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Abstract 

This paper describes a new methodology for increasing the spatial representativeness of 

individual monitoring sites. Air pollution levels at a given point are influenced by emissions 

sources in the immediate vicinity. Since emissions sources are rarely uniformly distributed 

around a site, concentration levels will inevitably be most affected by sources in the prevailing 

upwind direction. The methodology provides a means of capturing this effect and providing 

additional information regarding source/pollution relationships. The methodology allows for 

the division of the air quality data from a given monitoring site into a number of sectors or 

wedges based on wind direction and estimation of annual mean values for each sector, thus 

optimising the information that can be obtained from a single monitoring station. The method 

corrects for short-term data, diurnal and seasonal variations in concentrations (which can 

produce uneven weighting of data within each sector) and uneven frequency of wind directions. 

Significant improvements in correlations between the air quality data and spatial air quality 

indicators were obtained post application of the correction factors. This suggests the application 

of these techniques would be of significant benefit in land use regression modelling studies. 

Furthermore the method was found to be very useful for estimating long-term mean values and 

wind direction sector values using only short-term monitoring data. The methods presented in 

this paper can result in cost savings through minimising the number of monitoring sites 

required for air quality studies while also capturing a greater degree of variability in spatial 

characteristics. In this way more reliable, but also more expensive monitoring techniques can 

be used in preference to a higher number of low cost but less reliable techniques. The methods 

described in the paper have application in local air quality management, source receptor 

analysis, land use regression mapping and modelling and population exposure studies. 

Keywords: Air pollution, seasonality, non-parametric regression, monitor representativeness, 

land use regression.  



Introduction 

 

Concentrations of air pollutants such as nitrogen dioxide (NO2) are not constant but vary 

temporally and spatially arising from changes in meteorology, topography and also natural and 

anthropogenic emission sources. Air quality monitoring has the ability to capture these 

variations. Diversified monitoring objectives exist which include: demonstration of compliance 

with regulatory values, evaluation of general air quality in a region, epidemiological studies, 

estimation of long-term trends and source apportionment. Many stochastic air quality 

modelling methods used to produce air quality maps and forecasts, such as geo-statistical 

interpolation and land use regression, rely on relationships between measurements at 

monitoring stations and traffic, land use or population density parameters. [1-5] However, 

obtaining concentration data of sufficient spatial and temporal representativeness to achieve 

modelling objectives can pose significant cost and logistical obstacles. Methods that optimise 

information that can be obtained from an individual air quality monitor or monitoring network 

can provide a better understanding of the cause and effect in a given region and thus allow for 

improved air quality modelling and management. 

Continuous temporally-resolved data from routine fixed-site monitoring (FSM) networks allow 

air quality modelling and mapping applications at a resolution generally unattainable through 

passive monitoring. A sufficient number of monitoring sites is required to capture the true 

relationships between the forcing variables and the concentration levels and Basagaña et al. [6] 

showed that in small samples, model fit tended to be highly inflated when compared to 

validation data sets. The high cost in maintaining routine networks, however, means that they 

are generally of restricted spatial scale, frequently covering a minimum of site types stipulated 

under EU regulations and not dense enough for the purpose of model development. [7] While a 

limited number of studies have used continuous measurements over the course of a full 



calendar year (or years) from routine networks [8-11], many studies focus on the spatial density 

requirement of monitoring campaigns at the expense of temporal resolution. [12-15] 

Co-location of short-term sampling with background reference sites is generally used to 

extrapolate long-term averages [2, 13, 16]. Adequate correction therefore depends on dual 

assumptions holding true: that the continuous reference site(s) is representative of the temporal 

variation in concentrations and that the air pollutant pattern across the study area is stable over 

time. [7] The principal use of circular buffers in many land use regression (LUR) models ignores 

the spatial orientation of source and receptor and the influence of meteorological variables such 

as wind. In practice, source types and densities will inevitably vary in different directions at a 

local and regional scale and there will be a prevailing wind, meaning that sources in this 

direction relative to the monitoring site will have a disproportionally large influence on overall 

concentrations. As noted by Wheeler et al. [17] who modelled NO2 in Windsor Ontario using a 

LUR, the impact of being downwind of any localised industrial or traffic source would be 

expected to have an impact on concentrations and they therefore suggest that including 

information on wind direction may help resolve some of the remaining variance in their model.  

