≥ 0.3.

Discriminant validity will be tested as described in Chapter 3.4 and will be eval-

uated. Discriminant validity will be demonstrated by the resulting spearman’s rho.

The correlations between parabolic model’s efficiency score pairs should be statisti-

cally significant and have an average rs lower than the other models’ correlation pairs.

Known Groups validity will be tested as described in Chapter 3.4 and will be eval-

uated. Known Groups validity will be demonstrated if the efficiency discriminates

between the control and experimental groups. The efficiency score which discrimi-

nates between the two groups across all modules with the most statistically significant

differences will be deemed the model with better sensitivity.

Shift Function will be employed as described in Chapter 3.4 and will be evaluated.

The efficiency score which differentiates between the control and experimental groups

with the highest number of statistically significant different quantiles across all mod-

ules will be deemed the model with better sensitivity.

Information gain will be calculated as described in Chapter 3.4 and will be evalu-

ated. The Information gain units for each efficiency score will be rated from 1 to 16

(1 - the most I.G. units to 16 - the least I.G. units) per module and the ratings will be

aggregated across all the modules. This will be referred to as the Total Rating. Once

all the rankings are aggregated for all 20 modules, the efficiency scores will be ranked

again from 1 to 16 based on the total aggregated rankings (1 - the least aggregated

rating achieved to 16 - the most aggregated rating achieved). This will be referred to

as the Final Rank.The efficiency score which achieves Rank 1 will be deemed as the

score which provides the highest information gain.
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The classification models will be modelled as described in Chapter 3.4 and will be eval-

uated. For the models predicting the group, they will be evaluated on the Accuracy,

Precision, Recall and F1 score of the models.

• Accuracy is a ratio of correctly predicted observations to the total observations.

• Precision is the ratio of correctly predicted positive observations to the total

predicted positive observations.

• Recall is the ratio of correctly predicted positive observations to the all obser-

vations in actual class.

• F1 Score is the weighted average of Precision and Recall.

Accuracy is a great measure but only when the dataset is symmetric where values of

false positive and false negatives are almost the same. In order to evaluate the perfor-

mance of the model, the other parameters must be considered too. A high precision

score gives more confidence to the model’s capability to classify positive observations.

Combining this with recall gives an idea of how many of the total positive observations

the model is able to cover. A good model should have a good precision as well as a

high recall.

For the models predicting the module, they will be evaluated on the Accuracy of

the models. The model with the highest average accuracy score will be deemed the

best performing model.

3.6 Strengths and Limitations of the Design

3.6.1 Strengths

The parabolic model has not been applied previously in any research. This is the first

empirical application of the model and upon completion would be contributing to the

field of education. This experiment design is based on the assumption that partici-

pants have no prior knowledge. Any student with prior knowledge of the topic being
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discussed in the module could end up achieving high performance with minimal effort

and could result as a potential outlier, which will affect the analysis. A subjective

measure of prior knowledge was requested from the participants to assess how much

they knew before entering the class. PM model seeks to penalise learners with prior

knowledge when calculating efficiency and is designed to spot outlier values, so that

they can be accounted for when calculating the efficiency score.

The design framework with the models of efficiency and the measures employed

to quantify the perceived mental effort and workload are easy to implement across

any field and in turn, analyse. This empirical study follows the recommendations by

Orru and Longo(2020) and undertakes statistical testing for small sample-size groups

comparison by implementing techniques such as Shift Function.

Evaluating the two instructional conditions specified with the shared learning out-

come for this design allow for their comparison as suggested by Jonassen(2009).

The use of two classification learning approaches makes the design framework ro-

bust. The design acknowledges both linear and non-linear data. The Logistic re-

gression is a straight forward algorithm and they are not computationally intensive,

while providing good interpret-ability. SVM are sophisticated and capable classifiers

because they are able to carry out non-linear partitioning. The researcher does not

have to transform the non-linear data themselves. They allow substantial flexibility

for the decision boundaries, leading to better classification performance.

By including both variations of the multidimensional model formula by Tuovinen

and Paas(2004) and Hoffman and Schraw (2010) in this experiment design, it can be

investigated whether or not the inverse of mathematical operations will produce the

same difference or quotient as argued by Hoffman and Schraw (2010).
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3.6.2 Limitations

Although the intention was to divide the groups as evenly as possible for all classes,

this was not always possible due to the participants present in the class on the day.

It was also not possible to ensure that there were similar number of participants for

all classes, as the size of the classes varied greatly. The experiment was carried out

using a dataset with only 455 cases. With a limited dataset, it is difficult to achieve

generalisation.

The use of subjective measures of mental effort by the participants themselves

could lead to bias in the dataset and there is currently no way to address that in the

experiment design. However, the advantage is that such a measure is easy to imple-

ment and analyse.

This experiment is limited to learners in third level education and instructors who

deliver using direct instruction approach to learning. This design can be extended to

accommodate different domains by using the same analysis.

The number of questions for MCQ in each module delivered lacked consistency.

The varying number of questions across the different modules means that there could

be inconsistent spread of the MCQ scores.

The use of SVM has its own disadvantages which can be a limitation to this re-

search. They can be prone to over-fitting. The use of kernels to separate the non-linear

data makes them difficult to interpret. SVMs are also very sensitive to the choice of

the kernel parameters.

The outliers could be spotted by one model and not by another. There is a lack

of proof to decide which models will and which model won’t detect outliers in their

calculations. The assumption is that all the models except for the parabolic model

will not account for outliers in the efficiency score calculations.
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Results, Evaluation and Discussion

This chapter provides the reader with an outline of the results, its analysis and inter-

pretation of the data from the implementation of the empirical study experiment as

described in chapter 3. The results will be analysed and the models will be evaluated

as described in section 3.5. The chapter discusses strengths and limitations of the

results and evaluation from this experiment and problems encountered.

4.1 Results

Data preparation, exploration and analysis was conducted using R studio, primarily

used in academics and research. R was chosen because it is an easier language to

learn, statistical tests and models are readily available and can be easily used. The

original dataset collected contained 25 variables and 455 observations. The details of

the variables collected are provided in Table A.1. A good representation was observed

from both control and experimental groups with 231 and 224 observations respectively

across the 20 modules. Details of the module breakdown can be viewed in Table A.2.
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The following variables were computed using data present in the original dataset, as

described in chapter 3:

1. RAWNASA scores: Pre-MCQ and Post-MCQ

2. Standardised scores: MCQ, RSME and RAWNASA

3. Efficiency scores x 16

There were no ”NA” values observed in the dataset for the important variables such

as MCQ score, RSME scores and the six variables required to calculate the RAWNASA

scores. Multiples instances of ”NA” values were observed for ”Knowledge” and ”Mo-

tivation” variables (47 and 24 respectively). They were not required for calculating

any of the efficiency scores or the RAWNASA scores. Therefore, these variables were

removed from the dataset. No complete observations were removed from the dataset

as a result of the ”NA” values.

Uni-variate analysis was performed on the distributions of the important variables

on the overall dataset and module subsets to determine normality and skewness of

the variables. Standardised skewness was calculated for all variables to determine the

normality of the variable and a majority of the variables returned as non-normal, with

a standardised skewness score outside +/- 2 1.The distributions were not observed to

be bimodal or multimodal, where there are multiple peaks in the distribution.

Since the variables were non-normal and the sample size was very small, the as-

sumptions for parametric tests were not met. Non-parametric tests were considered

for inferential statistical tests. These include Spearman correlation test, Wilcoxon

Signed Rank test and Kruskal-Wallis test. Any detected outliers in the dataset were

not removed.

The overall increment of mental effort and workload has minimal or no effect on the

performance of an individual as measured by the MCQ score. This is demonstrated

1(George & Mallery, 2010)
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by the regression line along the scatter plots in Figure 4.1. This suggests that the

two factors could be independent of each other and that the combination of these two

factors will provide more insight by means of efficiency scores.

Figure 4.1: Overall relations between mental effort / workload (Pre-MCQ and Post-

MCQ) and performance. The linear regression is represented by the blue line

Table 4.1 shows the mean, standard deviations (SD), median and the inter-quartile

range (IQR) of the MCQ scores associated to each module and the related groups

within each module. On average, the participants in the experimental group achieved

higher MCQ scores compared to the control group. However, it can be observed that

for some modules, the participants in the control group performed better and only by

a small margin in some cases. Based on the median scores, the experimental group

performed better in 10 of the modules and the control group performed better in three

of the modules. It can also be observed that there were no differences in median values

in the remaining seven modules, e.g. Modules C, F, J, K, Q, S & T. Outliers were

detected in 10 modules as shown in Figure 4.2.
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control experimental

Module ID M SD Mdn IQR M SD Mdn IQR

A 71.50 22.12 77.50 15.75 75.33 14.37 73.00 22.50

B 82.35 17.38 89.00 16.50 89.00 13.91 100.00 22.00

C 45.40 20.89 50.00 25.00 53.86 17.31 50.00 12.50

D 65.65 22.04 67.00 27.75 84.11 12.06 83.50 11.00

E 76.21 24.18 88.00 13.00 54.82 25.27 50.00 31.50

F 37.80 14.44 38.00 18.75 32.22 11.04 38.00 13.00

G 77.00 16.85 75.00 19.00 64.50 14.17 64.00 25.00

H 79.38 13.71 78.00 13.75 86.25 7.78 89.00 11.00

I 58.30 22.69 58.50 29.75 74.92 21.89 83.00 24.50

J 85.33 19.22 100.00 20.00 88.00 16.56 100.00 20.00

K 77.00 8.22 71.00 15.00 76.63 7.76 71.00 15.00

L 69.29 15.33 71.00 14.50 77.78 10.65 86.00 15.00

M 66.00 22.71 71.00 21.25 87.33 11.30 86.00 14.00

N 50.17 27.73 58.50 41.75 62.00 21.01 67.00 17.00

O 52.63 17.85 50.00 25.50 58.29 18.25 58.50 17.00

P 71.43 15.74 60.00 20.00 75.56 16.67 80.00 20.00

Q 75.13 12.38 67.00 16.00 73.86 8.55 67.00 16.00

R 82.22 16.65 80.00 35.00 97.14 7.26 100.00 0.00

S 69.44 19.52 66.00 21.00 68.53 15.21 66.00 25.00

T 78.57 14.60 80.00 15.00 84.62 14.50 80.00 20.00

Table 4.1: Mean, SD, median and inter-quartile range of the MCQ scores grouped by

control and experimental for each module
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Figure 4.2: Boxplot of MCQ scores per module

