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Linked Data Quality Assessment:
A Survey

Aparna Nayak(B) , Bojan Božić , and Luca Longo

SFI Centre for Research Training in Machine Learning, School of Computer Science,
Technological University Dublin, Dublin, Republic of Ireland
{aparna.nayak,bojan.bozic,luca.longo}@tudublin.ie

Abstract. Data is of high quality if it is fit for its intended use in
operations, decision-making, and planning. There is a colossal amount of
linked data available on the web. However, it is difficult to understand
how well the linked data fits into the modeling tasks due to the defects
present in the data. Faults emerged in the linked data, spreading far
and wide, affecting all the services designed for it. Addressing linked
data quality deficiencies requires identifying quality problems, quality
assessment, and the refinement of data to improve its quality. This study
aims to identify existing end-to-end frameworks for quality assessment
and improvement of data quality. One important finding is that most of
the work deals with only one aspect rather than a combined approach.
Another finding is that most of the framework aims at solving problems
related to DBpedia. Therefore, a standard scalable system is required
that integrates the identification of quality issues, the evaluation, and
the improvement of the linked data quality. This survey contributes to
understanding the state of the art of data quality evaluation and data
quality improvement. A solution based on ontology is also proposed to
build an end-to-end system that analyzes quality violations’ root causes.

Keywords: Data quality · Knowledge graphs · Linked data · Quality
assessment · Quality improvement

1 Introduction

Data quality is often defined as “fitness for use” which signifies the term data
quality is relative [6]. Thus, data with certain quality considered good for one
use may not possess sufficient quality for another use. A massive amount of data
is available in the public domain in the form of text, tables and linked data.
However, most of these data are often incorrect, incomplete or ambiguous.

The term “Knowledge graph” refers to a set of best practices for publish-
ing and connecting linked data on the web following Semantic Web principles.
The main goal of Semantic Web is data interoperability, which allows data to
be read and understandable both by humans and machine. A large number of
published datasets (or sources) that follow linked data principles is currently
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available and this number grows rapidly. Knowledge graph have a wide range
of applications, including recommendation systems [23], semantic search based
on entities and relationships, natural language disambiguation, deep reasoning,
machine reading, entity consolidation for big data, and text analysis [8]. The
semantic richness of knowledge graph can benefit explainable artificial intelli-
gence, an emerging field of machine learning. However, large knowledge graphs
such as DBpedia1 and Wikidata2 still suffer from different quality problems [21].

Data quality is being one of the major concern this paper aims to achieve
the following objectives:

O1: Identification and survey existing data quality assessment/improvement
framework/tools and data quality metrics.
O2: Investigate frameworks and tools that enable the quality assessment of data
at A-box level.

Our contributions in this paper include identifying various ways to assess
and improve problems associated with data quality. A preliminary framework
that enables end-to-end systems for data assessment and improvement is also
discussed. The rest of this paper is organized as follows. Section 2 discusses the
literature present in data quality assessment and improvement. Section 3 pro-
vides an outlook for further research. Finally, Sect. 4 concludes the work.

2 Methods for Data Quality Assessment and
Improvement

Fig. 1. Linked data quality dimensions

The objective of the data quality assessment activity is to analyze the relevance
of a dataset to its consumers and to help publish better quality data. Analysts
working with linked data must assess quality at various levels such as instance,
schema and property. Data quality is a multidimensional concept. Various studies
have classified data quality metrics into four dimensions intrinsic, accessible,

1 https://wiki.dbpedia.org/.
2 https://www.wikidata.org/wiki/Wikidata:Main Page.

https://wiki.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
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representational, and contextual [44] as shown in Fig. 1. Data quality metrics
that belong to intrinsic dimensions focus on whether the information correctly
and completely represents the real world and whether the information is logically
consistent in itself. The accessible dimension encompasses the aspects of data
access, authentication, and retrieval in order to retrieve all or a portion of the
data required for a particular use case. Representational dimensions capture
information about the data’s design. Contextual dimensions are those that are
highly context-dependent, such as relevance, trustworthiness, comprehendibility,
and timeliness. Zaveri et al. [51] discusses a comprehensive survey that includes
multiple metrics for evaluating each dimension. It examines 68 quality metrics for
linked data and provides a detailed explanation of how each metric is calculated.
On the other hand, data quality metrics are divided into baseline and derived
by incorporating the metrics defined in Zaveri et al. [51] and ISO 250123.