This paper presents a robust method which maximises the information from a single monitoring 

site and corrects data for both temporal (seasonal and diurnal) effects and meteorological (wind 

direction) effects. The methodology outlined in this paper is applicable for the following main 

objectives: 

• Improving the long-term applicability of short-term monitoring 

• Identifying local sources  

• Estimating annual mean values for a given site typology and region 

• Partitioning long-term monitoring data into wind dependant sectors to improve spatial 

representativeness  



The application of these techniques to monitoring data to achieve these objectives can, in turn, 

be used to improve and refine land use regression models air quality mapping studies and 

population exposure studies.  

The method is based on dividing the monitoring data into wind dependent sectors or wedges, 

and subsequently averaging the concentrations. The objective of dividing monitoring data in 

this manner is to relate average concentrations within a given sector to land use types or sources 

in the upwind direction and to maximise the (effective) number of monitoring locations. 

Prevailing wind directions vary seasonally and hence a biased sectoral average may be obtained 

in some instances. Furthermore, diurnal variations illustrate significant peaks and troughs in 

NO2 concentrations and if there is a higher weight of observed values for rush-hour peaks in a 

given sector, an unrealistically high overall average will be obtained. In order to adequately 

model spatial variation in concentration levels, these temporal biases must be removed from 

the data prior to averaging.  

The methods presented in this paper can provide cost savings by minimising the number of 

monitoring sites required for air quality studies. Dividing the data into a number of wind 

direction dependent sectors not only increases the number of monitoring points available but 

also captures a greater degree of variability in spatial characteristics. The correction factors 

developed allow these data to be extrapolated to represent annual mean concentrations. Studies 

can then utilise a smaller number of reliable (but often expensive) monitoring techniques in 

preference to a greater number of less reliable low cost techniques. 

 

 

Methodology and Data 

 



Overview 

 

Fig. 1 outlines the methodology for increasing the spatial representativeness of a monitoring 

site and how it is applied to a dataset from a particular air quality monitoring site. A long-term 

dataset of hourly NO2 values can be directly averaged to give a reasonable estimate of the mean 

concentration at that site (assuming there is no trend in the data). This provides us with one 

data point with which to compare spatial characteristics in the area. The new methodology 

involves splitting this dataset to provide additional data points. Firstly, the raw data are 

corrected for short-term fluctuations due to known seasonal and diurnal variations (𝑠𝑡 factors). 

Secondly, the data are split into subsets based on the wind direction for a given hour. For 

example, all NO2 measurements for hours when the wind was blowing from a northerly 

direction will be assigned to the northerly subset.  The concentrations within each subset are 

averaged to give a mean concentration for that wind sector. These average values are then 

corrected for uneven weighting that may occur due to unequal distribution of data between 

sectors (𝐿𝑡 factors). This then provides multiple annual mean values, one for each wind sector.  

A smoothing kernel method was previously used by the authors to describe the variation in 

concentrations at background sites with local wind speed and direction and air mass history. 

[18, 19] Perez et al. [20] also used a smoothing kernel to describe the daily and seasonal cycle in 

CO2 concentrations at a rural site. Based on these methods and the techniques described in 

Henry et al. [21]  and Yu et al. [22] a short temporal correction factor (𝑠𝑡) has been developed for 

raw data to remove these variations from the data prior to wind sector averaging. Long temporal 

(𝐿𝑡) correction factors have also been developed, to apply to the data after the sector division 

in order to account for uneven weighting of data from each season that may arise within 

different sectors. These have been defined through a regression using monthly mean 



concentrations as predictor variables and annual mean concentrations as response variables 

from a range of urban, suburban and rural sites.  