Table 4.2 shows the mean, standard deviations (SD), median and the inter-quartile

range (IQR) of the RSME scores (Pre-MCQ) associated to each module and the re-

lated groups within each module. The experimental group exerted less mental effort

before the MCQ when compared to the control group in 10 modules. The control

group exerted less mental effort before the MCQ when compared to the experimental

group in nine modules. It can also be observed that there were no differences in me-

dian values between the control and experimental group in Module E. control group

(Mdn = 40, IQR = 25.25 - 56.25) and experimental group (Mdn = 40, IQR = 36 -

70). Outliers were detected in nine modules as shown in Figure 4.3.
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control experimental

Module ID M SD Mdn IQR M SD Mdn IQR

A 49.36 29.14 38.00 36.50 56.53 35.31 50.00 41.50

B 55.75 27.20 61.50 38.75 37.38 21.56 38.00 15.25

C 39.80 35.95 27.00 21.00 47.86 22.51 40.00 20.00

D 45.90 32.39 40.00 38.25 37.89 25.89 38.00 39.75

E 39.36 22.76 40.00 31.00 48.73 25.91 40.00 34.00

F 54.10 30.08 47.50 24.00 38.56 23.59 38.00 13.00

G 50.00 26.07 50.00 34.50 33.38 9.98 38.00 10.00

H 41.25 26.26 40.00 34.25 56.75 22.32 49.00 30.50

I 42.60 34.52 39.00 62.25 35.08 22.19 37.50 14.75

J 49.00 25.99 38.00 24.00 51.73 31.44 40.00 27.50

K 35.20 31.77 12.00 58.00 35.13 23.26 39.00 36.25

L 35.71 25.22 30.00 11.00 45.56 16.64 40.00 9.00

M 55.38 17.36 58.50 29.00 35.56 24.77 26.00 20.00

N 61.17 32.07 55.50 35.75 56.86 11.94 60.00 18.00

O 51.32 30.23 38.00 45.00 44.14 21.39 39.00 32.00

P 69.86 24.67 72.00 16.00 63.22 19.97 68.00 20.00

Q 58.75 29.26 67.00 46.25 45.71 19.13 38.00 28.00

R 66.72 25.63 70.50 39.75 42.64 19.18 38.00 9.00

S 55.50 26.87 54.00 30.50 64.93 19.54 72.00 26.00

T 64.93 26.10 64.00 39.25 51.38 24.91 40.00 32.00

Table 4.2: Mean, SD, median and inter-quartile range of the Pre-MCQ RSME scores

grouped by control and experimental for each module
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Figure 4.3: Boxplot of RSME scores (Pre-MCQ) per module

Table 4.3 shows the mean, standard deviations (SD), median and the inter-quartile

range (IQR) of the RSME scores (Post-MCQ) associated to each module and the re-

lated groups within each module. The experimental group exerted less mental effort

after the MCQ when compared to the control group in 13 modules. The control group

exerted less mental effort before the MCQ when compared to the experimental group

in six modules. It can also be observed that there were no differences in median values

between the control and experimental group in Module G. control group (Mdn = 40,

IQR = 28.5 - 70) and experimental group (Mdn = 40, IQR = 36 - 42.5). Outliers were

detected in five modules as shown in Figure 4.4.
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control experimental

Module ID M SD Mdn IQR M SD Mdn IQR

A 51.21 26.38 49.00 36.50 50.13 26.61 45.00 41.00

B 60.60 28.91 71.00 42.75 41.69 25.99 38.00 30.25

C 53.80 37.70 32.00 45.00 79.57 24.69 80.00 34.00

D 31.50 20.66 30.00 26.00 38.83 34.76 27.00 23.25

E 50.93 27.40 43.50 38.25 47.18 22.55 40.00 36.00

F 56.30 34.39 60.00 44.00 82.56 26.81 85.00 28.00

G 47.00 22.91 40.00 41.50 42.38 15.02 40.00 6.50

H 47.63 21.23 45.00 26.25 69.50 36.71 69.00 18.50

I 48.40 35.19 40.00 59.50 36.83 15.05 39.00 18.00

J 43.87 34.01 27.00 34.00 60.73 35.05 60.00 43.50

K 47.40 24.97 38.00 33.00 58.13 30.30 40.00 50.00

L 38.14 17.72 45.00 25.00 24.00 17.06 25.00 17.00

M 50.75 20.19 41.50 18.75 42.33 13.38 40.00 7.00

N 73.83 27.04 71.50 26.25 43.86 21.87 40.00 26.00

O 50.79 25.98 40.00 39.50 43.57 29.18 39.00 23.25

P 65.14 30.17 74.00 50.50 52.89 26.68 60.00 32.00

Q 49.38 30.62 38.50 53.25 44.29 31.96 38.00 40.50

R 62.06 26.76 65.00 43.50 31.93 22.38 26.00 27.75

S 64.38 25.52 60.00 43.25 57.40 19.62 70.00 29.50

T 52.29 27.84 49.00 45.50 35.54 20.23 38.00 14.00

Table 4.3: Mean, SD, median and inter-quartile range of the Post-MCQ RSME scores

grouped by control and experimental for each module
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Figure 4.4: Boxplot of RSME scores (Post-MCQ) per module

Table 4.4 shows the mean, standard deviations (SD), median and the inter-quartile

range (IQR) of the RAWNASA scores (Pre-MCQ)associated to each module and the

related groups within each module. The experimental group exerted less mental work-

load before the MCQ when compared to the control group in eight modules. The

control group exerted less mental workload after the MCQ when compared to the ex-

perimental group in 11 modules. It can also be observed that there were no differences

in median values between the control and experimental group in Module P. control

group (Mdn = 45, IQR = 39.58 - 63.75) and experimental group (Mdn = 45, IQR =

35 - 51.67). Outliers were detected in seven modules as shown in Figure 4.5.
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control experimental

Module ID M SD Mdn IQR M SD Mdn IQR

A 47.14 12.03 48.75 12.08 47.33 17.40 48.33 20.42

B 45.79 17.61 48.75 21.25 45.16 10.93 48.33 9.17

C 35.83 13.16 39.17 22.50 43.69 11.73 41.67 11.25

D 37.50 12.56 32.92 10.42 42.36 13.77 46.67 16.88

E 39.94 14.03 41.25 6.67 46.21 10.64 49.17 15.00

F 42.92 8.37 44.17 13.13 47.96 21.23 38.33 12.50

G 37.14 16.73 35.00 21.25 38.65 12.36 38.75 13.75

H 34.79 15.68 32.50 20.63 52.71 7.63 54.17 8.96

I 41.25 19.55 44.17 27.08 30.35 8.35 29.17 6.67

J 35.39 15.89 39.17 20.00 39.61 17.84 40.83 20.42

K 33.17 5.51 34.17 9.17 38.54 6.12 37.08 7.71

L 35.48 13.07 35.00 18.75 49.72 12.08 53.33 5.00

M 46.04 18.99 51.67 24.79 41.76 16.87 47.50 15.00

N 55.83 8.74 55.42 4.58 53.21 7.88 55.00 9.17

O 34.34 14.32 30.83 19.58 39.70 16.27 37.50 20.42

P 50.12 14.60 45.00 24.17 43.89 9.84 45.00 16.67

Q 42.29 8.88 42.50 11.67 46.55 9.72 51.67 15.00

R 47.87 11.55 50.00 19.79 35.00 12.48 36.67 11.25

S 47.29 10.79 51.67 14.58 45.50 11.00 45.83 8.75

T 37.92 11.39 35.00 15.42 42.31 13.90 47.50 20.00

Table 4.4: Mean, SD, median and inter-quartile range of the Pre-MCQ RAWNASA

scores grouped by control and experimental for each module

49



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

Figure 4.5: Boxplot of RAWNASA scores (Pre-MCQ) per module

Table 4.5 shows the mean, standard deviations (SD), median and the inter-quartile

range (IQR) of the RAWNASA scores (Post-MCQ) associated to each module and the

related groups within each module. The experimental group exerted less mental work-

load after the MCQ when compared to the control group in 13 modules. The control

group exerted less mental workload after the MCQ when compared to the experimen-

tal group in six modules. It can also be observed that there were no differences in

median values between the control and experimental group in Module T. control group

(Mdn = 25, IQR = 20.21 - 38.54) and experimental group (Mdn = 25, IQR = 20 -

43.33). Outliers were detected in two modules as shown in Figure 4.6.
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control experimental