The most frequently encountered issues such as missing data, missing entity
relationships, and erroneous data values have a direct impact on data quality.
Additionally, converting data from one format to linked data may degrade data
quality due to various problems such as errors introduced at the source, parsing
values, interpreting, and converting units [48]. Integration of data from multiple
sources does not always result data quality improvement; rather, if the sources
contain contradictory information, the quality may deteriorate [31]. Regardless of
the total number of integrated data sources, quality issues persist at the schema
and instance levels [39]. In the following subsections various methods to assess
and improve the data quality are discussed.

2.1 Ontologies Based on Data Quality

This section discusses the ontologies that have been modeled in order to identify
data quality issues and generate a report on data quality. Data Quality Manage-
ment (DQM) vocabulary, conceptualizes data quality requirements by focusing
on the intrinsic quality of the data [20]. This ontology aids in the description
of data quality assessment results and data cleaning rules in a Semantic Web
architecture. Data Cleaning Ontology (DCO), one more ontology that represents
the data cleaning process [4]. DCO is an advanced version of DQM that assists
domain experts with data cleaning. However, these ontologies do not directly
help to assess data quality. Data Quality Vocabulary (daQ), helps to repre-
sent results of data quality assessment in machine-readable format [15]. This
ontology defines a core vocabulary that enables the uniform definition of spe-
cific data quality metrics, which data publishers can include in their metadata.
W3 has published Data Quality Vocabulary (DQV) [3] to represent data qual-
ity assessment in Semantic Web format4. Data publisher or consumer can use
this vocabulary to represent their data quality assessment report. Fuzzy Quality
Data Vocabulary (FQV) extends DQV to represent the fuzzy concepts. Fuzzy

3 https://iso25000.com/index.php/en/iso-25000-standards/iso-25012.
4 https://www.w3.org/TR/vocab-dqv/.

https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
https://www.w3.org/TR/vocab-dqv/
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ontology assesses the data quality using fuzzy inference systems based on user-
defined fuzzy rules [5]. The aforementioned ontologies do not help to assess the
quality of the data, rather publish quality reports in a machine-readable manner.
Data quality is assessed at various levels such as perception, data, processed and,
rules. This helps to differentiate validation report of the data quality from the
different point of view [35]. Reasoning Violations Ontology (RVO) is an ontology
used to validate the triples and reason out the violations if any [9].

Table 1. Ontologies based on data quality

Ontology Richness Dataset Evaluation
method

DQM 64 Synthetic data SPARQL queries

FQV 13 Peel, DBLP (L3S),
DBPedia, EIONET

Compared
proposed method
with Sieve [31]

DQV 10 – –

RVO 14 Dacura schema
manager

Integrated RVO
in multiple
ontology to
identify errors

Grounding
based
ontology

4 OpenStreetMap data Domain experts
and external
dataset such as
Google maps

Table 1 compares various ontologies that focus on data quality. Richness of
the ontology is computed based on total number of classes in the ontology.
Dataset column indicates the dataset used to validate the ontology and evalua-
tion method depicts how the ontology is evaluated.

2.2 Data Quality Assessment

Existing data quality assessment tools differ on various characteristics such as the
number of metrics to assess quality, approaches to process data, type of data used
to evaluate, user flexibility to choose metric & corresponding weight and assess-
ment report. Luzzu [16] is a stream-oriented data quality assessment framework
that requires domain experts to explicitly mention the metrics using either a
programming language or declarative statements. Semquire [27], a software tool
for linked data quality assessment, implements the quality metrics mentioned in
[51] based on user/application requirement. Despite that the framework provides
a cyclical process to define quality metrics and evaluate a dataset, it does not
address the defects’ root causes. A number of other data quality assessment tools
focus on either a specific data set or a specific metric mentioned in Table 2.