 

Monitoring Data 

 

The Environmental Protection Agency (EPA) is the responsible authority in Ireland for the 

implementation of EU ambient air quality legislation. The EPA operates and maintains the 

national ambient air quality monitoring network [23] which measures statutory pollutants using 

reference or equivalent methods as outlined in the CAFÉ Directive. [24] These data are used for 

demonstrating compliance with air quality limit values and to give public information on 

ambient air quality. These sites were selected because their classification ranges from urban 

centre to rural background, but their proximity to urban conurbations and major roads is 

variable. In each case monitor placement conforms to the guidelines on monitoring laid out in 

EU directive 2008/50/EC. [24]  NOx is measured on an hourly basis at a 19 sites throughout 

Ireland using chemiluminescence samplers (Figure 1S).  

 𝑠𝑡 factors were derived based on historical variations in concentrations at each of the sites. 

Where possible, the most recent 5 years of validated data were used (typically 2007-2012). 𝐿𝑡 

factors were developed based on two years of data from each site so as to avoid an unfair 

weighting of any given site that has a greater length of monitoring record. 2011 and 2012 were 

used where available (or where monitoring has ceased the most recent years were chosen). In 

the development of the 𝐿𝑡 factors, monthly data were only used if they had > 80% data capture 

and a number of years were omitted where data were missing for more than 25% of any 

individual month.



 

Short-term Correction (St) 

 

The basis for the 𝑠𝑡 correction factors is a non-parametric kernel regression model. 

Nonparametric regression relaxes the functional form assumed in parametric regression, the 

object being to estimate the regression function directly, rather than to estimate parameters. 

The authors previously used the techniques to define diurnal and seasonal variations in NO2 

concentrations for use as inputs to a statistical point wise air quality forecast model the outputs 

of which have been validated in Donnelly et al. [25]  

In this paper the regression is applied to describe diurnal and seasonal variations in 

concentration levels. The outputs from the regression are a seasonal factor (𝑆𝑓) and a diurnal 

factor (𝐷𝑓). Accurate quantification of the long-term variations can be made, and their effects 

removed from the raw data, thus supporting the improved definition of concentrations for use 

in spatial air quality modelling. 

The normalised seasonal factors are defined as follows: 

𝑆𝑓 = (
�̃�(𝛼,ℎ)

𝐶̅
) 

where 𝐶̅ is the average concentration for the input data used in model development and �̃�(𝛼, ℎ) 

is the average concentrations of a pollutant for a given day of the year (𝛼) calculated as a 

weighted average of the data in a window (of width defined by smoothing parameter h) using 

weighted Gaussian kernel function 𝐾1(𝛼, ℎ) around (𝛼) and defined as follows: 

�̃�(𝛼, ℎ, ) =
∑ 𝐾1 (

(𝛼 − 𝑆𝑖)
ℎ

) 𝐶𝑖
𝑁
𝑖=1

∑ 𝐾1 (
(𝛼 − 𝑆𝑖)

ℎ
)𝑁

𝑖=1

 



where 𝐶𝑖  are de-trended concentrations, 𝑆𝑖 is the day of the year for the 𝑖𝑡ℎ observation in a 

time period starting at time 𝑡𝑖. For circular data the Gaussian kernel (𝐾) is the preferred method 

used to weight the observations [21] and is defined as follows: 

𝐾(𝑥) = (2𝜋)−1/2 exp(−0.5𝑥2)              − ∞ < 𝑥 < ∞ 

The bandwidth is calculated based on the number of days in a year.  As discussed in Silverman 

[26] a bandwidth of 1/50.9 n −  was employed, where 𝜎 is the standard deviation of the predictor 

variable data (in this instance day of the year) and 𝑛 is the number of data points.  

In developing the 𝐷𝑓 the data are first subdivided into four categories distinguishing between 

winter and summer, and between weekdays and weekends. The resulting factors are developed 

in exactly the same way as 𝑆𝑓 but in this instance hours are used in replacement of days (i.e. 𝑆𝑖 

is replaced by 𝐻𝑖 where 𝐻𝑖 is the hour of the day).  