Module ID M SD Mdn IQR M SD Mdn IQR

A 41.37 20.68 46.25 28.33 41.00 19.08 39.17 22.50

B 40.25 15.40 39.17 10.42 37.66 15.92 45.00 28.54

C 42.00 11.17 45.83 16.67 47.86 5.95 50.00 8.75

D 32.29 16.52 32.08 17.29 29.58 15.26 27.08 24.58

E 40.00 17.66 41.67 27.92 42.65 12.39 44.17 14.17

F 46.08 14.00 45.83 21.25 58.15 15.60 55.83 20.00

G 32.86 17.79 26.67 31.67 33.13 13.44 32.08 16.67

H 30.73 14.70 29.17 9.58 49.17 8.52 49.17 7.29

I 33.33 14.71 34.17 12.71 29.17 12.50 29.17 12.71

J 30.11 19.78 23.33 16.25 29.72 16.09 28.33 22.50

K 30.00 8.27 29.17 8.33 34.58 13.67 34.17 19.37

L 34.17 8.31 32.50 8.33 16.94 5.51 16.67 4.17

M 45.52 19.23 50.42 31.67 33.43 14.03 28.33 22.50

N 40.42 14.08 43.33 16.88 39.64 8.51 40.00 10.00

O 38.68 18.30 35.83 30.00 41.31 17.89 42.92 23.75

P 39.05 17.49 38.33 25.42 37.59 16.44 37.50 22.50

Q 30.94 12.19 30.42 12.71 42.14 12.11 41.67 13.75

R 41.44 11.61 45.42 16.67 18.33 11.96 14.58 15.83

S 45.26 14.72 52.50 15.42 36.89 10.53 36.67 15.42

T 29.35 13.48 25.00 18.33 31.60 15.02 25.00 23.33

Table 4.5: Mean, SD, median and inter-quartile range of the Post-MCQ RAWNASA

scores grouped by control and experimental for each module
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Figure 4.6: Boxplot of RAWNASA scores (Post-MCQ) per module

A Wilcoxon signed rank test was performed to compare the medians of control and

experimental groups. Table 4.6 shows the resulting p-values of the Wilcoxon signed

rank tests computed for the following variables: MCQ score, RSME scores and RAW-

NASA scores.

Despite there being a difference in performance between the control and experi-

ment groups on 13 of the modules as shown in Table 4.1, the results of the Wilcoxon

signed rank test are statistically significant for only five of the modules as shown in
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Table 4.6. All other p-values were above the α level. Given the dynamics of the third

level education modules, and the variations in the participants’ approach to the mod-

ules, this is expected.

Despite there being a difference in RSME Score (Pre-MCQ) between the control

and experiment groups on 19 of the modules as shown in Table 4.2, the results of the

Wilcoxon signed rank test are statistically significant for only one module as shown

in Table 4.6 - Module R (W=193.5, p = .01, r = 0.46). All other p-values were above

the α level.

Despite there being a difference in RSME Score (Post-MCQ) between the control

and experiment groups on 19 of the modules as shown in Table 4.3, the results of the

Wilcoxon signed rank test are statistically significant for only one module as shown in

Table 4.6 - Module R (W=204.5, p < .001, r = 0.53). All other p-values were above

the α level.

Despite there being a difference in RAWNASA Score (Pre-MCQ) between the con-

trol and experiment groups on 19 of the modules as shown in Table 4.4, the results of

the Wilcoxon signed rank test are statistically significant for only three of the modules

as shown in Table 4.6 - Module H (W=10, p = .02, r = 0.58), Module L (W=11.5, p

= .04, r = 0.53) and Module R (W=188.5, p = .02, r = 0.42). All other p-values were

above the α level.

Despite there being a difference in RAWNASA Score (Post-MCQ) between the

control and experiment groups on 19 of the modules as shown in Table 4.5, the results

of the Wilcoxon signed rank test are statistically significant for only three of the mod-

ules as shown in Table 4.6 - Module H (W=10, p = .02, r = 0.58), Module L (W=63,

p < .001, r = 0.84) and Module R (W=229.5, p < .001, r = 0.70). All other p-values

were above the α level.
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RSME RAWNASA

Module ID MCQ Scores Pre-MCQ Post-MCQ Pre-MCQ Post-MCQ

A .02 .60 1 .83 .78

B .19 .07 .05 .87 .97

C .80 .22 .20 .37 .57

D .01 .48 .90 .05 .60

E .04 .35 .96 .21 .83

F .39 .14 .09 .84 .11

G .17 .27 1 .87 1

H .29 .31 .16 .02 .02

I .10 .74 .57 .15 .41

J .75 .60 .11 .55 .85

K 1 .94 .34 .27 .56

L .26 .09 .18 .04 < .001

M .04 .06 .38 .53 .16

N .60 1 .10 .62 .53

O .42 .70 .48 .32 .81

P .64 .34 .39 .43 .87

Q 1 .35 .68 .52 .20

R .01 .01 < .001 .02 < .001

S .93 .10 .45 .55 .07

T .29 .15 .14 .38 .75

Table 4.6: p-values at α = .05 of Wilcoxon Rank Sum test of the MCQ score, Pre-

MCQ RSME score, Post-MCQ RSME score, Pre-MCQ RAWNASA score, Post-MCQ

RAWNASA score
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Figure 4.7: Concurrent validity: Number of statistically significant efficiency score

correlation pairs

Efficiency scores (training and learning efficiency) of all the two-dimensional mod-

els (LM, PM and DM) were paired up with each other and the concurrent validity for

the models of efficiency were calculated using Spearman correlation test across all 20

modules. Both efficiency scores utilising RSME and RAWNASA were examined for

the concurrent validity of the models. Figure 4.7 illustrates the number of statistically

significant correlations between the efficiency score pairs. Among the training effi-

ciency pairs, the efficiency score pair between PM and DM using RAWNASA mental

workload score resulted in the highest number of significant correlations (15) across

20 modules. The efficiency score pair between PM and DM using RSME mental ef-

fort score resulted in the lowest number of significant correlations (9) across the 20

modules. Among the learning efficiency pairs, the efficiency score pair between LM

and PM using RSME mental effort score resulted in the highest number of significant

correlations (12) across the 20 modules. The efficiency score pair between PM and

DM using RSME mental effort score resulted in the lowest number of significant cor-

relations (8) across the 20 modules. Out of 80 possible training efficiency score pairs,

40 were statistically significant. Out of 80 possible learning efficiency score pairs, 46

were statistically significant.
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Figure 4.8: Concurrent validity: Average rs for all statistically significant efficiency

score correlation pairs

Figure 4.8 illustrates the average spearman’s rho (rs) values between the efficiency

score pairs for all the statistically significant pairs across the 20 modules. Among the

training efficiency pairs, the efficiency score pair between LM and PM using RAW-

NASA mental workload score has the highest average correlation (rs = .73). The

efficiency score pair between LM and PM using RSME mental effort score has the

lowest average correlation (rs = .59). Among the learning efficiency pairs, the effi-

ciency score pair between LM and PM using RAWNASA mental workload score has

the highest average correlation (rs = .68). The efficiency score pair between LM and

PM using RSME mental effort score has the lowest average correlation (rs = .57). It

is interesting to note that all the efficiency score pairs have an average correlation of

rs > .50.

The correlation between the training and learning efficiency scores of each two-

dimensional model (LM, PM and DM) were examined using Spearman’s correlation

test to determine the discriminant validity of the models of efficiency across all 20

modules. Both efficiency scores utilising RSME and RAWNASA were examined for

the discriminant validity of the models. Figure 4.9 illustrates the number of statisti-

cally significant correlations between the efficiency score pairs. Among the likelihood

model (LM) of efficiency, the correlation pair of the efficiency scores utilising RAW-
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NASA mental workload score resulted in the highest number of statistically significant

correlations (16) across 20 modules. The correlation pair of the efficiency scores utilis-

ing RSME mental effort score resulted in the lowest number of statistically significant

correlations (14) across 20 modules. Among the parabolic model (PM) of efficiency,

both the correlation pair of the efficiency scores utilising RAWNASA mental workload

score and RSME mental effort resulted in the same number of statistically significant

correlations (13) across 20 modules. Among the deviational model (DM) of efficiency,

the correlation pair of the efficiency scores utilising RSME mental effort score resulted

in the highest number of statistically significant correlations (19) across 20 modules.

The correlation pair of the efficiency scores utilising RAWNASA mental workload

score resulted in the lowest number of statistically significant correlations (16) across

20 modules.

Figure 4.9: Discriminant validity: Number of statistically significant correlation pairs

(training efficiency - learning efficiency) per model of efficiency

Figure 4.10 illustrates the average spearman’s rho (rs) values between the train-

ing and learning efficiency score correlations for all the statistically significant pairs

across the 20 modules. It can be observed that the pairs of efficiency scores utilising

RAWNASA mental workload score have a higher average correlation when compared

to the pairs of efficiency scores utilising RSME mental effort. The DM efficiency score

pair utilising RAWNASA has the highest average correlation (rs = .79), while the PM
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efficiency score pair utilising RSME has the lowest average correlation (rs = .62). All

the efficiency score pairs have an average correlation of rs > .60.

Figure 4.10: Discriminant validity: Average rs for all statistically significant correlation

pairs (training efficiency - learning efficiency) per model of efficiency

Figure 4.11: Known Groups validity: Number of instances with statistically significant

differences between the control and experimental groups per efficiency score
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Kruskal Wallis test along with the Post-Hoc Dwass-Steele-Critchlow-Fligner all-

pairs test were conducted to test for difference between the control and experimental

groups for a given efficiency score. The test was conducted on all 16 efficiency scores

across all 20 modules.