Linked Data Quality Assessment: A Survey 67

A plethora of research focus primarily on various levels of linked data. These
levels include schema, instance and properties. One of the sources for linked
data is (Semi-) structured data. The mapping languages used to convert semi-
structured data into linked format impacts the data quality due to incorrect
usage of schema in the mapping definitions, mistakes in the original data source
[18,41]. Various quality deficiencies at schema and instance level and resolution
strategy have been listed in [7]. One more method to assess the data quality is
to use of external sources. All RDF triples are compared with external sources
to identify inaccurate information present in the knowledge graph [29]. The cor-
rectness of RDF triples can be measured by a confidence score that is generated
based on the reliability score of each triple. Other works analyze the quality of
DBpedia available in different language editions such as Spanish [34], and Arabic
[26] by comparing different versions of DBpedia or comparing various language
editions. The results of the research can be used by the DBpedia community
(publisher) to eliminate the errors in its further editions.

Table 2. Data quality assessment tools

Tool Data source Goal Evaluation method

Sieve [31] DBpedia Identify the quality and
integrate data from
multiple sources to get
improved data set

Not mentioned

TripleCheck
Mate [25]

DBpedia Assess and improve
DBpedia data

Crowdsourcing

Databugger
[24]

DBpedia Test driven data
debugging framework
based on SPARQL queries

Used same queries against
5 different data set to show
case the tool re-usability

Luzzu [16] Real world
dataset

To identify the quality of
the linked dataset

Evaluated the tool for
scalability

LD Sniffer
[32]

DBpedia To analyze the availability
of the given URI and
assess the retrieved data
using LDQM

Not mentioned

Semquire
[27]

Real world
dataset

To identify the quality of
given linked dataset

Compared various publicly
available KG

Data quality assessment tools such as ABSTAT [36], Loupe [33], DistQual-
ityAssessment [42], Roomba [2] focus on understanding statistical information
which include number of triples, and implicit vocabulary information. The infor-
mation derived from these tools help the user get insight into the dataset that
includes detecting outliers in the vocabulary usage, most frequent patterns in
linked data, and thus interpreting data quality. Data quality framework KBQ
[40,43] help in evolution analysis of linked data by comparing all the triples of



68 A. Nayak et al.

two consecutive releases of the dataset. Other related work [18,47] assess the
data quality; however, it fails to mention any technique to improve the identi-
fied data quality problem. In addition, some methods involve manual work to
evaluate each fact for correctness [1,50].

2.3 Data Quality Improvement

Data quality improvement can make use of either external data or the knowledge
graph itself. The presence of illegal values, typographical errors and missing
information may lead to poor data quality [39]. Knowledge graph refinement [37],
and reasoning is a technique used to refine existing data and add missing hidden
information. Reasoning methods are based on logical rules, neural networks, and
continuous vector space that can be used to infer missing knowledge by refining
the given knowledge graph [12]. Sieve [31] compares two different data sources
and chooses the accurate value based on time-closeness and preference. Sieve is
a data fusion approach that enriches the DBpedia data by comparing English
and Portuguese wikipedia editions. Conceptnet, one of the publicly available
knowledge graph is improved by adding more triples that are extracted from news
and tweets [49]. Though the accuracy of the relation extraction model is low,
authors haven’t mentioned anything about the quality of the added information.

Quality of the data can be improved by using supervised methods [10,11,30],
or unsupervised methods [17,38,45]. Data quality can improve by resolving range
violation [28], outlier detection [17], tensor factorization [45] and link prediction
[10,11,30]. Statistical relational learning plays a significant role in knowledge
graph as it also studies the graph structure of knowledge graph [22].

2.4 Root Cause Identification

Data contains errors that need to be identified and resolved. Identification of the
location of the data quality problem is possible by root cause analysis. Various
datasets published by the government have been evaluated for quality defects
such as missing data, format issues, logical duplication and many more. Some of
the common mistakes that is often generated by publisher side that affect quality
problems and suggestions to improve the same are listed by [13]. However, they
have not mentioned the fine-grained level of quality analysis. In another related
study, [46] root causes of data quality violations are identified with the help of
cause and effect diagram. The experiment comprises of quantitative metrics to
analyze the data quality. The research shows that analysis of errors is helpful
both for novice and domain experts. However, there is a lack of research that
suggests an improvement over identified quality problems. Authors in [14] have
validated RDF dataset using constraints that give detailed root cause expla-
nations for all the errors present in the given RDF triple. The framework is
validated against SHACL5 and covers most of the constraints SHACL can vali-
date.