To adjust the data, raw hourly or daily concentration values (𝑁𝑂2(𝑟𝑎𝑤)) are firstly divided by 

the relevant seasonal factor (𝑆𝑓)  to obtain a seasonally adjusted value (𝑁𝑂2(𝑠)):  

𝑁𝑂2(𝑠) =
𝑁𝑂2(𝑟𝑎𝑤)

𝑆𝑓
 

𝐷𝑓 are determined for each season separately and do not, therefore, account for the seasonal 

variation. To obtain the diurnally and seasonally adjusted concentration 𝑁𝑂2(𝑠,𝑑), the 

seasonally adjusted concentration can be divided by the normalised𝐷𝑓: 

𝑁𝑂2(𝑠,𝑑) =
𝑁𝑂2(𝑠)

𝐷𝑓
 

Applying the factors in this way does not change the mean of the total data set (i.e. the mean 

of all the raw hourly values is approximately the same as the mean of all the seasonally and 



diurnally adjusted hourly values). The correction factors do, however, have the potential to 

change the mean values within a given sector and remove any bias which has arisen due to 

uneven distribution of data across sectors.  

 

Long-term Correction (Lt) 

 

When the raw data have been seasonally and diurnally adjusted they are divided into groups 

for each identified wind direction sector. While this maximises the number of data points 

available, it also reduces the number of data points that are used to predict long-term mean 

values at a given location. Annual average values are generally calculated using a full year of 

monitoring data. If less than a full year of data are used for the calculation of the annual mean, 

certain sites and sectors may have an unrepresentative weighting of data from a particular 

season.  Concentrations tend to be higher in winter months than summer months so, for 

example, if data were available for 20% of winter and 80% of summer months, an 

unrealistically low value for the annual average would be obtained. In the present study 𝐿𝑡 

correction factors have been used to adjust the sectoral averages at each site and ensure they 

are representative of the annual mean. 

Monthly and annual average concentrations were calculated for each monitoring site. For each 

individual month a linear regression analysis was carried out using linear least squares on each 

month (e.g. Figure 2) of data to produce an equation for each month, 𝑖:  

𝐶�̂� = 𝑎𝑖 + 𝑏𝑖 × 𝑀𝑖 



where 𝐶�̂� is the estimated annual mean concentration at a given site, 𝑎𝑖 and 𝑏𝑖  are the intercept 

and slope of the regression, respectively and 𝑀𝑖 is the monthly average concentration.  Table 

1 shows the derived correction factors for each month based on this regression.  

Data tend to be available for a range of durations from different months. Therefore, a weighted 

average technique is employed to predict the overall mean using the relevant adjustment factors 

from each month. Unlike the seasonal and diurnal correction factors above, this correction can 

change the long-term mean of the total data set, particularly if monitoring was only carried out 

for a short period of time.  

Results and Discussion 

 

In the following sections the results of the method are going to be discussed according to a 

number of potential applications which have been identified.  

Applicability of methods 

 

The methods presented in this paper have a number of applications which makes them useful 

for many air quality studies. The methods: 

• Allow predictions of annual mean based on short-term data sets. The short-term 

correction factors from similar stations with long runs of data can be used directly on 

the raw data. The long-term correction factors are then applied to the averaged data, be 

it in total or in sub divided wind sectors.  

• Provide a greater amount of information about air quality at a given station.  

• Provide the ability to analyse air pollution levels in relation to the land use types, roads 

and emissions in the surrounding area and account for wind direction. 



• Can increase the spatial density of data points used in LUR. Data can be divided into 

wind dependent sectors and the factors developed in this paper can be applied to 

estimate annual mean values for each sector, thus increasing the number of response 

variable/predictor variable pairs. The methods are particularly important when 

considering a LUR over a large spatial area such as in the creation of national scale 

background maps 

In the following sections, some applications of the method are demonstrated followed by a 

validation of the 𝑆𝑡 and 𝐿𝑡 factors.  