Figure 4.12: Known Groups validity: Number of instances with statistically significant

differences between the control and experimental groups per model of efficiency

Figure 4.11 illustrates the number of statistically significant differences between

the control and experimental groups grouped by the efficiency score. Out of 320 tests,

it can be observed that only 39 produced statistically significant differences. The

scores which provide the most number of statistical differences utilise RSME mental

effort scores, with 4 differences each. Efficiency scores based on the likelihood model

provided the highest number of statistical differences between the groups with 13,

followed by efficiency scores based on the deviational model with 11 differences. Ef-

ficiency scores based on the parabolic model had the lowest result with 4 significant

differences. The Shift function was employed to assess the sensitivity of the efficiency

scores to differentiate between the control and the experimental groups. The shift

function was employed on all 16 efficiency scores across all 20 modules. The shift

function is a good visual tool to compare the differences between the two groups and

determine how and by how much the two distributions differ. The shift function shows

59



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

quantile differences between the control and experimental group, as a function of the

control group. The quantiles were accepted as different if the confidence interval line

shown on the plot was above or below ”0” on the X-axis. The confidence interval line

touching the 0 line was not accepted as statistically different. Figure 4.13 shows the

number of statistically significant different quantiles resulting from the shift function

grouped by the efficiency scores. It can be observed that the efficiency score which

differentiated between the control and experimental group the most from 20 modules

was TR.EFF LM RSME with 11 quantiles, out of 60 possible quantiles (3 quantiles

per module). LR.EFF LM RSME efficiency score is quite consistent in differentiating

between the two groups based on the results from the Kruskal-Wallis tests and the

shift function. TR.EFF PM RAWNASA is not represented in Figure 4.13 because it

did not show any statistically significant quantile differences.

Efficiency scores based on the parabolic model was the worst performing perform-

ing two-dimensional model of efficiency with a total of 14 quantile differences out of

80 quantiles (20 module x 4 scores) which represents 17.5%. Efficiency scores based

on likelihood model performed the best amongst the two-dimensional models with 37

quantiles differences out of 80 (46.25%), followed by the deviational model efficiency

scores with 24 quantiles differences out of 80 (30%). Efficiency scores based on multidi-

mensional model (Modified) performed the best amongst the three-dimensional models

with 12 quantiles differences out of 40 quantiles (20 module x 2 scores) (30%), followed

by multidimensional model (original) efficiency scores with 10 quantile differences out

of 40 quantiles (25%). Considering the percentages of statistically significant different

quantiles, the parabolic model was the least effective at differentiating between the

two groups.

The statistically significant quantile differences were explored further to determine

whether the shift was in favour of the control group or the experimental group. Fig-

ure 4.14 shows the breakdown grouped by the efficiency scores. The bars in orange

represents the shift in favour of the control group, meaning that the control group
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had the better efficiency and the bars in purple represents the shift in favour of the

experimental group, meaning that the experimental group had the better efficiency

scores in the distribution.

Figure 4.13: Shift Function: Number of statistically significant different quantiles

across the 20 modules per efficiency score

Figure 4.14: Shift Function: Number of quantile differences in favour of control group

(orange) v experimental group (purple)

It can be observed from Figure 4.14 that in a majority of the cases, the quantile
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shifts were in favour of the experimental group with a ratio of 67:30. This would

indicate that the experimental group in general had the better efficiency scores across

the 20 modules.

Figure 4.15: Entropy scores calculated per module for the variable ”group”

Entropy scores were calculated for the variable ”group” for each module’s data.

Entropy scores show how pure the ”group” feature is. It provides an indication about

the amount of knowledge that can be obtained about the group variable. Knowledge

in this context refers to the certainty of drawing a specific observation at random from

the dataset.

The higher the knowledge, the lower the entropy score. Figure 4.15 shows the

calculated entropy scores. It can be observed that the module which has the lowest

entropy is Module 11. There are two modules with the highest entropy with a value

of 1: Module 8 and Module 10.
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Efficiency Score Total Rating Average I.G. Units Rank

LR.EFF DM RAWNASA 126 0.254 1

INS.EFF 3DM RSME2 144 0.222 2

INS.EFF 3DM RSME 149 0.225 3

LR.EFF DM RSME 149 0.220 4

TR.EFF DM RSME 149 0.218 5

TR.EFF PM RSME 152 0.218 6

INS.EFF 3DM RAWNASA2 163 0.169 7

TR.EFF LM RAWNASA 167 0.195 8

TR.EFF PM RAWNASA 170 0.176 9

TR.EFF DM RAWNASA 172 0.222 10

LR.EFF PM RSME 176 0.187 11

LR.EFF PM RAWNASA 185 0.190 12

INS.EFF 3DM RAWNASA 190 0.186 13

LR.EFF LM RAWNASA 190 0.171 14

LR.EFF LM RSME 193 0.167 15

TR.EFF LM RSME 216 0.126 16

Table 4.7: Ranking of efficiency scores based on the Information gain (I.G.) units

calculated

Information gain was calculated for each of the efficiency scores to explore which

efficiency score provides the most information about whether or not an observation

belongs to the control or experimental group. By obtaining the information gain,

it is possible to determine which one of the efficiency scores provides the ”purest”

segmentation with respect to the groups. Table 4.7 provides a summary of all the

information gain units (I.G. units) calculated for all the efficiency scores across the

20 modules and rated and ranked as specified in section 3.5. It can be observed that

LR.EFF DM RAWNASA achieved the lowest aggregated rating and the best rank

among the 16 efficiency scores, with a total rating of 126 and an average I.G. unit of

0.254. This means that this efficiency score provides the greatest information gain.
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The efficiency score that provides the least information gain is TR.EFF LM RSME

with a total aggregated rating of 216 and average I.G. unit of 0.126.

Classifier models were built, trained and tested using training and test data sets

with 80:20 split ratio, partitioned from the overall dataset. Proportionate stratified

sampling was used to ensure that both the training and test data sets had representa-

tive samples from all 20 modules. The training data set was used to train the classifier

models and then the models were tested using the test data set.

Predictor Accuracy Precision Recall F-1 Score

INS.EFF 3DM RSME 0.62 0.57 0.77 0.66

LR.EFF LM RSME 0.59 0.78 0.20 0.32

TR.EFF DM RAWNASA 0.58 0.55 0.69 0.61

LR.EFF DM RSME 0.58 0.54 0.71 0.62

INS.EFF 3DM RSME2 0.58 0.83 0.14 0.24

LR.EFF LM RAWNASA 0.57 0.55 0.46 0.50

TR.EFF LM RSME 0.57 0.80 0.11 0.20

TR.EFF PM RAWNASA 0.57 0.53 0.80 0.64

INS.EFF 3DM RAWNASA 0.57 0.53 0.77 0.63

LR.EFF DM RAWNASA 0.55 0.54 0.43 0.48

TR.EFF DM RSME 0.55 0.52 0.71 0.60

TR.EFF LM RAWNASA 0.54 0.56 0.14 0.23

LR.EFF PM RSME 0.54 0.67 0.06 0.11

LR.EFF PM RAWNASA 0.53 0.50 0.03 0.05

TR.EFF PM RSME 0.53 0.50 0.74 0.60

INS.EFF 3DM RAWNASA2 0.53 0.50 0.29 0.36

Table 4.8: Accuracy, Precision, Recall and F-1 Scores for the binomial logistic regres-

sion classifiers grouped by efficiency score predictor
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Table 4.8 provides a breakdown of the evaluation metrics for binomial logistic re-

gression models built with the efficiency scores as the sole predictor variable to predict

the groups to which an observation belongs. It can be observed that the classifier

model built using the INS.EFF 3DM RSME efficiency score provides the best accu-

racy (62%) and F-1 score (66%), which is a weighted average of precision and recall

metrics. The classifier built using LR.EFF LM RSME was second with 59% accuracy

and a F-1 score of 32%. Classifier built using TR.EFF DM RAWNASA was third

with 58% accuracy, but had a much higher F-1 score of 61%. Taking all the metrics

into consideration, TR.EFF DM RAWNASA classifier is considered the second best

model. Classifiers built with efficiency scores based on the parabolic model had con-

sistent accuracy scores ranging between 53% and 57%, however had varied F-1 scores

ranging between 5% and 64%. It is also important to note that classier built using

LR.EFF PM RAWNASA had the lowest F-1 score (5%) of all the binomial logistic

regression classifiers. Classifier built using the INS.EFF 3DM RAWNASA2 efficiency

score performed the worst 53% accuracy, however had a F-1 score of 36% which can

be considered in the middle.

Table 4.9 provides a breakdown of the evaluation metrics for support vector ma-

chine classifiers using radial kernel built with the efficiency scores as the sole predictor

variable to predict to predict the groups to which an observation belongs. The Radial

kernel results were selected for discussion as it provided the best overall average of

accuracy. Evaluation metrics for the other types of kernels can be found in the Ta-

ble B.1, Table B.2 and Table B.3. It can be observed from Table 4.9 that the classifier

model built using the INS.EFF 3DM RSME efficiency score provides the best accu-

racy (61%) and a F-1 score of 64%.

The accuracy and F-1 score produced by INS.EFF 3DM RSME classifier model is

consistent between the binomial logistic regression (Table 4.8) and support vector ma-

chine (radial kernel) algorithms. The classifier built using INS.EFF 3DM RAWNASA2

was second with 59% accuracy and a F-1 score of 53%. Classifier built using LR.EFF DM RSME
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was third with 58% accuracy, but had a higher F-1 score of 64%. Classifiers built with

efficiency scores based on the parabolic model had consistent accuracy scores of 55%

on average, however had varied F-1 scores ranging between 33% and 55%. Classifier

built using the INS.EFF 3DM RSME2 efficiency score performed the worst 39% ac-

curacy and had a F-1 score of 35% which was the third lowest.