5 https://www.w3.org/TR/shacl/.

https://www.w3.org/TR/shacl/
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3 Recommendations and Future Work

The findings from this survey are (i) lack of end-to-end systems that assess and
refine data quality of knowledge graphs, (ii) lack of evaluation methods. The
end-to-end system requires a complete understanding of data quality metrics
assessment, root causes of violations, and suggestions to refine the triples that
do not obey the data quality. The proposed data quality refinement lifecycle, as
shown in Fig. 2 includes the following:

Fig. 2. Stages of ontology based data quality improvement

A ontology Data Quality Assessment and Improvement (DQAI) is proposed
and has to be modeled by considering all the stages of lifecycle shown in
Fig. 2. Figure 3 describes initial version of the proposed ontology which describes
the dataset along with data quality assessment, root causes of violations and
improvement classes. Each dataset is assessed using multiple metrics (M1 ...)
that belongs to accessible, intrinsic, contextual and representational dimension.
Metric is associated with quality violation which describes type of violation asso-
ciated with the triple. Each type of quality violation is associated with improve-
ment technique.

1. Identify the Knowledge graph. The first step is to select a knowledge
graph, whose quality has to be analysed. Knowledge graphs follow some struc-
ture to store data which is referred as domain ontology. In case of absence
of domain ontology, it can be learned from the knowledge graph. DQI stores
the knowledge graph under graph class.
For example, consider Microsoft Academic Knowledge Graph (MKAG) [19].
MKAG ontology has eight classes that are Paper, Affiliation, Field of study
etc.
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Fig. 3. Proposed ontology for data quality assessment and improvement

2. Identify required metrics. The quality assessment requirement varies
according to the dataset. For instance, if the considered knowledge graph
is an RDF dump, users do not need to concern about the SPARQL endpoint
and server being accessible. Additionally, the user must have the option of
selecting the required metric. This enables flexibility of the system. This step
invokes required metrics under each dimension in DQAI ontology.
From the MKAG example, let us consider a user who wants to assess two
quality metrics on MKAG that are syntactically accurate values and no mal-
formed datatype literals.

3. Data quality analysis. During this stage, the knowledge graph is assessed
against the quality metrics identified and defined in the previous lifecycle
stage. The metric implementation can be assisted with domain ontology and
a knowledge base. Domain ontology and a knowledge base helps evaluate
multiple metrics of intrinsic dimension. These act as rules to evaluate data
quality. With the help of reasoning engine, all quality violated triples are
stated and stored for further analysis by mapping them to axioms in the data
quality ontology. Metrics that are of interest are computed and stored in the
ontoloty DQAI.
From the MKAG example, domain ontology of MKAG can be considered. A
reasoner based on description logic will infer problematic triples that does
not obey the rules mentioned in the knowledge base and ontology. Consider a
class ‘author’ that has properties orcidId and paperCount. PaperCount has a
datatype integer that means any value other than integer for this attribute is
quality violation as per the definition of the metric ‘no malformed datatype’.
‘Syntactically accurate values’ is computed either with the help of cluster-
ing/syntactic rules. Clustering on orcidId would cluster similar id into one/-
multiple clusters leaving out the wrongly mapped orcidId. Similarly all other
metrics that are of interest to the user are computed on all the properties in
the knowledge graph and quality values are computed based on the definitions
given to each metric in [51].
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4. Assessment report with root causes of violations. Data quality assess-
ment report describes the data quality of the knowledge graph for all the
metrics chosen in step 2. This report can make use of the data quality vocab-
ulary(DQV) approved by W3 consortium to report data quality assessment
score. It will also elucidate triples violating quality constraints along with the
precise reason for the violation. While evaluating the data quality metric, it
is possible to identify triples that violate the quality metric. These violations
are stored in the ontology for subsequent analysis.

5. Suggest quality refinements/improvements. Resolving the violations
requires refinement process by the framework. Improvement of data quality
requires to add/modify/remove the triple violating quality constraint. These
automatic suggestions help the user to make a decision. Improvement tech-
niques can be applied on quality violated triples that are stored in DQAI
ontology.
From the MKAG example, for quality violated triples a suggestion should be
given to the user. It helps the user to take a decision that helps to improve
the quality of the available data.