 

Wind sector averaging  

 

In order to extrapolate additional data from a given monitoring site the data can be grouped 

into equal sized wind dependent sectors. The aim of this is to capture specific spatial 

characteristics that are influencing the air quality in the region. Depending on the resolution of 

the wind direction data the number of sectors can directly reflect the number of peaks but in 

this study eight sectors have been used.  Figure 3 shows these eight sectors marked around a 

monitoring site in Kilkenny town. Land use typology and the road network are also indicated 

on the map and it is clear that each of the different sectors represents a separate land use 

composition. This is mirrored in the polar plot in Figure 4 which shows increases in 

concentrations for northerly, north easterly and easterly wind directions. If a circular buffer 

was applied here to infer relationships between land use and concentrations, the results would 

have been misleading. Using the sector-based approach it can be seen that areas with increased 

coverage of artificial surfaces and roads tend to lead to higher concentrations. In order to 

quantify these effects it is necessary to estimate the long term mean concentration for each 



sector. Direct averaging of data within each wind sector would not necessarily result in 

reasonable predictions of the long run mean due to seasonal differences in wind direction 

frequencies and other external forcing factors such as variation in sunshine hours and stability 

conditions. To account for this, the 𝑠𝑡 and 𝐿𝑡 correction factors can be applied to the data to 

account for uneven weighting of data from each season that may arise within different sectors.  

 

Correcting data  

 

To demonstrate the application of the 𝑆𝑡 and 𝐿𝑡 factors where only short term monitoring data 

are available, a subset of data was taken from a full 5-year dataset (Rathmines site, Dublin). 

Two random weeks were chosen  from each season in 2011. These were weeks beginning on: 

• 3rd January 

• 2nd April 

• 27th June 

• 25th October 

A different site was used to develop the  𝑆𝑡 factors since in practice, long-term data would not 

generally be available for the site at which the methods were being applied (a nearby urban site 

where long term data were available, Winetavern Street, was used). These factors were applied 

to the data subset to smooth out seasonal and diurnal variations. Using the 𝐿𝑡 factors an adjusted 

annual mean value was calculated based on the subset of data (10.43ppb). This is compared to 

the actual annual mean from the full year (10.24bbp) and the average of the raw data 

(11.06ppb). Applying the correction factors to the subset of data results in a closer estimation 

of the true annual mean.  



The data subset was then divided into eight equally sized wind sectors. Thereafter, the 𝐿𝑡 

factors were used to estimate the long run mean for each of the sectors. This was compared to 

the results using the raw subset data and the full year of data. Results are illustrated in Figure 

5. The raw subset of data underestimates the concentrations for the higher sectors and 

overestimates concentrations for the lower sectors. Applying the 𝑆𝑡 and 𝐿𝑡 factors results in an 

improved estimation of the variation among sectors.  

 

Validation of 𝑳𝒕 factors 

 

The 𝐿𝑡 factors have been validated by applying them to predictions of annual means using 

individual monthly values from data not used in the formation of the equations. Table 2 shows 

the correlation between predictions of annual mean using the defined equations and the 

measured annual mean values. The sites used in the validation encompassed urban centre to 

rural background sites and were Dun Laoghaire, Rathmines, Kilkitt, Winetavern Street, 

Coleraine Street and Park Road. Data from 2007 and 2008 were used, indicating that the 

equations are stable over time.  

NO2 model calibration and validation yielded strong results for February, March, June, July, 

August, September, October and November. In Ireland, December and January tend to 

experience well established low pressure systems which can bring strong winds and rainfall. 

On occasion, cold anticyclonic air can extend its influence westwards to Ireland from 

continental Europe, which can lead to long cold periods. This variability in meteorological 

conditions contributes to the monthly variability in observed concentrations and slightly poorer 

explanation of the annual mean as shown by Rcal
2.  Validation for both January and December 

2011 showed good R2
val values. Although winds were predominantly westerly during the 



month of December there was some ingress of easterly air masses which affected the east coast 

of Ireland. Towards the end of December ozone concentration increased significantly and 

during this time period air mass back trajectory analysis using the Hysplit model revealed that 

re-circulated air masses from over northern Europe were affecting the east coast of Ireland. [27] 

Global solar radiation totals for the December period were slightly above average for the 

Dublin region. [28] This suggests that the equation is robust but also that care must be taken 

when applying it to data collected under atypical meteorological conditions.  