Predictor Accuracy Precision Recall F-1 Score

INS.EFF 3DM RSME 0.61 0.71 0.57 0.63

INS.EFF 3DM RAWNASA2 0.59 0.49 0.59 0.53

LR.EFF DM RSME 0.58 0.77 0.54 0.64

LR.EFF PM RAWNASA 0.55 0.54 0.48 0.52

LR.EFF LM RAWNASA 0.55 0.34 0.55 0.42

TR.EFF DM RAWNASA 0.55 0.69 0.52 0.59

TR.EFF PM RAWNASA 0.55 0.69 0.46 0.55

TR.EFF PM RSME 0.55 0.43 0.54 0.48

TR.EFF LM RAWNASA 0.55 0.57 0.53 0.55

LR.EFF DM RAWNASA 0.54 0.74 0.51 0.60

INS.EFF 3DM RAWNASA 0.53 0.26 0.50 0.34

LR.EFF PM RSME 0.53 0.29 0.38 0.33

TR.EFF DM RSME 0.50 0.54 0.51 0.53

TR.EFF LM RSME 0.50 0.83 0.48 0.61

LR.EFF LM RSME 0.42 0.74 0.43 0.55

INS.EFF 3DM RSME2 0.39 0.34 0.35 0.35

Table 4.9: Accuracy, Precision, Recall and F-1 Scores for the Support vector machine

classifiers using radial kernel grouped by efficiency score predictor

Table 4.10 provides a breakdown of the accuracy scores for multinomial logistic re-

gressions models built with the efficiency scores as the sole predictor variable to predict

to predict the modules to which an observation belongs. It can be observed that the

classifiers built using the LR.EFF PM RAWNASA and TR.EFF PM RAWNASA effi-
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Predictor Accuracy

LR.EFF PM RAWNASA 0.19

TR.EFF PM RAWNASA 0.15

LR.EFF LM RSME 0.12

TR.EFF LM RAWNASA 0.11

LR.EFF LM RAWNASA 0.11

TR.EFF LM RSME 0.09

INS.EFF 3DM RSME2 0.09

TR.EFF PM RSME 0.08

LR.EFF DM RAWNASA 0.08

INS.EFF 3DM RAWNASA 0.08

LR.EFF PM RSME 0.07

TR.EFF DM RAWNASA 0.07

INS.EFF 3DM RSME 0.07

TR.EFF DM RSME 0.05

LR.EFF DM RSME 0.05

INS.EFF 3DM RAWNASA2 0.04

Table 4.10: Accuracy for the multinomial logistic regression classifiers grouped by

efficiency score predictor

ciency scores provided the most accuracy with 19% and 15% respectively. The classifier

built using INS.EFF 3DM RAWNASA2 score produces the least accuracy with 4%. It

is also interesting to note that the classifiers built using the TR.EFF DM RSME and

LR.EFF DM RSME scores produced the second lowest accuracy results with 5% each.

Table 4.11 provides a breakdown of the accuracy scores for support vector machine

classifiers using linear kernel built with the efficiency scores as the sole predictor vari-

able to predict to predict the nodules to which an observation belongs. The linear

kernel results were selected for discussion as it provided the best overall average of

accuracy. Evaluation metrics for the other types of kernels can be found in Table B.4.
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Predictor Accuracy

LR.EFF PM RAWNASA 0.18

TR.EFF PM RAWNASA 0.15

LR.EFF DM RAWNASA 0.12

LR.EFF LM RAWNASA 0.11

LR.EFF LM RSME 0.11

TR.EFF DM RAWNASA 0.11

TR.EFF LM RSME 0.11

INS.EFF 3DM RAWNASA2 0.09

INS.EFF 3DM RSME2 0.09

LR.EFF DM RSME 0.09

LR.EFF PM RSME 0.09

TR.EFF LM RAWNASA 0.09

INS.EFF 3DM RAWNASA 0.08

INS.EFF 3DM RSME 0.08

TR.EFF DM RSME 0.07

TR.EFF PM RSME 0.05

Table 4.11: Accuracy for the support vector machine classifiers using linear kernel

grouped by efficiency score predictor

It can be observed that the classifiers built using the LR.EFF PM RAWNASA

and TR.EFF PM RAWNASA efficiency scores provided the most accuracy with 18%

and 15% respectively. The accuracy scores produced by PM RAWNASA score clas-

sifier models are consistent between the multinomial logistic regression (Table 4.10)

and support vector machine (linear kernel) algorithms. On the other hand, classifier

built using TR.EFF PM RSME score produces the least accuracy with 5%. This is

3% lower than the accuracy produced by the model built using a multinomial logistic

regression algorithm.

68



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

4.2 Evaluation

Non-normal distribution of the variables could have resulted due to a number of rea-

sons; outliers, insufficient data, and data collection method used. Outliers increase

the variability within the dataset and cause the data to become skewed, which was

observed in the dataset. The mean value is sensitive to outliers. Under normal circum-

stances, outliers should be removed and the data should be explored again. Detected

outliers were not removed in the dataset, as the dataset was already small in size,

especially in a few modules, where there were less than 20 samples. Removing the

outliers would have meant that an important piece of information within a particular

module may have gone unnoticed.

The presence of bimodal distributions would have potentially indicated the pres-

ence of two different groups within the dataset. However, none were observed. This

suggests that the groups were more similar than expected and justifies the need for

further exploration using statistical methods.

Concurrent validities between different models of efficiency should not follow a

particular pattern. All the models are theoretically different to each other and should

not behave like others. Across the models, the correlations should be unstable. The

parabolic model takes more dynamics into account. Therefore, the assumption here

was that there would be moderate correlation between them. However, as observed in

Figure 4.7, all the resulting statistically significant correlations between the efficiency

scores pairs of the different models of efficiency were large in size. It shows that the

different models of efficiency could be measuring the same learning outcome with a

large correlation, which is in support of the proposed hypothesis that it achieves mod-

erate concurrent validity amongst the other models of efficiency.

Correlations for discriminant validity are meant to be low, if not neutral. Within

models, the correlations should be consistent. None of the models of efficiency exam-
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ined in this research demonstrated high discriminant validity, when comparing their

training and learning efficiency scores. This is possibly due to the fact that both ef-

ficiency scores are calculated using the same performance measure, rather than using

two different performance measures and mental effort or workload scores. This re-

search collected repeated measurements taken on the same experimental unit (mental

effort or workload) at two different time points (Pre-MCQ & Post-MCQ), but there

was only one measure of MCQ scores. The correlation pairs of the parabolic model

showed the least amount of correlation between the pairs, which is encouraging and

supports the proposed hypothesis that a higher discriminant validity can be achieved

when compared to the other models of efficiency.

Just because statistically significant differences were not observed on a majority of

the Kruskal Wallis-tests, it should not be concluded that the two distributions do not

differ. Those are only a comparison of the central tendency measure. The entire distri-

bution needs to be considered to determine whether they differ or not. The outcomes

of the shift function must also be considered. It is not a fair comparison when models

which use absolute scales such as likelihood model & Parabolic model are compared

to models which use relative scales such as deviational model and multidimensional

model as the majority of the values for models which use relative scales will lie between

+/- 3. This is not the case for models with absolute scales. They range from 0 to

extensive positive values.

Another point to remember is that there are 2 efficiency scores (training & learn-

ing efficiencies) per score of mental effort / workload for each of the two-dimensional

models (LM, PM & DM), where as there is only one such score for the multidimen-

sional model (Instructional efficiency) because it uses two variables to calculate this

efficiency. Therefore, it is not a fair comparison if these models are compared on the

basis of the highest number of significant differences, as shown in Figure 4.12. There-

fore, the results are presented for inclusion and completeness. It allows the researcher

to view the broader picture. Parabolic model achieved the least amount of statisti-
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cally significant differences. This does not support the proposed hypothesis that it is

possible to achieve higher sensitivity.

Table 4.12 shows a breakdown of the number of statistically significant quantile

difference per module. It is interesting to note that significant results were only shown

in 11 of the 20 modules. Module 18 showed the highest number of differences amongst

the modules with 41 quantiles out of 48 potential quantiles (16 scores x 3). Module

18 does not have the highest number of participants in the dataset and yet, it showed

the best results by a margin of 29 quantiles, with the next best performing module

showing only 12 quantile differences out of 48 potential quantiles.

Module Statistically Different Quantiles

Module 18 41

Module 05 12

Module 08 11

Module 12 8

Module 13 7

Module 02 6

Module 04 4

Module 17 3

Module 06 2

Module 14 2

Module 16 1

Table 4.12: Modules with number of statistically significant quantile differences

Figure 4.16 shows the shift function plot and scatter plot of the LR.EFF LM RSME

efficiency score for Module 1. The shift function plot shows zero statistically signif-

icant quantile difference. From examining the scatter plot in Figure 4.16, it can be

seen that there are two outliers with efficiency scores above 63. Leaving those out,

it can be observed that the range of efficiency scores seem to be relatively consistent
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between the control group (orange) and the experimental group (cyan). This is an

indication of why there was no significant different quantiles identified by the shift

function. The outliers from the control and experimental group seem to be in the

third quantile, based on the efficiency scores and since efficiency score for the control

group outliers is higher than the experimental group outlier, the shift function shows

a slight difference for third quantile, although it is statistically not significant due to

the confidence interval, which is represented as the orange vertical line, cross ”0” on

the x-axis.