6. Update metadata. In this stage, the knowledge graph is appended with a
quality assessment report along with all triples violating quality constraints
and suggestions. It helps the user to understand their knowledge graph quality
and root causes of triples violating quality constraints before using knowledge
graph.
MAKG example of sample input and expected output for step 4 is as shown
in Listing 1.1. Assume that there is wrongly mapped datatype for paper-
Count, syntactically invalid value for orcidId. Quality violated triples are
identified with the help of knowledge base that validates the triples with the
given ontology and facts stated by domain experts. The output must iden-
tify all triples that do not obey the constraints mentioned in the knowledge
base. Expected output shows ill-typed literal and the data quality associated
dataset. The further step involves refinement that can make suggestions to
add/modify/remove a particular triple.

Listing 1.1. Expected input and output of the proposed method

Input :
mk: https : //mkag . org / c l a s s .
mag : https : //makg . org / property .
f o a f : http :// xmlns . com/ f o a f / 0 . 1 / .
dbo : http :// dbpedia . org / onto logy .
: http :// d a t a qua l i t y v i o l a t i o n . com/ v i o l a t i o n s .

mk: author dbo : o r c i d Id ‘ ‘1234−2345−1234−43 ’ ’;
mag : paperCount 1 2 . 3 ;

Expected output :
: v i o l a t i o n : type : datatypemismatch ;

: t r i p l e mk: author ;
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: va lue mag : paperCount ;
: datatype xsd : decimal ;
: expectedDT xsd : i n t e g e r .

: myDataset a dcat : Dataset ;
dcterms : t i t l e MAKG ;
dqv : hasQualityMeasurement : somemeasurement .

: somemeasurement a dqv : QualityMeasurement ;
dqv : computedOn : myDataset ;
dqv : isMeasurementOf : inverseFuncmismatch ;
dqv : va lue ‘ ‘12”ˆˆ xsd : i n t .

Most of the literature have evaluated their model by considering various
knowledge graphs rather than comparing their model with similar other models.
One of the most significant issues is a diverse format of the quality assessment
report because of which it is highly challenging to compare quality assessment
results of the models. W3 has defined the data quality vocabulary to describe the
results of data quality assessment. Researchers can make use of this vocabulary
while publishing data quality assessment results. Another problem is the num-
ber of metrics used to assess the model. A solution for such problem requires
benchmarking standard collection of metrics as well as an evaluation method
with the help of domain experts.

An assessment framework that works on any knowledge graph is a require-
ment. However, to the best of our knowledge the knowledge graph used for
most of the existing research is DBpedia. Researchers have tried to solve quality
issues related to DBpedia rather than giving a generic approach. One can use
their proposed model on multiple RDF dumps to understand whether the model
can identify problems associated with RDF data.

4 Conclusion

This paper presents a survey on knowledge graph assessment and improvement
approaches. It can be seen that a larger body of work exists on data quality
assessment techniques ranging from an assessment based on a single metric to
multiple metrics with different goals. The survey has revealed that there are, at
the moment, rarely any approaches which simultaneously assess and refine the
knowledge graphs. Most of the literature considers scalability performance as an
evaluation method rather than defining the model’s accuracy by considering test
dataset.

This survey’s future work involves modeling an ontology to capture all the
data quality violations. It also includes building a knowledge base that can logi-
cally reason out violations to locate the quality violated triples. This helps data
publishers and consumers understand their data quality along with quality vio-
lated triples, if any. A gold standard dataset has to be prepared to all possible
violations which can be used to for evaluation purposes.
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of the quality issues of the properties available in the Spanish DBpedia. In: Puerta,
J.M., et al. (eds.) CAEPIA 2015. LNCS (LNAI and LNB), vol. 9422, pp. 198–209.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24598-0 18

35. Mocnik, F.B., Mobasheri, A., Griesbaum, L., Eckle, M., Jacobs, C., Klonner, C.:
A grounding-based ontology of data quality measures. J. Spat. Inf. Sci. 2018(16),
1–25 (2018)

36. Palmonari, M., Rula, A., Porrini, R., Maurino, A., Spahiu, B., Ferme, V.: ABSTAT:
linked data summaries with ABstraction and STATistics. In: Gandon, F., Guéret,
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