April to May is also a period of change in Irish weather conditions as temperatures rise slowly 

and various air masses have the potential to facilitate long range transport of emissions which 

could explain why May was found to be the least indicative month for annual mean NO2 

prediction. This suggests that short-term monitoring campaigns should not be carried out 

during May in isolation where possible. Towards late June the rise in pressure over the Ocean 

and fall in pressure over Europe results in a predominantly westerly surface air flow with a 

long ocean track which tends to be associated with lower contributions of anthropogenic 

emissions. [27] 

To account for the variability in meteorological conditions from month to month and the 

inevitable departure from mean conditions, monitoring should be carried out for a number of 

months (or part thereof) and a weighted average calculated using the modelled equation for 

each month. Where this is not feasible the best result from the earlier regression analysis as 

presented in Table 1 should be taken and if a conservative value is required, the upper 

confidence limit can be calculated using the variance.  

 



Validation of 𝑺𝒕 factors 

 

Correlations between NO2 concentrations and typical spatial descriptors used in land use 

regression studies were calculated using both raw NO2 concentrations and corrected NO2 

concentrations at each of the 23 NO2 sites in Ireland. Hourly monitoring data at each site were 

corrected using the 𝑆𝑡 correction factors. Data were then divided into eight equal sized wind 

direction sectors corresponding to N, NE, E, SE, S, SW, W and NW. Average values (𝑁𝑂2𝐶𝑜𝑟) 

were calculated for each sector and corrected using the 𝐿𝑡 correction factors.  Raw hourly NO2 

data were then averaged directly for each of the wind sectors to produce 𝑁𝑂2𝑅𝑎𝑤 values.  

Parameters considered in the study were length of all roads (𝑅𝑙), total vehicle kilometres 

(𝑉𝑘𝑚), the area of continuous urban land use (𝑢𝑟𝑏), the number of residential properties (𝑟𝑒𝑠), 

the number of commercial properties (𝑐𝑜𝑚), the population and area of agricultural land use 

type (𝑎𝑔𝑟𝑖). Table 3 shows the resulting correlations for buffer sectors of various radii. For all 

buffer sizes, the correlations are significant in both the raw and corrected data, with highest 

correlations being observed with 𝑅𝑙 and 𝑉𝑘𝑚 in the 2km sector size. Improvements are 

observed in correlation p-values for all variables after data correction (except for 𝑢𝑟𝑏 in the 

250m sector). The removal of concentration fluctuations due to meteorological and seasonal 

factors allows the isolation of external forcing factors and thus improved quantification of 

spatial variability in concentration levels using spatial descriptors. These results illustrate that 

improvements in land use regression studies can be observed by applying the correction factors 

developed as part of this paper.  

 

Conclusions 

 



This paper presents a simple but effective means of extrapolating numerous representative 

annual average concentrations from a single fixed air quality monitoring site. The methods 

presented in the paper were developed so as to make more use out of the high quality data 

collected as part of Ireland’s air quality monitoring regulatory requirements under EU 

legislation. This paper describes the application of the methods to NO2 but the techniques can 

be applied to any pollutant measured at an hourly or daily temporal resolution. Seasonal and 

diurnal correction short-term correction factors were developed using non parametric 

regression techniques. Validated measured data are initially corrected for short-term 

fluctuations using these factors. These data are then divided into subsets for 8 (or more) wind 

direction sectors. Concentrations within each sector are then averaged. These averages are 

corrected using long-term correction factors which were derived and validated using historical 

air quality data sets from the Irish air quality monitoring network. These factors account for 

seasonal biases that may arise and facilitate the accurate estimation of annual mean values from 

the sectoral averages. Calibration R2 ranged from 74.8 % to 97.3 % for NO2 while validation 

R2 values ranged between 79 % and 98.9 % for individual monthly predictions. Correlations 

between spatial predictor variables (such as road density) and NO2 concentration were 

compared using raw data and data post correction. Significant improvements were observed in 

all correlations through the use of the correction factors. This suggests the application of these 

techniques would be of significant benefit in land use regression modelling studies. 