Figure 4.16: Comparison: Shift function plot and scatter plot of efficiency score -

LR.EFF LM RSME - Module 1

Figure 4.17 shows the shift function plot and scatter plot of the LR.EFF DM RSME

efficiency score for Module 2. The shift function plot shows one statistically significant

difference at the first quantile. The quantile is in purple showing that the experimental

group had the better efficiency. It can be observed in the scatter plot that there is

an immediate difference in the range of efficiency scores between the control group

and the experimental group. The control group has an approximate range between

-2.3 and 1.7, whereas the experimental group has a range between -0.8 and 1.9 . It is

easy to understand that there is a big difference between the efficiency scores of both

groups at the first quantile. While there seems to be a difference between the two

groups at the second and third quantiles, it is not statistically significant, represented

by the confidence interval line.
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Figure 4.17: Comparison: Shift function plot and scatter plot of efficiency score -

LR.EFF DM RSME - Module 2

Figure 4.18 shows the shift function plot and scatter plot of the LR.EFF LM RAWNASA

efficiency score for Module 8. The shift function plot shows two statistically significant

differences at the second and third quantiles. The quantiles are in orange showing that

the control group had the better efficiency. It can be observed in the scatter plot that

the control group has an approximate range between 0.9 and 8.2, whereas the experi-

mental group has a range between 1.4 and 2.8. The control group has a much bigger

spread of efficiency scores, whereas the experimental group has a smaller cluster. It is

also important to note that the sample size for this module is quite small (16), which

is less than the recommended amount as proposed by Wilcox, Erceg-Hurn, Clark, and

Carlson (2014). While there seems to be a difference between the two groups at the

first quantile, it is not statistically significant, represented by the confidence interval

line.

Figure 4.18: Comparison: Shift function plot and scatter plot of efficiency score -

LR.EFF LM RAWNASA - Module 8
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Figure 4.19 shows the shift function plot and scatter plot of the TR.EFF LM RSME

efficiency score for Module 18. The shift function plot shows three statistically sig-

nificant differences at all three quantiles. The quantiles are in purple showing that

the experimental group had the better efficiency. It can be observed in the scatter

plot that the control group has an approximate range between 0.5 and 3.3, whereas

the experimental group has a range between 1.1 and 3.8. For the experimental group,

the scatter plot shows three distinct clusters of efficiency scores, which is potentially

indicative of the three quantiles for the group. however, it is not as apparent for the

control group.

Figure 4.19: Comparison: Shift function plot and scatter plot of efficiency score -

TR.EFF LM RSME - Module 18

The shift function provides much more information than the standard difference

tests approach (Wilcox et al., 2014). Although the shift function is powerful, it also

has its limitations. It can only be used with α = 0.5 and it does not work well with

tied values. The conclusions made from the quantile differences that the likelihood

model efficiency scores differentiate between the two groups are tentative given the

small sample size, which explains the large confidence intervals. The criteria on which

the differences were accepted as statistically different was very tight in some cases and

would be difficult to decide when viewed by the naked eye. There was an element

of human judgement which decided which were accepted as statistically different and

that must be taken into account for this analysis. Parabolic model achieved the lowest

amount of statistically significant differences. This does not support the proposed
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hypothesis that it is possible to achieve higher sensitivity using this model.

Figure 4.20: Scatter plots of the information gain units per modules grouped by effi-

ciency score

Minimising the entropy will result in maximising the information gain (Murphy,

2012). However this is not something that can be achieved by data transformation

of any kind. The entropy quality relies on the data collected. Having more samples

that belong to a certain category will result in data that’s more ”pure” which in turn

lowers entropy for that variable. For this research, it was important that a balanced

dataset was achieved, and so entropy was not going to be minimised. Figure 4.20

shows the spread of I.G. units for each efficiency score across the 20 modules. by

comparing the distribution of the I.G. units of each efficiency scores, it can be deter-

mined which score is more consistent. From examining the scatter plots, the efficiency

score which seems to have the most consistent units of I.G is TR.EFF LM RSME

across the modules. Based on the results shown in Table 4.7, it is expected that

the classifiers built using LR.EFF DM RAWNASA as the predictor should produce

the highest accuracy when classifying groups because it contained the most infor-
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mation in relation to the control v experimental group segmentation. Conversely,

classifiers built using TR.EFF LM RSME as the predictor should produce the lowest

accuracy when classifying groups. However, this was not the case. Classifier built

with INS.EFF 3DM RSME had the best predicting capability to classify between the

groups correctly with accuracy and F-1 scores above 60% in both types of classifier

models: binomial logistic regression and support vector machine - radial kernel.

Theoretically, one potential reason for achieving average accuracy scores when

predicting the right group using the classifiers is because the overall dataset, which

included information about all modules, was used to build classifiers instead of doing

so per module. However as it has been mentioned before, the data available is insuffi-

cient to do it per module.

Imbalanced data is a common issue when it comes to classification problems, and

it was encountered during this research. When groups are underrepresented,e.g, num-

ber of observations in each module, the class distribution starts skew. Balancing the

classes within the ”module” variable was required. Various strategies were considered

to deal with the imbalanced data problem. Oversampling of the minority classes,

under sampling of the majority classes and creating synthetic data were both consid-

ered. With only 455 observations, the option of under-sampling the majority classes

was ruled out as useful information could be discarded. Oversampling the minority

classes by replicating them to a constant degree. There is no information lost using

this method, however this increased the likelihood of over fitting. Synthetic Minor-

ity Over-Sampling Technique (SMOTE) was considered to create synthetic data as

proposed by Chawla, Bowyer, Hall, and Kegelmeter(2002) to induce more inferential

statistics. SMOTE algorithm create similar samples from the minority class instead

of repeating them. This techniques would have been ideal, however, while generating

synthetic samples, the algorithm did not take into consideration than neighbouring

samples can be from other classes. This introduced additional noise in the dataset

by increasing the overlapping of classes. Since the data is synthetically created at
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random, it did not be reflect the conditions of the instructional design.

Classifiers built using efficiency scores based on the parabolic model achieved the

lowest amount of accuracy and F-1 scores when predicting the groups. This does

not support the proposed hypothesis that it is possible to achieve higher sensitivity.

However, it produced the highest accuracy when predicting the modules. This is an

encouraging find and it shows that the efficiency scores based on the parabolic model

have some differentiating capabilities when there are multiple classes involved.

There is no clear reason observed as to why the parabolic model of efficiency was

not able to better discriminate between the control and experimental groups clearly,

particularly with the Known Groups validity where it performed the worst among all

the models of efficiency. Evidence for this could be discovered once more research is

carried out and further analysis is performed in the future.

4.3 Summary

The aim of this experiment was not only to find out the discriminating capability of

the parabolic model, but also to find out to what extent it measures the same concep-

tual outcome as the other established models of efficiency.

The concurrent validity of the parabolic model was examined, compared against

other two-dimensional models and evaluated. Concurrent validity was assessed by

performing a correlation test between the training efficiency scores of all three 2-

dimensional models in pairs and the learning efficiency scores of three 2-dimensional

models in pairs. Concurrent validity is demonstrated if the efficiency scores from

parabolic model correlates highly with the efficiency score from another model. The

model performed better than expected and results show that the parabolic model has

high concurrent validity among the the statistically significant correlations.
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The discriminant validity of the parabolic model was examined, compared against

other two-dimensional models and evaluated. Discriminant validity was assessed by

performing a correlation test between the training and learning efficiency scores for

all three 2-dimensional models for both measures of mental effort / workload. Dis-

criminant validity is demonstrated, if the training efficiency score of a model has low

correlation with its learning efficiency score. All the statistically significant corre-

lations showed high correlation which does not demonstrate discriminant validity in

general, however, the parabolic model resulted in the lowest average rs among the

three models under investigation. This shows that this model has a higher discrimi-

nant validity compared to the other two models.

Sensitivity of the parabolic model was examined, compared and evaluated. Sensi-

tivity was assessed in three ways; Kruskal-Wallis test, Shift function and Classification.

Each efficiency score was used as the sole basis for the tests / techniques to assess the

sensitivity and determine each efficiency score’s capability to discriminate between the

control and experimental groups. The parabolic model was the poorest performer with

the Kruskal-Wallis tests with the lowest amount of statistically significant differences

across the 20 modules. The model also showed poor sensitivity when examined using

the shift function. The classifiers built using efficiency scores based on the parabolic

model showed average results compared to the other models when differentiating be-

tween the groups.

Results from the experiment shows partial evidence in favour of the proposed hy-

pothesis. The parabolic model achieved moderate concurrent validity with an average

rs 0.64 and had a higher discriminant validity with the lowest average rs amongst all

three of the two-dimensional models using RAWNASA (rs = 0.71) and RSME (rs =

0.62) respectively. However, the model did not achieve higher sensitivity when com-

pared to the other models. Based on the findings, there is no statistically significant

evidence to reject the null hypothesis.
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4.4 Strengths and Limitations of the Results

4.4.1 Strengths

This study has a specific focus on comparing the parabolic model of efficiency to other

models. A focus which is notably new based on previous research in the field of edu-

cation. The research findings will form the basis for further research in the future.

An interesting find from this study is the accuracy scores of the parabolic model

based classifiers predicting the modules to which the observations belong with a small

sample of data. Such classifiers demonstrated some discriminating capabilities to bet-

ter identify the modules, which suggests that this model is somewhat sensitive to

differences within the distributions.

The methods used in this experimentation for validity, sensitivity and classifica-

tion, along with the metrics are broadly accepted in the field of science and education.

Moreover, data collection for the experiment was conducted in real educational en-

vironment. Consequently, the collection of the data might have been affected by the

noise which characterizes the participant groups, but is reflective of the third level

educational set up.

The results obtained from using both variations of the multidimensional model of

efficiency provide similar results of the sensitivity although difference was observed

between them. The model with the modified formula yielded better results with the

shift function and classification techniques, whereas the model with the original for-

mula provided better results with the Kruskal-Wallis test.

The experimental framework explored is easily repeatable provided the right con-

ditions are met and the results are reproducible if the same data is used, leading to

future work based on this research.
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4.4.2 Limitations

Detected outliers were not removed in the dataset, as the dataset was already small

in size, especially in a few modules, where there were less than 20 samples. Removing

the outliers would have meant that we may have missed out on an important piece of

information within a particular module. This in turn may have increased the variabil-

ity within the dataset which reduces the statistical power of the models. The decision

was based on a trade-off between statistically significant results and having enough

samples in the dataset to apply for the various techniques.

Kruskal-Wallis test has slightly lower power when compared to the parametric

equivalent, ANOVA. This research collected repeated measurements taken on the same

experimental unit at two different time points (Pre-MCQ & Post-MCQ). It was later

realised, and possibly too late, that perhaps a Friedman test may have been more

appropriate for determining the differences for such measurements.

The research lacked an adequate amount of data in general. Assumptions for the

parametric tests were not met due to the limited dataset. This made it difficult to

generalise the results. More statistically significant results could potentially have been

achieved had there been a larger dataset. Theoretically, building a classifier model per

module each with n < 40 observations is not an ideal situation, as there is not enough

data.

Classifying the modules was not a main focus of this experiment; it was conducted

as supplement to the classification of the groups. Entropy scores and information gain

were not calculated on that basis. Decision tree was not considered for classifier model,

even though information gain was calculated because a decision tree normally requires

multiple predictor variables in order to create various decision rules at various stages

to predict the outcome. The experiment design specifies using a single variable as the

predictor. Another reason is that decision tree algorithms do not have the same level

of predictive accuracy as other approaches without the use of aggregation methods

80



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

such as bagging and boosting, because a small change in the data can cause a large

change in the final ”tree”.

Achieving statistically significant results is difficult while applying the shift func-

tion to data which contain n < 20 observations. Although this function was applied

to all the 20 modules, the results obtained must be examined carefully before coming

to a conclusion.
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Chapter 5

Conclusion

This chapter concludes the research by providing a summary of the work carried

out, highlighting the contribution to the general body of research within instructional

efficiency in third level education. Further areas of investigation and research will be

addressed in order to potentially improve on the results found for future work.

5.1 Research Overview

Cognitive Load Theory is a widely known theory in educational psychology. It as-

sumes that working memory can process only explicit instructions. Another method

is the inquiry activity, under social constructivism theory, which is aimed at engaging

learners by the use of focused communication focused on reaching an agreement and

construct knowledge collaboratively. Research have been conducted in the past on

teaching methodologies that aims at combining the traditional teaching method and a

community of inquiry approach by extending the former with the latter and comparing

its efficiency (experimental) versus the efficiency of traditional method alone (control).

Efficiency in learning and instruction is the capacity to achieve established goals

with minimum expenditure of effort or resources. Efficiency is calculated based on

the mental effort or workload exerted during a task and the performance outcome.

Ideally, any activity conducted should be as efficient as possible. There have been
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various models of instructional proposed for use in the field of education. This research

attempts to introduce a novel model of efficiency for comparison and assess whether

it is suitable for application.

5.2 Problem Definition

It has emerged in the past that in education, the assumption / rationale that under-

pins efficiency is that low mental effort with high performance scores provides the best

efficiency. By contrast, high mental effort with low performance provides the worst

efficiency. Although the framework of optimal effort / mental workload is applied

widely in other fields, it is not widely used when it comes to instructional efficiency.

Another problem with the current models of efficiency is that either they are affected

by variability of all the observations in the group or that they are sensitive to minor

changes in the sample of observations. The parabolic model assumes that optimal

workload and high performance provides the best efficiency and looks to address the

concerns stated above.

The aim of this research is to evaluate the effectiveness of the parabolic model.

This paper looked to introduce the novel model of instructional efficiency suited for

education and evaluate the model’s validity and sensitivity so that its credibility can

be assessed. The model was compared with other state-of-the-art models of efficiency

currently employed in third level education and the goal was to determine if the novel

model better discriminates between participants of two distinct groups, control and

experimental, based on their resulting efficiencies.

The comparison of groups typically involves the central tendency which are not

robust. It assumes that distributions differ only in the central tendency. It is important

to consider and compare entire distributions. This paper looked to include inferential

statistics as well as descriptive statistics in order to evaluate the models and arrive at

a conclusion.
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It is vital to develop models of efficiency that are relevant to education. The study was

limited to environments that only use the traditional method approach to learning so

that the comparison can be justified. There were a number of issues with small sample

sizes, typical in third level education which must be addressed where possible.

5.3 Design/Experimentation, Evaluation & Results

An empirical experiment was designed to test the hypothesis that it is possible to

achieve higher sensitivity, discriminant validity and moderate concurrent validity using

the parabolic model of efficiency when compared to the other state-of-the-art models

such as likelihood model, deviational model and the multidimensional model. The

experiment compared two instructional design conditions using the various models of

efficiency. The data was collected from various modules in Technological University

Dublin. Participants were divided into two groups and each group was allocated to

a particular instructional design. Once the instructions were complete, the partici-

pants undertook a MCQ test and filled in questionnaires related to perceived mental

effort both before the MCQ and after the MCQ. The collected data was analysed for

normality, outliers, missing values etc. Then, the required mental workload measures

(RAWNASA), standardised scores and efficiency scores (x 16) based on all models

being compared were calculated.

The parabolic model was examined, compared and evaluated under different cri-

teria: Validity and Sensitivity. Various test and techniques were used to asses the

validity and sensitivity of the parabolic model and compare it to the other models.

These include correlation tests, Kruskal-Wallis test, Shift function, Information gain

and Classification. Modelling and evaluation criteria were specified at the design phase

and the experiment was carried out as planned.
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The results achieved in this empirical research showed that:

• Parabolic model of efficiency achieved high correlation with other models of

efficiency which demonstrated concurrent validity.

• Parabolic model achieved high correlation between its training and learning ef-

ficiency. This was observed for all two-dimensional models of efficiency. The

parabolic model achieved the lowest correlation among the other models, and

therefore shows that this model has the higher discriminant validity.

• Parabolic model performed rather poorly when the known groups validity was

assessed. This model showed the least amount of statistically significant results

among all the models.

• Parabolic model performed poorly when the shift function was employed, similar

to the known groups validity. The model showed the least amount of statistically

significant quantile differences among all the models.

• Efficiency scores based on the parabolic model have moderate information gain

when compared to efficiency scores based on other models. This wasn’t the best

performing model, but was not the worst either.

• Classifiers built using the efficiency scores based on the parabolic model provided

moderate results when compared to the other efficiency scores when predicting

the group (control v experimental)to which an observation belongs with accuracy

ranging between 0.53 to 0.55. Interestingly, classifiers built using the efficiency

scores using RAWNASA based on the parabolic model provided the best accu-

racy when compared to the other efficiency scores when predicting the module

to which an observation belongs with accuracy ranging between 0.15 to 0.19.

The experiment experienced some issues such as small samples sizes and imbalanced

dataset which were acknowledged. After evaluation of the results, it was concluded

that there was there is no statistical evidence to reject the null hypothesis based on

the findings, although there was partial evidence to support the proposed alternate

hypothesis.
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5.4 Contributions and Impact

This paper provided an insight into the application and comparison of a novel model

of efficiency in the field of education. It sought to examine whether this novel model

has better discriminating capabilities compared to the current state-of-the-art models,

as well as examine its validity. It also provided an insight into issues highlighted such

as lack of data, outliers, bias which future researchers may encounter on a similar

research. To the best of the author’s knowledge, no other piece of research examined

the parabolic model of efficiency. This study offers a contribution to the use of shift

function to determine the difference between groups in the educational context, and

from this determining whether the results from different instructional designs actually

provide any significant results.

Through the literature review, it provides an amalgamation of instructional design

and multiple models of efficiency and explains how these concepts and methods are

important to the human cognitive architecture. The research incorporates the concept

of mental workload using both uni-dimensional and multidimensional measures. A sig-

nificant advantage of the design framework is that it can be replicated and adapted in

the future to expand on the research carried out. This study was based on instructional

designs and model of efficiency which are important aspects of third level education.

With the current situation in the world, different instructional designs could based

on this design framework and the model of efficiency explored in this study could be

assessed further.

Strengths and limitations were then highlighted with a view to understanding the

process and to come up with recommended areas of future research. Further investiga-

tion and empirical research needs to be carried out to strengthen this contribution and

confirm the potential of parabolic model of instructional efficiency as a novel method.
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5.5 Future Work & Recommendations

Future work on instructional efficiency should focus on the findings from Chapter 4

and could concentrate on the following to improve the design of the experiment:

Collect and experiment using primary and secondary task measures, as well as

physiological measures where possible and apply them with the models of efficiencies

to investigate which model of efficiency is more sensitive to differences and discrimi-

nate better between the control and experimental groups. It could potentially remove

any informational bias in the dataset, leading to more accurate results. This will help

better evaluate the models and determine which model is suited for third level edu-

cation. The application does not have to be confined to education. Other fields of

application should be explored.

Further statistical tests for small sample size comparisons should be explored. Ex-

tend the use of shift function to more complex designs, to quantify interaction effects

between various factors. Theoretically, it can be done. By performing a different anal-

ysis, we can better understand the different models of efficiency.