Furthermore the method was found to be very useful for estimating long-term mean values and 

wind direction sector values using only short-term monitoring data. The methods presented in 

this paper can result in cost savings through minimising the number of monitoring sites 

required for air quality studies while also capturing a greater degree of variability in spatial 

characteristics. In this way more reliable, but often cost prohibitive monitoring techniques can 

be used in preference to a higher number of low cost but less reliable techniques.  
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Fig. 5 
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Table 1. Correction factors for NO2 

Month Correction constant Correction multiple R2
cal s 

Jan 1.74 0.75 81.3 2.15 

Feb 0.25 1.04 95.0 1.11 

Mar 0.13 0.89 97.0 0.87 

Apr 0.95 0.92 89.6 1.60 

May 2.14 0.80 74.8 2.43 

Jun 0.45 0.96 95.4 1.07 

Jul 0.41 0.92 95.3 1.09 

Aug 0.57 0.91 93.8 1.17 

Sep 0.38 1.00 97.3 0.81 

Oct 0.34 0.94 91.8 1.42 

Nov 0.60 0.87 95.5 1.04 

Dec 0.42 1.04 89.7 1.68 

 

Table 2. Validation of equations 

Month R2
val 

Jan 95.7 

Feb 91.3 

Mar 95.9 

Apr 95.9 

May 79 

Jun 98.9 

Jul 97.8 

Aug 85.1 

Sep 90.2 

Oct 97 

Nov 98.1 

Dec 95.5 

 

Table 3. Correlation of NO2 concentrations with land use variables using raw and corrected 

NO2 data  

Buffer 

size 

250m 500m 1km 2km 5km 

 
𝑁𝑂2𝑅𝑎𝑤 𝑁𝑂2𝐶𝑜𝑟 𝑁𝑂2𝑅𝑎𝑤 𝑁𝑂2𝐶𝑜𝑟 𝑁𝑂2𝑅𝑎𝑤 𝑁𝑂2𝐶𝑜𝑟 𝑁𝑂2𝑅𝑎𝑤 𝑁𝑂2𝐶𝑜𝑟 𝑁𝑂2𝑅𝑎𝑤 𝑁𝑂2𝐶𝑜𝑟 

𝑹𝒍 0.36 0.379 0.456 0.521 0.517 0.591 0.525 0.618 0.456 0.539 

𝑽𝒌𝒎 0.41 0.466 0.443 0.53 0.407 0.509 0.477 0.598 0.469 0.563 

𝒖𝒓𝒃 0.514 0.472 0.511 0.517 0.476 0.53 0.45 0.539 0.344 0.396 

𝒓𝒆𝒔 0.433 0.463 0.513 0.6 0.531 0.631 0.518 0.622 0.476 0.56 

𝒄𝒐𝒎 0.471 0.45 0.429 0.443 0.45 0.513 0.453 0.528 0.38 0.436 



𝒑𝒐𝒑 0.4 0.451 0.482 0.578 0.528 0.637 0.522 0.63 0.481 0.569 

𝒂𝒈𝒓𝒊 -0.53 -0.541 -0.519 -0.563 -0.588 -0.629 -0.522 -0.606 -0.508 -0.599 

 

Supplementary material  

 

Fig. 1S. 

Figure captions 



Figure 1. Overview of methodology 

Figure 2. Regression of average NO2 concentration in September against annual mean 

concentration 

Figure 3. Sectors of 4km radius around the monitoring site in Kilkenny 

Figure 4. Determination of directional NO2 sectors at Kilkenny monitoring site 

Figure 5. Wind sector data for subset at Rathmines, raw data and data corrected using 𝑠𝑓 factors 

from Winetavern Street 

Fig. 1S. NO2 monitoring sites 
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