Another suggestion for future work would be to target bigger classes. A large sam-

ple size would assist with the research and open avenues to explore techniques which

require large amount of data. This can be supplemented by designing classes with

various levels of difficulty (easy/medium/hard). With a varying degree of difficulty

and complexity, it will enable the researcher to gather more data, such as mental

workload and performance, along the broader spectrum of scale which in turn would

generate efficiency score along a bigger spectrum for better analysis of the models. Re-

searchers should also consider streamlining the testing aspect of the experiment such

as multi-choice questionnaire (MCQ) to collect performance measures. Researchers

should ensure that the number of questions required for a test is consistent across the

classes and that an ideal amount of questions is included. There is always a trade-off
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with the quantity of questions in a MCQ. The choice must be made by the researcher

to determine the amount which is both meaningful and feasible to allow the partic-

ipants to complete the task by the stipulated time. The time allowance will could

also be a factor, whether it is applied during instruction or test. Another avenue that

could be explored is the use of weighted answers for MCQ whereby each answer option

would have a particular weighting assigned to it. This will also assist with collecting

the performance data on the broader spectrum for better analysis.
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Appendix A

Original Dataset

Table A.1: Details of the original data collected

Variable Description Type Range / Values

MCQ Score Performance Score Integer 13 - 100

Module Name of module Categorical Various

Module ID Module ID Categorical 1 - 20

Date Date the module was held Date 07/02/2019 to 19/02/2020

Group Group name Categorical control , experimental

PRE.Knowledge Amount of knowledge the

individual has in relation

to the task. (Before taking

MCQ)

Integer 1 - 20

PRE.Motivation How much the individual

is motivated to perform

the task. (Before taking

MCQ)

Integer 1 - 20
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APPENDIX A. ORIGINAL DATASET

Variable Description Type Range / Values

PRE.Effort Amount of hard-work re-

quired to accomplish the

task. (Before taking

MCQ)

Integer 1 - 20

PRE.Frustration Amount of emotional

drainage and irritation.

(Before taking MCQ)

Integer 1 - 20

PRE.Mental Amount of mental activity

required while performing

the task (Before taking

MCQ)

Integer 1 - 20

PRE.Performance Amount of success in

reaching the goal. (Before

taking MCQ)

Integer 1 - 20

PRE.Physical Amount of physical ac-

tivity required while per-

forming the task. (Before

taking MCQ)

Integer 1 - 20

PRE.Temporal Amount of time pressure

felt while performing the

task (Before taking MCQ)

Integer 1 - 20

PRE.RSME Perceived Mental Effort

rating (Before taking

MCQ)

Integer 1 - 150

POST.Knowledge Amount of knowledge the

individual has in relation

to the task. (After taking

MCQ)

Integer 1 - 20
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Variable Description Type Range / Values

POST.Motivation How much the individual

is motivated to perform

the task. (After taking

MCQ)

Integer 1 - 20

POST.Effort Amount of hard-work re-

quired to accomplish the

task. (After taking MCQ)

Integer 1 - 20

POST.Frustration Amount of emotional

drainage and irritation.

(After taking MCQ)

Integer 1 - 20

POST.Mental Amount of mental activity

required while perform-

ing the task (After taking

MCQ)

Integer 1 - 20

POST.Performance Amount of success in

reaching the goal. (After

taking MCQ)

Integer 1 - 20

POST.Physical Amount of physical ac-

tivity required while per-

forming the task. (After

taking MCQ)

Integer 1 - 20

POST.Temporal Amount of time pressure

felt while performing the

task (After taking MCQ)

Integer 1 - 20

POST.RSME Perceived Mental Effort

rating (After taking

MCQ)

Integer 1 - 150
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ID ID Module control experimental Total

1 A Research Methods 14 15 29

2 B Research Hypothesis 20 16 36

3 C Visualising Geo Spatial Data 5 7 12

4 D Operating Systems 20 18 38

5 E Problem Solving 14 11 25

6 F Data Mining 10 9 19

7 G Literature Review 7 8 15

8 H Research Hypothesis 8 8 16

9 I Strings 10 12 22

10 J Program Design 15 15 30

11 K Machine Learning 5 8 13

12 L Image Processing 7 9 16

13 M Research Methods 8 9 17

14 N Statistics 6 7 13

15 O IT Forensics 19 14 33

16 P Literature Comprehension 7 9 16

17 Q Virtual Memory 8 7 15

18 R Research Hypothesis 18 14 32

19 S Literature Review 16 15 31

20 T Operating Systems 14 13 27

Table A.2: Details of the 20 modules with a breakdown of participants in control and

experimental group
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Appendix B

Classification Results

Predictor Accuracy Precision Recall F-1 Score

INS.EFF 3DM RAWNASA 0.57 0.43 0.56 0.48

INS.EFF 3DM RAWNASA2 0.47 1.00 0.47 0.64

INS.EFF 3DM RSME 0.62 0.63 0.59 0.61

INS.EFF 3DM RSME2 0.47 0.23 0.40 0.29

LR.EFF DM RAWNASA 0.57 0.54 0.54 0.54

LR.EFF DM RSME 0.62 0.66 0.59 0.62

LR.EFF PM RAWNASA 0.47 1.00 0.47 0.64

LR.EFF PM RSME 0.47 1.00 0.47 0.64

LR.EFF LM RAWNASA 0.39 0.77 0.42 0.55

LR.EFF LM RSME 0.43 0.89 0.45 0.60

TR.EFF DM RAWNASA 0.46 0.23 0.38 0.29

TR.EFF DM RSME 0.58 0.57 0.56 0.56

TR.EFF PM RAWNASA 0.50 0.46 0.47 0.46

TR.EFF PM RSME 0.47 1.00 0.47 0.64

TR.EFF LM RAWNASA 0.46 0.97 0.47 0.63

TR.EFF LM RSME 0.45 0.91 0.46 0.61

Table B.1: Classification model metrics - Classifying group - Linear SVM kernel
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Predictor Accuracy Precision Recall F-1 Score

INS.EFF 3DM RAWNASA 0.51 0.03 0.33 0.05

INS.EFF 3DM RAWNASA2 0.50 1.00 0.49 0.65

INS.EFF 3DM RSME 0.61 0.89 0.55 0.68

INS.EFF 3DM RSME2 0.46 0.03 0.14 0.05

LR.EFF DM RAWNASA 0.49 0.03 0.20 0.05

LR.EFF DM RSME 0.53 0.14 0.50 0.22

LR.EFF PM RAWNASA 0.53 0.54 0.50 0.51

LR.EFF PM RSME 0.59 0.26 0.69 0.38

LR.EFF LM RAWNASA 0.42 0.89 0.44 0.59

LR.EFF LM RSME 0.45 0.91 0.46 0.61

TR.EFF DM RAWNASA 0.45 0.23 0.36 0.28

TR.EFF DM RSME 0.54 0.54 0.51 0.53

TR.EFF PM RAWNASA 0.53 0.26 0.50 0.34

TR.EFF PM RSME 0.55 0.43 0.54 0.48

TR.EFF LM RAWNASA 0.47 1.00 0.47 0.64

TR.EFF LM RSME 0.45 0.94 0.46 0.62

Table B.2: Classification model metrics - Classifying group - Polynomial SVM kernel
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Predictor Accuracy Precision Recall F-1 Score

INS.EFF 3DM RAWNASA 0.54 0.60 0.51 0.55

INS.EFF 3DM RAWNASA2 0.49 0.31 0.44 0.37

INS.EFF 3DM RSME 0.55 0.37 0.54 0.44

INS.EFF 3DM RSME2 0.62 0.43 0.65 0.52

LR.EFF DM RAWNASA 0.62 0.63 0.59 0.61

LR.EFF DM RSME 0.53 0.54 0.50 0.52

LR.EFF PM RAWNASA 0.45 0.37 0.41 0.39

LR.EFF PM RSME 0.53 0.17 0.50 0.26

LR.EFF LM RAWNASA 0.59 0.54 0.58 0.56

LR.EFF LM RSME 0.54 0.20 0.54 0.29

TR.EFF DM RAWNASA 0.49 0.29 0.43 0.34

TR.EFF DM RSME 0.46 0.31 0.41 0.35

TR.EFF PM RAWNASA 0.54 0.57 0.51 0.54

TR.EFF PM RSME 0.45 0.20 0.35 0.25

TR.EFF LM RAWNASA 0.55 0.23 0.57 0.33

TR.EFF LM RSME 0.55 0.09 0.75 0.15

Table B.3: Classification model metrics - Classifying group - Sigmoid SVM kernel
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Kernels

Predictor Polynomial Radial Sigmoid

INS.EFF 3DM RAWNASA 0.09 0.08 0.08

INS.EFF 3DM RAWNASA2 0.04 0.07 0.12

INS.EFF 3DM RSME 0.07 0.07 0.05

INS.EFF 3DM RSME2 0.07 0.07 0.11

LR.EFF DM RAWNASA 0.07 0.09 0.08

LR.EFF DM RSME 0.11 0.12 0.07

LR.EFF PM RAWNASA 0.16 0.14 0.14

LR.EFF PM RSME 0.09 0.09 0.09

LR.EFF LM RAWNASA 0.14 0.15 0.15

LR.EFF LM RSME 0.08 0.11 0.07

TR.EFF DM RAWNASA 0.11 0.09 0.07

TR.EFF DM RSME 0.09 0.11 0.09

TR.EFF PM RAWNASA 0.14 0.12 0.15

TR.EFF PM RSME 0.07 0.05 0.11

TR.EFF LM RAWNASA 0.11 0.12 0.14

TR.EFF LM RSME 0.07 0.07 0.07

Table B.4: Classification model accuracy - Classifying modules - Other SVM kernels
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